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We first present two convergence results about the second-order quadratic variations of the
subfractional Brownian motion: the first is a deterministic asymptotic expansion; the second
is a central limit theorem. Next we combine these results and concentration inequalities to
build confidence intervals for the self-similarity parameter associated with one-dimensional
subfractional Brownian motion.

1. Introduction

A fundamental assumption in many statistical and stochastic models is that of independent
observations. Moreover, many models that do not make the assumption have the convenient
Markov property, according to which the future of the system is not affected by its previous
states but only by the current one.

The long-range dependence property has become an important aspect of stochastic
models in various scientific areas including hydrology, telecommunication, turbulence, image
processing, and finance. The best known and most widely used process that exhibits the
long-range dependence property is fractional Brownian motion (fBm in short). The fBm is a
suitable generalization of the standard Brownian motion. The reader is referred, for example,
to Alòs et al. [1] and Nualart [2] for a comprehensive introduction to fractional Brownian
motion. On the other hand, many authors have proposed to use more general self-similar
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Gaussian processes and random fields as stochastic models. Such applications have raised
many interesting theoretical questions about self-similar Gaussian processes.

As a generalization of Brownian motion, recently, Bojdecki et al. [3, 4] introduced
and studied a rather special class of self-similar Gaussian processes which preserves many
properties of the fractional Brownian motion. This process arises from occupation time
fluctuations of branching particle systems with Poisson initial condition, which is called the
subfractional Brownian motion. The so-called subfractional Brownianmotion (sub-fBm in short)
with index H ∈ (0, 1) is a mean zero Gaussian process SH = {SH

t , t ≥ 0} with SH
0 = 0 and the

covariance

R(t, s) ≡ E
[
SH
t SH

s

]
= s2H + t2H − 1

2

[
(s + t)2H + |t − s|2H

]
, (1.1)

for all s, t ≥ 0. For H = 1/2, SH coincides with the standard Brownian motion. SH is neither
a semimartingale nor a Markov process unlessH = 1/2, so many of the powerful techniques
from stochastic analysis are not available when dealing with SH . The sub-fBm has properties
analogous to those of fBm (self-similarity, long-range dependence, Hölder paths) and, for
s ≤ t, satisfies the following estimates:

[(
2 − 22H−1

)
∧ 1
]
(t − s)2H ≤ E

[(
SH
t − SH

s

)2] ≤
[(

2 − 22H−1
)
∨ 1
]
(t − s)2H. (1.2)

Thus, Kolmogorov continuity criterion implies that the subfractional Brownian motion is
Hölder continuous of order ν for any ν < H. But its increments are not stationary. More
works for sub-fBm can be found in Bojdecki et al. [3, 4], Liu and Yan [5, 6], Liu [7], Tudor
[8–12], Yan and Shen [13, 14], and others.

The problem of the statistical estimation of the self-similarity parameter is of great
importance. The self-similarity parameter characterizes all of the important properties of the
self-similar processes and consequently describes the behavior of the underlying physical
system. Therefore, properly estimating them is of the utmost importance. Several statistics
have been introduced to this end, such as wavelets, k-variations, variograms, maximum
likelihood estimators, and spectral methods. This issue has generated a vast literature. See
Chronopoulou et al. [15, 16], Liu [7], Tudor and Viens [17, 18], and references therein for
more details. Recently, Breton et al. [19] firstly obtained the nonasymptotic construction of
confidence intervals for the Hurst parameter H of fractional Brownian motion. Observe that
the knowledge of explicit nonasymptotic confidence intervals may be of great practical value,
for instance in order to evaluate the accuracy of a given estimation of H when only a fixed
number of observations are available.

Motivated by all these results, in the present note, we will construct the confidence
intervals for the self-similarity parameter associated with the so-called subfractional Brown-
ian motion. It is well known that, in contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other self-similar Gaussian processes.
The main reasons are the complexity of dependence structures and the nonavailability
of convenient stochastic integral representations for self-similar Gaussian processes which
do not have stationary increments. As we know, in comparison with fractional Brownian
motion, the subfractional Brownianmotion has nonstationary increments, and the increments
over nonoverlapping intervals are more weakly correlated and their covariance decays
polynomially as a higher rate in comparison with fractional Brownian motion (for this reason
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in Bojdecki et al. [3] it is called subfractional Brownian motion). The above-mentioned
properties make subfractional Brownian motion a possible candidate for models which
involve long-range dependence, self-similarity, and nonstationary increments. Therefore,
it seems interesting to construct the confidence intervals of self-similar parameter of
subfractional Brownian motion. And we need more precise estimates to prove our results
because of the nonstationary increments.

