
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 279632, 11 pages
doi:10.1155/2012/279632

Research Article
Approximate n-Lie Homomorphisms and Jordan
n-Lie Homomorphisms on n-Lie Algebras

M. Eshaghi Gordji1, 2 and G. H. Kim1, 2

1 Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
2 Department of Mathematics, Kangnam University, Yongin, Gyeonggi 446-702, Republic of Korea

Correspondence should be addressed to G. H. Kim, ghkim@kangnam.ac.kr

Received 18 October 2011; Accepted 5 January 2012

Academic Editor: Marcia Federson

Copyright q 2012 M. E. Gordji and G. H. Kim. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Using fixed point methods, we establish the stability of n-Lie homomorphisms and Jordan n-
Lie homomorphisms on n-Lie algebras associated to the following generalized Jensen functional
equation μf(

∑n
i=1 xi/n) + μ

∑n
j=2 f(

∑n
i=1,i /= j xi − (n − 1)xj/n) = f(μx1)(n ≥ 2).

1. Introduction

Let n be a natural number greater or equal to 3. The notion of an n-Lie algebra was introduced
by Filippov in 1985 [1]. The Lie product is taken between n elements of the algebra instead
of two. This new bracket is n-linear, antisymmetric and satisfies a generalization of the Jacobi
identity. For n = 3 this product is a special case of the Nambu bracket, well known in physics,
which was introduced by Nambu [2] in 1973, as a generalization of the Poisson bracket in
Hamiltonian mechanics.

An n-Lie algebra is a natural generalization of a Lie algebra. Namely, a vector space
V together with a multilinear, antisymmetric n-ary operation []:ΛnV → V is called an n-Lie
algebra, n ≥ 3, if the n-ary bracket is a derivation with respect to itself, that is,

[[x1, . . . , xn], xn+1, . . . , x2n−1] =
n∑

i=1

[x1, . . . , xi−1[xi, xn+1, . . . , x2n−1], . . . , xn], (1.1)

where x1, x2, . . . , x2n−1 ∈ V . Equation (1.1) is called the generalized Jacobi identity. The
meaning of this identity is similar to that of the usual Jacobi identity for a Lie algebra (which
is a 2-Lie algebra).
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In [1] and several subsequent papers, [3–5] a structure theory of finite-dimensional
n-Lie algebras over a field F of characteristic 0 was developed.

n-ary algebras have been considered in physics in the context of Nambu mechanics
[2, 6] and, recently (for n = 3), in the search for the effective action of coincidentM2-branes in
M-theory initiated by the Bagger-Lambert-Gustavsson (BLG)model [7, 8] (further references
on the physical applications of n-ary algebras are given in [9]).

From now on, we only consider n-Lie algebras over the field of complex numbers.
An n-Lie algebra A is a normed n-Lie algebra if there exists a norm ‖‖ on A such that
‖[x1, x2, . . . , xn]‖ ≤ ‖x1‖‖x2‖ · · · ‖xn‖ for all x1, x2, . . . , xn ∈ A. A normed n-Lie algebra A is
called a Banach n-Lie algebra, if (A, ‖‖) is a Banach space.

Let (A, []A) and (B, []B) be two Banach n-Lie algebras. A C-linear mapping H :
(A, []A) → (B, []B) is called an n-Lie homomorphism if

H([x1x2 · · ·xn]A) = [H(x1)H(x2) · · ·H(xn)]B (1.2)

for all x1, x2, . . . , xn ∈ A. A C-linear mapping H : (A, []A) → (B, []B) is called a Jordan n-Lie
homomorphism if

H([xx · · ·x]A) = [H(x)H(x) · · ·H(x)]B (1.3)

for all x ∈ A.
The study of stability problems had been formulated by Ulam [10] during a talk

in 1940. Under what condition does there exist a homomorphism near an approximate
homomorphism? In the following year, Hyers [11] answered affirmatively the question of
Ulam for Banach spaces, which states that if ε > 0 and f : X → Y is a map with X a normed
space, Y a Banach spaces such that

∥
∥f
(
x + y

) − f(x) − f
(
y
)∥
∥ ≤ ε (1.4)

for all x, y ∈ X, then there exists a unique additive map T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ ε (1.5)

for all x ∈ X. A generalized version of the theorem of Hyers for approximately linear
mappings was presented by Rassias [12] in 1978 by considering the case when inequality
(1.4) is unbounded. Due to that fact, the additive functional equation f(x+y) = f(x)+f(y) is
said to have the generalized Hyers-Ulam-Rassias stability property. A large list of references
concerning the stability of functional equations can be found in [13–32].

