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We deal with the quasi-periodic solutions of the following second-order Hamiltonian systems
ẍ(t) = ∇F(t, x(t)), where x(t) = (x1(t), . . . , xN(t)), and we present a new approach via variational
methods and Minmax method to obtain the existence of quasi-periodic solutions to the above
equation.

1. Introduction

In this paper, we consider the quasi-periodic solutions of the following second-order Ham-
iltonian system:

ẍ(t) = ∇F(t, x(t)), (1.1)

where x(t) = (x1(t), . . . , xN(t)), ∇F(t, x) = (∂F/∂x1, . . . , ∂F/∂xN) and ∂F/∂xk ∈ C(R ×
RN,R), k = 1, . . . ,N.

A special class of the system (1.1) is the following autonomous second-order Hamilton
system with convex potential Φ:

ẍ(t) = ∇Φ(x(t)) + e(t), (1.2)
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For the scalar case [1] and for the vectorial case [2], Berger and Chen have established the
existence and uniqueness of almost periodic solution of (1.2). In [2], Berger and Chen assume
that e is almost periodic, and the potential Φ is of the form

Φ(x) =
1
2
〈Ax | x〉 +U(x), (1.3)

where A is a symmetric positive-definite matrix and U ∈ C2(RN,R) is a convex function.
They also need the growth condition.

In [3], Carminati states a local version of the results of Berger and Chen, assuming
that Φ is convex only near the minimum of Φ. The above growth condition is not used by
Carminati. To prove the existence and uniqueness of bounded or almost periodic solution of
(1.2), Carminati assumes that e is bounded or almost periodic and the potential Φ is of form
(1.3), where A is a symmetric positive-definite matrix and U is a convex function of class C1

on the ball B(x0, ρ) (ρ > 0), where Φ reaches its minimum in this ball at x0.
When F is autonomous in the system (1.1), Padilla [4] states the existence of the quasi

periodic solution by using critical point theory, but it assumes that the Diophantine condition
is satisfied.

As to the system (1.1), using a variational method, Zakharin and Parasyuk [5] have
studied the existence of almost (quasi)periodic solutions for the system

x′′(t) = ∇xΦ(t, x(t)), (1.4)

where Φ ∈ C0(R × K,R), K is a compact convex subset of RN and Φ(t, ·) is convex and
differentiable onK, for each t ∈ R. The authors use a variational method on a Hilbert space of
Besicovitch almost periodic functions which looks like a Sobolev space. By this method, the
authors establish the existence of generalized solutions and in the quasi-periodic case, they
prove that these solutions are classical. To prove the existence of quasi-periodic solutions,
Zakharin and Parasyuk [5] assume that ∇xΦ is quasi-periodic in t, and ∇xΦ(t, ·) is strongly
monotone on K with positive modulus c. They also assume that the boundary ∂K of K is a
differentiable manifold of classC1 such that, for each x ∈ ∂K, the gradient∇xΦ(t, x)makes an
acute angle with an external normal unit vector to ∂K at the point x in the Theorem 4.3 of [5]
or a similar condition using the projection operator on the closed convex in the Theorem 4.2
of [5].

More recently in [6], Ayachi and Blot provided new variational settings to study the
almost periodic solutions of a class of nonlinear neutral delay equation

D1L
(
x(t − r), x(t − 2r), x′(t − r), x′(t − 2r), t − r

)
+D2L

(
x(t), x(t − r), x′(t), x′(t − r), t

)

=
d

dt

[
D3L
(
x(t − r), x(t − 2r), x′(t − r), x′(t − 2r), t − r

)

+D4L
(
x(t), x(t − r), x′(t), x′(t − r), t

)]
,

(1.5)

where L : (Rn)4 × R → R is a differentiable function, Dj denotes the partial differential with
respect to the jth vector variable, and r ∈ (0,∞) is fixed. When they consider the almost
periodicity in the sense of Corduneau [7], they obtain some results on the structure of the set
of Bohr almost periodic solutions in the case that L is autonomous and convex. When they
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consider the almost periodicity in the sense of Besicovitch [8], they assume thatDkL satisfies
a Lipschitiz condition and L is convex and obtain the existence of Besicovitch almost periodic
solution by the least action principle.