The first aim of this note is to prove a deterministic asymptotic expansion and a central
limit theorem of the so-called second-order quadratic variation Vn(SH) which is defined by

Vn

(
SH
)
=

n−1∑
k=0

(
SH
(k+2)/n + SH

k/n − 2SH
(k+1)/n

)2
, n ≥ 1, (1.3)

because the standard quadratic variation does not satisfy a central limit theorem in general.
The second aim is to exploit the concentration inequality proved by Nourdin and Viens
[20] in order to derive an exact (i.e., nonasymptotic) confidence interval for the self-similar
parameter of subfractional Brownian motion SH . Our formula hinges on the class of statistics
Vn(SH) and Zn = n2H−1/2Vn −

√
n(4 − 22H).

This note is organized as follows. In Section 2 we present some preliminaries for
concentration inequality and two convergence results about the quadratic variations of
some Gaussian processes. In Section 3 we prove the asymptotic expansion and central limit
theorem for the second-order quadratic variations of subfractional Brownian motion with
H ∈ (0, 1). In Section 4 we state and prove the main result of this note.

Notation. Most of the estimates of this paper contain unspecified constants. An unspecified
positive and finite constant will be denoted by C or c, which may not be the same in
each occurrence. Sometimes we will emphasize the dependence of these constants upon
parameters.

2. Preliminaries

Consider a finite centered Gaussian family X = {Xk : k = 0, . . . ,M} and write r(k, l) =
E(XkXl). In what follows, we will consider two quadratic forms associated with X and with
some real coefficient c. The first is obtained by summing up the squares of the elements of X
and by subtracting the corresponding variances

Q1(c,X) = c
M∑
k=0

(
X2

k − r(k, k)
)
; (2.1)

the second quadratic form is

Q2(c,X) = 2c2
M∑

k,l=0

XkXlr(k, l). (2.2)

The following result, whose proof relies on the Malliavin calculus techniques devel-
oped in Nourdin and Peccati [21], Nourdin and Viens [20], characterizes the tail behavior of
Q1(c,X).
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Theorem 2.1 (Theorem 2.1 in Breton et al. [19]). If the above assumptions are satisfied, suppose
thatQ1(c,X) is not a.s. zero and fix α > 0 and β > 0. Assume thatQ2(c,X) ≤ αQ1(c,X) + β, a.s.-P .
Then, for all z > 0, one has

P(Q1(c,X) ≥ z) ≤ exp

(
− z2

2αz + 2β

)
, P(Q1(c,X) ≤ −z) ≤ exp

(
− z2

2β

)
, (2.3)

in particular,

P(|Q1(c,X)| ≥ z) ≤ 2 exp

(
− z2

2αz + 2β

)
. (2.4)

On the other hand, to be sure that the second-order quadratic variation Vn(SH)
converges almost surely to a deterministic limit, we need to normalize this quantity. A result
of the form

lim
n→∞

n1−θVn

(
SH
)
=
∫1

0
f(u)du, a.s. (2.5)

is expected, where θ is related to the regularity of the paths of the subfractional Brownian
motion SH and f is related to the nondifferentiability of r on the diagonal {s = t} and is
called the singularity function of the process. Begyn [22] considered a class of processes for
which a more general normalization is needed. Moreover, he presented a better result about
the asymptotic expansion of the left hand of (2.5) and proved a central limit theorem. Because
Theorems 1 and 2 in Begyn [22] are crucial in the proofs of Theorems 3.1 and 3.2, it is useful
to recall the results.

We define the second-order increments of the covariance function R of a Gaussian
process X as follows:

δh
1R(s, t) = R(s + h, t) + R(s − h, t) − 2R(s, t),

δh
2R(s, t) = R(s, t + h) + R(s, t − h) − 2R(s, t).

(2.6)

First, we recall the result of asymptotic expansion of Vn(X) under some certain conditions on
the covariance function.

Theorem 2.2 (Theorem 1 in Begyn [22]). Assume that the Gaussian process X satisfies the
following statements.

(1) t → Mt = EXt has a bounded first derivative in [0, 1].

