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By using fixed point methods and direct method, we establish the generalized Hyers-Ulam
stability of the following additive-quadratic functional equation f(x + ky) + f(x − ky) = f(x +
y)+f(x−y)+(2(k+1)/k)f(ky)−2(k+1)f(y) for fixed integers k with k /= 0,±1 in fuzzy Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations was originated from a question of Ulam [1]
in 1940, concerning the stability of group homomorphisms. Let (G1, ·) be a group and let
(G2, ∗, d) be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0,
such that if a mapping h : G1 → G2 satisfies the inequality d(h(x · y), h(x) ∗ h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε
for all x ∈ G1? In other words, under what condition does there exist a homomorphism
near an approximate homomorphism? The concept of stability for functional equation arises
when we replace the functional equation by an inequality which acts as a perturbation of
the equation. In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for
Banach spaces. Let f : E → E′ be a mapping between Banach spaces such that

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ δ, (1.1)
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for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥
∥f(x) − T(x)∥∥ ≤ δ, (1.2)

for all x ∈ E. Moreover if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is linear.
In 1978, Rassias [3] provided a generalization of Hyers’ Theorem which allows the Cauchy
difference to be unbounded. In 1991, Gajda [4] answered the question for the case p > 1,
which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of
functional equations (see [5–17]).

The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.3)

is related to a symmetric biadditive function. It is natural that this equation is called a
quadratic functional equation. In particular, every solution of the quadratic equation (1.3)
is said to be a quadratic function. It is well known that a function f between real vector
spaces is quadratic if and only if there exists a unique symmetric biadditive function B such
that f(x) = B(x, x) for all x (see [6, 18]). The biadditive function B is given by

B
(

x, y
)

=
1
4
(

f
(

x + y
) − f(x − y)). (1.4)

A Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.3) was
proved by Skof for functions f : A → B, where A is normed space and B Banach space
(see [19–22]). Borelli and Forti [23] generalized the stability result of quadratic functional
equations as follows (cf. [24, 25]): let G be an Abelian group, and X a Banach space. Assume
that a mapping f : G → X satisfies the functional inequality:

∥
∥f
(

x + y
)

+ f
(

x − y) − 2f(x) − 2f
(

y
)∥
∥ ≤ ϕ(x, y), (1.5)

for all x, y ∈ G, and ϕ : G ×G → [0,∞) is a function such that

Φ
(

x, y
)

:=
∞∑

i=0

1
4i+1

ϕ
(

2ix, 2iy
)

<∞, (1.6)

for all x, y ∈ G. Then there exists a unique quadratic mapping Q : G → X with the property

∥
∥f(x) −Q(x)

∥
∥ ≤ Φ(x, x), (1.7)

for all x ∈ G.
Now, we introduce the following functional equation for fixed integers kwith k /= 0,±1:

f
(

x + ky
)

+ f
(

x − ky) = f(x + y
)

+ f
(

x − y) + 2(k + 1)
k

f
(

ky
) − 2(k + 1)f

(

y
)

, (1.8)
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with f(0) = 0 in a non-Archimedean space. It is easy to see that the function f(x) = ax+bx2 is
a solution of the functional equation (1.8), which explains why it is called additive-quadratic
functional equation. For more detailed definitions of mixed type functional equations, we can
refer to [26–47].

Definition 1.1 (see [48]). Let X be a real vector space. A functionN : X × R → [0, 1] is called
a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only ifN(x, t) = 1 for all t > 0;

(N3) N(cx, t) =N(x, t/|c|) if c /= 0;

(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};

(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;

(N6) for x /= 0,N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

Example 1.2. Let (X, ‖ · ‖) be a normed linear space and α, β > 0. Then

N(x, t) =

⎧

⎨

⎩

αt

αt + β‖x‖ , t > 0, x ∈ X,
0, t ≤ 0, x ∈ X,

(1.9)

is a fuzzy norm on X.

Definition 1.3. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said to
be convergent or converge if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for
all t > 0. In this case, x is called the limit of the sequence {xn} in X and one denotes it by
N − limn→∞ xn = x.

Definition 1.4. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called
Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all
p > 0, one hasN(xn+p − xn, t) > 1 − ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.

Example 1.5. LetN : R × R → [0, 1] be a fuzzy norm on R defined by

N(x, t) =

⎧

⎨

⎩

t

t + |x| , t > 0,

0, t ≤ 0.
(1.10)
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The (R,N) is a fuzzy Banach space. Let {xn} be a Cauchy sequence in R, δ > 0, and ε =
δ/(1 + δ). Then there existm ∈ N such that for all n ≥ m and all p > 0, one has

1
1 +
∣
∣xn+p − xn

∣
∣
≥ 1 − ε. (1.11)

So |xn+p − xn| < δ for all n ≥ m and all p > 0. Therefore {xn} is a Cauchy sequence in (R, | · |).
Let xn → x0 ∈ R as n → ∞. Then limn→∞N(xn − x0, t) = 1 for all t > 0.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is
continuous at a point x ∈ X if for each sequence {xn} converging to x0 ∈ X, the sequence
{f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said
to be continuous on X ([49]).