A special case of the above equation is the system (1.1); our main purpose is to apply
Minmax method to study the existence of quasi periodic solutions to the system (1.1), and
we do not assume that ∇F(t, ·) is Lipschitzian, but we assume that F satisfies some growth
conditions, then we obtain results of existence of quasi periodic solution to the system (1.1).
Moreover, when we consider only a frequency 2π/T , our results will cover the results of
periodic solutions to the system (1.1).

The present paper is organized as follows. In Section 1 we review some notations
and definitions of almost periodic functions. In Section 2, we state our main theorems. In
Section 3, in order to prove our main results, we will state our basic lemmas. In Section 4, we
prove our main results and give an example.

Now we give some notations and definitions of almost periodic functions.

Definition 1.1 (Fink [9]). A function f(t) is said to be Bohr almost periodic, if for any ε > 0,
there is a constant lε > 0, such that in any interval of length lε, there exists τ such that the
inequality |f(t + τ) − f(t)| < ε is satisfied for all t ∈ R.

Definition 1.2 (He [10]). f ∈ C0(R × Rm,RN) is so called almost periodic in t uniformly for
x ∈ Rm when, for each compact subset K in Rm, for each ε > 0, there exists l > 0, and for each
α ∈ R, there exists τ ∈ [α, α + l] such that

sup
t∈R

sup
x∈K

∥∥f(t + τ, x) − f(t, x)
∥∥
RN < ε. (1.6)

AP 0(RN) is the space of the Bohr almost periodic functions from R to RN , endowed
with the norm ‖x‖∞ = supt∈R|x(t)| and it is a Banach space.

AP 1(RN) = {x ∈ AP 0(RN)
⋂
C1(R,RN) | x′(t) ∈ AP 0(RN)} ; endowed with the norm

‖x‖ = ‖x‖∞ + ‖x′‖∞, it is a Banach space.

A fundamental property of almost periodic functions is that such functions have
convergent means, that is, the following limit exists:

lim
T →∞

1
2T

∫T

−T
x(t)dt. (1.7)

The Fourier-Bohr coefficients of AP 0(RN) are the complex vectors

a(x, λ) = lim
T →∞

1
2T

∫T

−T
e−iλtx(t)dt, (1.8)

and Λ(x) = {λ ∈ R | a(x, λ)/= 0} and it is a countable set,
when p ∈ Z+, BP (RN) is the completion of AP 0(RN) with respect to the norm

‖u‖p =

{

lim
T →∞

1
2T

∫T

−T
|u|pdt

}1/p

. (1.9)
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When p = 2, B2(RN) is a Hilbert spaces and its norm ‖ · ‖2 is associated to the inner product

〈u, v〉2 = lim
T →∞

1
2T

∫T

−T
(u, v)dt, (1.10)

the elements of these spaces BP (RN) are called Besicovitch almost periodic functions.
We use the generalized derivative ∇u ∈ B2(RN) of u ∈ B2(RN) defined by ‖∇u −

(1/s)(u(· + s) − u)‖ → 0(s → 0), and we will identify the equivalence class u and its
continuous representant

u(t) =
∫ t

0
∇u(t)dt + c. (1.11)

Then we define B1,2(RN) = {u ∈ B2(RN) | ∇u ∈ B2(RN)}, endowed with the norm

‖u‖ =

{

lim
T →∞

1
2T

∫T

−T

(
|u(t)|2 + |∇u(t)|2

)
dt

}1/2

. (1.12)

Its norm is associated to the inner product 〈u, v〉 = 〈u, v〉2 + 〈∇u,∇v〉2, and B1,2(RN) is a
Hilbert space.

