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We use a method of investigation based on employing adequate variational calculus techniques
in the study of some generalized Dieudonné-Rashevski problems. This approach allows us to
state and prove optimality conditions for such kind of vector multitime variational problems, with
mixed isoperimetric constraints. We state and prove efficiency conditions and develop a duality
theory.

1. Introduction and Preliminaries

Applied sciences and technology ranging from Economics (processes control), Psychology
(impulse control disorders), Medicine (bladder control) to Engineering (robotics and
automation) and Biology (population ecosystems), lead to traditional control problems; see
[1]. Such kind of problems heavily rely on the temporal dependence of these applications.
That is why multitime control problems have been intensively studied in the last few years
both from theoretical and applied viewpoints [2, 3], and the references therein. Motivated
by the work on this topic reported in [2, 3], this paper aims to establish some results of
efficiency and duality for multitime control problems of generalized Dieudonné-Rashevski
type, thought as variational problems with isoperimetric constraints, mainly arising when
we talk about resources. The current paper may be viewed as a natural continuation and
extension of some recent works [4–10].

In the following, for two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn), the relations
v = w, v < w, v � w and v ≤ w, are defined as

v = w ⇐⇒ vi = wi, i = 1, n, v < w ⇐⇒ vi < wi, i = 1, n,
v � w ⇐⇒ vi ≤ wi, i = 1, n, v ≤ w ⇐⇒ v � w, v /=w.

(1.1)
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Important Note

To simplify the notations, in our subsequent theory, we will set

πx(t) =
(
t, x(t), xγ(t)

)
, πu(t) =

(
t, u(t), uγ(t)

)
,

πx∗(t) =
(
t, x∗(t), x∗

γ(t)
)
, πu∗(t) =

(
t, u∗(t), u∗

γ(t)
)
.

(1.2)

Let be given the functional of multiple integral type

I(x, u) =
∫

Ω
X(πx(t), πu(t))dv. (1.3)

Consider the functions Yβ(πx(t), πu(t)), β = 1, q, of C1-class. We introduce the following
problem with mixed isoperimetric constraints, within the class of generalized Dieudonné-
Rashevski type problems [2, 3]

Minimize
x,u

I(x, u)

subject to
∫

Ω
Xi

α(πx(t), πu(t))dv = 0, i = 1, n, α = 1, m,

∫

Ω
Yβ(πx(t), πu(t))dv ≤ 0, β = 1, q,

x(0) = x0, x(t0) = x1.

(SCP)

Here t = (tα) ∈ R
m
+ ; dv = dt1 · · ·dtm is the volume element in R

m
+ ; Ω is the parallelepi-

ped in R
m
+ defined by the closed interval [0, t0] = {t ∈ R

m
+ | 0 ≤ t ≤ t0}, where 0 = (0, . . . , 0)

and t0 = (t10, . . . , t
m
0 ) are points in R

m
+ ; x(t) = (xi(t)), i = 1, n, is a state vector of C2-class;

u(t) = (ua(t)), a = 1, �, is a C2-class control vector; the running cost X(πx(t), πu(t)) is a C1-
class function; Xi

α(πx(t), πu(t)) are C1-class functions.
Remark that the adjective multitime was introduced in physics, by Dirac, since 1932,

and later it was used in mathematics. For up to date information concerning this notion, see
[2, 3, 11, 12].

We also introduce our vector problem. In this respect, let the vector function (X1, . . . ,
Xp), producing the running costs be given

X1(πx(t), πu(t)), . . . , Xp(πx(t), πu(t)). (1.4)

We denote

Ik(x, u) =
∫

Ω
Xk(πx(t), πu(t))dv, k = 1, p, (1.5)

and we consider the vector functional I(x, u) = (I1(x, u), . . . , Ip(x, u)).
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It is the aim of our work to study the multitime control vector problem with isoperi-
metric constraints

Minimize
x,u

(Pareto) I(x, u)

subject to
∫

Ω
Xi

α(πx(t), πu(t))dv = 0, i = 1, n, α = 1, m,

∫

Ω
Yβ(πx(t), πu(t))dv ≤ 0, β = 1, q,

x(0) = x0, x(t0) = x1,

(VCP)

with Δ the domain of problem (VCP).
This kind of problems appears when we describe the torsion of prismatic bars in

the elastic case [11], as well as in the elastic-plastic case [12]. Also, they arise when we
think of optimization problems for convex bodies and the geometrical constraints, that is
maximization of the surface for given width and diameter. These lead us again to generalized
Dieudonné-Rashevski type problems for support functions in spherical coordinates [13, 14].