Definition 1.6. Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.7. Let (X,d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X, either

d
(

Jnx, Jn+1x
)

= ∞, (1.12)

for all nonnegative integers n, or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1/(1 − L)d(y, Jy) for all y ∈ Y .

We have the following theorem from [42], which investigates the solution of (1.8).

Theorem 1.8. A function f : X → Y with f(0) = 0 satisfies (1.8) for all x, y ∈ X if and only if
there exist functions A : X → Y and Q : X × X → Y , such that f(x) = A(x) + Q(x, x) for all
x ∈ X, where the function Q is symmetric biadditive and A is additive.

2. A Fixed Point Method

Using the fixed point methods, we prove the Hyers-Ulam stability of the additive-quadratic
functional equation (1.8) in fuzzy Banach spaces. Throughout this paper, assume that X is a
vector space and that (Y,N) is a fuzzy Banach space.
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Theorem 2.1. Let ϕ : X2 → [0,∞) be a mapping such that there exists an α < 1 with

ϕ
(

x, y
) ≤ |k|αϕ

(
x

k
,
y

k

)

, (2.1)

for all x, y ∈ X. Let f : X → Y be an odd function satisfying f(0) = 0 and

N

(

f
(

k
(

x + y
))

+ f
(

k
(

x − y)) − f(kx + y
) − f(kx − y) − 2(k + 1)

k
f
(

ky
)

+ 2(k + 1)f
(

y
)

, t

)

≥ t

t + ϕ
(

x, y
) ,

(2.2)

for all x, y ∈ X and all t > 0. Then A(x) := N − limn→∞(f(knx)/kn) exists for all x ∈ X and
defines a unique additive mapping A : X → Y such that

N
(

f(x) −A(x), t
) ≥ (|2k + 2| − |2k + 2|α)t

(|2k + 2| − |2k + 2|α)t + ϕ(0, x) , (2.3)

for all x ∈ X and t > 0.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is an odd function. Putting
x = 0 in (2.2), we get

N

(

f
(

ky
)

k
− f(y), t

|2k + 2|

)

≥ t

t + ϕ
(

0, y
) , (2.4)

for all y ∈ X and all t > 0. Replacing y by x in (2.4), we have

N

(
f(kx)
k

− f(x), t

|2k + 2|
)

≥ t

t + ϕ(0, x)
, (2.5)

for all x ∈ X and all t > 0. Consider the set S := {h : X → Y ;h(0) = 0} and introduce the
generalized metric on S:

d
(

g, h
)

= inf
μ∈(0,+∞)

{

N
(

g(x) − h(x), μt) ≥ t

t + ϕ(0, x)
, ∀x ∈ X

}

, (2.6)

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete (see [50]). We consider
the mapping J : (S, d) → (S, d) as follows:

Jg(x) :=
1
k
g(kx), (2.7)
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for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = β. Then

N
(

g(x) − h(x), βt) ≥ t

t + ϕ(0, x)
, (2.8)

for all x ∈ X and all t > 0. Hence

N
(

Jg(x) − Jh(x), αβt) =N
(
1
k
g(kx) − 1

k
h(kx), αβt

)

=N
(

g(kx) − h(kx), |k|αβt)

≥ |k|αt
|k|αt + ϕ(0, x)

≥ |k|αt
|k|αt + |k|αϕ(0, x)

=
t

t + ϕ(0, x)
,

(2.9)

for all x ∈ X and all t > 0. So d(g, h) = β implies that d(Jg, Jh) ≤ αβ. This means that
d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from (2.5) that

d
(

f, Jf
) ≤ 1

|2k + 2| . (2.10)

By Theorem 1.7, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

kA(x) = A(kx), (2.11)

for all x ∈ X. The mappingA is a unique fixed point of J in the setM = {g ∈ S : d(h, g) <∞}.
This implies that A is a unique mapping satisfying (2.11) such that there exists a μ ∈ (0,∞)
satisfying

N
(

f(x) −A(x), μt
) ≥ t

t + ϕ(0, x)
, (2.12)

for all x ∈ X.
(2) d(Jnf,A) → 0 as n → ∞. This implies the equality limn→∞(f(knx)/kn) = A(x),

for all x ∈ X.
(3) d(f,A) ≤ (1/(1 − α))d(f, Jf), which implies the inequality

d
(

f,A
) ≤ 1

|2k + 2| − |2k + 2|α. (2.13)

This implies that the inequality (2.3) holds.
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It follows from (2.1) and (2.2) that

N

(

f
(

kn
(

x + ky
))

kn
+
f
(

kn
(

x − ky))

kn
− f
(

kn
(

x + y
))

kn
− f
(

kn
(

x − y))

kn

−2(k + 1)
k

f
(

kn+1y
)

kn
+ 2(k + 1)

f
(

kny
)

kn
,
t

kn

)

≥ t

t + ϕ
(

knx, kny
) ,

(2.14)

for all x, y ∈ X, all t > 0, and all n ∈ N. So

N

(

f
(

kn
(

x + ky
))

kn
+
f
(

kn
(

x − ky))

kn
− f
(

kn
(

x + y
))

kn
− f
(

kn
(

x − y))

kn

−2(k + 1)
k

f
(

kn+1y
)

kn
+ 2(k + 1)

f
(

kny
)

kn
, t

)

