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For zero-balanced Gaussian hypergeometric functions F(a, b;a + b;x), a, b > 0, we determine
maximal regions of ab plane where well-known Landen identities for the complete elliptic integral
of the first kind turn on respective inequalities valid for each x ∈ (0, 1). Thereby an exhausting
answer is given to the open problem from the work by Anderson et al., 1990.

1. Introduction

Among special functions, the hypergeometric function has perhaps the widest range of
applications. For instance, several well-known classes of mathematical physics are particular
or limiting cases of it. For real numbers a, b, and c with c /= 0,−1,−2, . . ., the Gaussian
hypergeometric function is defined by

F(a, b; c;x) := 2F1(a, b; c;x) =
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n!
, (1.1)

for x ∈ (−1, 1), where

(a, n) := a(a + 1)(a + 2) · · · (a + n − 1), (1.2)

for n = 1, 2, . . ., and (a, 0) = 1 for a/= 0. For many rational triples (a, b, c) the function (1.1)
can be expressed in terms of elementary functions and long lists of such particular cases are
given in [1].
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It is clear that small changes of the parameters a, b, c will have small influence on the
value of F(a, b; c;x). In this paper we will study to what extent some well-known properties
of the complete elliptic integral of the first kind,

K(x) ≡ π

2
F

(
1
2
,
1
2
; 1;x2

)
=
∫π/2

0

(
1 − x2sin2t

)−1/2
dt, x ∈ (0, 1), (1.3)

can be extended to F(a, b;a+b;x) for (a, b) close to (1/2, 1/2). Recall that F(a, b; c; r) is called
zero-balanced if c = a + b. In the zero-balanced case, there is a logarithmic singularity at r = 1
and Gauss proved the asymptotic formula

F(a, b;a + b; r) ∼ − 1
B(a, b)

log(1 − r), (1.4)

as r tends to 1, where

B(z,w) ≡ Γ(z)Γ(w)
Γ(z +w)

, Re z > 0, Rew > 0 (1.5)

is the classical beta function. Note that Γ(1/2) =
√
π and B(1/2, 1/2) = π , see [2, Chapter 6].

Ramanujan found a much sharper asymptotic formula

B(a, b)F(a, b;a + b; r) + log(1 − r) = R(a, b) +O
(
(1 − r) log(1 − r)

)
, (1.6)

as r tends to 1 (see also [3].)Here and in the sequel,

R(a, b) ≡ −Ψ(a) −Ψ(b) − 2γ, R

(
1
2
,
1
2

)
= log 16,

Ψ(z) ≡ d

dz

(
log Γ(z)

)
=

Γ′(z)
Γ(z)

, Re z > 0,

(1.7)

and γ is the Euler-Mascheroni constant. Ramanujan’s formula (1.6) is a particular case of
another well-known formula given in [2, 15.3.10].

We shall use in the sequel the following assertion which is a mixture of Biernacki-
Krzyz and related results on the ratio of formal power series [4, 5].

Lemma 1.1. Suppose that the power series f(x) =
∑

n≥0 f̂nx
n and g(x) =

∑
n≥0 ĝnx

n have the radius
of convergence r > 0 and ĝn > 0 for all n ∈ {0, 1, 2, . . .}. Denote also

h(x) =
f(x)
g(x)

=
∑

n≥0
ĥnx

n. (1.8)

(1) If the sequence {f̂n/ĝn}n≥0 is monotone increasing then h(x) is also monotone increasing
on (0, r).
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(2) If the sequence {f̂n/ĝn}n≥0 is monotone decreasing then h(x) is also monotone decreasing
on (0, r).

(3) If the sequence {f̂n/ĝn} is monotone increasing (decreasing) for 0 < n ≤ n0 and monotone
decreasing (increasing) for n > n0, then there exists x0 ∈ (0, r) such that h(x) is increasing
(decreasing) on (0, x0) and decreasing (increasing) on (x0, r).