In 1982–1994, Rassias (see [26–28]) solved the Ulam problem for different mappings
and for many Euler-Lagrange type quadratic mappings, by involving a product of different
powers of norms. In addition, Rassias considered the mixed product sum of powers of norms
control function. For more details see [33–57].

In 2003 Cădariu and Radu applied the fixed-point method to the investigation of the
Jensen functional equation [58]. They could present a short and a simple proof (different of
the “direct method”, initiated by Hyers in 1941) for the generalized Hyers-Ulam stability of
Jensen functional equation [58] and for quadratic functional equation.
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Park and Rassias [59] proved the stability of homomorphisms in C∗-algebras and Lie
C∗-algebras and also of derivations on C∗-algebras and Lie C∗-algebras for the Jensen-type
functional equation

μf

(
x + y

2

)

+ μf

(
x − y

2

)

− f
(
μx
)
= 0 (1.6)

for all μ ∈ T
1 := {λ ∈ C; |λ| = 1}.

In this paper, by using the fixed-point methods, we establish the stability of n-Lie
homomorphisms and Jordan n-Lie homomorphisms on n-Lie Banach algebras associated to
the following generalized Jensen type functional equation:

μf

(∑n
i=1 xi

n

)

+ μ
n∑

j=2

f

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

− f
(
μx1
)
= 0 (1.7)

for all μ ∈ (T1
1/no

:= {eiθ; 0 ≤ θ ≤ 2π/no} ∪ {1}), where n ≥ 2.
Throughout this paper, assume that (A, []A), (B, []B) are two n-Lie Banach algebras.

2. Main Results

Before proceeding to the main results, we recall a fundamental result in fixed point theory.

Theorem 2.1 (see [60]). Let (Ω, d) be a complete generalized metric space, and let T : Ω → Ω be a
strictly contractive function with Lipschitz constant L. Then for each given x ∈ Ω, either

d
(
Tmx, Tm+1x

)
= ∞ ∀m ≥ 0, (2.1)

or other exists a natural number m0 such that

(i) d(Tmx, Tm+1x) < ∞ for all m ≥ m0;

(ii) the sequence {Tmx} is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tm0x, y) < ∞};
(iv) d(y, y∗) ≤ (1/(1 − L))d(y, Ty) for all y ∈ Λ.

We start our work with the main theorem of the our paper.

Theorem 2.2. Let n0 ∈ N be a fixed positive integer number. Let f : A → B be a function for which
there exists a function φ : An → [0,∞) such that

∥
∥
∥
∥
∥
∥
μf

(∑n
i=1 xi

n

)

+ μ
n∑

j=2

f

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

− f(μx1)

∥
∥
∥
∥
∥
∥
B

≤ φ(x1, x2, . . . , xn) (2.2)
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for all μ ∈ (T1
1/no

:= {eiθ; 0 ≤ θ ≤ 2π/no} ∪ {1}) and all x1, . . . , xn ∈ A, and that

∥
∥f([x1x2 · · ·xn]A) −

[
f(x1)f(x2) · · · f(xn)

]
B

∥
∥
B
≤ φ(x1, x2, . . . , xn) (2.3)

for all x1, . . . , xn ∈ A. If there exists an L < 1 such that

φ(x1, x2, . . . , xn) ≤ nLφ

(
x1

n
,
x2

n
, . . . ,

xn

n

)

(2.4)

for all x1, . . . , xn ∈ A, then there exists a unique n-Lie homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥ ≤ L

1 − L
φ(x, 0, 0, . . . , 0) (2.5)

for all x ∈ A.

Proof. Let Ω be the set of all functions from A into B and let

d
(
g, h
)
:= inf

{
C ∈ R

+ :
∥
∥g(x) − h(x)

∥
∥
B ≤ Cφ(x, 0, . . . , 0), ∀x ∈ A

}
. (2.6)

It is easy to show that (Ω, d) is a generalized complete metric space [61].
Now we define the mapping J : Ω → Ω by J(h)(x) = (1/n)h(nx) for all x ∈ A.
Note that for all g, h ∈ Ω,

d
(
g, h
)
< C =⇒ ∥∥g(x) − h(x)

∥
∥ ≤ Cφ(x, 0, . . . , 0), ∀x ∈ A,

=⇒
∥
∥
∥
∥
1
n
g(nx) − 1

n
h(nx)

∥
∥
∥
∥ ≤ 1

|n|�
Cφ(nx, 0, . . . , 0), ∀x ∈ A,

=⇒
∥
∥
∥
∥
1
n
g(nx) − 1

n
h(nx)

∥
∥
∥
∥ ≤ LCφ(x, 0, . . . , 0), ∀x ∈ A,

=⇒ d
(
J
(
g
)
, J(h)

) ≤ LC.