≥ |k|nt
|k|nt + |k|nαnϕ(x, y) ,

(2.15)

for all x, y ∈ X, all t > 0, and all n ∈ N. Since limn→∞(|k|nt/(|k|nt + |k|nαnϕ(x, y))) = 1 for all
x, y ∈ X and all t > 0, we obtain that

N

(

A
(

k
(

x + y
))

+A
(

k
(

x − y)) −A(kx + y
) −A(kx − y) − 2(k + 1)

k
A
(

ky
)

+2(k + 1)A
(

y
)

, t

)

= 1,
(2.16)

for all x, y, z ∈ X and all t > 0. Hence the mapping A : X → Y is additive, as desired.

Corollary 2.2. Let θ ≥ 0 and let r be a real positive number with r < 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N

(

f
(

k
(

x + y
))

+ f
(

k
(

x − y)) − f(kx + y
) − f(kx − y) − 2(k + 1)

k
f
(

ky
)

+ 2(k + 1)f
(

y
)

, t

)

≥ t

t + θ
(‖x‖r + ∥∥y∥∥r) ,

(2.17)

for all x, y ∈ X and all t > 0. Then the limitA(x) :=N − limn→∞(f(knx)/kn) exists for each x ∈ X
and defines a unique additive mapping A : X → Y such that

N
(

f(x) −A(x), t
) ≥ |2k + 2|(|k| − |k|r)t

|2k + 2|(|k| − |k|r)t + |k|θ‖x‖r , (2.18)

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 2.1 by taking ϕ(x, y) := θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Then we can choose α = |k|r−1 and we get the desired result.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a mapping such that there exists an α < 1 with

ϕ

(
x

k
,
y

k

)

≤ α

|k|ϕ
(

x, y
)

, (2.19)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying f(0) = 0 and (2.2). Then the
limit A(x) := N − limn→∞knf(x/kn) exists for all x ∈ X and defines a unique additive mapping
A : X → Y such that

N
(

f(x) −A(x), t
) ≥ (|2k + 2| − |2k + 2|α)t

(|2k + 2| − |2k + 2|α)t + αϕ(0, x) , (2.20)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined as in the proof of Theorem 2.1.
Consider the mapping J : S → S by

Jg(x) := kg
(
x

k

)

, (2.21)

for all g ∈ S. Let g, h ∈ S be given such that d(g, h) = β. Then

N
(

g(x) − h(x), βt) ≥ t

t + ϕ(0, x)
, (2.22)

for all x ∈ X and all t > 0. Hence

N
(

Jg(x) − Jh(x), αβt) =N
(

kg

(
x

k

)

− kh
(
x

k

)

, αβt

)

=N
(

g

(
x

k

)

− h
(
x

k

)

,
αβt

|k|
)

≥ (αt/|k|)
αt/|k| + ϕ(0, x/k) ≥ t

t + ϕ(0, x)
,

(2.23)

for all x ∈ X and all t > 0. So d(g, h) = β implies that d(Jg, Jh) ≤ αβ. This means that
d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from (2.5) that

N

(

kf

(
x

k

)

− f(x), kt

|2k + 2|
)

≥ t

t + ϕ(0, x/k)
≥ t

t + (α/|k|)ϕ(0, x) , (2.24)
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for all x ∈ X and all t > 0. Therefore

N

(

kf

(
x

k

)

− f(x), αt

|2k + 2|
)

≥ t

t + ϕ(0, x)
. (2.25)

So d(f, Jf) ≤ α. By Theorem 1.7, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

A

(
x

k

)

=
1
k
A(x), (2.26)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈ S : d(g, h) <∞}.
This implies that A is a unique mapping satisfying (2.26) such that there exists μ ∈ (0,∞)
satisfying

N
(

f(x) −A(x), μt
) ≥ t

t + ϕ(0, x)
, (2.27)

for all x ∈ X and t > 0.
(2) d(Jnf,A) → 0 as n → ∞. This implies the equalityN − limn→∞knf(x/kn) = A(x)

for all x ∈ X.
(3) d(f,A) ≤ d(f, Jf)/(1 − L)with f ∈ Ω, which implies the inequality

d
(

f,A
) ≤ α

|2k + 2| − |2k + 2|α. (2.28)

This implies that the inequality (2.20) holds.
The rest of proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let r be a real number with r > 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.17). Then A(x) :=
N − limn→∞knf(x/kn) exists for each x ∈ X and defines a unique additive mapping A : X → Y
such that

N
(

f(x) −A(x), t
) ≥ |2k + 2|(|k|r − |k|)t

|2k + 2|(|k|r − |k|)t + |k|θ‖x‖r , (2.29)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking ϕ(x, y) := θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Then we can choose α = |k|1−r and we get the desired result.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that there exists an α < 1 with

ϕ
(

x, y
) ≤ k2αϕ

(
x

k
,
y

k

)

, (2.30)
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for all x, y ∈ X. Let f : X → Y be an even mapping with f(0) = 0 and satisfying (2.2). Then
Q(x) := N − limn→∞(f(knx)/k2n) exists for all x ∈ X and defines a unique quadratic mapping
Q : X → Y such that

N
(

f(x) −Q(x), t
) ≥ (2|k| − 2|k|α)t

(2|k| − 2|k|α)t + ϕ(0, x) , (2.31)

for all x ∈ X and all t > 0.