For convenience, we denoteΛ = {(2kπ/Tj) | k ∈ Z, j = 1, . . . , p} (T1, . . . , Tp is rationally
independent), Λ(x) is the set of all Fourier exponents {λk} of x, which is called the spectrum
of x;V = {x ∈ B1,2(RN) | Λ(x) ⊆ Λ}, it is easily obtained that V is a linear subspace of
B1,2(RN) and V is a Hilbert space.

2. Main Theorems

In this section, we state our main results. First, we give the following list of assumptions on
F:

(f1) F(t, ·) ∈ C1(R × RN,R), and F(t, ·) is almost periodic in t uniformly for x ∈ RN ,

(f2) ∇F(t, ·) is almost periodic in t uniformly for x ∈ RN ,

(f3) for any λ ∈ R \Λ, x ∈ V ,

lim
T →∞

1
2T

∫T

−T
∇F(t, x)e−iλtdt = 0. (2.1)

Theorem 2.1. Suppose F satisfies (f1)–(f3), the functional I : V → R, defined by

I(x) = lim
T →∞

1
2T

∫T

−T

[
1
2
|∇x|2 + F(t, x)

]
dt (2.2)
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is continuously differentiable on V , and I ′(x) is defined by

I ′(x)h = lim
T →∞

1
2T

∫T

−T
[∇x∇h +∇F(t, x)h]dt. (2.3)

Moreover, if x is a critical point of I in V , then

∇F(t, x) = ∇(∇x). (2.4)

Definition 2.2. When x satisfies (2.4) in Theorem 2.1, we say that x is a weak solution of (1.1).

Theorem 2.3. Suppose that F satisfies (f1)–(f3), and

(f4) there exists g ∈ L1
loc(R), for a.e. t ∈ R and all x ∈ RN , such that

|∇F(t, x)| ≤ g(t), (2.5)

(f5) There exists

lim
T →∞

1
2T

∫T

−T
F(t, x)dt −→ +∞ as |x| −→ ∞. (2.6)

Then (1.1) has at least a quasi periodic solution.

Theorem 2.4. Suppose that F satisfies (f1)–(f4), and

(f6) One has

lim
T →∞

1
2T

∫T

−T
F(t, x)dt −→ −∞ as |x| −→ ∞. (2.7)

Then (1.1) has at least a quasi periodic solution by saddle point theorem.

Remark 2.5. When V only contains a frequency 2π/T , F(t, x) is periodic in t with periodic T ,
which means that (f3) is satisfied; our results cover some results in [11].

3. Basic Lemmas

To apply critical point theory to study the quasi periodic solution of (1.1), we will state our
basic lemmas, which will be used in the proofs of our main results.
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Lemma 3.1. If x ∈ V , then

x(t) =
+∞∑

k=−∞
ake

iλkt ∈ AP 0
(
RN
)
,

‖x‖∞ ≤ (C + 1)‖x‖.
(3.1)

Proof. For any x(t) ∈ V ,

x(t) ∼
+∞∑

k=−∞
ake

iλkt, ∇x(t) ∼
+∞∑

k=−∞
iakλke

iλkt, λk ∈ Λ. (3.2)

It is easily obtained that there exists a constant C > 0, such that

k=+∞∑

k=−∞,λk /= 0

1
λ2
k

≤ C2,

|a0| +
k=+∞∑

k=−∞, λk /= 0

|ak| ≤ ‖x‖2 +
⎛

⎝
k=+∞∑

k=−∞, λk /= 0

1
λ2
k

⎞

⎠

1/2⎛

⎝
k=+∞∑

k=−∞, λk /= 0

|λkak|2
⎞

⎠

1/2

≤ ‖x‖2 + C‖∇x‖2
≤ (C + 1)‖x‖.

(3.3)

So

x(t) =
+∞∑

k=−∞
ake

iλkt ∈ AP 0(RN
)
,

‖x‖∞ ≤ (C + 1)‖x‖.
(3.4)

Lemma 3.2. For any {xk} ⊂ V , if the sequence {xk} converges weakly to x, then {xk} converges
uniformly to x on any compact subset of R.