(2) The covariance function R of X has the following properties: (a) R is continuous in [0, 1]2.
(b) The derivative ∂4R/∂s2∂t2 exists and is continuous in (0, 1]2/{s = t}. There exists
a constant C > 0, a real γ ∈ (0, 2) and a positive slowly varying function L : (0, 1) →
(0,+∞) such that

∀t, s ∈ (0, 1]2

{s = t} ,
∣∣∣∣∣

∂4R

∂s2∂t2
(s, t)

∣∣∣∣∣ ≤ C
L(|s − t|)
|s − t|2+γ

. (2.7)
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(c) There exist q + 1 functions (q ∈ N) g0, g1, . . . , gq from (0, 1) to R, q real numbers
0 < ν1 < · · · < νq and a function φ : (0, 1) → (0,∞) such that (i) if q ≥ 1, then for all
0 ≤ i ≤ q − 1, gi is Lipschitz on (0, 1); (ii) gq is bounded on (0, 1); (iii) one has

sup
h≤t≤1−h

∣∣∣∣∣∣∣

(
δh
1 ◦ δh

2R
)
(t, t)

h2−γL(h)
− g0(t) −

q∑
i=1

gi(t)φ(h)
νi

∣∣∣∣∣∣∣
= o
(
φ(h)νq

)
, as h −→ 0+, (2.8)

where the symbol “◦” denotes the composition of functions and if q = 0, then∑q

i=1gi(t)φ(h)
νi = 0 and φ(h)νq = 1; else if q /= 0, then limh→ 0+φ(h) = 0.

(3) If q /= 0, we assume that

lim
n→+∞

logn
nφ(1/n)νq

= 0. (2.9)

(4) If X is not centered, we make the additional assumption

lim
n→+∞

1
nγL(1/n)φ(1/n)νq

= 0, (2.10)

where if q = 0, then φ(1/n)νq = 1.

Then, for all t ∈ [0, 1], one has almost surely

lim
n→+∞

n1−γ

L(1/n)
Vn(X) =

∫1

0
g0(x)dx +

q∑
i=1

(∫1

0
gi(x)dx

)
φ

(
1
n

)νi

+ o

(
φ

(
1
n

)νq)
. (2.11)

Second, let us recall the result of central limit theorem.

Theorem 2.3 (Theorem 2 in Begyn [22]). Assume that the Gaussian process X is centered and
satisfies the following statements.

(1) The covariance function R of X is continuous in [0, 1]2.

(2) Let T = {0 ≤ t ≤ s ≤ 1}. We assume that the derivative ∂4R/∂s2∂t2 exists in (0, 1]2/{s =
t} and that there exists a continuous function C : T → R, a real γ ∈ (0, 2) and a positive
slowly varying function L : (0, 1) → R such that

∀t, s ∈ T,
(s − t)2+γ

L(s − t)
∂4R

∂s2∂t2
(s, t) = C(s, t), (2.12)

where T denotes the interior of T (i.e., T = {0 < s < t < 1}).
(3) We assume that there exist q + 1 functions (q ∈ N) g0, g1, . . . , gq from (0, 1) to R, q real

numbers 0 < ν1 < · · · < νq and a function φ : (0, 1) → (0,∞) such that (a) if q ≥ 1, then
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for all 0 ≤ i ≤ q − 1, gi is Lipschitz on (0, 1); (b) gq is (1/2 + αq)-Hölderian on (0, 1) with
0 < αq ≤ 1/2; (c) there exists t ∈ (0, 1) such that g0(t)/= 0; (d) one has

lim
h→ 0+

1√
h

⎛
⎜⎝ sup

h≤t≤1−h

∣∣∣∣∣∣∣

(
δh
1 ◦ δh

2R
)
(t, t)

h2−γL(h)
− g0(t) −

q∑
i=1

gi(t)φ(h)
νi

∣∣∣∣∣∣∣

⎞
⎟⎠ = 0, (2.13)

where if q = 0, then
∑q

i=1gi(t)φ(h)
νi = 0 and where if q /= 0, then limh→ 0+φ(h) = 0. (e)

there exists a bounded function g̃ : (0, 1) → R such that

lim
h→ 0+

sup
h≤t≤1−2h

∣∣∣∣∣∣∣

(
δh
1 ◦ δh

2R
)
(t + h, t)

h2−γL(h)
− g̃(t)

