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Copyright q 2012 Danyal Soybaş. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A Banach space E is said to have (D) property if every bounded linear operator T : F → E∗ is
weakly compact for every Banach space F whose dual does not contain an isomorphic copy of
l∞. Studying this property in connection with other geometric properties, we show that every
Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V)
property) has (D) property. We show that the space L1(v) of real functions, which are integrable
with respect to a measure vwith values in a Banach spaceX, has (D) property. We give some other
results concerning Banach spaces with (D) property.

1. Introduction

As it is well known, the properties or forms that remain invariant under a group of
transformations are called “geometry.” The geometry of Banach spaces covers all of the
properties that do not change under isomorphisms. We can collect these properties in two
groups, namely, isometric and isomorphic ones. Isometric properties such as strict or smooth
convexity are directly connected to the norms, whereas, isomorphic ones like Schur property
or (V ) property of Pełczyński depend on the topologies that the norms define, rather than
the norms themselves. In the last half-century, defining new geometric properties of Banach
spaces and studying them have gained great interest [1]. The reason for these developments
is that examining the structure of Banach spaces with the help of these properties is
easier than investigating them one by one. In the literature, there has been a plenty of
geometric properties defined in Banach spaces so far. As very illuminative tools, Pełczyński’s
fundamental paper [2] introducing the so-called (u), (V ), and (V ∗) properties and the second
paper [3] that defined the (V ) and (V ∗) properties by the coincidence of (V ) or (V ∗) sets with
the weakly relatively compact sets can be given as examples. Many important Banach spaces
properties are (or can be) defined in the same way, that is, by the coincidence of two classes
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of bounded sets. As an example, Phillips and weak Phillips properties were introduced by
Freedman and Ülger in [4], and, then, further results on the weak Phillips property was given
in a paper by Ülger [5].

In this paper, we introduce a new kind of geometric properties in Banach spaces as
follows. Let E and F be two Banach spaces and E∗ the dual space of E. A Banach space E is
said to have (D) property if every bounded linear operator T : F → E∗ is weakly compact
for every Banach space F whose dual does not contain an isomorphic copy of l∞. We show
that every Banach space whose dual has (V ∗) property has (D) property. We show that (V )
property implies (D) property; however, the converse implication does not hold. We also
see that (D) property implies (W) property. We investigate some properties of such Banach
spaces to some extent; for instance, we show that the James space J fails to have the (D)
property.

Given a vector measure ν with values in a Banach space X, L1(v) denotes the space
of (classes of) real functions that are integrable with respect to v in the sense of Bartle et al.
[6] and Lewis [7]. We show that L1-spaces have (D) property. This is a structural difference
between C(K) spaces (which enjoy (V ) property) and L1-spaces (which fail to have (V )
property).

2. Notations and Preliminaries

We will try to follow the standard notations in the Banach space theory. In order to prevent
any doubt, we will fix some terminology. If E is a Banach space, BE will be its closed unit ball
and E∗ its topological dual. The word operator will always mean linear bounded operator. A
series

∑
xn in E is said to beweakly unconditionally Cauchy (w.u.c. in short) if

∑ |x′(xn)| < ∞
for every x′ ∈ E∗. An operator T : E → F is said to be unconditionally converging if T
sends w.u.c. series

∑
xn in E into unconditionally converging series

∑
Txn in F. An operator

T : E → F is said to be weakly compact if T(BE) is relatively weakly compact. It is well
known that every weakly compact operator is unconditionally converging [3].

A Banach space E is said to have (V ) property if every unconditionally converging
operator T : E → F is weakly compact for every Banach space F.

A Banach space E is said to have (V ∗) property if, for every Banach space F, every
operator T : F → E is weakly compact whenever its adjoint T ∗ : E∗ → F∗ is unconditionally
converging.

The above definitions of (V ) and (V ∗) spaces were firstly introduced by Pełczyński,
who showed that the space l1 and abstract L-spaces enjoy the (V ∗) property, whereas, the
space c0 and C(K) spaces enjoy the (V ) property [3]. Now, we introduce our following
definition of (D) property in Banach spaces.