(2.7)

Hence we see that

d
(
J
(
g
)
, J(h)

) ≤ Ld
(
g, h
)

(2.8)

for all g, h ∈ Ω. It follows from (2.4) that

lim
m→∞

1
nm

φ(nmx1, n
mx2, . . . , n

mxn) = 0 (2.9)

for all x1, . . . , xn ∈ A. Putting μ = 1, x1 = x, and xj = 0 (j = 2, . . . , n) in (2.2), we obtain

∥
∥
∥
∥nf

(
x

n

)

− f(x)
∥
∥
∥
∥
B

≤ φ(x, 0, . . . , 0) (2.10)
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for all x ∈ A. Thus by using (2.4), we obtain that

∥
∥
∥
∥
1
n
f(nx) − f(x)

∥
∥
∥
∥
B

≤ 1
n
φ(nx, 0, . . . , 0) ≤ Lφ(x, 0, . . . , 0) (2.11)

for all x ∈ A, that is,

d
(
f, J
(
f
)) ≤ L < ∞. (2.12)

By Theorem 2.1, J has a unique fixed point in the set X1 := {h ∈ Ω : d(f, h) < ∞}. Let H be
the fixed point of J . H is the unique mapping with

H(nx) = nH(x) (2.13)

for all x ∈ A, such that there exists C ∈ (0,∞) satisfying

∥
∥f(x) −H(x)

∥
∥
B ≤ Cφ(x, 0, . . . , 0) (2.14)

for all x ∈ A. On the other hand we have limm→∞d(Jm(f),H) = 0, so

lim
m→∞

1
nm

f(nmx) = H(x) (2.15)

for all x ∈ A. Also by Theorem 2.1, we have

d
(
f,H

) ≤ 1
1 − L

d
(
f, J
(
f
))
. (2.16)

It follows from (2.12) and (2.16) that

d
(
f,H

) ≤ L

1 − L
. (2.17)

This implies the inequality (2.5). By (2.21), we have

‖H([x1x2 · · ·xn]A) − [H(x1)H(x2)H(x3) · · ·H(xn)]B‖B

= lim
m→∞

∥
∥
∥
∥

1
nnm

H([nmx1n
mx2 · · ·nmxn]A) −

1
nnm

([H(nmx1)H(nmx2)H(nmx3) · · ·H(nmxn)]B)
∥
∥
∥
∥

≤ lim
m→∞

1
nnm

φ(nmx1, n
mx2, . . . , n

mxn) = 0

(2.18)
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for all x1, . . . , xn ∈ A. Hence

H([x1x2 · · ·xn]A) = [H(x1)H(x2)H(x3) · · ·H(xn)]B (2.19)

for all x1, . . . , xn ∈ A.
On the other hand, it follows from (2.2), (2.9), and (2.15) that

∥
∥
∥
∥
∥
∥
H

(∑n
i=1 xi

n

)

+
n∑

j=2

H

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

−H(x1)

∥
∥
∥
∥
∥
∥
B

= lim
m→∞

1
nm

∥
∥
∥
∥
∥
∥
f

(

nm−1
n∑

i=1

xi

)

+
n∑

j=2

⎛

⎝f

⎛

⎝nm−1

⎛

⎝
n∑

i=1,i /= j

xi − (n − 1)xj

⎞

⎠

⎞

⎠

⎞

⎠ − f(nmx1)

∥
∥
∥
∥
∥
∥
B

≤ lim
m→∞

1
nm

φ(nmx1, n
mx2, . . . , n

mxn) = 0

(2.20)

for all x1, . . . , xn ∈ A. Then

H

(∑n
i=1 xi

n

)

+
n∑

j=2

H

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

= H(x1) (2.21)

for all x1, . . . , xn ∈ A. Putting s1 =
∑n

i=1 xi/n and sj =
∑n

i=1,i /= j xi − (n − 1)xj/n (j = 2, 3, . . . , n)
in (2.21), we obtain

H

⎛

⎝
n∑

j=1

sj

⎞

⎠ =
n∑

j=1

H
(
sj
)

(2.22)

for all s1, . . . , sn ∈ A. Setting sj = 0 (j = 3, 4, . . . , n) in (2.22) to get

H(s1 + s2) = H(s1) +H(s2) (2.23)

hence H is cauchy additive. Letting xi = x for all i = 1, 2, . . . , n in (2.2), we obtain

∥
∥μf(x) − f

(
μx
)∥
∥
B ≤ φ(x, x, . . . , x) (2.24)

for all x ∈ A. It follows that

∥
∥H
(
μx
) − μH(x)

∥
∥ = lim

m→∞
1
nm

∥
∥f
(
μnmx

) − μf(nmx)
∥
∥
B

≤ lim
m→∞

1
nm

φ(nmx, nmx, . . . , nmx) = 0
(2.25)
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for all μ ∈ T
1
1/no

, and all x ∈ A. One can show that the mapping H : A → B is C-linear.
Hence, H : A → B is an n-Lie homomorphism satisfying (2.5), as desired.