Proof. Replacing x by kx in (2.2), we get

N

(

f
(

k
(

x + y
))

+ f
(

k
(

x − y)) − f(kx + y
) − f(kx − y) − 2(k + 1)

k
f
(

ky
)

+ 2(k + 1)f
(

y
)

, t

)

≥ t

t + ϕ
(

kx, y
) ,

(2.32)

for all x, y ∈ X and all t > 0. Putting x = 0 and replacing y by x in (2.32), we have

N

(
f(kx)
k

− kf(x), t
2

)

≥ t

t + ϕ(0, x)
, (2.33)

for all x ∈ X and all t > 0. By (2.33), (N3), and (N4), we get

N

(
f(kx)
k2

− f(x), t

2|k|
)

≥ t

t + ϕ(0, x)
, (2.34)

for all x ∈ X and all t > 0. Consider the set S∗ := {h : X → Y ;h(0) = 0} and introduce the
generalized metric on S∗:

d
(

g, h
)

= inf
μ∈(0,+∞)

{

N
(

g(x) − h(x), μt) ≥ t

t + ϕ(0, x)
, ∀x ∈ X

}

, (2.35)

where, as usual, infφ = +∞. It is easy to show that (S∗, d) is complete (see [50]). Now we
consider the linear mapping J : (S∗, d) → (S∗, d) such that

Jg(x) :=
1
k2
g(kx), (2.36)

for all x ∈ X. Proceeding as in the proof of Theorem 2.1, we obtain that d(g, h) = β implies
that d(Jg, Jh) ≤ αβ. This means that d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from
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(2.34) that

d
(

f, Jf
) ≤ 1

2|k| . (2.37)

By Theorem 1.7, there exists a mapping Q : X → Y such that one has the folowing.
(1) Q is a fixed point of J , that is,

k2Q(x) = Q(kx), (2.38)

for all x ∈ X. ThemappingQ is a unique fixed point of J in the setM = {g ∈ S∗ : d(h, g) <∞}.
This implies that Q is a unique mapping satisfying (2.38) such that there exists a μ ∈ (0,∞)
satisfyingN(f(x) −Q(x), μt) ≥ t/(t + ϕ(0, x)) for all x ∈ X.

(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality limn→∞(f(knx)/k2n) = Q(x)
for all x ∈ X.

(3) d(f,Q) ≤ (1/(1 − α))d(f, Jf), which implies the inequality d(f,Q) ≤ 1/(2|k| −
2|k|α). This implies that the inequality (2.31) holds.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let θ ≥ 0 and let r be a real positive number with r < 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an even mapping with f(0) = 0 and satisfying (2.17). Then
the limit Q(x) := N − limn→∞(f(knx)/k2n) exists for each x ∈ X and defines a unique quadratic
mapping Q : X → Y such that

N
(

f(x) −Q(x), t
) ≥

(

2k2 − 2k2r
)

t

(2k2 − 2k2r)t + |k|θ‖x‖r , (2.39)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.5 by taking ϕ(x, y) := θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Then we can choose α = k2r−2 and we get the desired result.

Theorem 2.7. Let ϕ : X2 → [0,∞) be a function such that there exists an α < 1 with

ϕ

(
x

k
,
y

k

)

≤ α

k2
ϕ
(

x, y
)

, (2.40)

for all x, y ∈ X. Let f : X → Y be an even mapping with f(0) = 0 and satisfying (2.2). Then the
limit Q(x) := N − limn→∞k2nf(x/kn) exists for all x ∈ X and defines a unique quadratic mapping
Q : X → Y such that

N
(

f(x) −Q(x), t
) ≥ (2|k| − 2|k|α)t

(2|k| − 2|k|α)t + αϕ(0, x) , (2.41)

for all x ∈ X and t > 0.
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Proof. Let (S∗, d) be the generalized metric space defined as in the proof of Theorem 2.5. It
follows from (2.34) that

N

(

k2f

(
x

k

)

− f(x), |k|t
2

)

≥ t

t + ϕ(0, x/k)
≥ t

t + (α/k2)ϕ(0, x)
, (2.42)

for all x ∈ X and t > 0. So

N

(

f(x) − k2f
(
x

k

)

,
αt

2|k|
)

≥ t

t + ϕ(0, x)
. (2.43)

The rest of the proof is similar to the proofs of Theorems 2.1 and 2.3.