A Banach space E is said to have (D) property if every bounded linear operator T :
F → E∗ is weakly compact for every Banach space F whose dual does not contain an isomor-
phic copy of l∞.

Let (Ω,Σ) be a measurable space, X a Banach space with unit ball BX and dual space
X∗, and v : Σ → X a countably additive vector measure. The semivariation of v is the set
function ‖v‖(A) = sup{|x∗v|(A) : x∗ ∈ BX∗}, where |x∗v| is the variation of the scalar measure
x∗v. A Rybakov control measure for v is a measure λ = |x∗v| such that λ(A) = 0 if and only if
‖v‖(A) = 0 (see [8]).

Following Lewis [7], we will say that a measurable function f : Ω → IR is integrable
with respect to v if
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(1) f is x∗v integrable for every x∗ ∈ X∗,

(2) for each A ∈ Σ there exists an element of X denoted by
∫
A fdv, such that

x∗
∫

A

fdv =
∫

A

fdx∗v for every x∗ ∈ X∗. (2.1)

Identifying two functions if the set where they differ has null semivariation, we obtain a linear
space of classes of functions that, when endowed with the norm

∥
∥f

∥
∥
v = sup

{∫

A

∣
∣f
∣
∣d|x∗v| : x∗ ∈ BX∗

}

, (2.2)

becomes a Banach space. We will denote it by L1(v). It is a Banach lattice for the ‖v‖-almost
everywhere order. Simple functions are dense in L1(v) and the identity is a continuous
injection of the space of ‖v‖-essentially bounded functions into L1(v).

3. Main Results on the (D) Property

We start with Lemma 3.1., which is adapted from a result given by Godefroy and Saab in [9].

Lemma 3.1. Let E be a Banach space with the (V ∗) property and (xn) a bounded but not relatively
compact sequence in E. Then, there is a subsequence (xnk) equivalent to the l1 unit vector basis so that
the closed linear space [(xnk)] is complemented in E.

Now, we give the following lemma, which we need for the same operations done in
Ülger’s paper [5].

Lemma 3.2. Let E be a Banach space and F a dual Banach space not containing an isomorphic copy
of l∞. Then, T : E∗ → F is unconditionally converging.

Proof. For a contradiction, suppose that we have an operator T : E∗ → F that is uncondition-
ally converging for a Banach space E and a dual Banach space F not containing an isomorphic
copy of l∞. Then, there exists a subspace M of E∗ such that M is isomorphic to c0 and the
restriction T |M of T is an isomorphism on M by [10]. Since M ∼= c0, we have M∗∗ ∼= l∞.
Considering the natural injection i : M → E∗ and the natural projection p : E∗∗∗ → E∗,
take the composition T o po i∗∗ : M∗∗ → Y . Let us denote it as S = T o po i∗∗. Since
M∗∗ ∼= l∞ is an injective space [11] and every operator from an injective space to a space
not containing an isomorphic copy of l∞ is weakly compact from Corollary 1.4 of Rosenthal
[12], S is weakly compact. Then the restriction S|M=(T o po i∗∗)|M is weakly compact. Since
S|M = (T o po i∗∗)|M = T |M holds, T |M is weakly compact, which means (T |M)∗∗(M∗∗) ⊂ c0
by Goldstein theorem. Since the restriction T |M is an isomorphism, a contradiction occurs that
means l∞ ⊂ c0. Then, T : E∗ → F is unconditionally converging.

Theorem 3.3. Let E be a Banach space whose dual has the (V ∗) property. Then, E has the (D)
property.

Proof. Let E be a Banach space whose dual has the (V ∗) property and F a Banach space whose
dual does not contain an isomorphic copy of l∞. Let an operator T : F → E∗ be given.
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Consider the adjoint operator T ∗ : E∗∗ → F∗. Then, by Lemma 3.2, the operator T ∗ : E∗∗ → F∗

is unconditionally converging. By the definition of (V ∗) property, the operator T : F → E∗ is
weakly compact.