Proof. By Lemma 3.1, the injection of V into C(R,RN), with its natural norm ‖ · ‖∞, is con-
tinuous. Since {xk} ⇀ x in V , it follows that {xk} ⇀ x in C(R,RN). By Banach-Steinhaus
theorem, {xk} is bounded in V , and hence in C(R,RN), we need to show that the sequence
{xk} is equiuniformly continuous, for any xk(t) ∈ V ,

xk(t) =
+∞∑

m=−∞
ame

iλmt, (3.5)

let

xkj(t) =
+∞∑

m=−∞, λm∈{(2nπ/Tj)|n∈Z}
ame

iλmt, (3.6)
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then

xk(t) = xk1(t) + xk2(t) + · · · + xkp(t). (3.7)

Denoting

Tmin = min
{
T1, T2, . . . , Tp

}
, Tmax = max

{
T1, T2, . . . , Tp

}
, (3.8)

for 0 ≤ t − s ≤ Tmin, we have

|xk(t) − xk(s)|

≤
∫ t

s

∣
∣x′

k(τ)
∣
∣dτ ≤

∫ t

s

∣
∣x′

k1(τ)
∣
∣dτ +

∫ t

s

∣
∣x′

k2(τ)
∣
∣dτ + · · · +

∫ t

s

∣
∣x′

kn(τ)
∣
∣dτ

≤ (t − s)1/2
{∫ t

s

∣∣x′
k1(τ)

∣∣2dτ

}1/2

+ (t − s)1/2
{∫ t

s

∣∣x′
k2(τ)

∣∣2dτ

}1/2

+ · · · + (t − s)1/2
{∫ t

s

∣∣x′
kn(τ)

∣∣2dτ

}1/2

≤ (t − s)1/2

⎧
⎨

⎩

[∫ s+T1

s

∣∣x′
k1(τ)

∣∣2dτ

]1/2
+

[∫ s+T2

s

∣∣x′
k2(τ)

∣∣2dτ

]1/2
+· · ·+

[∫ s+Tp

s

∣∣x′
kn(τ)

∣∣2dτ

]1/2
⎫
⎬

⎭

≤ (t − s)1/2
{
T1
∥∥x′

k

∥∥
2 + T2

∥∥x′
k

∥∥
2 + · · · + Tp

∥∥x′
k

∥∥
2

} ≤ (t − s)1/2pTmax‖xk‖ ≤ C1(t − s)1/2.
(3.9)

By Arzela-Ascoli theorem, {xk} is relatively compact on any compact of R. By the
uniqueness of the weak limit, every uniformly convergent subsequence of {xk} converges to
x on any compact of R.

Lemma 3.3. If x ∈ V and

lim
T →∞

1
2T

∫T

−T
x(t) = 0, (3.10)

then there exists C > 0, such that

‖x‖2∞ ≤ C2‖∇x‖22. (3.11)

Proof. Since, by Lemma 3.1, x has the Fourier expansion

x(t) =
+∞∑

k=−∞, λk /= 0

ake
iλkt. (3.12)
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The Cauchy-Schwarz inequality and Parseval equality imply that

|x(t)|2 ≤
⎛

⎝
+∞∑

k=−∞, λk /= 0

|ak|
⎞

⎠

2

≤
⎛

⎝
+∞∑

k=−∞, λk /= 0

1
λ2
k

⎞

⎠

⎛

⎝
+∞∑

k=−∞, λk /= 0

|λkak|2
⎞

⎠

≤ C2‖∇x‖22.

(3.13)

Lemma 3.4 (saddle point theorem). Let X be a real Banach space, X = X1
⊕

X2, where X1 /= {0}
and is finite dimensional. Suppose that I ∈ C1(X,R) satisfies the PS condition and

(I1) there exist constants σ, ρ > 0, such that I∂Bρ
⋂
X1 ≤ σ;

(I2) there exists a constant ω > σ, such that IX2 ≥ ω.

Then I possesses a critical value c ≥ ω and

c = inf
h∈Γ

max
u∈Bρ

⋂
X1

I(h(u)), (3.14)

where Γ = {h ∈ C(Bρ
⋂
X1, X)|h|∂Bρ

⋂
X1

= id}.