The first problem has a scalar objective function and is a necessary tool for pointing
out our main results concerning a vectorial multitime multiobjective problem.

Our method of investigation is based on employing adequate variational calculus
techniques in the study of the problems of optimal control. This fact is possible since the
optimal control problems can be changed in variational problems. Moreover, the solutions of
these problems belong to the interior of the problems domain.

In the following, we state necessary optimality conditions for the scalar problem
(SCP).

Theorem 1.1 (necessary conditions). Let (x, u) be an optimal solution of (SCP). Then there are
ϕ ∈ R, λ = (λαi ) ∈ R

mn, and μ ∈ R
q, which satisfy the conditions

ϕ
∂X

∂xi
+ λαj

∂X
j
α

∂xi
+ μβ

∂Yβ

∂xi
−Dγ

(

ϕ
∂X

∂xi
γ

+ λαj
∂X

j
α

∂xi
γ

+ μβ
∂Yβ

∂xi
γ

)

= 0,

ϕ
∂X

∂ua
+ λαi

∂Xi
α

∂ua
+ μβ

∂Yβ

∂ua
−Dγ

(

ϕ
∂X

∂ua
γ
+ λαi

∂Xi
α

∂ua
γ
+ μβ

∂Yβ

∂ua
γ

)

= 0,

μβYβ(πx(t), πu(t)) = 0 (no summation),

ϕ ≥ 0, μβ ≥ 0.

(SFJ)

The proof of this theorem essentially uses Fritz-John conditions and the fundamental
lemma of variational calculus. This result will be later used for finding and proving necessary
optimality conditions for our multitime multiobjective vector problem.

2. Main Results

In this section, we establish necessary efficiency conditions for ourmain problem.We develop
a duality theory by stating weak, direct and converse theorems, using essentially the notion
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of invexity [15, 16]. Moreover, we give sufficient conditions for the efficiency of a feasible
solution.

Definition 2.1. A point (x, u) ∈ Δ is called efficient solution (Pareto minimum) for (VCP) if
there is no (x, u) ∈ Δ such that I(x, u) ≤ I(x, u).

The following Lemma shows the equivalence between the efficient solutions of (VCP)
and the optimal solution of p scalar problems. This connection is needed in order to find
necessary efficiency conditions.

Lemma 2.2. The point (x0, u0) ∈ Δ is an efficient solution of problem (VCP) if and only if (x0, u0)
is an optimal solution of each scalar problem (SCP)k, k = 1, p, where

Minimize
x,u

Ik(x, u)

subject to
∫

Ω
Xi

α(πx(t), πu(t))dv = 0, i = 1, n, α = 1, m,

∫

Ω
Yβ(πx(t), πu(t))dv ≤ 0, β = 1, q,

Ij(x, u) ≤ Ij
(
x0, u0

)
, j = 1, p, j /= k,

x(0) = x0, x(t0) = x1.

(SCP)k

Proof. We will prove both implications.

Necessity. To prove the direct implication, we suppose that (x0, u0) ∈ Δ is an efficient solution
of problem (VCP) and there is k ∈ {1, . . . , p} such that (x0, u0) is not an optimal solution of
the scalar problem (SCP)k. Then there exists (y,w) such that

Ij
(
y,w

) ≤ Ij
(
x0, u0

)
, j = 1, p, j /= k; Ik

(
y,w

)
< Ik
(
x0, u0

)
. (2.1)

These relations contradict the efficiency of the pair (x0, u0) for problem (VCP). Consequently,
(x0, u0) is an optimal solution for each program (SCP)k, k = 1, p.

Sufficiency. To prove the converse, let us consider that the pair (x0, u0) is an optimal solution
of all problems (SCP)k, k = 1, p. Suppose that (x0, u0) is not an efficient solution of problem
(SCP). Then there exists a pair (y,w) ∈ Δ which satisfies Ij(y,w) ≤ Ij(x0, u0), j = 1, p, and
there is k ∈ {1, . . . , p} such that Ik(y,w) < Ik(x0, u0). This is a contradiction to the assumption
that the pair (x0, u0)minimizes the functional Ik on the set of all feasible solutions of problem
(SCP)k. Therefore, the pair (x

0, u0) is an efficient solution of the problem (VCP).

