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Under arbitrary masses, in this paper, we discuss the existence of new families of spatial central
configurations for the N + N + 2-body problem, N ≥ 2. We study some necessary conditions and
sufficient conditions for a families of spatial double pyramidical central configurations (d.p.c.c.),
where 2N bodies are at the vertices of a nested regularN-gons Γ1 ∪Γ2, and the other two bodies are
symmetrically located on the straight line that is perpendicular to the plane that contains Γ1 ∪ Γ2
and passes through the geometric center of Γ1 ∪ Γ2. We prove that if the bodies are in a d.p.c.c.,
then the masses on each N-gon are equal, and the other two are also equal. And also we prove the
existence and uniqueness of the central configurations for any given ratios of masses.

1. Main Results

The Newtonian n-body problem (see [1–7]) concerns the motion of n point particles with
massesmj ∈ R+ and positions qj ∈ R3(j = 1, . . . , n). The motion is governed by Newton’s law:

mjq̈j =
∂U
(
q
)

∂qj
, (1.1)

where q = (q1, . . . , qn) and U(q) is the Newtonian potential:

U
(
q
)
=
∑

1≤k<j≤n

mkmj
∣∣∣qk − qj

∣∣∣
. (1.2)
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Consider the space

X =

{

q =
(
q1, . . . , qn

) ∈ R3n :
n∑

k=1

mkqk = 0

}

, (1.3)

that is, suppose that the center of mass is fixed at the origin of the space. Because the
potential is singular when two particles have the same position, it is natural to assume that
the configuration avoids the set Δ = {q : qk = qj for some k /= j}. The set X \ Δ is called the
configuration space.

Definition 1.1 (see [4]). A configuration q = (q1, . . . , qn) ∈ X\Δ is called a central configuration
(c.c.) if there exists a constant λ such that q̈k = −λqk, k = 1, 2, . . . , n, or

n∑

j=1,j /= k

mjmk
∣∣∣qj − qk

∣∣∣
3

(
qj − qk

)
= −λmkqk, 1 ≤ k ≤ n, (1.4)

and the value of the constant λ in (1.4) is uniquely determined by

λ =
U

I
, (1.5)

where

I =
n∑

k=1

mk

∣∣qk
∣∣2. (1.6)

For any coordinate system, we have that, if the center of masses m1, m2, . . . , mn with
position vectors r1, r2, . . . , rn is not at the origin, central configuration equations (1.4) are
equivalent to the following:

n∑

j=1,j /= k

mjmk
∣∣rj − rk

∣∣3
(
rj − rk

)
= −λmk(rk − r0), 1 ≤ k ≤ n, (1.7)

where r0 =
∑n

k=1 mkrk/
∑n

k=1 mk is the center of masses m1, m2, . . . , mn.
The knowledge of central configurations allows us to compute homographic solutions

(see [8]); there is a relation between central configurations and the bifurcations of the
hypersurfaces of constant energy and angular momentum (see [9]); if the N bodies are
moving towards a simultaneous collision, then the bodies tend to a central configuration
(see [10]). See also [11, 12].

Some examples of spatial central configurations are a regular tetrahedron with
arbitrary positive masses at the vertices [13] and a regular octahedron with six equal masses
at the vertices [12]. Double nested spatial central configurations for 2N bodies were studied
for two nested regular polyhedra in [14]. More recently, the same authors studied central
configurations of three regular polyhedra for the spatial 3N-body problem in [15]. See also
[16], where nested regular tetrahedrons are studied.
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Recently, Hampton and Santoprete [17] provided new examples of stacked spatial
central configurations—central configurations for theN-body problemwhere a proper subset
of the N bodies are already on a central configuration—for the 7-body problem where
the bodies are arranged as concentric three- and two-dimensional simplex. New classes of
stacked spatial central configurations for the 6-body problem which have four bodies at the
vertices of a regular tetrahedron and the other two bodies on a straight line connecting one
vertex of the tetrahedron with the center of the opposite face were studied in [18].

In this paper, we study new classes of spatial double pyramidical central configura-
tions (d.p.c.c) for the N +N + 2-body that satisfy the following.

(1) The position vectors r1, r2, . . . , rN of masses m1, m2, . . . , mN are at the vertices
of a regular N-gon Γ1, whose sides have length ι1. The position vectors
rN+1, rN+2, . . . , r2N of masses mN+1, mN+2, . . . , m2N are at the vertices of another
regular N-gon Γ2, whose sides have length ι2. Two N-gons have a same geometric
center and form a affine nested N-gons (base plane Π).

(2) Let L be the straight line perpendicular to the base plane Π that contains Γ1 and Γ2
and passes through the geometric center of Γ1 ∪ Γ2. The position vectors r2N+1 and
r2N+2 of massesm2N+1 andm2N+2 are on L and on opposite sides with respect to the
plane Π.

The central configurations studied in this paper are in some measure related to the
double pyramidal central configurations (d.p.c.c) studied in [19] and the paper in [20]. The
configuration in [19] consists of n masses on a plane that are located at the vertices of a
regular n-gon and two equal masses located on the line perpendicular to passing through
the geometric center of the N-gon. And the authors in [20] assumed that the center of the
N-gon is at the origin, that is, Σn

j=1mjrj = 0, and more that the origin of the inertial system is
the center of mass of the system, that is, Σn+3

j=1mjrj = 0 and rn+3 = 0. In fact the origin is the
geometric center of the N-gon. Hence the configuration in [20] is only to append a mass at
the geometric center of the N-gon in [19].