Corollary 2.8. Let θ ≥ 0 and let r be a real number with r > 1. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping with f(0) = 0 and satisfying (2.17). Then
Q(x) := N − limn→∞k2nf(x/kn) exists for each x ∈ X and defines a unique quadratic mapping
Q : X → Y such that

N
(

f(x) −Q(x), t
) ≥

(

2|k|2r+1 − 2|k|3
)

t
(

2|k|2r+1 − 2|k|3
)

t + k2θ‖x‖r
, (2.44)

for all x ∈ X and all t > 0.

Proof. It follows from Theorem 2.7 by taking ϕ(x, y) := θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then
we can choose α = k2−2r and we get the desired result.

3. Direct Method

In this section, using direct method, we prove the Hyers-Ulam stability of functional equation
(1.8) in fuzzy Banach spaces. Throughout this section, we assume that X is a linear space,
(Y,N) is a fuzzy Banach space, and (Z,N ′) is a fuzzy normed space. Moreover, we assume
thatN(x, ·) is a left continuous function on R.

Theorem 3.1. Assume that a mapping f : X → Y is an odd mapping with f(0) = 0 satisfying the
inequality

N

(

f
(

k
(

x + y
))

+ f
(

k
(

x − y)) − f(kx + y
) − f(kx − y) − 2(k + 1)

k
f
(

ky
)

+ 2(k + 1)f
(

y
)

, t

)

≥N ′(ϕ
(

x, y
)

, t
)

,

(3.1)

for all x, y ∈ X, t > 0, and ϕ : X2 → Z is a mapping for which there is a constant r ∈ R satisfying
0 < |r| < 1/|k| such that

N ′
(

ϕ

(
x

k
,
y

k

)

, t

)

≥N ′
(

ϕ
(

x, y
)

,
t

|r|
)

, (3.2)
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for all x, y ∈ X and all t > 0. Then there exists a unique additive mapping A : X → Y satisfying
(1.8) and the inequality

N
(

f(x) −A(x), t
) ≥N ′

(

ϕ(0, x),
|2k + 2|(1 − |kr|)t

|r|
)

, (3.3)

for all x ∈ X and all t > 0.

Proof. It follows from (3.2) that

N ′
(

ϕ

(
x

kj
,
y

kj

)

, t

)

≥N ′
(

ϕ
(

x, y
)

,
t

|r|j
)

, (3.4)

for all x, y ∈ X and all t > 0. Putting x = 0 in (3.1) and then replacing y by x/k, we get

N

(

kf

(
x

k

)

− f(x), |k|t
|2k + 2|

)

≥N ′
(

ϕ

(

0,
x

k

)

, t

)

, (3.5)

for all x ∈ X and all t > 0. Replacing x by x/kj in (3.5), we have

N

(

kj+1f

(
x

kj+1

)

− kjf
(
x

kj

)

,
|k|j+1t
|2k + 2|

)

≥N ′
(

ϕ

(

0,
x

kj+1

)

, t

)

≥N ′
(

ϕ(0, x),
t

|r|j+1
)

,

(3.6)

for all x ∈ X, all t > 0, and all integer j ≥ 0. So

N

⎛

⎝f(x) − knf
(
x

kn

)

,
n−1∑

j=0

|k|j+1|r|j+1t
|2k + 2|

⎞

⎠

=N

⎛

⎝

n−1∑

j=0

kj+1f

(
x

kj+1

)

− kjf
(
x

kj

)

,
n−1∑

j=0

|k|j+1|r|j+1t
|2k + 2|

⎞

⎠

≥ min
0≤j≤n−1

{

N

(

kj+1f

(
x

kj+1

)

− kjf
(
x

kj

)

,
|k|j+1|r|j+1t
|2k + 2|

)}

≥ min
0≤j≤n−1

{

N ′(ϕ(0, x), t
)}

=N ′(ϕ(0, x), t
)

,

(3.7)

which yields

N

⎛

⎝kn+pf

(
x

kn+p

)

− kpf
(
x

kp

)

,
n−1∑

j=0

|k|j+p+1|r|j+1t
|2k + 2|

⎞

⎠ ≥N ′
(

ϕ
(

0,
x

2p
)

, t
)

≥N ′
(

ϕ(0, x),
t

|r|p
)

,

(3.8)
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for all x ∈ X, t > 0, and all integers n > 0, p ≥ 0. So

N

⎛

⎝kn+pf

(
x

kn+p

)

− kpf
(
x

kp

)

,
n−1∑

j=0

|k|j+p+1|r|j+p+1t
|2k + 2|

⎞

⎠ ≥N ′(ϕ(0, x), t
)

, (3.9)

for all x ∈ X, t > 0, and any integers n > 0, p ≥ 0. Hence one can obtain

N

(

kn+pf

(
x

kn+p

)

− kpf
(
x

kp

)

, t

)

≥N ′

⎛

⎜
⎝ϕ(0, x),

t
∑n−1

j=0

(

|k|j+p+1|r|j+p+1/|2k + 2|
)

⎞

⎟
⎠, (3.10)

for all x ∈ X, t > 0, and any integers n > 0, p ≥ 0. Since the series
∑+∞

j=0 k
j |r|j is a convergent

series, we see by taking the limit p → ∞ in the last inequality that the sequence {knf(x/kn)}
is a Cauchy sequence in the fuzzy Banach space (Y,N) and so it converges in Y . Therefore a
mapping A : X → Y defined by A(x) :=N − limn→∞knf(x/kn) is well defined for all x ∈ X.
This means that

lim
n→∞

N

(

A(x) − knf
(
x

kn

)