This lemma plays a role of paramount importance in suggesting the study of the effi-
cient solutions of problem (VCP). It allows us to state and prove the following necessary ef-
ficiency conditions, too.
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Theorem 2.3. Let (x, u) ∈ Δ be an efficient solution of program (VCP). Then there are τ ∈ R
p,

λαi ∈ R and μ ∈ R
q, such that

τk
∂Xk

∂xi
+ λαj

∂X
j
α

∂xi
+ μβ

∂Yβ

∂xi
−Dγ

(

τk
∂Xk

∂xi
γ

+ λαj
∂X

j
α

∂xi
γ

+ μβ
∂Yβ

∂xi
γ

)

= 0,

τk
∂Xk

∂ua
+ λαj

∂X
j
α

∂ua
+ μβ

∂Yβ

∂ua
−Dγ

(

τk
∂Xk

∂ua
γ
+ λαi

∂Xi
α

∂ua
γ
+ μβ

∂Yβ

∂ua
γ

)

= 0,

μβ(t)Yβ(πx(t), πu(t)) = 0, β = 1, q,

τ =
(
τk
)

� 0, μ =
(
μβ
)

� 0.

(VFJ)

Proof. Since (x, u) is an efficient solution of problem (VCP), (x, u) is an optimal solution of
each problem (SCP)k, k = 1, p. Let k be fixed between 1 and p. According to Theorem 1.1,
there are real scalars sk, λαi,k and μ

β

k, which satisfy the following conditions:

sk
∂Xk

∂xi
+ λαj,k

∂X
j
α

∂xi
+ μ

β

k

∂Yβ

∂xi
−Dγ

(

sk
∂Xk

∂xi
γ

+ λαj,k
∂X

j
α

∂xi
γ

+ μ
β

k

∂Yβ

∂xi
γ

)

= 0,

sk
∂Xk

∂ua
+ λαi,k

∂Xi
α

∂ua
+ μ

β

k

∂Yβ

∂ua
−Dγ

(

sk
∂Xk

∂ua
γ
+ λαi,k

∂Xi
α

∂ua
γ
+ μ

β

k

∂Yβ

∂ua
γ

)

= 0,

μ
β

k
Yβ(πx(t), πu(t)) = 0, β = 1, q,

sk ≥ 0, μ
β

k ≥ 0.

(2.2)

Denoting τ = (τk), τk = sk, k = 1, p, λαi =
∑p

r=1 λ
α
i,r , μ

β =
∑p

r=1 μ
β
r , and summing in (2.2) over

k = 1, p, we obtain relations (VFJ).

A nontrivial situation arises when each component of vector τ is positive. In this case,
dividing relations (2.2) by a positive constant, we can consider τk = 1, for each k = 1, p,
therefore we can introduce.

Definition 2.4. The efficient solution (x0, u0) of (VCP) is called normal if τk = 1 for each k = 1, p.

Given program (VCP) and its dual, in the following wewill develop our dual program
theory, stating weak, direct, and converse duality theorems. The base of our research is the
notion of ρ-invexity, [15, 16].

Let f(πx(t), πu(t)) be a scalar function of C1-class. Consider the functional

F(x, u) =
∫

Ω
f(πx(t), πu(t))dv. (2.3)



6 Abstract and Applied Analysis

Definition 2.5. The function F(x, u) is called ρ-invex (strictly ρ-invex) at the point (x∗, u∗) if
there exist the vector function η(t) ∈ R

n of C1-class, with η|∂Ω = 0, ξ(t) ∈ R
k of C0-class and

the bounded vector function θ(x, u) ∈ R
n such that

∀(x, u), [(x, u)/= (x∗, u∗)], F(x, u) − F(x∗, u∗) ≥ [>],

∫

Ω

(

ηi ∂f

∂xi
(t, x∗, u∗) +

(
Dγη

i
) ∂f

∂xi
γ

+ ξa
∂f

∂ua
(t, x∗, u∗) +

(
Dγξ

a) ∂f
∂ua

γ

)

dv + ρ‖θ(x, u)‖2.