As far as we know, the spatial central configurations studied here are very new. The
number of bodies (masses) is increased to 2N +2, it is not to suppose the origin of the inertial
system, and the proofs are more difficult than those in [19, 20].

The main results of this paper are the following.

Theorem 1.2. Consider N + N + 2 bodies with masses m1, m2, . . . , m2N,m2N+1, m2N+2 located
according to the following.

(i) r1, r2, . . . , rN are at the vertices of a regular n-gon Γ1 inscribed on a circle of radius α.

(ii) rN+1, rN+2, . . . , r2N are at the vertices of another regular n-gon Γ2 inscribed on a circle of
radius a.

(iii) r2N+1 and r2N+2 are on the straight line L, on opposite sides with respect to the plane Π,
where L is the straight line that is perpendicular to Π and passes through the geometric
center of Γ1 ∪ Γ2. Let h1 = distance (r2N+1,Π) and h2 = distance (r2N+2,Π).

In order that the N + N + 2 bodies can be in a central configuration (c.c.), the following
statements hold.

(1) If h1 = h2 =: h, then there ism2N+1 = m2N+2.
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(2) If h1 = h2 =: h, then not only m2N+1 = m2N+2, but also

m1 = m2 = · · · = mN =: m,

mN+1 = mN+2 = · · · = m2N =: m̃.
(1.8)

(3) The origin is the mass center of m1, m2, . . . , m2N and also the mass center of
m1, m2, . . . , m2N+2, that is,

2N∑

j=1

mjrj = 0,

2N+2∑

j=1

mjrj = 0.

(1.9)

(4) Get rid of masses m2N+1 and m2N+2, when ratio of masses b = mN+1/m1 in some interval
and the massesm1, m2, . . . , m2N may form a central configuration.

Remark 1.3. Let m2N+1 = m2N+2, and the origin is the mass center of m1, m2, . . . , m2N , also it
is the mass center of m1, m2, . . . , m2N+2, and then we have that h1 = h2 and (1.8) hold. The
conclusions are the oppose problem of some items in Theorem 1.2, which is similar to that in
[20]. We may similarly prove h1 = h2. The proof of (1.8) still see Theorem 1.2 in this paper.

Theorem 1.4. Under the suppositions of the positions for masses, and m1 = m2 = · · · =
mN =: m, mN+1 = mN+2 = · · · = m2N =: m̃, m2N+1 = m2N+2 and h1 = h2 =: h, then
m1, . . . , mN,mN+1, . . . , m2N, m2N+1, m2N+2 are in a c.c., if and only if the parameters b, a, c and
h satisfy the following relationships:

λ

M
=

1
(N +Nb + 2c)

⎛

⎝
∑

j /=N

1 − ρj
∣∣1 − ρj

∣∣3
+
∑

j

b
(
1 − aρj

)

∣∣1 − aρj
∣∣3

+
2c

(1 + h2)3/2

⎞

⎠,

λ

M
=

1
h(N +Nb + 2c)

[
Nh

(1 + h2)3/2
+

Nbh

(a2 + h2)3/2
+

c

4h2

]

,

b=

∑
j

((
a−ρj

)
/
∣∣a − ρj

∣∣3
)
−a∑j /=N

((
1 − ρj

)
/
∣∣1 − ρj

∣∣3
)
+
(
2c/
(
a2 + h2)3/2

)
−
(
2ca/
(
1 + h2)3/2

)

a
∑

j

((
1 − aρj

)
/
∣∣1 − aρj

∣∣3
)
− a−2∑

j /=N

((
1 − ρj

)
/
∣∣1 − ρj

∣∣3
) ,

(1.10)

where b = m̃/m, c = m2N+1/m and ρj = exp(i(2πj/N)).

Theorem 1.5. Under the suppositions of the positions for masses, and m1 = m2 = · · · = mN =: m,
mN+1 = mN+2 = · · · = m2N = m̃, m2N+1 = m2N+2 and h1 = h2 =: h, then for any ratios of masses
b = m̃/m and c = m2N+1/m,m1, . . . , mN,mN+1, . . . , m2N,m2N+1, m2N+2 may form a unique c.c.
such that a ∈ (0, 1) and h ∈ (0,+∞).
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2. Some Lemmas

Definition 2.1 (see [21]). If N ×N matrix A = (ai,j) satisfies

ai,j = ai−1,j−1, 1 ≤ i, j ≤ N, (2.1)

where we assume ai,0 = ai,N and a0,j = aN,j , then one calls that A is a circular matrix.

Lemma 2.2 (see [21]). (i) If A and B are N ×N circular matrices, for any numbers γ and β, then
A + B,A − B,AB and γA + βB are also circular matrices, and AB = BA.

(ii) Let A = (ai,j) be an N ×N circular matrix; the eigenvalues λk and the eigenvectors 
vk of
A are

λk(A) =
∑

j

a1,jρ
j−1
k−1,


vk =
(
1, ρk−1, ρ2k−1, . . . , ρ

N−1
k−1
)T

.

(2.2)

(iii) Let A and B be circular matrices, and let λk(A) and λk(B) be eigenvalues of A and B.
Then the eigenvalues of A + B, A − B and A · B are λk(A) + λk(B), λk(A) − λk(B) and
λk(A) · λk(B).

It is clear that.