, t

)

= 1, (3.11)

for all x ∈ X and all t > 0. In addition, it follows from (3.10) that

N

(

f(x) − knf
(
x

kn

)

, t

)

≥N ′

⎛

⎜
⎝ϕ(0, x),

t
∑n−1

j=0

(

|k|j+1|r|j+1/|2k + 2|
)

⎞

⎟
⎠, (3.12)

for all x ∈ X and all t > 0. So

N
(

f(x) −A(x), t
) ≥ min

{

N

(

f(x) − knf
(
x

kn

)

, (1 − ε)t
)

,N

(

A(x) − knf
(
x

kn

)

, εt

)}

≥N ′

⎛

⎜
⎝ϕ(0, x),

εt
∑n−1

j=0

(

|k|j+1|r|j+1/|2k + 2|
)

⎞

⎟
⎠

≥N ′
(

ϕ(0, x),
|2k + 2|(1 − |k||r|)εt

|kr|
)

,

(3.13)

for sufficiently large n and for all x ∈ X, t > 0, and ε with 0 < ε < 1. Since ε is arbitrary and
N ′ is left continuous, we obtain

N
(

f(x) −A(x), t
) ≥N ′

(

ϕ(0, x),
|2k + 2|(1 − |k||r|)t

|kr|
)

, (3.14)
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for all x ∈ X and t > 0. It follows from (3.1) that

N

(

f
(

kn
(

x + ky
))

kn
+
f
(

kn
(

x − ky))

kn
− f
(

kn
(

x + y
))

kn
− f
(

kn
(

x − y))

kn

−2(k + 1)
k

f
(

kn+1y
)

kn
+ 2(k + 1)

f
(

kny
)

kn
, t

)

≥N ′
(

ϕ
(

knx, kny
)

,
t

|k|n
)

≥N ′
(

ϕ
(

x, y
)

,
t

|r|n|k|n
)

−→ 1 as n −→ +∞,

(3.15)

for all x, y ∈ X and all t > 0. Therefore, we obtain in view of (3.11)

N

(

A
(

k
(

x + y
))

+A
(

k
(

x − y)) −A(kx + y
) −A(kx − y) − 2(k + 1)

k
A
(

ky
)

+2(k + 1)A
(

y
)

, t

)

≥ min

{

N

(

A
(

k
(

x + y
))

+A
(

k
(

x − y)) −A(kx + y
) −A(kx − y) − 2(k + 1)

k
A
(

ky
)

+ 2(k + 1)A
(

y
) − f

(

kn
(

x + ky
))

kn
+
f
(

kn
(

x − ky))

kn
− f
(

kn
(

x + y
))

kn

−f
(

kn
(

x − y))

kn
− 2(k + 1)

k

f
(

kn+1y
)

kn
+ 2(k + 1)

f
(

kny
)

kn
,
t

2

)

,

N

(

f
(

kn
(

x + ky
))

kn
+
f
(

kn
(

x − ky))

kn
− f
(

kn
(

x + y
))

kn
− f
(

kn
(

x − y))

kn

−2(k + 1)
k

f
(

kn+1y
)

kn
+ 2(k + 1)

f
(

kny
)

kn
,
t

2

)}

=N

(

f
(

kn
(

x + ky
))

kn
+
f
(

kn
(

x − ky))

kn
− f
(

kn
(

x + y
))

kn
− f
(

kn
(

x − y))

kn

−2(k + 1)
k

f
(

kn+1y
)

kn
+ 2(k + 1)

f
(

kny
)

kn
,
t

2

)

(

for sufficiently large n
)

≥N ′
(

ϕ
(

x, y
)

,
t

2|k|n|r|n
)

−→ 1 as n −→ +∞,

(3.16)

for all x, y ∈ X and all t > 0, which implies that

A
(

k
(

x + y
))

+A
(

k
(

x − y)) = A(kx + y
)

+A
(

kx − y) + 2(k + 1)
k

A
(

ky
) − 2(k + 1)A

(

y
)

.

(3.17)

Hence the mapping A : X → Y is additive, as desired.
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To prove the uniqueness, let there be another mapping L : X → Y which satisfies the
inequality (3.3). Since L(knx) = knL(x) for all x ∈ X, we have

N(A(x) − L(x), t) =N
(

knA

(
x

kn

)

− knL
(
x

kn

)

, t

)

≥ min
{

N

(

knA

(
x

kn

)

− knf
(
x

kn

)

,
t

2

)

,N

(

knf

(
x

kn

)

− knL
(
x

kn

)

,
t

2

)}

≥N ′
(

ϕ

(

0,
x

kn

)

,
|2k + 2|(1 − |k||r|)t

2|k|n+1|r|

)

≥N ′
(

ϕ(0, x),
|2k + 2|(1 − |k||r|)t

2|k|n+1|r|n+1
)

−→ 1 as n −→ ∞,

(3.18)

for all t > 0. Therefore A(x) = L(x) for all x ∈ X. This completes the proof.