(2.4)

To develop our dual program theory, we consider the Lagrangian functions

Lk

(
πx(t), πu(t), λ, μ

)
= Xk(πx(t), πu(t)) +

1
p

[
λαi X

i
α(πx(t), πu(t)) + μβYβ(πx(t), πu(t))

]
,

(2.5)

where k = 1, p, which determine the vector function L = (L1, . . . , Lp).
Let us introduce the following vector of multiple integrals

J
(
x, u, λ, μ

)
=
∫

Ω
L
(
πx(t), πu(t), λ, μ

)
dv. (2.6)

To problem (VCP), we associate the next dual vector multitime control problem:

Maximize (Pareto) J
(
x(t), u(t), λ, μ

)

subject to
∂Xk

∂xi
+ λαj

∂X
j
α

∂xi
+ μβ

∂Yβ

∂xi
−Dγ

(
∂Xk

∂xi
γ

+ λαj
∂X

j
α

∂xi
γ

+ μβ
∂Yβ

∂xi
γ

)

= 0,

∂Xk

∂ua
+ λαj

∂X
j
α

∂ua
+ μβ

∂Yβ

∂ua
−Dγ

(
∂Xk

∂ua
γ
+ λαi

∂Xi
α

∂ua
γ
+ μβ

∂Yβ

∂ua
γ

)

= 0,

μβ(t)Yβ(πx(t), πu(t)) = 0, β = 1, q,

μ =
(
μβ
)

� 0, x(0) = x0, x(t0) = x1.

(VCD)

Denote by D the domain of dual program (VCD) and by (x, xγ , u, uγ , λ, μ) = (x, xγ ,
u, uγ , λ

α
i , μ

β) the current point of D.
Now we can state and prove our duality theorems, as in the following.

Theorem 2.6 (weak duality). Let (x∗, u∗) ∈ Δ and (x, xγ , u, uγ , λ, μ) ∈ D be two feasible solutions
of problems (VCP) and (VCD). Consider the functions λαi and μ

β as in Theorem 2.3 and suppose that
the following conditions are satisfied:

(a) for each index k ∈ {1, . . . , p}, the integral ∫Ω Xk(πx(t), πu(t))dv is ρk-invex at (x, u);

(b)
∫
Ω λαi X

i
α(πx(t), πu(t))dv is ρ′-invex at (x, u);
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(c)
∫
Ω μβYβ(πx(t), πu(t))dv is ρ′′-invex at (x, u);

all with respect to η and ξ, as in Definition 2.5;

(d) at least one of the functionals from (a), (b), and (c) is strictly ρ-invex;

(e)
∑p

k=1 ρk + ρ′ + ρ′′ ≥ 0.

Then I(x∗, u∗) ≤ J(x, u, λ, μ) is false.

Proof. We have

I(x∗, u∗) − I(x, u) =
(∫

Ω
[Xk(πx∗(t), πu∗(t)) −Xk(πx(t), πu(t))]dv

)
, k = 1, p. (2.7)

According to (a) and Definition 2.5, we get

∫

Ω
[Xk(πx∗(t), πu∗(t)) −Xk(πx(t), πu(t))]dv

≥
∫

Ω

(

ηi ∂Xk

∂xi
+
(
Dγη

i
)∂Xk

∂xi
γ

+ ξa
∂Xk

∂ua
+
(
Dγξ

a)∂Xk

∂ua
γ

)

dv + ρk‖θ‖2.
(2.8)

After calculations, using Theorem 8.2 in [17], the previous inequality becomes

∫

Ω
[Xk(πx∗(t), πu∗(t)) −Xk(πx(t), πu(t))]dv

≥
∫

Ω

(

ηi ∂Xk

∂xi
+Dγ

(

ηi ∂Xk

∂xi
γ

)

− ηiDγ

(
∂Xk

∂xi
γ

)

+ ξa
∂Xk

∂ua
+Dγ

(

ξa
∂Xk

∂ua
γ

)

− ξaDγ

(
∂Xk

∂ua
γ

))

dv

+ ρk‖θ‖2.
(2.9)

Making the sum over k = 1, p, and using the constraints of (VCD), we obtain

∫

Ω
[Xk(πx∗(t), πu∗(t)) −Xk(πx(t), πu(t))]dv

≥ −
∫

Ω

[

ηi

(

λαj
∂X

j
α

∂xi
+ μβ

∂Yβ

∂xi
−Dγ

(

λαj
∂X

j
α

∂xi
γ

+ μβ
∂Yβ

∂xi
γ

))

+ξa
(

λαi
∂Xi

α

∂ua
+ μβ

∂Yβ

∂ua
−Dγ

(

λαi
∂Xi

α

∂ua
γ
+ μβ

∂Yβ

∂ua
γ

))]

dv + ‖θ‖2
p∑

k=1

ρk

= −
∫

Ω

(

ηiλαi
∂Xi

α

∂xi
+ ξaλαi

∂Xi
α

∂ua
−Dγ

(

ηiλαi
∂Xi

α

∂xi
γ

+ ξaλαi
∂Xi

α

∂ua
γ

))

dv

−
∫

Ω

(

ηiμβ
∂Yβ

∂xi
+ ξaμβ

∂Yβ

∂ua
−Dγ

(

ηiμβ
∂Yβ

∂xi
γ

+ ξaμβ
∂Yβ

∂ua
γ

))

dv + ‖θ‖2
p∑

k=1

ρk.