4. The Proof of Main Results

In this section, we prove the main results stated in Section 2.

Proof of Theorem 2.1. First step: we show that I has at every point x a directional derivative
I ′(x) ∈ V ∗ given by (2.3).

It follows easily from Lemma 3.1 and (f3), for any x ∈ V that we have

F(t, x(t)) ∈ AP 0(R), ∇x ∈ B2(RN
)
. (4.1)

So I is everywhere finite on V . For x, h fixed in V , λ ∈ [−1, 1], let us define

G(λ, t) =
1
2
|∇x + λ∇h|2 + F(t, x + λh),

ϕ(λ) = lim
T →∞

1
2T

∫T

−T
G(λ, t) = I(x + λh).

(4.2)

There exists θt ∈ [0, 1], such that

1
λ

[
ϕ(λ) − ϕ(0)

] − lim
T →∞

1
2T

∫T

−T
[∇F(t, x)h +∇x∇h]dt

= lim
T →∞

1
2T

∫T

−T

[
λ|∇h|2 + (∇F(t, x(t) + θtλh(t))h − ∇F(t, x(t))h)

]
dt.

(4.3)
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For x, h are fixed in V , there exists M > 0, such that |x(t)| ≤ M, |h(t)| ≤ M. Since
∇F(t, x) is almost periodic in t uniformly for x ∈ RN , we have that ∇F(t, x) is uniformly
continuous on R ×K, where K = {x ∈ RN | |x| ≤ 2M} is compact subset in RN , so

lim
λ→ 0

1
λ

[
ϕ(λ) − ϕ(0)

]
= lim

T →∞
1
2T

∫T

−T
[∇F(t, x)h +∇x∇h]dt. (4.4)

Moreover, by Lemma 3.1,

(
I ′(x), h

)
= lim

T →∞
1
2T

∫T

−T
[∇F(t, x)h +∇x∇h]dt

≤ c1‖h‖∞ + c2‖∇h‖2
≤ c3‖h‖.

(4.5)

So I has, at x, a Gâteaux derivative I ′(x) ∈ (V )∗.
Second step: we show that the mapping

I ′ : V −→ V ∗, x −→ I ′(x) (4.6)

is continuous.
For any ε > 0, x is fixed in V and ‖x‖ ≤ M, let y ∈ V with ‖x − y‖ ≤ δ0 < ε/2, by

Lemma 3.1, it is easily obtained |x(t)| ≤ (C + 1)M and |y(t)| ≤ (C + 1)(M + δ0). Since ∇F(t, x)
is uniformly continuous on R ×K1, K1 = {x ∈ RN | |x| ≤ (C + 1)(M + δ0)} is compact subset
in RN , then there exists δ1, such that |x(t) − y(t)| ≤ δ1 and we have

∇F(t, x(t)) − ∇F
(
t, y(t)

) ≤ ε

2(C + 1)
. (4.7)

We denote δ∗ = min{δ0, δ1/(C+1)}, then, for all h ∈ V and ‖h‖ ≤ 1, such that ‖x−y‖ ≤
δ∗, we have

∣∣I ′(x)h − I ′
(
y
)
h
∣∣ ≤
∣∣∣∣∣
lim
T →∞

1
2T

∫T

−T

[(∇F(t, x) − ∇F
(
t, y
))
h +
(∇x − ∇y

)∇h
]
dt

∣∣∣∣∣

≤ ε

2(C + 1)
‖h‖∞ +

{

lim
T →∞

1
2T

∫T

−T

∣∣∇x − ∇y
∣∣2
}1/2{

lim
T →∞

1
2T

∫T

−T
|∇h|2

}1/2

≤ ε

2
+
ε

2
= ε.