∣∣∣∣∣∣∣
= 0. (2.14)

Then one has

√
n

(
n1−γ

L(1/n)
Vn(X) −

∫1

0
g0(x)dx −

q∑
i=1

(∫1

0
gi(x)dx

)
φ

(
1
n

)νi
)

−→ N
(
0, σ2

)
(2.15)

in distribution as n tends to infinity where

σ2 = 2
∫1

0
g0(x)2dx + 4

∫1

0
g̃(x)2dx + 4

∥∥ργ
∥∥2
∫1

0
C(x, x)2dx (2.16)

and ‖ργ‖2 =
∑+∞

l=2ργ(l)
2 with, if γ /= 1,

ργ(l) =
|l − 2|2−γ − 4|l − 1|2−γ + 6|l|2−γ − 4|l + 1|2−γ + |l + 2|2−γ(

γ − 2
)(
γ − 1

)
γ
(
γ + 1

) ; (2.17)

if γ = 1,

ρ1(l) =
1
2
(|l − 2| log|l − 2| − 4|l − 1| log|l − 1| + 6|l| log|l| − 4|l + 1| log|l + 1| + 2|l + 2| log|l + 2|).

(2.18)

3. Asymptotic Expansion and Central Limit Theorem

In the following theorem the almost sure convergence of the second-order quadratic varia-
tions Vn(SH) is proved.

Theorem 3.1. For all t ∈ [0, 1], one has almost surely

lim
n→∞

n2H−1Vn

(
SH
)
= 4 − 22H. (3.1)
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Proof. It is clear that the derivative (∂4/∂s2∂t2)R(s, t) exists on (0, 1]2/{s = t}. Moreover we
can check that, for all s, t ∈ (0, 1]2/{s = t},

∂4

∂s2∂t2
R(s, t) = H(2H − 1)(2H − 2)(2H − 3)

[
−|s − t|2H−4 − |s + t|2H−4

]
. (3.2)

Therefore the assumption 2(b) in Theorem 2.2 is satisfied with L(H) = 1 and γ = 2 − 2H.
For the assumption 2(b) in Theorem 2.2, standard computations yield

(
δh
1 ◦ δh

2R
)
(t, t)

hH
= 4 − 22H +

λt(h)
h2H

, (3.3)

with

λt(h) =
1

h2H

[
−22H−1(t + h)2H − 3 · 22Ht2H − 22H−1(t − h)2H + 2(2t + h)2H + 2(2t − h)2H

]
,

(3.4)

and we can check λt(0) = λ′t(0) = λ′′t (0) = λ
(3)
t (0) = 0. So that Taylor formula yields

λt(h) =
∫h

0

(h − x)3

3!
λ
(4)
t (x)dx, ∀h ≤ t ≤ 1 − h. (3.5)

Therefore, we have

sup
h≤t≤1−h

sup
0≤x≤h

∣∣∣λ(4)t (x)
∣∣∣ = O(1), as h −→ 0+, (3.6)

which yields

sup
h≤t≤1−h

∣∣∣∣∣∣∣

(
δh
1 ◦ δh

2R
)
(t, t)

hH
−
(
4 − 22H

)
∣∣∣∣∣∣∣
= O
(
h4−2H

)
, as h −→ 0 + . (3.7)

Therefore, the assumption 2(c) in Theorem 2.2 is fulfilled with

g0(t) = 4 − 22H. (3.8)

Consequently, we can apply Theorem 2.2 to Vn(SH) and obtain the desired result.

Next we study the weak convergence.

Theorem 3.2. One has the following weak convergence

√
n
(
n2H−1Vn

(
SH
)
−
(
4 − 22H

))
−→(L) N

(
0, σ2

H

)
, as n −→ ∞, (3.9)
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where

σ2
H = 2

(
4 − 22H

)2
+
(
22H+2 − 7 − 32H

)2
+ [2H(2H − 1)(2H − 2)(2H − 3)]2

∥∥ρ2−2H
∥∥2,

∥∥ρ2−2H
∥∥2 =

∞∑
l=2

(
−|l − 2|2H + 4|l − 1|2H − 6|l|2H + 4|l + 1|2H − |l + 2|2H

2H(2H − 1)(2H − 2)(2H − 3)

)2

.