Corollary 3.2. Let X be a normed space and let (R,N ′) be a fuzzy Banach space. Assume that there
exist real numbers θ ≥ 0 and p > 1 such that an odd mapping f : X → Y with f(0) = 0 satisfies the
following inequality:

N

(

f
(

k
(

x + y
))

+ f
(

k
(

x − y)) − f(kx + y
) − f(kx − y) − 2(k + 1)

k
f
(

ky
)

+ 2(k + 1)f
(

y
)

, t

)

≥N ′(θ
(‖x‖p + ∥∥y∥∥p), t),

(3.19)

for all x, y ∈ X and t > 0. Then there is a unique additive mapping A : X → Y satisfying (1.8) and
the inequality

N
(

f(x) −A(x), t
) ≥N ′

(
θ‖x‖p
|2k + 2| ,

( |k|p − |k|
|k|

)

t

)

. (3.20)

Proof. Let ϕ(x, y) := θ(‖x‖p + ‖y‖p) and |r| = |k|−p. Applying Theorem 3.1, we get desired
results.

Theorem 3.3. Let f : X → Y be an odd mapping with f(0) = 0 satisfying the inequality (3.1) and
let ϕ : X2 → Z be a mapping for which there exists a constant r ∈ R satisfying 0 < |r| < |k| such that

N ′(ϕ
(

x, y
)

, |r|t) ≥N ′
(

ϕ

(
x

k
,
y

k

)

, t

)

, (3.21)
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for all x, y ∈ X and all t > 0. Then there exists a unique additive mapping A : X → Y satisfying
(1.8) and the following inequality:

N
(

f(x) −A(x), t
) ≥N ′

(

ϕ(0, x),
|2k + 2|(|k| − |r|)t

|k|
)

, (3.22)

for all x ∈ X and all t > 0.

Proof. It follows from (3.5) that

N

(
f(kx)
k

− f(x), t

|2k + 2|
)

≥N ′(ϕ(0, x), t
)

, (3.23)

for all x ∈ X and all t > 0. Replacing x by knx in (3.41), we obtain

N

(

f
(

kn+1x
)

kn+1
− f(knx)

kn
,

t

|2k + 2|kn
)

≥N ′(ϕ(0, knx), t
) ≥N ′

(

ϕ(0, x),
t

|r|n
)

. (3.24)

So

N

(

f
(

kn+1x
)

kn+1
− f(knx)

kn
,

|r|nt
|2k + 2||k|n

)

≥N ′(ϕ(0, x), t
)

, (3.25)

for all x ∈ X and all t > 0. Proceeding as in the proof of Theorem 3.1, we obtain that

N

⎛

⎝f(x) − f(knx)
kn

,
n−1∑

j=0

|r|j t
|2k + 2||k|j

⎞

⎠ ≥N ′(ϕ(0, x), t
)

, (3.26)

for all x ∈ X, all t > 0, and any integer n > 0. So

N

(

f(x) − f(knx)
kn

, t

)

≥N ′

⎛

⎜
⎝ϕ(0, x),

t
∑n−1

j=0

(

|r|j/|2k + 2||k|j
)

⎞

⎟
⎠. (3.27)

The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let X be a normed space and let (R,N ′) be a fuzzy Banach space. Assume that there
exist real numbers θ ≥ 0 and 0 < p < 1 such that an odd mapping f : X → Y with f(0) = 0 satisfies
(3.19). Then there exists a unique additive mapping A : X → Y satisfying (1.8) and the inequality

N
(

f(x) −A(x), t
) ≥N ′

(

ϕ(0, x),
|2k + 2|(|k| − |k|p)t

|k|

)

. (3.28)
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Proof. Let ϕ(x, y) := θ(‖x‖p + ‖y‖p) and |r| = |k|p. Applying Theorem 3.3, we get the desired
results.

Theorem 3.5. Let f : X → Y be an even mapping with f(0) = 0 satisfying the inequality (3.1) and
let ϕ : X2 → Z be a mapping for which there exists a constant r ∈ R such that 0 < |r| < 1/k2 and
that

N ′
(

ϕ

(
x

k
,
y

k

)

, t

)

≥N ′
(

ϕ
(

x, y
)

,
t

|r|
)

, (3.29)

for all x, y ∈ X and all t > 0. Then there exists a unique quadratic mapping Q : X → Y satisfying
(1.8) and the inequality

N
(

f(x) −Q(x), t
) ≥N ′

(

ϕ(0, x),
2
(

1 − ∣∣k2r∣∣)t
|kr|

)

, (3.30)

for all x ∈ X and all t > 0.