Lemma 2.3. If A = (ai,j) is an N × N circular matrices, and AX = 0, where X = (x1, . . . , xn)
T ,

xi > 0 (i = 1, . . . ,N), then

a1,j + · · · + aN,j = 0, 1 ≤ j ≤ N,

ai,1 + · · · + ai,N = 0, 1 ≤ i ≤ N.
(2.3)

Lemma 2.4. Let A and B be N × N Hermite circular matrices; then A + B, A − B, AB and γA +
βB(γ, β ∈ R) are also Hermite circular matrices.

Lemma 2.5. Let A be a Hermite circular matrix; then the eigenvalues of A are real number and

(i) when n = 2m + 1(m ≥ 1), A can be denoted by A = A2m+1 = cir(a, b1, b2, . . . , bm,
bm, . . . , b2, b1), where a ∈ R and bl is a conjugate complex number of bl. It has eigenvalues

λ0 = a + 2
m∑

l=1

Re bl,

λk = a + 2
m∑

l=1

[
Re bl cos

2kπl
2m + 1

− Im bl sin
2kπl
2m + 1

]
, 1 ≤ k ≤ 2m,

(2.4)
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(ii) when n = 2m(m ≥ 1), A can be denoted by A = A2m = cir(a, b1, b2, . . . , bm−1, bm,
bm−1, . . . , b2, b1, ). It has eigenvalues

λ0 = a + 2
m−1∑

l=1

Re bl + bm,

λm = a + 2
m−1∑

l=1

(−1)l Re bl + (−1)mbm,

λk = a + 2
m−1∑

l=1

[
Re bl cos

2kπl
2m

− Im bl sin
2kπl
2m

]
+ (−1)kbm, 1 ≤ k ≤ 2m − 1, k /=m.

(2.5)

Lemma 2.6. The complex subspace L of CN generated by X1 = (1, 1, . . . , 1) and X2 =
(1, ρ, . . . , ρN−1), where N = 2k > 2(ρ = exp 2πI/N), and the complex subspace L̃ generated by
X1, X2, and X3 = (1, ρk+1, . . . , ρ(N−1)(k+1)), where N = 2k + 1 > 3, all contain no real vectors other
than the multiples of (1, 1, . . . , 1).

Remark 2.7. Lemmas 2.3–2.5 can be simply proved by properties of circular matrix and
Hermite matrix, and after some algebraic computations, Lemma 2.6 can be also simply
proved.

Lemma 2.8 (see [5]). Let A = (1/4)
∑

j /=N csc(πj/N); then A(N) has the following asymptotic
expansion for N large:

A(N) ∼ N

2π

(
γ + log

2N
π

)
+
∑

k≥0

(−1)k(22k−1 − 1
)
B2
2kπ

2k−1

(2k)(2k)!
1

N2k−1 , (2.6)

where γ stands for the Euler-Mascheroni constant and B2k stands for the Bernoulli numbers.

Lemma 2.9 (see [5]). Let Φν(x) =
∑

j 1/d
ν
j , where ν > 0 and dj = 1 + x2 − 2x cos (2πj/N);

then, for 0 < x < 1, Φν(x) and all of its any order derivatives are positive. Moreover, the same is thus
forΨν(x) =

∑
j cos(2πj/N)/dν

j .

3. The Proof of Theorem

Proposition 3.1. The central configuration equations (1.4) or (1.5) is equivalent to the following:

n∑

j=1,j /= k

mj

(
rj − rk

)
(
Rj,k − λ

M

)
= 0, 1 ≤ k ≤ n, (3.1)

whereM =
∑n

k=1 mk,Rj,k = |rj − rk|−3.

Proof. From central configuration equation (1.4) or (1.5), we easily prove.
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Denote rk = (xk, yk, zk) ∈ R3, and 
z = (0, 0, 1). Observing (1.5), one could have a free
choice of the origin for a configuration. Without loss of generality, consider that the origin is
at the geometric center of Γ1 ∪ Γ2, and let zk = 0, 1 ≤ k ≤ 2N.

Proposition 3.2. Under the hypotheses of Theorem 1.2, if h1 = h2 =: h, then the following equations
are verified:

m2N+1 = m2N+2, (3.2)

R2N+1,j = R2N+1,k = R2N+2,j = R2N+2,k, 1 ≤ j /= k ≤ N, (3.3)

R2N+1,N+j = R2N+1,N+k = R2N+2,N+j = R2N+2,N+k, 1 ≤ j /= k ≤ N, (3.4)

where Rj,k = |rj − rk|−3.

Proof. In (3.1), considering the equations along the direction 
z, and k = 1, N + 1, we have

m2N+1(z2N+1 − z1)
[
R1,2N+1 − λ

M

]
+m2N+2(z2N+2 − z1)

[
R1,2N+2 − λ

M

]
= 0,

m2N+1(z2N+1 − zN+1)
[
RN+1,2N+1 − λ

M

]
+m2N+2(z2N+2 − zN+1)

[
RN+1,2N+2 − λ

M

]
= 0,

(3.5)

where

R1,2N+1 =
(
|r1|2 + |z2N+1|2

)−3/2
,

R1,2N+2 =
(
|r1|2 + |z2N+2|2

)−3/2
,

RN+1,2N+1 =
(
|rN+1|2 + |z2N+1|2

)−3/2
,

RN+1,2N+2 =
(
|rN+1|2 + |z2N+2|2

)−3/2
,

z1 = zN+1 = 0.