(3.10)

Proof. We apply Theorem 2.3 to Vn(SH). As in the proof of Theorem 3.1, we need only to
show that the assumptions 2 and 3 in Theorem 2.3 are satisfied.

For assumption 2, the previous computation showed that, for all s, t ∈ (0, 1]2/{s = t},

∂4

∂s2∂t2
R(s, t) = H(2H − 1)(2H − 2)(2H − 3)

[
−|s − t|2H−4 − |s + t|2H−4

]
. (3.11)

Therefore

(s − t)4−2H
∂4

∂s2∂t2
R(s, t)=−H(2H − 1)(2H − 2) · (2H − 3)

[
1 + (s − t)4−2H(s + t)2H−4

]
:≡C(s, t).

(3.12)

This means that the assumption 2 in Theorem 2.3 is satisfied with L(H) = 1, γ = 2 − 2H and
C(s, t) defined by (3.12).

For assumption 3 in Theorem 2.3, the expression (3.7) shows that the assumption 3 in
Theorem 2.3 is fulfilled with q = 0, g0(t) = 4− 22H and α0 = 1/2. Moreover, one can check that

(
δh
1 ◦ δh

2R
)
(t, t + h)

hH
=

1
2

(
22H+2 − 32H − 7

)
+
ξt(h)
h2H

. (3.13)

Using the same arguments as those used for λt(h) in the previous proof, we obtain

sup
h≤t≤1−h

|ξt(h)| = O
(
h4
)
, as h −→ 0 + . (3.14)

This shows that the assumption 3(e) in Theorem 2.3 is satisfied with

g̃(t) =
1
2

(
22H+2 − 32H − 7

)
. (3.15)

Consequently, we can apply Theorem 2.3 to Vn(SH) to obtain the desired result.

4. Confidence Intervals

Let SH is a subfractional Brownian motion with unknown Hurst parameterH ∈ (0,H∗], with
H∗ < 1/2 known. The following result is the main finding of the present note.
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Theorem 4.1. For Vn(SH) defined in (1.3), fix n ≥ 0 and a real number a such that 0 < a <
(4 − 22H∗)

√
n. For x ∈ (0, 1), set gn(x) = x − log(4 − 22x)/2 logn. Then, with probability at least

ϕ(a) =

[
1 − 2 exp

(
− a2

4CH∗
(
a/

√
n + 3 + CH∗/n

)
)]

+

, (4.1)

where CH∗ is a positive constant depending only on H∗ and [·]+ stands for the positive part function;
the unknown quantity gn(H) belongs to the following confidence intervals

In = [Il(n), Ir(n)]

=

[
1
2
− logVn

2 logn
+
log
(
1 − a/

√
n
(
4 − 22H∗

))

2 logn
,
1
2
− logVn

2 logn
+
log
(
1 + a/

√
n
(
4 − 22H∗

))

2 logn

]
.

(4.2)

Proof. The idea used here is essentially due to Breton et al. [19]. Define Xn = {Xn,k; k =
0, 1, . . . , n − 1}, where

Xn,k = SH
(k+2)/n + SH

k/n − 2SH
(k+1)/n. (4.3)

One can prove by standard computations that the covariance structure of Gaussian family
Xn,k is described by the relation

E(Xn,kXn,l) =
1

n2H
ρH(k, l), (4.4)

where

ρH(k, l) = −1
2
(k + l + 4)2H + 2(k + l + 3)2H − 3(k + l + 2)2H + 2(k + l + 1)2H − 1

2
(k + l)2H

− 3(k − l)2H + 2(k − l + 1)2H − 1
2
(k − l + 2)2H + 2(k − l − 1)2H − 1

2
(k − l − 2)2H.

(4.5)

Now let Zn = n2H−1/2Vn −
√
n(4 − 22H), where Vn is defined in (1.3). It is easy to see that

Zn = Q1

(
n2H−1/2, Xn

)
+

1√
n

n−1∑
k=0

ak,H, (4.6)

where

ak,H = −1
2
(2k + 4)2H + 2(2k + 3)2H − 3(2k + 2)2H + 2(2k + 1)2H − 1

2
(2k)2H. (4.7)
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On the other hand

Q2

(
n2H−1/2, Xn

)
= 2n4H−1

n−1∑
k,l=0

Xn,kXn,lρH(k, l)