If any Banach space X enjoys the (V ) property, then dual space X∗ has the (V ∗)
property; therefore, we immediately have the following result.

Corollary 3.4. If a Banach space X has the (V ) property, then it has the (D) property.

Corollary 3.4 shows that the space c0 and C(K) spaces have the (D) property. But, we
give the following example to show that the converse of Corollary 3.4 does not hold.

Example 3.5. Let Y be the space constructed by Bourgain and Delbaen in [13]. Since Y ∗ ∼= l1
and the space l1 has the Schur property, the space Y has (D) property. However, since the
space Y is not reflexive and does not contain a copy of c0, it fails to have the (V ) property.

As a commonly known example, the space l1 does not have (D) property because the
injection I : c0 → l∞ is not weakly compact. Recall that the dual space of c0, that is, l1, does
not contain a copy of l∞. By the definition of (D) property it is clear that any Banach space
with (D) property does not contain a complemented copy of l1.

Any Banach space with the (V ∗) property is weakly sequentially complete (w.s.c.)
and every closed subspace of a w s.c. space is also w.s.c.; so such space does not contain
an isomorphic copy of l∞. Recall that the space l∞ is not w.s.c.. If a Banach space has the
(V ) property, then its dual has the (V ∗) property [3]. Hence, Corollary 3.4 extends a previous
result of E. Saab and P. Saab [14], which we give as a corollary below.

Corollary 3.6. Let E be a Banach space with the (V ) property. Then, every operator T : E → E∗ is
weakly compact [14].

E. Saab and P. Saab, in [14], introduced a property called the (W) property. A Banach
space X has the (W) property if every operator T : E → E∗ is weakly compact.

Corollary 3.7. Let E be a Banach space having the (D) property. Then, E has (W) property.

Proof. Let E be a Banach space having the (D) property. Then, E cannot contain a comple-
mented subspace that is isomorphic to l1, and E∗ cannot contain a subspace isomorphic to l∞.
It follows that every operator T : E → E∗ is weakly compact, that is, E has the (W) property.

Taking into consideration Theorem 3.3 and Corollary 3.7, we have the following well-
known result.

Corollary 3.8. Let the dual space E∗ has the (V ∗) property. Then, E has (W) property.

Theorem 3.9. Let E be a Banach space whose dual has the (V ∗) property and F any Banach space. If
any bounded linear operator T : F → E∗ is not weakly compact, then T fixes an isomorphic copy of l1.

Proof. Let E∗ have the (V ∗) property. Suppose that T : F → E∗ is not weakly compact. Then,
there is a bounded sequence (yn) in F so that (T(yn)) is not relatively weakly compact. Hence,
from Lemma 3.1, a subsequence generates a complemented subspace [(T(ynk))] isomorphic
to l1. It is easy to see that [(ynk)]must be a complemented subspace of F isomorphic to l1.

The example we gave after Corollary 3.4 shows that (D) property does not imply
(V ) property is not, of course, the unique counterexample. For example, we want to give
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Theorem 3.10, which indicates another structural difference between C(K) spaces (which
enjoy (V ) property) and L1-spaces (which fail to have (V ) property).

Theorem 3.10. The space L1(v) has (D) property.

Proof. Let F be a Banach space whose dual does not contain an isomorphic copy of l∞, and, a
bounded operator T : F → L1(v)∗ be given. Let λ be a Rybakov control measure for v. Then,
L1(v) is an order continuous Banach function space with weak unit over the finite measure
space (Ω,Σ , λ) (see [15]). Thus, it can be regarded as a lattice ideal in L1(λ), and the dual
space L1(v)∗ can be identified with the space of functions g in L1(λ) such that fg ∈ L1(λ),
for all f in L1(v), where the action of g over L1(v) is given by integration with respect to
λ [16]. Suppose that (fn) is a bounded sequence in F; then T(fn) can be considered as a
bounded set in L1(λ). Then, by Dunford’s theorem in [8], we have a weakly convergence
subsequence (T(fnk)), which means that the operator T is weakly compact. Hence, L1(v) has
the (D) property.