(3.6)

By the h1 = h2, we have

z2N+1 = −z2N+2, R1,2N+1 = R1,2N+2, RN+1,2N+1 = RN+1,2N+2. (3.7)

Hence

(m2N+1 −m2N+2)
[
R1,2N+1 − λ

M

]
= 0,

(m2N+1 −m2N+2)
[
RN+1,2N+1 − λ

M

]
= 0.

(3.8)
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Obviously R1,2N+1 /=RN+1,2N+1, so

m2N+1 = m2N+2. (3.9)

By our assumptions for the origin, (3.3), (3.4) clearly holds.

Equation (3.9) of Proposition 3.2 proves item (1) of Theorem 1.2.

Proposition 3.3. Under the hypotheses of Theorem 1.2, if m2N+1 = m2N+2, the origin is the mass
center of m1, m2, . . . , m2N , and it also is the mass center of m1, m2, . . . , m2N+2, then

h1 = h2 =: h (3.10)

and (3.3), (3.4) hold.

Proof. The proof is very similar to that in [20].

Proposition 3.4. Under the hypotheses of Theorem 1.2, if h1 = h2 =: h, then the masses at the vertices
of circle Γ1 are equal, and also the masses at the vertices of circle Γ2 are equal, that is,

m1 = m2 = · · · = mN,

mN+1 = mN+2 = · · · = m2N.
(3.11)

Proof. Because if r → εr is a transformation in a central configuration, then λ → (1/ε2)λ can
be a new parameter of a central configuration. We say that the old and the new are equivalent.
Hence without loss of generality, we may let α = 1, 0 < a < 1. Then the vectors of positions
based on the previous assumptions can be interpreted by the following:

rk =
(
ρk, 0
)

(1 ≤ k ≤ N),

rN+k =
(
ρ̃k, 0
)

(1 ≤ k ≤ N),

r2N+1 =
(
0 · ρ0, h

)
(h > 0),

r2N+2 =
(
0 · ρ0,−h

)
(h > 0),

(3.12)

where ρk = exp((2πk/N)i), ρ̃k = aρk, a > 0, and i =
√−1, ρk denote the N complex kth roots

of unity, that is, that mk(1 ≤ k ≤ N) each locates at the vertices rk of the one regular N-gon
Γ1, mN+k(1 ≤ k ≤ N) each locates at the vertices rN+k of the other regular N-gon Γ2, and
m2N+1 and m2N+2 lie on the vertices of r2N+1, r2N+2. Then the center of masses is

r0 =

∑
j

(
mjrj +mN+j rN+j

)
+m2N+1r2N+1 +m2N+2r2N+2

M
, (3.13)
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where

M =
∑

j

(
mj +mN+j

)
+m2N+1 +m2N+2. (3.14)

In (3.13)-(3.14) and throughout this paper, unless other restricted, all indices and
summations will range from 1 toN.

Let h1 = h2 =: h; thenm2N+1 = m2N+2. Now we discuss all equations for the 2N masses
on the base plane Π. According to (3.1), then

∑

j /= k

mj

(
1

∣∣ρk − ρj
∣∣3

− λ

M

)
(
ρk − ρj

)
+
∑

j

mN+j

(
1

∣∣ρk − ρ̃j
∣∣3

− λ

M

)
(
ρk − ρ̃j

)

+ 2m2N+1

(
1

(1 + h2)3/2
− λ

M

)

ρk = 0,

∑

j

mj

(
1

∣∣ρ̃k − ρj
∣∣3

− λ

M

)
(
ρ̃k − ρj

)
+
∑

j /= k

mN+j

(
1

∣∣ρ̃k − ρ̃j
∣∣3

− λ

M

)
(
ρ̃k − ρ̃j

)

+ 2m2N+1

(
1

(a2 + h2)3/2
− λ

M

)

aρk = 0.

(3.15)

Multiplying both sides by ρN−k, noting that |ρk − ρj | = |ρk||1 − ρj−k| = |1 − ρj−k| and
ρ̃k = aρk, we see that (3.15)may be written as

∑

j /= k

mj

(
1

∣∣1 − ρj−k
∣∣3

− λ

M

)
(
1 − ρj−k

)
+
∑

j

mN+j

(
1

∣∣1 − aρj−k
∣∣3

− λ

M

)
(
1 − aρj−k

)

+ 2m2N+1

(
1

(1 + h2)3/2
− λ

M

)

= 0,

∑

j

mj

(
1

∣∣a − ρj−k
∣∣3

− λ

M

)
(
a − ρj−k

)
+
∑

j /= k

mN+j

(
1

∣∣a − aρj−k
∣∣3

− λ

M

)
(
a − aρj−k

)

+ 2m2N+1

(
1

(a2 + h2)3/2
− λ

M

)

a = 0,

(3.16)

where k = 1, 2, . . . ,N.
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Now we define the N × N circular matrices C = [ck,j], A = [ak,j], B = [bk,j], and
D = [dk,j] as follows:

ck,j = 0, for k = j,

ck,j =

(
1

∣
∣1 − ρj−k

∣
∣3

− λ

M

)
(
1 − ρj−k

)
, for k /= j,

ak,j =

(
1

∣
∣1 − aρj−k

∣
∣3

− λ

M

)
(
1 − aρj−k

)
,

bk,j =

(
1

∣
∣a − ρj−k

∣
∣3

− λ

M

)
(
a − ρj−k

)
,

dk,j = 0, for k = j,

dk,j =

(
1

∣∣a − aρj−k
∣∣3

− λ

M

)
(
a − aρj−k

)
for k /= j.