Corollary 2.3. Let θ and p be nonnegative real numbers such that p < 1. Suppose that a function
f : A → B satisfies

∥
∥
∥
∥
∥
∥
μf

(∑n
i=1 xi

n

)

+ μ
n∑

j=2

f

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

− f
(
μx1
)
∥
∥
∥
∥
∥
∥
B

≤ θ
n∑

i=1

(
‖xi‖pA

)
(2.26)

for all μ ∈ T
1 and all x1, . . . , xn ∈ A and

∥
∥f([x1x2 · · ·xn]A) −

[
f(x1)f(x2) · · · f(xn)

]
B

∥
∥
B
≤ θ

n∑

i=1

(
‖xi‖pA

)
(2.27)

for all x1, . . . , xn ∈ A. Then there exists a unique n-Lie homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 2p

�(2 − 2p)
θ‖x‖pA (2.28)

for all x ∈ A.

Proof. Put φ(x1, x2, . . . , xn) := θ
∑n

i=1(‖xi‖pA) for all x1, . . . , xn ∈ A in Theorem 2.2. Then (2.9)
holds for p < 1, and (2.28) holds when L = 2(p−1).

Theorem 2.4. Let n0 ∈ N be a fixed positive integer number. Let f : A → B be a function for which
there exists a function φ : An → [0,∞) such that

∥
∥
∥
∥
∥
∥
μf

(∑n
i=1 xi

n

)

+ μ
n∑

j=2

f

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

− f
(
μx1
)
∥
∥
∥
∥
∥
∥
B

≤ φ(x1, x2, . . . , xn) (2.29)

for all μ ∈ (T1
1/no

:= {eiθ; 0 ≤ θ ≤ 2π/no} ∪ {1}) and all x1, . . . , xn ∈ A, and that

∥
∥f([xx · · ·x]A) −

[
f(x)f(x) · · · f(x)]B

∥
∥
B
≤ φ(x, x, . . . , x) (2.30)

for all x ∈ A. If there exists an L < 1 such that

φ(x1, x2, . . . , xn) ≤ nLφ

(
x1

n
,
x2

n
, . . . ,

xn

n

)

(2.31)

for all x1, . . . , xn ∈ A, then there exists a unique Jordan n-Lie homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥ ≤ L

1 − L
φ(x, 0, 0, . . . , 0) (2.32)

for all x ∈ A.
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Proof. By the same reasoning as the proof of Theorem 2.2, we can define the mapping

H(x) = lim
m→∞

1
nm�

f
(
nm�x

)
(2.33)

for all x ∈ A. Moreover, we can show that H is C-linear. The inequality (2.30) follows that

‖H([xx · · ·x]A) − [H(x)H(x) · · ·H(x)]B‖B

= lim
m→∞

∥
∥
∥
∥

1
nnm

H([nmx · · ·nmx]A) −
1

nnm
([H(nmx)H(nmx) · · ·H(nmx)]B)

∥
∥
∥
∥
B

≤ lim
m→∞

1
nnm

φ(nmx, nmx, . . . , nmx) = 0

(2.34)

for all x ∈ A. So

H([xx · · ·x]A) = [H(x)H(x) · · ·H(x)]B (2.35)

for all x ∈ A. Hence H : A → B is a Jordan n-Lie homomorphism satisfying (2.32).

Corollary 2.5. Let θ and p be nonnegative real numbers such that p < 1. Suppose that a function
f : A → B satisfies

∥
∥
∥
∥
∥
∥
μf

(∑n
i=1 xi

n

)

+ μ
n∑

j=2

f

(∑n
i=1,i /= j xi − (n − 1)xj

n

)

− f(μx1)

∥
∥
∥
∥
∥
∥
B

≤ θ
n∑

i=1

(
‖xi‖pA

)
(2.36)

for all μ ∈ T
1 and all x1, . . . , xn ∈ A and

∥
∥f([xx · · ·x]A) −

[
f(x)f(x) · · · f(x)]B

∥
∥
B
≤ nθ

(
‖x‖pA

)
(2.37)

for all x ∈ A. Then there exists a unique Jordan n-Lie homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 2p

�(2 − 2p)
θ‖x‖pA (2.38)

for all x ∈ A.

Proof. It follows by Theorem 2.4 by putting φ(x1, x2, . . . , xn) := θ
∑n

i=1(‖xi‖pA) for all
x1, . . . , xn ∈ A and L = 2(p−1).
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