(4.8)

The above inequality holds, which implies the continuity of I ′ so that I is Fréchet
differentiable on V .
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If x is a critical point of I in V , for all h ∈ V , we have

I ′(x)h = lim
T →∞

1
2T

∫T

−T
[∇F(t, x)h +∇x∇h]dt = 0, (4.9)

by (f3), then for all h ∈ AP 1(RN), we have

lim
T →∞

1
2T

∫T

−T
[∇F(t, x)h +∇x∇h]dt = 0. (4.10)

Since AP 1(RN) is dense in B1,2(RN), we have DI(x)h = 0, for all h ∈ B1,2(RN);
therefore, I ′(x) = 0, and then we obtain (2.4) by using Blot [12]. The proof of Theorem 2.1
is completed.

Proof of Theorem 2.3. By Theorem 2.1, I is continuously differentiable on V . Next wewill prove
that I is weakly lower semicontinuous on V .

By Lemma 3.2, if {xk} ⊂ V converges weakly to x, then {xk} converges uniformly to x
on any compact of R.

Since xk(t) ∈ AP 0(Rn), and F(t, ·) is almost periodic in t uniformly for x ∈ Rn, then
F(t, xk(t)) is almost periodic, and F(t, xk(t)) converges uniformly to F(t, x(t)) on any compact
of R.

Let

F(t, xk(t)) = ak0 +
+∞∑

j=−∞, λj /= 0

akje
iλj t,

F(t, x(t)) = a0 +
+∞∑

j=−∞, λj /= 0

aje
iλj t.

(4.11)

Then it is easily obtained that

ak0 −→ a0, (4.12)

moreover,

lim
T →∞

1
2T

∫T

−T
F(t, xk(t))dt = ak0, (4.13)

so

lim
T →∞

1
2T

∫T

−T
F(t, xk(t))dt −→ lim

T →∞
1
2T

∫T

−T
F(t, x(t))dt. (4.14)

Moreover, (1/2)|∇u(t)|2 is convex and continuous, so I is weakly lower semi-continuous.
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For x ∈ V , we have x = x + x̃, where

x = lim
T →∞

1
2T

∫T

−T
x(t)dt, (4.15)

then,

lim
T →∞

1
2T

∫T

−T
x̃(t) = 0,

I(x) = lim
T →∞

1
2T

∫T

−T

1
2
|∇x|2dt + lim

T →∞
1
2T

∫T

−T
{F(t, x) + [F(t, x(t)) − F(t, x)]}dt

=
1
2
‖∇x‖22 + lim

T →∞
1
2T

∫T

−T

{

F(t, x) +
∫1

0
(∇F(t, x + sx̃(t)), x̃(t))ds

}

dt

≥ 1
2
‖∇x‖22 − lim

T →∞
1
2T

∫T

−T
g(t)dt‖x̃(t)‖∞ + lim

T →∞
1
2T

∫T

−T
F(t, x)dt

≥ 1
2
‖∇x‖22 − c‖∇x‖2 + lim

T →∞
1
2T

∫T

−T
F(t, x)dt.

(4.16)

As ‖x‖ → ∞ if and only if

(

|x|2 + lim
T →∞

1
2T

∫T

−T
|∇x(t)|2dt

)1/2

−→ ∞, (4.17)

the above inequality and (f5) imply that

I(x) −→ +∞ as ‖x‖ −→ ∞. (4.18)

Since V is a Hilbert space and I is weakly lower semi-continuous, the proof of
Theorem 2.3 is completed.

Proof of Theorem 2.4. Let V = V +⊕V −, V + denote the subspace of functions with mean value
zero in V , and V − denote the subspace of constant functions in V . By Theorem 2.1, we know
the functional

I(x) = lim
T →∞

1
2T

∫T

−T

{
1
2
|∇x|2 + F(t, x(t))

}
dt (4.19)

is continuously differentiable on V .
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For any v ∈ V +,

I(v) = lim
T →∞

1
2T

∫T

−T

1
2
|∇v|2dt + lim

T →∞
1
2T

∫T

−T
{F(t, 0) + [F(t, v(t)) − F(t, 0)]}dt

=
1
2
‖∇v‖22 + lim

T →∞
1
2T

∫T

−T
F(t, 0)dt + lim

T →∞
1
2T

∫T

−T

∫1

0
(∇F(t, sv(t)), v(t))dsdt

≥ 1
2
‖∇v‖22 − c1 + ‖v‖∞ lim

T →∞
1
2T

∫T

−T
g(t)dt

≥ 1
2
‖∇v‖22 − c1 − C‖∇v‖.