(3.17)

Also define


1 = (1, . . . , 1)T ,

E = 2

(
1

(1 + h2)3/2
− λ

M

)

· 
1,

F = 2a

(
1

(a2 + h2)3/2
− λ

M

)

· 
1.

(3.18)

We see that (3.16) holds if and only if the matrix equation

(
C A E

B D F

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1

...

mN

mN+1

...

m2N

m2N+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0 (3.19)

has a positive solution. Let


m = (m1, . . . , mN)T , 
̃m = (mN+1, . . . , m2N)T . (3.20)



Abstract and Applied Analysis 11

Then (3.19) is equivalent to

C 
m +A
̃m +m2N+1E = 
0, (3.21)

B 
m +D 
̃m +m2N+1F = 0. (3.22)

Noticing that A,B,C, and D are N × N circular matrix, using the properties of circular
matrix, we know that they must have positive real eigenvector 
1. Each of (3.21) and (3.22)
left multiplies 
1T = (1, 1, . . . , 1); there are

(
∑

k

mk

)
∑

j /=N

(
1

∣∣1 − ρj
∣∣3

− λ

M

)
(
1 − ρj

)
+

(
∑

k

mN+k

)
∑

j

(
1

∣∣1 − aρj
∣∣3

− λ

M

)
(
1 − aρj

)

+ 2m2N+1 ·N
(

1

(1 + h2)3/2
− λ

M

)

= 0,

(
∑

k

mk

)
∑

j

(
1

∣∣a − ρj
∣∣3

− λ

M

)
(
a − ρj

)
+

(
∑

k

mN+k

)
∑

j /=N

(
1

∣∣a − aρj
∣∣3

− λ

M

)
(
a − aρj

)

+ 2m2N+1 ·N
(

1

(a2 + h2)3/2
− λ

M

)

a = 0.

(3.23)

By (3.21) and (3.22)we have

(CD −AB) 
m + 2m2N+1

[(
1

(1 + h2)3/2
− λ

M

)

D − a

(
1

(a2 + h2)3/2
− λ

M

)

A

]

1 = 
0,

(AB − CD) 
̃m + 2m2N+1

[(
1

(1 + h2)3/2
− λ

M

)

B − a

(
1

(a2 + h2)3/2
− λ

M

)

C

]

1 = 
0.

(3.24)

From Lemma 2.2 we see that ((1/(1 + h2)3/2) − (λ/M))D − a((1/(a2 + h2)3/2) − (λ/M))A,
((1/(1 + h2)3/2) − (λ/M))B − a((1/(a2 + h2)3/2) − (λ/M))C, and CD −AB are circular matrix,
and we know that they must have positive real eigenvector 
1. By the properties of circular
matrix, (3.24) can be written as

(CD −AB) · 
m + γ1 · 
1 = 
0,

(AB − CD) · 
̃m + γ2 · 
1 = 
0,
(3.25)
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where

γ1 · 
1 = 2m2N+1

[(
1

(1 + h2)3/2
− λ

M

)

D − a

(
1

(a2 + h2)3/2
− λ

M

)

A

]

1,

γ2 · 
1 = 2m2N+1

[(
1

(1 + h2)3/2
− λ

M

)

B − a

(
1

(a2 + h2)3/2
− λ

M

)

C

]

1,

γ1 = 2m2N+1

⎡

⎣

(
1

(1 + h2)3/2
− λ

M

)
∑

j /=N

(
1

∣
∣a − aρj

∣
∣3

− λ

M

)
(
a − aρj

)

−a
(

1

(a2 + h2)3/2
− λ

M

)
∑

j

(
1

∣
∣1 − aρj

∣
∣3

− λ

M

)
(
1 − aρj

)
⎤

⎦,

γ2 = 2m2N+1

⎡

⎣

(
1

(1 + h2)3/2
− λ

M

)
∑

j

(
1

∣∣a − ρj
∣∣3

− λ

M

)
(
a − ρj

)

−a
(

1

(a2 + h2)3/2
− λ

M

)
∑

j /=N

(
1

∣∣1 − ρj
∣∣3

− λ

M

)
(
1 − ρj

)
⎤

⎦.

(3.26)

We easily prove γ1, γ2 ∈ R, and from (3.23), we have

(
∑

k

mN+k

)⎧⎨

⎩

(
1

(1 + h2)3/2
− λ

M

)
∑

j /=N

(
1

∣∣a − aρj
∣∣3

− λ

M

)
(
a − aρj

)

−a
(

1

(a2 + h2)3/2
− λ

M

)
∑

j

(
1

∣∣1 − aρj
∣∣3

− λ

M

)
(
1 − aρj

)
⎫
⎬

⎭

+

(
∑

k

mk

)⎧⎨

⎩

(
1

(1 + h2)3/2
− λ

M

)
∑

j

(
1

∣∣a − ρj
∣∣3

− λ

M

)
(
a − ρj

)

−a
(

1

(a2 + h2)3/2
− λ

M

)
∑

j /=N

(
1

∣∣1 − ρj
∣∣3

− λ

M

)
(
1 − ρj

)
⎫
⎬

⎭
= 0,

(3.27)

that is,

γ1
∑

k

mN+k + γ2
∑

k

mk = 0, mj > 0, m̃j > 0. (3.28)

Hence one has the following.
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(1) If γ1 = 0, then γ2 = 0. By (3.25), there are

(CD −AB) · 
m = 
0, (3.29)

(CD −AB) · 
̃m = 
0. (3.30)

We notice that (3.29) or (3.30) must have positive real solutions, which is equivalent to that
CD −AB has positive real eigenvectors corresponding to eigenvalue 0.