(2.10)
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Taking into account hypothesis (b), we have

∫

Ω
λαi

(
Xi

α(πx∗(t), πu∗(t)) −Xi
α(πx(t), πu(t))

)
dv

≥
∫

Ω
λαj

(

ηi ∂X
j
α

∂xi
+
(
Dγη

i
)∂X

j
α

∂xi
γ

+ ξa
∂X

j
α

∂ua
+
(
Dγξ

a)∂X
j
α

∂ua
γ

)

dv + ρ′‖θ‖2,
(2.11)

that is,

∫

Ω
λαi

(
Xi

α(πx∗(t), πu∗(t)) −Xi
α(πx(t), πu(t))

)
dv

≥
∫

Ω
λαj

(

ηi ∂X
j
α

∂xi
− ηiDγ

(
∂X

j
α

∂xi
γ

)

+ ξa
∂X

j
α

∂ua
− ξaDγ

(
∂X

j
α

∂ua
γ

))

dv + ρ′‖θ‖2.
(2.12)

Taking into account hypothesis (c), we obtain

∫

Ω
μβ[Yβ(πx∗(t), πu∗(t)) − Yβ(πx(t), πu(t))

]
dv

≥
∫

Ω
μβ

(

ηi
∂Yβ

∂xi
+
(
Dγη

i
)∂Yβ

∂xi
γ

+ ξa
∂Yβ

∂ua
+
(
Dγξ

a)∂Yβ

∂ua
γ

)

dv + ρ′′‖θ‖2,
(2.13)

which leads us to

∫

Ω
μβ[Yβ(πx∗(t), πu∗(t)) − Yβ(πx(t), πu(t))

]
dv

≥
∫

Ω
μβ

(

ηi
∂Yβ

∂xi
− ηiDγ

(
∂Yβ

∂xi
γ

)

+ ξa
∂Yβ

∂ua
− ξaDγ

(
∂Yβ

∂ua
γ

))

dv + ρ′′‖θ‖2.
(2.14)

Multiplying (2.12) and (2.14) by −1, and summing side by side, we obtain

−
∫

Ω
λαj

⎛

⎝ηi ∂X
i
α

∂xi
− ηiDγ

(
∂X

j
α

∂xi
γ

)

+ ξa
∂Xi

α

∂ua
− ξaDγ

⎛

⎝
∂X

j
γ

∂ua
γ

⎞

⎠

⎞

⎠dv

−
∫

Ω
μβ

(

ηi
∂Yβ

∂xi
− ηiDγ

(
∂Yβ

∂xi
γ

)

+ ξa
∂Yβ

∂ua
− ξaDγ

(
∂Yβ

∂ua
γ

))

dv

≥
∫

Ω
λαi X

i
α(πx(t), πu(t))dv +

∫

Ω
μβYβ(πx(t)πu(t))dv +

(
ρ′ + ρ′′

)‖θ‖2.

(2.15)
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Then, from (2.10) and (2.15), it follows

∫

Ω
[Xk(πx∗(t), πu∗(t)) −Xk(πx(t), πu(t))]dv

≥
∫

Ω
λαi X

i
α(πx(t), πu(t))dv +

∫

Ω
μβYβ(πx(t), πu(t))dv +

(
p∑

k=1

ρk + ρ′ + ρ′′
)

‖θ‖2
(2.16)

and taking into account hypotheses (d) and (e) of the theorem, we infer

∫

Ω
Xk(πx∗(t), πu∗(t))dv

>

∫

Ω

(
Xk(πx(t), πu(t)) + λαi X

i
α(πx(t), πu(t)) + μβYβ(πx(t), πu(t))

)
dv,

(2.17)

that is the inequality

p∑

k=1

Ik(x∗, u∗) >
p∑

k=1

Jk
(
x, u, λ, μ

)
(2.18)

is true. Consequently,

∫

Ω
X(πx∗(t), πu∗(t))dv ≤

∫

Ω
L
(
πx(t), πu(t), λ, μ

)
dv, (2.19)

is not true. Therefore, the inequality I(x∗, u∗) ≤ J(x, u, λ, μ) is false.