Proof. Replacing x by kx in (3.1), we get

N

(

f
(

k
(

x + y
))

+ f
(

k
(

x − y)) − f(kx + y
) − f(kx − y) − 2(k + 1)

k
f
(

ky
)

+ 2(k + 1)f
(

y
)

, t

)

≥N ′(ϕ
(

kx, y
)

, t
)

,

(3.31)

for all x, y ∈ X and all t > 0. Putting x = 0 and replacing y by x in (3.31), we have

N

(
f(kx)
k2

− f(x), t

|2k|
)

≥N ′(ϕ(0, x), t
)

, (3.32)

for all x ∈ X and all t > 0. Replacing x by x/k in (3.32), we find

N

(

k2f

(
x

k

)

− f(x), |k|t
2

)

≥N ′
(

ϕ

(

0,
x

k

)

, t

)

, (3.33)

for all x ∈ X and all t > 0. Also, replacing x by x/kn in (3.33), we obtain

N

(

k2n+2f

(
x

kn

)

− k2nf
(
x

kn

)

,
|k|2n+1t

2

)

≥N ′
(

ϕ

(

0,
x

kn+1

)

, t

)

≥N ′
(

ϕ(0, x),
t

|r|n+1
)

.

(3.34)

So

N

(

k2n+2f

(
x

kn

)

− k2nf
(
x

kn

)

,
|k|2n+1|r|n+1t

2

)

≥N ′(ϕ(0, x), t
)

, (3.35)
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for all x ∈ X and all t > 0. Proceeding as in the proof of Theorem 3.1, we obtain that

N

⎛

⎝f(x) − k2nf
(
x

kn

)

,
n−1∑

j=0

|k|2j+1|r|j+1t
2

⎞

⎠ ≥N ′(ϕ(0, x), t
)

, (3.36)

for all x ∈ X, all t > 0, and any integer n > 0. So

N

(

f(x) − k2nf
(
x

kn

)

, t

)

≥N ′

⎛

⎜
⎝ϕ(0, x),

t
∑n−1

j=0

(

|k|2j+1|r|j+1t/2
)

⎞

⎟
⎠. (3.37)

The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.6. Let X be a normed space and let (R,N ′) be a fuzzy Banach space. Assume that there
exist real numbers θ ≥ 0 and p > 1 such that an even mapping f : X → Y with f(0) = 0 satisfies the
inequality (3.19). Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and the
inequality

N
(

f(x) −Q(x), t
) ≥N ′

(

θ‖x‖p, 2
(

k2p − k2)t
|k|

)

. (3.38)

Proof. Let ϕ(x, y) := θ(‖x‖p + ‖y‖p) and |r| = |k|−2p. Applying Theorem 3.5, we get the desired
results.

Theorem 3.7. Assume that an even mapping f : X → Y with f(0) = 0 satisfies the inequality (3.1)
and ϕ : X2 → Z is a mapping for which there is a constant r ∈ R satisfying 0 < |r| < k2 such that

N ′(ϕ
(

x, y
)

, |r|t) ≥N ′
(

ϕ

(
x

k
,
y

k

)

, t

)

, (3.39)

for all x, y ∈ X and all t > 0. Then there exists a unique quadratic mapping Q : X → Y satisfying
(1.8) and the following inequality

N
(

f(x) −Q(x), t
) ≥N ′

(

ϕ(0, x),
2
(

k2 − |r|)t
|k|

)

, (3.40)

for all x ∈ X and all t > 0.

Proof. It follows from (3.32) that

N

(
f(kx)
k2

− f(x), t

|2k|
)

≥N ′(ϕ(0, x), t
)

, (3.41)
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for all x ∈ X and all t > 0. Replacing x by knx in (3.41), we obtain

N

(

f
(

kn+1x
)

k2n+2
− f(knx)

k2n
,

t

2|k|2n+1
)

≥N ′(ϕ(0, knx), t
) ≥N ′

(

ϕ(0, x),
t

|r|n
)

, (3.42)

for all x ∈ X and all t > 0. So

N

(

f
(

kn+1x
)

k2n+2
− f(knx)

k2n
,

|r|nt
2|k|2n+1

)

≥N ′(ϕ(0, x), t
)

, (3.43)

for all x ∈ X and all t > 0. So

N

(

f(x) − f(knx)
k2n

, t

)

≥N ′

⎛

⎜
⎝ϕ(0, x),

t
∑n−1

j=0

(

|r|j t/2|k|2j+1
)

⎞

⎟
⎠. (3.44)

The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.8. Let X be a normed space and let (R,N ′) be a fuzzy Banach space. Assume that there
exist real numbers θ ≥ 0 and 0 < p < 1 such that an even mapping f : X → Y with f(0) = 0 satisfies
(3.19). Then there is a unique quadratic mapping Q : X → Y satisfying (1.8) and the inequality

N
(

f(x) −Q(x), t
) ≥N ′

(

ϕ(0, x),
2
(

k2 − k2p)t
|k|

)

, (3.45)

for all x ∈ X, all t > 0.

Proof. Let ϕ(x, y) := θ(‖x‖p + ‖y‖p) and |r| = k2p. Applying Theorem 3.7, we get the desired
results.
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[11] P. Găvruţa and L. Găvruţa, “A newmethod for the generalized Hyers-Ulam-Rassias stability,” Journal
of Mathematical Analysis and Applications, vol. 1, no. 2, pp. 11–18, 2010.

[12] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Progress
in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston Inc., Boston, Mass,
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