But we notice that (3.29) and (3.30) must hold, and for k = 1, we have an eigenvalue
λ1 = 0, and an matching eigenvector 
v1 = (1, 1, . . . , 1)T of CD −AB. Noticing thatA,B,C, and
D are Hermite circular matrices, from the properties of circular and Hermite matrix in
Lemmas 2.2 and 2.4, then CD − AB = G is also a Hermite circular matrix. We may denote
G by cir(a0, g1, g2, . . . , gm−1, gm, gm−1, . . . , g2, g1) when N = 2m, where a0, gm ∈ R. We also
denote G by cir(a0, g1, g2, . . . , gm−1, gm, gm, . . . , g2, g1) when N = 2m + 1, where a0 ∈ R. Using
Lemmas 2.4 and 2.5, after complex computation, we may prove that the kernel ofG is at most
a subspace in L when N = 2m > 2, and a subspace in L̃ when N = 2m + 1 > 3 (see [22]),
where the meanings of L and L̃ are in Lemma 2.6. Hence the kernel of G does not contain any
positive real vectors other than multiplication of 
1 = (1, 1, . . . , 1).

When N = 2, 3, we may easily prove the conclusion.
(2) If γ1 /= 0, then γ2 /= 0; from (3.25) and (3.28),we get

(AB − CD)

[(
∑

k

mk

)

̃m −
(
∑

k

mN+k

)


m

]

= 
0. (3.31)

If
(
∑

k

mk

)

̃m −
(
∑

k

mN+k

)


m/= 0, (3.32)

let G = AB −CD = (gij), which is not zero circular matrix; by Lemmas 2.2 and 2.3 we see that∑
j gij = 0 and G has an eigenvalue λ1 = 0. Using the properties of circular matrix, we have

(AB − CD)
1 = 
0 or 
1T (AB − CD) = 
0T . Let 
1T left multiplies (3.25); we get γ1 = γ2 = 0, which
is a contradiction to the supposition. So

(
∑

k

mk

)

̃m −
(
∑

k

m̃k

)


m = 0, (3.33)

and then mN+j = bmj , where b =
∑

k m̃k/
∑

k mk, that is, 
̃m = b 
m. Substituting it into (3.21)-
(3.22), we have

(C + bA) 
m + 2m2N+1

(
1

(1 + h2)3/2
− λ

M

)

1 = 0,

(B + bD) 
m + 2a ·m2N+1

(
1

(a2 + h2)3/2
− λ

M

)

1 = 0.

(3.34)
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Then

[

a ·
(

1

(a2 + h2)3/2
− λ

M

)

(C + bA) −
(

1

(1 + h2)3/2
− λ

M

)

(B + bD)

]


m = 0. (3.35)

Noticing that a · ((1/(a2 + h2)3/2) − (λ/M))(C + bA) − ((1/(1 + h2)3/2) − (λ/M))(B + bD)
is a Hermite circular matrix, similarly we also have 
m = (m1, m1, . . . , m1)

T and 
̃m =
(mN+1, . . . , mN+1), where m1, mN+1 > 0.

Remark 3.5. Proposition 3.4 proves item (2) of Theorem 1.2.

Proposition 3.6. Under the hypothesis of Theorem 1.2, if h1 = h2, then the origin is the mass center
of m1, m2, . . . , m2N and also is the mass center of m1, m2, . . . , m2N+2.

Proof. We have already

m2N+1 = m2N+2, (3.36)

m1 = m2 = · · · = mN, (3.37)

mN+1 = mN+2 = · · · = m2N. (3.38)

So there are

2N∑

j=1

mjrj = 0,

2N+2∑

j=1

mjrj = 0,

(3.39)

by the positions of rj , j = 1, 2, . . . , 2N + 2.

Remark 3.7. Proposition 3.6 proves item (3) of Theorem 1.2. By (3.37) and (3.38), item (4) of
Theorem 1.2 may be proved.

Proposition 3.8. Under the hypothesis of Theorem 1.4, the conclusion of Theorem 1.4 holds.



Abstract and Applied Analysis 15

Proof (The Proof of the Necessary). By the hypothesis of Theorem 1.4, let m̃ = bm,m2N+1 = cm;
from (3.23), there are

⎡

⎣
∑

j /=N

(
1

∣
∣1 − ρj

∣
∣3

− λ

M

)
(
1 − ρj

)
+ b
∑

j

(
1

∣
∣1 − aρj

∣
∣3

− λ

M

)
(
1 − aρj

)
⎤

⎦

+ 2c

(
1

(1 + h2)3/2
− λ

M

)

= 0,

⎡

⎣
∑

j

(
1

∣
∣a − ρj

∣
∣3

− λ

M

)
(
a − ρj

)
+ b
∑

j /=N

(
1

∣
∣a − aρj

∣
∣3

− λ

M

)
(
a − aρj

)
⎤

⎦

+ 2c

(
1

(a2 + h2)3/2
− λ

M

)

a = 0.

(3.40)

We know that

∑

j

(
1 − ρj

)
= N,

∑

j

b
(
1 − aρj

)
= bN,

∑

j

(
a − ρj

)
= aN,

∑

j

b
(
a − aρj

)
= abN.