We would like to continue our study stating and proving a direct duality theorem. In
this respect, let us consider (x0, u0) a normal efficient solution of problem (VCP). According to
Theorem 2.3, there are the real scalars (λαi )

0 and (μβ)0 such that conditions (VFJ) are satisfied.

Theorem 2.7 (direct duality). Suppose that the conditions of Theorem 2.6 are satisfied and (x0, x0
γ ,

u0, u0
γ , (λ

α
i )

0, (μβ)0), above introduced, is an efficient solution of dual variational problem (VCD).
Then I(x0, u0) = J(x0, u0, (λαi )

0, (μβ)0), that is

min(VCP)
(
x0, u0

)
= max(VCD)

(
x0, x0

γ , u
0, u0

γ ,
(
λαi
)0
,
(
μβ
)0)

. (2.20)

Proof. By Theorem 2.6, the inequality I(x0, u0) ≤ J(x0, u0, (λαi )
0, (μβ)0) is not true. Therefore,

min(VCP)
(
x0, u0

)
= max(VCD)

(
x0, x0

γ , u
0, u0

γ ,
(
λαi
)0
,
(
μβ
)0)

, (2.21)

We finish this ongoing study with results concerning converse duality. These are intro-
duced in the following two theorems.
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Theorem 2.8 (converse duality). Let (x0, x0
γ , u

0, u0
γ , (λ

α
i )

0, (μβ)0) be an efficient solution of dual
problem (VCD) which satisfies the conditions in Theorem 2.6 at the point (x0, u0). Consider (x, u) a
normal efficient solution of primal (VCP) such that I(x, u) is in relation with I(x0, u0).

Then, (x, u) = (x0, u0) and

min(VCP)(x, u) = max(VCD)
(
x0, x0

γ , u
0, u0

γ ,
(
λαi
)0
,
(
μβ
)0)

. (2.22)

Proof. By reductio ad absurdum, suppose that (x, u)/= (x0, u0). Applying Theorem 2.6, it fol-
lows that there are the real scalars λ

α

i and μβ such that the conditions (VFJ) are satisfied at the
point (x, u). We obtain that (x, xγ , u, uγ , λ

α

i , μ
β) is a point from D, the set of feasible solutions

of dual (VCD) and the equality min(VCP)(x, u) = max(VCD)(x, xγ , u, uγ , (λ
α

i ), (μ
β)) holds

true. According to the weak duality theorem, min(VCP)(x, u) � max(VCD)(x0, x0
γ , u

0, u0
γ ,

(λαi )
0, (μβ)0). This relation implies that

max(VCD)
(
x, xγ , u, uγ ,

(
λ
α

i

)
,
(
μβ
))

� max(VCD)
(
x0, x0

γ , u
0, u0

γ ,
(
λαi
)0
,
(
μβ
)0)

, (2.23)

which contradicts the (Pareto)maximal efficiency of (x0, x0
γ , u

0, u0
γ , (λ

α
i )

0, (μβ)0). Therefore, we
obtain (x, u) = (x0, u0) and

min(VCP)(x, u) = max(VCD)
(
x0, x0

γ , u
0, u0

γ ,
(
λαi
)0
,
(
μβ
)0)

(2.24)

and this concludes the proof.

Following the same steps from the proof of the weak duality theorem, a sufficiency
result follows. It states that the necessity conditions of problem (VCP) become sufficient, by
adding several more conditions from Theorem 2.6.

Theorem 2.9. Suppose that (x0, u0) is a feasible solution of problem (VCP) and (λαi )
0, (μβ)0 are the

multipliers from Theorem 2.3 and the conditions (VFJ) from Theorem 2.3. If the hypotheses (a)–(e)
from Theorem 2.6 are satisfied, then (x0, u0) is an efficient solution of problem (VCP).

3. Conclusion

In this work, we introduced and studied a new vector variational problem of generalized
Dieudonné-Rashevski type. Employing isoperimetric constraints and a simplified scalar
variational problem, we derived necessary efficiency conditions. The notion of invexity
allowed us to develop a dual program theory and to obtain sufficient conditions of efficiency.
The results of this paper are new and they complement previously known results. For other
different viewpoints regarding the theory of efficiency and duality for optimum problems
with constraints, we address the reader to the following research works: [2–10, 15–22].
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