It is known that dual spaces of the Banach spaces having the geometric properties such
as (V ), weak Phillips, or Grothendieck properties are weakly sequentially complete; see [3–
5]. At this point the following question arises: does the dual of any Banach space with (D)
property have to beweakly sequentially complete, or not?We could not give an answer to this
question yet. Regarding (D) property, we now just give the following theorem that reveals a
result opposite to our expectation about the James space J , which is not weakly sequentially
complete as shown in [17].

Proposition 3.11. The James space J fails to have the (D) property.

Proof. By recalling the construction of the James space as in [18], we will give a proof using
contradiction method as follows: suppose the James space J has the (D) property. Take F as
J∗ and any bounded sequence (yn) in F. Since F does not contain any isomorphic copy of l1,
by Rosenthal’s l1 theorem, (yn) has a weakly Cauchy subsequence (ynj ). Then, considering
the adjoint operator S∗ : J∗∗ → F∗, for each x′′ ∈ J∗∗, we see that S∗(x′′) ∈ F∗. By the
equality 〈ynj , S

∗(x′′)〉 = 〈S(ynj ), x
′′〉 for x′′ ∈ J∗∗, the subsequence (S(ynj )) becomes a weakly

Cauchy subsequence in J∗. For yielding a contradiction, using the same technique in [19],
suppose that (S(ynj )) does not converge weakly in J∗; then by using [19, Lemma 6] we have
a subsequence (S(xnj )) of (S(ynj )) and a constant M < ∞ such that

∥
∥
∥
∑

cjv
′
j

∥
∥
∥ ≤ M

∥
∥
∥
∑

cjS
(
xnj

)∥
∥
∥ · · · (3.1)

for every finitely supported real sequence (cj). According to [19, Proposition 5] we may as-
sume that there is a bounded linear operator R : F → F such that R(unj ) = xnj for all j.
Therefore, by [19]

∥
∥
∥
∑

cjv
′
j

∥
∥
∥ ≤ M

∥
∥
∥
∑

cjS
(
xnj

)∥
∥
∥ ≤ M‖S‖

∥
∥
∥
∑

cjxnj

∥
∥
∥ ≤ M‖S‖‖R‖

∥
∥
∥
∑

cjxnj

∥
∥
∥ (3.2)

for all finitely supported real sequence (cj). But this means that the operator T from [19,
Proposition 3] is bounded, yielding a contradiction. Hence, (S(ynj )) converges weakly in J∗,
which means that the identity operator S : J∗ → J∗ is weakly compact. However, this case is
impossible. Therefore, the James space J fails to have (D) property.
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The James space J fails to have (D) property by Proposition 3.7, and J is not weakly
sequentially complete because it is not reflexive and does not contain any isomorphic copy of
l1.

Theorem 3.12. Any nonreflexive space E with E∗∗ not containing l∞ does not have the (D) property.

Proof. Let E be a nonreflexive space E with E∗∗ not containing l∞. For the contradiction,
suppose that E enjoys the (D) property and G is a subspace of E∗ that does not contain
a complemented copy of l1. Since the condition that F∗ does not contain a copy of l∞ is
equivalent to the condition that F does not contain a complemented copy of l1 [17], the
embedding i : G → E∗ is weakly compact. Hence,G is reflexive. That is, the identity operator
I : E∗ → E∗ is weakly compact, which is a contradiction.

Before raising some questions, we want to recall some geometric properties in the
literature we think can be related with the property (D). A Banach space E is said to have
the (weak) Phillips property if the natural projection p : E∗∗∗ → E∗ is sequentially weak∗-to-
norm (weak∗-to-weak) continuous [4, 5]. A Banach space E is said to have the Grothendieck
property if, for every separable Banach space F, every operator T : E → F is weakly compact
[8].

Open Questions

We do not know whether (D) property implies or is implied by either the weak
Phillips property or the Grothendieck property. We do not know whether weak sequential
completeness of any dual Banach space E∗ implies that the space E itself has (D) property.
Also, we do not knowwhether (D) property of any Banach space implies (V ∗) property of its
dual space.
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