(4.20)

So we see that

inf
V +

I > −∞, (4.21)

by (f6), there exists R > 0, such that

sup
S−
R

I < inf
V +

I, (4.22)

where S−
R = {u ∈ V − | |u| = R}, so (I1) and (I2) of Lemma 3.4. are satisfied.

Finally, we show that (PS)c condition holds, that is, each sequence {xk} in V such that
I(xk) → c and ∇I(xk) → 0 contains a convergent subsequence.

Letting xk = xk + x̃k with xk = limT →∞(1/2T)
∫T
−T xk(t)dt, since ∇I(xk) → 0, there

exists some k0 such that |〈∇I(xk), h〉| ≤ ‖h‖ for all k ≥ k0 and h ∈ V ; we obtain, for k > k0,

|〈∇I(xk), x̃k〉| =
∣∣∣∣∣
lim
T →∞

1
2T

∫T

−T

(
|∇xk(t)|2 + (∇F(t, xk(t)), x̃k(t))

)
dt

∣∣∣∣∣
≤ ‖x̃k‖ (4.23)

and hence

‖x̃k‖ ≤ C1, k ≥ k0 (4.24)

because of Lemma 3.3. Now I(xk) → c, hence there exists C2, such that

lim
T →∞

1
2T

∫T

−T

1
2
|∇xk|2dt + lim

T →∞
1
2T

∫T

−T
{F(t, xk) + [F(t, xk(t)) − F(t, xk)]}dt ≥ C2, (4.25)

by using (4.24), we obtain

lim
T →∞

1
2T

∫T

−T
F(t, xk)dt ≥ C3, (4.26)
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and then |xk| ≤ C4, k ∈ N. By (4.24), thus {xk} is bounded in V and hence contains a
subsequence, relabeled {xk}which weakly converges to some x ∈ V . Now, the equality

〈∇I(xk) − ∇I(x), xk − x〉 = ‖∇xk − ∇x‖22

+ lim
T →∞

1
2T

∫T

−T
(∇F(t, xk(t)) − ∇F(t, x(t)), xk(t) − x(t))dt

(4.27)

holds, and Lemma 3.2 implies that ‖∇xk − ∇x‖2 → 0 as k → ∞, so ‖xk − x‖ ≤ ‖xk − x‖2 +
‖∇xk − ∇x‖2 → 0, and the (PS)c condition holds, then the proof of Theorem 2.4 is completed
by saddle point theorem.

Example 4.1. Consider the scalar problem:

ẍ(t) = P
[
sin
(
x − b sgnx

)
+ sin

(
b sgnx

)]
+ h(t), (4.28)

where 0 < b < 2π and b /=π . P is a projection operator from AP0(R) to V1, and V1 = {x ∈
B1,2(R) | Λ(x) ⊆ Λ}. h ∈ V1 and

lim
T →∞

1
2T

∫T

−T
h(t)dt = 0. (4.29)

In this case, F(t, x) = P[(sin b)|x| − cos(|x| − b)] + h(t)x, and hence, when 0 < b < π ,

lim
T →∞

1
2T

∫T

−T
F(t, x)dt = |x| sin b − cos(|x| − b) → +∞, (4.30)

if |x| → ∞. So it is easy to check that the conditions (f1)–(f5) are satisfied, then (4.28) has at
least a quasi periodic solution by using Theorem 2.3.

When π < b < 2π ,

lim
T →∞

1
2T

∫T

−T
F(t, x)dt = |x| sin b − cos(|x| − b) → −∞, (4.31)

if |x| → ∞. So it is easy to check that the conditions (f1)–(f4) and (f6) are satisfied, then (4.28)
has at least a quasi periodic solution by using Theorem 2.4.
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