(3.41)

From (3.40) we have

λ

M
=

1
N +Nb + 2c

⎡

⎣
∑

j /=N

1 − ρj
∣∣1 − ρj

∣∣3
+ b
∑

j

1 − aρj
∣∣1 − aρj

∣∣3
+

2c

(1 + h2)3/2

⎤

⎦,

λ

M
=

1
a(N +Nb + 2c)

⎡

⎣
∑

j

a − ρj
∣∣a − ρj

∣∣3
+ b
∑

j /=N

a − aρj
∣∣a − aρj

∣∣3
+

2c

(a2 + h2)3/2

⎤

⎦,

(3.42)

and similarly we also have

λ

M
=

1
h(N +Nb + 2c)

[
Nh

(1 + h2)3/2
+

Nbh

(a2 + h2)3/2
+

ch

4h3

]

(3.43)
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by (3.1). Then

a

⎛

⎝
∑

j /=N

1 − ρj
∣
∣1 − ρj

∣
∣3

+ b
∑

j

1 − aρj
∣
∣1 − aρj

∣
∣3

+
2c

(1 + h2)3/2

⎞

⎠ =
∑

j

a − ρj
∣
∣a − ρj

∣
∣3

+ b
∑

j /=N

a − aρj
∣
∣a − aρj

∣
∣3

+
2c

(a2 + h2)3/2
,

(3.44)

b =

∑
j

((
a − ρj

)
/
∣
∣a − ρj

∣
∣3
)
−a∑j /=N

((
1 − ρj

)
/
∣
∣1 − ρj

∣
∣3
)
+
(
2c/
(
a2 + h2)3/2

)
−
(
2ca/
(
1 + h2)3/2

)

a
∑

j

((
1 − aρj

)
/
∣
∣1 − aρj

∣
∣3
)
−a−2∑

j /=N

((
1 − ρj

)
/
∣
∣1 − ρj

∣
∣3
) ,

(3.45)

where (3.42), (3.43), (3.45) imply (1.10).

Proof of Sufficient. For N ≥ 2, under the suppositions of Theorem 1.4, then m1, m2, . . . , m2N+2

in a c.c. if and only if (3.42)–(3.43) hold, which are equivalent to (1.10). Hence the proof of
the sufficient was finished.

Proposition 3.9. Under the hypothesis of Theorem 1.5, for any ratios of masses b = m̃/m and c =
m2N+1/m, m1, m2, . . . , m2N+2 may form a unique c.c. such that a ∈ (0, 1) and h ∈ (0,+∞).

Here is Theorem 1.5.

Proof. Under the suppositions of the positions for masses, and h1 = h2 =: h, m1 = m2 = · · · =
mN =: m, mN+1 = m2 = · · · = m̃2N =: m̃, and m2N+1 = m2N+2, then for any ratios of masses
b = m̃/m and c = m2N+1/m, m1, m2, . . . , m2N+2 are in a unique c.c. such that a ∈ (0, 1), h > 0,
if and only if that (1.10)–(1.14) or (3.42)–(3.43) have a unique positive solution on 0 < a < 1
and h > 0 for any given numbers b, c (> 0).

Let a = x, h = y, and

K
(
x, y
)
= x

⎛

⎝
∑

j /=N

1 − ρj
∣∣1 − ρj

∣∣3
+ b
∑

j

1 − xρj
∣∣1 − xρj

∣∣3
+

2c
(
1 + y2

)3/2

⎞

⎠ −
∑

j

x − ρj
∣∣x − ρj

∣∣3

− b
∑

j /=N

x − xρj
∣∣x − xρj

∣∣3
− 2c
(
x2 + y2

)3/2 ,

L
(
x, y
)
=

⎛

⎝
∑

j /=N

1 − ρj
∣∣1 − ρj

∣∣3
+ b
∑

j

1 − xρj
∣∣1 − xρj

∣∣3
+

2c
(
1 + y2

)3/2

⎞

⎠ − N
(
1 + y2

)3/2

− Nb
(
x2 + y2

)3/2 − c

4y3
.

(3.46)

It suffices to prove thatK(x, y) = 0, and L(x, y) = 0 have a unique positive solution (x, y) for
any given ratios b, c (> 0) in x ∈ (0, 1), and y ∈ (0,+∞).
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Now let

d2
j = 1 + x2 − 2x cos

(
2πj
N

)
,

P(x) =
∑

j

1
d3
j

,

Q(x) =
∑

j

cos
(
2πj/N

)

d3
j

,

A =
∑

j /=N

1 − ρj
∣∣1 − ρj

∣∣3
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

⎛

⎝2
(N/2)−1∑

j=1

csc
(
πj

N

)
+ 1

⎞

⎠ when N is even,

1
2

(N−1)/2∑

j=1

csc
(
πj

N

)
when N is odd,

Φ(x) =
∑

j

1
dj

.