≤ 2n2H−1
n−1∑
k,l=0

∣∣Xn,k‖Xn,l‖ρH(k, l)
∣∣

≤ n2H−1
n−1∑
k,l=0

(
|Xn,k|2 + |Xn,l|2

)∣∣ρH(k, l)
∣∣

= 2n2H−1
n−1∑
k,l=0

|Xn,k|2
∣∣ρH(k, l)

∣∣

≤ 2n2H−1
n−1∑
k=0

|Xn,k|2
⎛
⎝∑

i,j∈Z

∣∣ρH
(
i, j
)∣∣
⎞
⎠

≤ 2√
n

⎛
⎝∑

i,j∈Z

∣∣ρH
(
i, j
)∣∣
⎞
⎠(Zn +

(
4 − 22H

)√
n
)

≤ 2√
n

⎛
⎝∑

i,j∈Z

∣∣ρH
(
i, j
)∣∣
⎞
⎠(Zn + 3

√
n
)

=
2√
n

⎛
⎝∑

i,j∈Z

∣∣ρH
(
i, j
)∣∣
⎞
⎠
(
Q1

(
n2H−1/2, Xn

)
+

1√
n

n−1∑
k=0

ak,H + 3
√
n

)

≤ 2√
n

⎛
⎝∑

i,j∈Z

∣∣ρH
(
i, j
)∣∣
⎞
⎠
(
Q1

(
n2H−1/2, Xn

)
+

1√
n

n−1∑
k=0

|ak,H | + 3
√
n

)

= αnQ1

(
n2H−1/2, Xn

)
+ βn,

(4.8)

with

αn =
2√
n

∑
i,j∈Z

∣∣ρH
(
i, j
)∣∣, β = 2

∑
i,j∈Z

∣∣ρH
(
i, j
)∣∣
(
3 +

1
n

n−1∑
k=0

|ak,H |
)
. (4.9)

Since Zn /= 0, Theorem 2.1 yields

P(|Zn| ≥ a) ≤ 2 exp

⎛
⎜⎝− a2

4
∑

i,j∈Z

∣∣ρH
(
i, j
)∣∣(a/√n + 3 + (1/n)

∑n−1
k=0|ak,H |

)

⎞
⎟⎠. (4.10)
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Now let us find bounds on
∑

i,j∈Z
|ρH(i, j)|. Using

(1 + x)α = 1 +
∞∑
k=1

α(α − 1) · · · (α − k + 1)
k!

xk, for − 1 < x < 1. (4.11)

We denote by

ρH
(
i, j
)
= ρH,1

(
i, j
)
+ ρH,2

(
i, j
)
, (4.12)

where

ρH,1
(
i, j
)
= −1

2
(k + l + 4)2H + 2(k + l + 3)2H − 3(k + l + 2)2H + 2(k + l + 1)2H − 1

2
(k + l)2H,

ρH,2
(
i, j
)
= −3(k − l)2H + 2(k − l + 1)2H − 1

2
(k − l + 2)2H + 2(k − l − 1)2H − 1

2
(k − l − 2)2H.

(4.13)

The second term ρH,2(i, j) has been bounded by Breton et al. [19]. They proved that

∑
i,j∈Z

ρH,2
(
i, j
) ≤ 71

4
. (4.14)

Now let us bound the first term ρH,1(i, j). We denote by

ρH,1
(
i, j
)
= ρH,1(r), r = i + j. (4.15)

We can write for any r ≥ 5,

ρH,1(r) =
r2H

2

[
−
(
1 +

4
r

)2H

+ 4
(
1 +

3
r

)2H

− 6
(
1 +

2
r

)2H

+ 4
(
1 +

1
r

)2H

− 1

]

=
r2H

2

[ ∞∑
k=1

2H(2H − 1) · · · (2H − k + 1)
k!

(
−4k + 4 · 3k − 6 · 2k + 4

)
r−k
]
.