Some of the most important properties of the elliptic integral K(r) are the Landen
identities [6, p. 507]:

K
(
2
√
r

1 + r

)
= (1 + r)K(r), K

(
1 − r

1 + r

)
=

1 + r

2
K′(r), (1.9)

where K′(r) = K(
√
1 − r2), r ∈ (0, 1). In [4, Page 79], the following problem was raised.

Open Problem 1. Find an analog of Landen’s transformation formulas in (1.9) for F(a, b;a +
b; r). In particular, if k(r) = F(a, b;a + b; r2) and a, b ∈ (0, 1), is it true that

k

(
2
√
r

1 + r

)
≤ Ck(r) (1.10)

for some constant C and all r ∈ (0, 1)?

Since 2
√
r/(1 + r) > r for r ∈ (0, 1), C must be greater than 1.

Some other forms of Landen inequalities can be found in [7, 8].
In [4, pp. 20-21] and [9, Theorem 1.4] Gauss’ asymptotic formula (1.4) was refined by

finding the lower and upper bounds for

W(r) = B(a, b)F(a, b;a + b; r) +
(
1
x

)
log(1 − r), (1.11)

when a, b ∈ (0, 1) or a, b ∈ (1,∞). Our second result gives a full solution to Open Problem 1.
We wish to point out that in [10, Theorem 1.2(1)] it was claimed that for a, b ∈ (0, 1),

c = a + b ≤ 1, the function

s(r) =
(
1 +

√
r
)
F(a, b; c; r) − F

(
a, b; c;

4
√
r

(
1 +

√
r
)2

)

(1.12)

is increasing in r ∈ (0, 1). As pointed out by Baricz [11] the proof contains a gap and the
correct proof will be given here.

We also found another area in ab planewhere the function s(r) is monotone decreasing
in r ∈ (0, 1).

2. Main Results

Our first result shows that Landen inequalities hold not only in the neighborhood of the point
a = b = 1/2 but also in some unbounded parts of ab plane.
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Figure 1: The domains Dj , j = 1, 2, 3 visualized.

Theorem 2.1. For all a, b > 0 with ab ≤ 1/4 one has that the inequality

F

(
a, b;a + b;

4r

(1 + r)2

)
≤ (1 + r)F

(
a, b;a + b; r2

)
(2.1)

holds for each r ∈ (0, 1). Also, for a, b > 0, 1/a + 1/b ≤ 4, the reversed inequality

F

(
a, b;a + b;

4r

(1 + r)2

)
≥ (1 + r)F

(
a, b;a + b; r2

)
, (2.2)

takes place for each r ∈ (0, 1).
In the remaining region a, b > 0

∧
ab > 1/4

∧
1/a+ 1/b > 4 neither of the above inequalities

holds for each r ∈ (0, 1).

The disjoint regions in ab plane D1 = {(a, b) | a, b > 0, ab ≤ 1/4} and D2 = {(a, b) |
a, b > 0, 1/a + 1/b ≤ 4}, where Landen inequalities hold, are shown on the Figure 1.

The only common point of the graphs in Figure 1 is (1/2, 1/2) where equality sign
holds.

Two-sided bounds for the ratio of target functions are also possible.

Theorem 2.2. For each r ∈ (0, 1) and (a, b) ∈ D1, one has

1 ≤ (1 + r)F
(
a, b;a + b; r2

)

F
(
a, b;a + b; 4r/(1 + r)2

) ≤ B(a, b)
π

. (2.3)
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For (a, b) ∈ D2 the inequalities are reversed,

B(a, b)
π

≤ (1 + r)F
(
a, b;a + b; r2

)

F
(
a, b;a + b; 4r/(1 + r)2

) ≤ 1. (2.4)

The bounds in both pairs of inequalities are sharp and equality is reached for a = b = 1/2.

Some numerical estimations of the constant C in Open Problem 1 follows.