(3.47)

It follows from the definitions that

Φ(x) =
(
1 + x2

)
P(x) − 2xQ(x), (3.48)

and it implies

P(x) − xQ(x) = Q(x) + x(Q(x) − xP(x)). (3.49)

Since

dΦ
dx

= Q(x) − xP(x), (3.50)

then now K and L in (3.46) can be written as follows:

K
(
x, y
)
=
(
x − b

x2

)
A + bx(P(x) − xQ(x)) + (Q(x) − xP(x)) +

2cx
(
1 + y2

)3/2 − 2c
(
x2 + y2

)3/2

=
(
x − b

x2

)
A + bxΦ(x) +

(
1 + bx2

)dΦ
dx

+
2cx

(
1 + y2

)3/2 − 2c
(
x2 + y2

)3/2 ,
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L
(
x, y
)
=

⎛

⎝
∑

j /=N

1 − ρj
∣
∣1 − ρj

∣
∣3

+ b
∑

j

1 − xρj
∣
∣1 − xρj

∣
∣3

+
2c

(
1 + y2

)3/2

⎞

⎠ − N
(
1 + y2

)3/2 − Nb
(
x2 + y2

)3/2 − c

4y3

= A + b

[
Q(x) + x

dΦ
dx

]
+

2c
(
1 + y2

)3/2 − N
(
1 + y2

)3/2 − Nb
(
x2 + y2

)3/2 − c

4y3
,

(3.51)

where x = a ∈ (0, 1). From Lemmas 2.8 and 2.9 and their proofs, and with implicit function
theory, after some complex calculation (some ideas partially see [23]), we can prove that
K = 0, and L = 0 have only one solution for any given ratios of masses b(> 0) and c(> 0) such
that 0 < x < 1, and 0 < h < +∞.

Acknowledgments

The authors are grateful to the reviewer(s) for their thoughtful comments. This work is
partially supported by the Natural Science Foundation (NSF) of China, supported by NSF
of Chongqing, NSF of Chongqing Education Committee, and SXXY-11ZD-19.

References

[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing, Reading,
Mass, USA, 2nd edition, 1978.

[2] B. Elmabsout, “Sur l’existence de certaines configurations d’équilibre relatif dans le problème des N
corps,” Celestial Mechanics, vol. 41, no. 1–4, pp. 131–151, 1987/88.

[3] J. Llibre and L. F. Mello, “Triple and quadruple nested central configurations for the planar n-body
problem,” Physica D, vol. 238, no. 5, pp. 563–571, 2009.

[4] W. D. MacMillan and W. Bartky, “Permanent configurations in the problem of four bodies,”
Transactions of the AMS, vol. 34, pp. 838–874, 1932.

[5] R. Moeckel and C. Simo, “Bifurcation of spatial central configurations from planar ones,” SIAM
Journal on Mathematical Analysis, vol. 26, no. 4, pp. 978–998, 1995.

[6] L. M. Perko and E. L. Walter, “Regular polygon solutions of the N-body problem,” Proceedings of the
American Mathematical Society, vol. 94, no. 2, pp. 301–309, 1985.

[7] I. Newton, Philosophi Naturalis Principia Mathematica, Royal Society, London, UK, 1687.
[8] R. Moeckel, “On central configurations,”Mathematische Zeitschrift, vol. 205, no. 4, pp. 499–517, 1990.
[9] S. Smale, “Topology and mechanics. II. The planar n-body problem,” Inventiones Mathematicae, vol.

11, pp. 45–64, 1970.
[10] D. G. Saari, “On the role and the properties of n-body central configurations,” in Proceedings of the 6th

Conference on Mathematical Methods in Celestial Mechanics, vol. 21, no. 1, pp. 9–20, 1980.
[11] Y. Hagihara, Celestial Mechanics, The MIT Press, Cambridge, Mass, USA, 1970.
[12] A.Wintner, The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, NJ,

USA, 1941.
[13] R. Lehmann-Filhés, “Ueber zwei Fäle des Vielkörper problems,” Astronomische Nachrichten, vol. 127,

pp. 137–144, 1891.
[14] M. Corbera and J. Llibre, “Central configurations of nested regular polyhedra for the spatial 2n-body

problem,” Journal of Geometry and Physics, vol. 58, no. 9, pp. 1241–1252, 2008.
[15] M. Corbera and J. Llibre, “Central configurations of three nested regular polyhedra for the spatial

3n-body problem,” Journal of Geometry and Physics, vol. 59, no. 3, pp. 321–339, 2009.
[16] C. Zhu, “Central configurations of nested regular tetrahedrons,” Journal of Mathematical Analysis and

Applications, vol. 312, no. 1, pp. 83–92, 2005.



Abstract and Applied Analysis 19

[17] M. Hampton and M. Santoprete, “Seven-body central configurations: a family of central configura-
tions in the spatial seven-body problem,” Celestial Mechanics & Dynamical Astronomy, vol. 99, no. 4,
pp. 293–305, 2007.

[18] L. F. Mello, F. E. Chaves, A. C. Fernandes, and B. A. Garcia, “Stacked central configurations for the
spatial six-body problem,” Journal of Geometry and Physics, vol. 59, no. 9, pp. 1216–1226, 2009.

[19] S. Zhang and Q. Zhou, “Double pyramidal central configurations,” Physics Letters A, vol. 281, no. 4,
pp. 240–248, 2001.

[20] L. F. Mello and A. C. Fernandes, “New classes of spatial central configurations for the n+3-body
problem,” Nonlinear Analysis, vol. 12, no. 1, pp. 723–730, 2011.

[21] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston,
Mass, USA, 1964.

[22] A. Chenciner, “Perverse solutions of the planar n-body problem,”Astrisque, no. 286, pp. 249–256, 2003.
[23] X. Liu, S. Zhang, and J. Luo, “On periodic solutions for nested polygon planar 2N+1-body problems

with arbitrary masses,” Italian Journal of Pure and Applied Mathematics, no. 27, pp. 63–80, 2010.