(4.16)

Note that the sign of 2H(2H − 1) · · · (2H − k + 1) is the same as that of (−1)k−1, and

|2H(2H − 1) · · · (2H − k + 1)| = 2H|(2H − 1)| · · · |2H − k + 1| < 2 · 1 · 2 · · · (k − 1) = 2(k − 1)!.
(4.17)
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Hence we can write, for any r ≥ 5,

∣∣ρH,1(r)
∣∣ ≤ r2H

2

∞∑
k=1

∣∣∣∣
1
k

(
−4k + 4 · 3k − 6 · 2k + 4

)
r−k
∣∣∣∣

=
r2H

2

∞∑
k=1

1
k

∣∣∣∣∣−
(
4
r

)k

+ 4 ·
(
3
r

)k

− 6 ·
(
2
r

)k

+ 4
(
1
r

)k
∣∣∣∣∣

=
r2H

2

∣∣∣∣log
(
1 − 4

r

)
− 4 log

(
1 − 3

r

)
+ 6 log

(
1 − 2

r

)
− 4 log

(
1 − 1

r

)∣∣∣∣

≤ r2H

2

[∣∣∣∣log
(
1 − 4

r

)
− 4 log

(
1 − 1

r

)∣∣∣∣ +
∣∣∣∣−4 log

(
1 − 3

r

)
+ 6 log

(
1 − 2

r

)∣∣∣∣
]
.

(4.18)

One can easily check that | log(1 − 4x) − 4 log(1 − x)| ≤ (243/20)x2, if 0 ≤ x ≤ 1/5. And
moreover,

∣∣−4 log(1 − 3x) + 6 log(1 − 2x)
∣∣ ≤ ∣∣log(1 − 4x) − 4 log(1 − x)

∣∣. (4.19)

Then we have, for any r ≥ 5,

∣∣ρH,1(r)
∣∣ ≤ 243

20
r−3/2+H∗ . (4.20)

Consequently, we get

∑
r∈Z

∣∣ρH,1(r)
∣∣ ≤ ∣∣ρH,1(0)

∣∣ + ∣∣ρH,1(1)
∣∣ + ∣∣ρH,1(2)

∣∣ + ∣∣ρH,1(3)
∣∣ + ∣∣ρH,1(4)

∣∣ +
∑
r≥5

∣∣ρH,1(r)
∣∣

=
1
2

∣∣∣−42H + 4 · 32H − 6 · 22H + 4
∣∣∣ + 1

2

∣∣∣−52H + 4 · 42H − 6 · 32H + 4 · 22H − 1
∣∣∣

+
1
2

∣∣∣−62H + 4 · 52H − 6 · 42H + 4 · 32H − 22H
∣∣∣

+
1
2

∣∣∣−72H + 4 · 62H − 6 · 52H + 4 · 42H − 32H
∣∣∣

+
1
2

∣∣∣−82H + 4 · 72H − 6 · 62H + 4 · 52H − 42H
∣∣∣ +
∑
r≥5

∣∣ρH,1(r)
∣∣

≤ C1 + CH∗ :≡ CH∗ < ∞,

(4.21)

and the positive constant CH∗ does not depend on the unknown parameter H. Putting this
bound in (4.10) yields

P(|Zn| ≥ a) ≤ 2 exp

(
− a2

4CH∗
(
a/

√
n + 3 + CH∗/n

)
)
. (4.22)



Abstract and Applied Analysis 13

Now we can construct the confidence interval for gn(H) = H − log(4 − 22H)/2 logn. First
observe that Zn = n2H−1/2Vn −

√
n(4 − 22H). Using the assumption H ≤ H∗ < 1/2 on the one

hand and (4.22) on the other hand, we get

P

(
1
2
− logVn

2 logn
+
log
(
1 − a/

(
4 − 22H∗

)√
n
)

2 logn
≤gn(H)≤ 1

2
− logVn

2 logn
+
log
(
1 + a/

(
4 − 22H∗

)√
n
)

2 logn

)

≥ P

(
1
2
− logVn

2 logn
+
log
(
1 − a/

(
4 − 22H

)√
n
)

2 logn
≤ H − log

(
4 − 22H

)

2 logn

≤ 1
2
− logVn

2 logn
+
log
(
1 + a/

(
4 − 22H

)√
n
)

2 logn

)

= P

(
1
4
− logVn

2 logn
+
log
((
4 − 22H

)√
n − a

)

2 logn
≤ H ≤ 1

4
− logVn

2 logn
+
log
((
4 − 22H

)√
n + a

)

2 logn

)

= P(|Zn| ≤ a) ≥ 1 − 2 exp

(
− a2

4CH∗
(
a/

√
n + 3 + CH∗/n

)
)
,

(4.23)

where
∑

i,j∈Z
|ρ(i, j)| ≤ CH∗ and the positive constant CH∗ does not depend on the unknown

parameter H. This is the desired result.
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