Corollary 2.3. Let k(·) be defined as in Open Problem 1. Then, for each r ∈ (0, 1) and (a, b) ∈ D1,
one has

π

B(a, b)
k(r) < k

(
2
√
r

1 + r

)
< 2k(r). (2.5)

In the region D2 one has

k(r) < k

(
2
√
r

1 + r

)
<

2π
B(a, b)

k(r). (2.6)

Two-sided bounds for the difference exist in a smaller region D3 ⊂ D1 (see Figure 1),
where D3 = {(a, b) | a, b > 0, a + b ≤ 1} and in D2.

Theorem 2.4. Let B = B(a, b) be the classical Beta function and R = R(a, b) be defined by (1.7).
For a, b > 0, a + b ≤ 1, one has

0 ≤ (
1 +

√
r
)
F(a, b;a + b; r) − F

(
a, b;a + b;

4
√
r

(
1 +

√
r
)2

)
≤ R − log 16

B
. (2.7)

If a, b > 0, 1/a + 1/b ≤ 4, then

0 ≤ F

(
a, b;a + b;

4
√
r

(
1 +

√
r
)2

)
− (

1 +
√
r
)
F(a, b;a + b; r) ≤ log 16 − R

B
. (2.8)

The second Landen identity has the following counterpart for hypergeometric
functions. The resulting inequalities might be called Landen inequalities for zero-balanced
hypergeometric functions.

Theorem 2.5. Let F(x) = F(a, b;a + b;x).
For (a, b) ∈ D1 and each x ∈ (0, 1), one has

1
2
<

F
(
((1 − x)/(1 + x))2

)

(1 + x)F(1 − x2)
<

B(a, b)
2π

. (2.9)
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If (a, b) ∈ D3, then

(1 + x)F
(
1 − x2

)
≤ 2F

((
1 − x

1 + x

)2
)

≤ (1 + x)
[
F
(
1 − x2

)
+
R − log 16

B

]
. (2.10)

For (a, b) ∈ D2, one has

B(a, b)
2π

<
F
(
((1 − x)/(1 + x))2

)

(1 + x)F(1 − x2)
<

1
2
,

0 ≤ (1 + x)F
(
1 − x2

)
− 2F

((
1 − x

1 + x

)2
)

≤ (1 + x)
(
log 16 − R

)

B
.

(2.11)

3. Proofs

Throughout this section we denote

F(x) = F(a, b;a + b;x), G(x) = F(a, b;a + b + 1;x), (3.1)

where a, b, (a, b)/= (1/2, 1/2) are fixed positive parameters and

F0(x) = F

(
1
2
,
1
2
; 1;x

)
, G0(x) = F

(
1
2
,
1
2
; 2;x

)
, (3.2)

with the regions D1, D2, D3 defined as above.
The basic results, which makes possible all proofs in the sequel, are contained in the

following.

Lemma 3.1. (1) The function f(r) = F(r)/F0(r) is monotone decreasing in r ∈ (0, 1) on D1 and
monotone increasing on D2.

(2) The function g(r) = G(r)/G0(r) is monotone decreasing on D3 and monotone increasing
on D2.

It should be noted that a general result of this kind was given in [12, Theorem 2.31].

Proof. We shall use Lemma 1.1 in the proof.
Since F̂n = (a)n(b)n/(a + b)n(1)n, F̂0n = ((1/2)n/(1)n)

2, applying the lemma one can
see that the monotonicity of {F̂n/F̂0n} depends on the sign of

Tn = T(a, b;n) = n

(
ab − 1

4

)
+ ab − a + b

4
= C1n + C2. (3.3)
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Since (a, b)/= (1/2, 1/2) and

C2 =

√
ab√

ab + 1/2
C1 −

(√
a −

√
b
)2

4
, (3.4)

it follows that

(1) if C1 ≤ 0, that is, (a, b) ∈ D1, then C2 < 0; hence Tn < 0 for n = 0, 1, 2, . . . and f(r) is
monotone decreasing in r ∈ (0, 1);

(2) if C2 ≥ 0, that is, (a, b) ∈ D2 then C1 > 0, that is, Tn > 0, n = 0, 1, 2, . . . and f(r) is
monotone increasing in r.

In the second case we have Ĝn = (a)n(b)n/(a+b+1)n(1)n, Ĝ0n = ((1/2)n/(1)n)
2/(n+1)

and, proceeding analogously, we get

T ′
n = n

(
ab + a + b − 5

4

)
+ 2ab − a + b

4
− 1
4
= C3n + C4. (3.5)

(3) If (a, b) ∈ D3, that is, a, b > 0, a + b ≤ 1, let a + b = k > 0. Then ab ≤ k2/4 and

C3 ≤ k2

4
+ k − 5

4
=

(k − 1)(k + 5)
4

; C4 ≤ k2

2
− k

4
− 1
4
=

(k − 1)(2k + 1)
4

. (3.6)

Since 0 < k ≤ 1, it follows that both C3, C4 are nonpositive. Therefore T ′
n < 0, n =

0, 1, 2, . . . because both constants cannot be zero simultaneously. By Lemma 1.1, we conclude
that the function g(r) is monotone decreasing in r ∈ (0, 1).

(4) If (a, b) ∈ D2, that is, a, b > 0, 1/a + 1/b ≤ 4, then 4ab ≥ a + b ≥ 2
√
ab,

hence ab ≥ 1/4. Also a + b ≥ 2
√
ab ≥ 2 · (1/2) = 1. Therefore C3 ≥ 0 and

C4 = (ab − 1/4) + (4ab − a − b)/4 ≥ 0. As above, we conclude that T ′
n > 0,

n = 0, 1, 2, . . . and g(r) is monotone increasing in this case.

Proof of Theorem 2.1. By the above lemma, for each 0 < x < y < 1 we have f(x) > f(y) on D1

and f(x) < f(y) on D2.
Putting x = x(r) = r2, y = y(r) = 4r/(1 + r)2, we get on D1,

F
(
r2
)

F0(r2)
>

F
(
y
)

F0
(
y
) , (3.7)

that is, by Landen’s identity,

F
(
y
)
<

F0
(
y
)

F0(r2)
F
(
r2
)
= (1 + r)F

(
r2
)
. (3.8)

The second inequality is obtained analogously.
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It is easily seen by (3.3) that in the remaining region the sequence {F̂n/F̂0n} decreases
and then increases. By Lemma 1.1, part 3, this means that the function f(r), for some r0 ∈
(0, 1), decreases in (0, r0) and increases in (r0, 1). Therefore, putting 0 < x(r) < y(r) < r0
and r0 < x(r) < y(r) < 1, one concludes that neither of the given inequalities holds for each
r ∈ (0, 1).

Proof of Theorem 2.2. Since f(r) is monotone decreasing on D1, applying Gauss formula, we
obtain

1 = lim
r→ 0+

F(r)
F0(r)

>
F(r)
F0(r)

> lim
r→ 1−

F(r)
F0(r)

=
B(1/2, 1/2)

B(a, b)
=

π

B(a, b)
. (3.9)

Therefore,

F
(
y(r)

)

F(x(r))
<

B(a, b)
π

F0
(
y(r)

)

F0(x(r))
= (1 + r)

B(a, b)
π

, (3.10)

by the Landen identity.
The inequality valid on D2 can be proved similarly.

Proof of Theorem 2.4. Both assertions of this theorem are a consequence of the following.

Lemma 3.2. The function

s(r) =
(
1 +

√
r
)
F(a, b;a + b; r) − F

(
a, b;a + b;

4
√
r

(
1 +

√
r
)2

)
(3.11)

is monotone increasing in r ∈ (0, 1) on D3 and monotone decreasing on D2.

Proof. Let z = 4
√
r/(1 +

√
r)2. Then

1 − z =

(
1 − √

r
)2

(
1 +

√
r
)2 ;

dz

dr
=

2
(
1 − √

r
)

√
r
(
1 +

√
r
)3 . (3.12)

Hence

s1(r) := 2
√
r
(
1 − √

r
)
s′(r) =

(
1 − √

r
)
F(a, b;a + b; r) + 2

√
r(1 − r)F ′(a, b;a + b; r)

− 4
1 +

√
r
(1 − z)F ′(a, b;a + b; z)

=
(
1 − √

r
)
F(a, b;a + b; r) + 2

ab

a + b

√
rF(a, b;a + b + 1; r)

− 4ab
(a + b)

(
1 +

√
r
)F(a, b;a + b + 1; z)

=
(
1 − √

r
)
F(r) + 2

ab

a + b

√
rG(r) − 4ab

(a + b)
(
1 +

√
r
)G(z).

(3.13)
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We used here the well-known formula

(1 − x)F ′(a, b;a + b;x) =
ab

a + b
F(a, b;a + b + 1;x). (3.14)

On the other hand, differentiating the first Landen identity we get

1
1 +

√
r
G0(z) =

(
1 − √

r
)
F0(r) +

1
2
√
rG0(r). (3.15)

Since g(r) is monotone decreasing onD3 and 0 < r < z < 1, we get g(r) > g(z), that is,

G(z) <
G0(z)
G0(r)

G(r). (3.16)

This, together with (3.15), yields

s1(r) >
(
1 − √

r
)
F(r) + 2

ab

a + b

√
rG(r) − 4ab

(a + b)
(
1 +

√
r
)
G0(z)
G0(r)

G(r)

=
(
1 − √

r
)
F(r) + 2

ab

a + b

√
rG(r) − 4ab

(a + b)

((
1 − √

r
) F0(r)
G0(r)

+
1
2
√
r

)
G(r)

=
(
1 − √

r
)(

F(r) − 4ab
(a + b)

F0(r)
G0(r)

G(r)
)
.

(3.17)

By (3.14) again, we get

4ab
(a + b)

G(r)
G0(r)

=
F ′(r)
F ′
0(r)

. (3.18)

Hence,

2
√
rs′(r) > F(r) − F ′(r)

F ′
0(r)

F0(r) =
F2(r)
F ′
0(r)

(
F0(r)
F(r)

)′
. (3.19)

The last expression is positive onD3 becauseD3 ⊂ D1 and, by Lemma 3.1, the function f(r) =
F(r)/F0(r) is monotone decreasing on D1.

Therefore we proved that the function s(r) is monotone increasing in r ∈ (0, 1) on D3.

Remark 3.3. Due to the remark in Section 1, this proof gives an affirmative answer to the 12-
years-old hypothesis risen in [10].

Since g(r) is increasing on D2, we get

G(z) >
G0(z)
G0(r)

G(r). (3.20)
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Hence, proceeding as before, it follows that

2
√
rs′(r) <

F2(r)
F ′
0(r)

(
F0(r)
F(r)

)′
< 0, (3.21)

since f(r) = F(r)/F0(r) is monotone increasing on D2.
Therefore s(r) is monotone decreasing in r ∈ (0, 1) on D2 and the proof of Lemma 3.2

is done.

By Lemma 3.2 we obtain limr→ 0+s(r) < s(r) < limr→ 1−s(r) on D3 and limr→ 1−s(r) <
s(r) < limr→ 0+s(r) on D2.

Evidently, limr→ 0+s(r) = 0.
Applying Ramanujan formula (1.6), we get

lim
r→ 1−

s(r) =
limr→ 1−

(
R − 2 log(1 − r) + log(1 − z) + o(1)

)

B

=
limr→ 1−

(
R − 2 log

(
1 − √

r
)(
1 +

√
r
)
+ 2 log

((
1 − √

r
)
/
(
1 +

√
r
))

+ o(1)
)

B

=

(
R − log 16

)

B
.

(3.22)

The assertion of Theorem 2.4 follows.

Proof of Theorem 2.5. Changing variable (1 − r)/(1 + r) = x ∈ (0, 1), we obtain

r =
1 − x

1 + x
; 1 + r =

2
1 + x

;
4r

(1 + r)2
= 1 − x2. (3.23)

Putting this in Theorems 2.2 and 2.4, we obtain the assertions of Theorem 2.5.

Remark 3.4. As the referee notes, the results from Theorems 2.1 and 2.2 can be generalized for
F(a, b, c; r). This is left to the readers.
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