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The paper investigates a dynamic equation Δy(tn) = β(tn)[y(tn−j) − y(tn−k)] for n → ∞, where k
and j are integers such that k > j ≥ 0, on an arbitrary discrete time scale T := {tn} with tn ∈ R,
n ∈ Z

∞
n0−k = {n0 − k, n0 − k + 1, . . .}, n0 ∈ N, tn < tn+1, Δy(tn) = y(tn+1) − y(tn), and limn→∞tn = ∞.

We assume β : T → (0,∞). It is proved that, for the asymptotic convergence of all solutions, the
existence of an increasing and asymptotically convergent solution is sufficient. Therefore, the main
attention is paid to the criteria for the existence of an increasing solution asymptotically convergent
for n → ∞. The results are presented as inequalities for the function β. Examples demonstrate that
the criteria obtained are sharp in a sense.

1. Introduction

We use the following notation: for an integer s, we define that Z
∞
s := {s, s + 1, . . .}, and if an

integer q ≥ s, we define Z
q
s := {s, s + 1, . . . , q}.

Hilger initiated in [1, 2] the calculus of time scales in order to create a theory that
unifies discrete and continuous analyses. He defined a time scale T as an arbitrary nonempty
closed subset of real numbers. The theoretical background for time scales can be found in [3].

In this paper, we use discrete time scales. To be exact, we define a discrete time scale
T = T(t) as an arbitrary unbounded increasing sequence of real numbers, that is, T(t) := {tn},
where tn ∈ R, n ∈ Z

∞
n0−k, n0 ∈ N, k > 0 is an integer, tn < tn+1, and limn→∞tn = ∞. For a fixed

v ∈ Z
∞
n0−k, we define a time scale Tv = Tv(t) := {tn}, where n ∈ Z

∞
v . Obviously, Tn0−k(t) = T(t).

In addition, for integers s, q, q ≥ s ≥ n0 − k, we define the set T
q
s = T

q
s (t) := {ts, ts+1, . . . , tq}.
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In the paper we study a dynamic equation

Δy(tn) = β(tn)
[
y
(
tn−j
) − y(tn−k)

] (1.1)

as n → ∞. The difference is defined as usual: Δy(tn) := y(tn+1) − y(tn), integers k and j in
(1.1) satisfy the inequality k > j ≥ 0, and β : T → R

+ := (0,∞). Without loss of generality,
we assume that tn0−k > 0 (this is a technical detail, necessary for some expressions to be well
defined). Throughout the paper, we adopt the notation

∑k
i=k+1B(ti) = 0 where k is an integer

and B denotes the function under consideration.
The results concern the asymptotic convergence of all solutions of (1.1). First we prove

that, in the general case, the asymptotic convergence of all solutions is determined only
by the existence of an increasing and bounded solution. Therefore, our effort is focused on
developing criteria guaranteeing the existence of such solutions. The proofs of the results are
based on comparing the solutions of (1.1)with those of an auxiliary inequality with the same
left-hand and right-hand sides as in (1.1). We also illustrate general results using examples
with particular time scales.

The problem concerning the asymptotic convergence of solutions in the continuous
case, that is, in the case of delayed differential equations or other classes of equations, is a
classical one and has attracted much attention recently (we refer, e.g., to the papers [4–11]).

The problem of the asymptotic convergence of solutions of discrete and difference
equations with delay has not yet received much attention. Some recent results can be found,
for example, in [12–19].

Comparing the known investigations with the results presented, we can see that our
results give sharp sufficient conditions of the asymptotic convergence of solutions. This is
illustrated by examples. Nevertheless, we are not concerned with computing the limits of the
solutions as n → ∞.

The paper is organized as follows. In Section 2, auxiliary definitions and results are col-
lected. An auxiliary inequality is studied, and the relationship of its solutions with the solu-
tions of (1.1) is derived. Section 3 contains results concerning the convergence of all solutions
of (1.1). The criteria of existence of an increasing and convergent solution of (1.1) are estab-
lished in Section 4. Examples illustrating the sharpness of the results derived are discussed
as well.

2. Auxiliary Definitions and Results

Let C := C(Tn0
n0−k,R) be the space of discrete functions mapping the discrete interval T

n0
n0−k into

R. Let v ∈ Z
∞
n0

be given. The function y : Tv−k → R is said to be a solution of (1.1) on Tv−k if it
satisfies (1.1) for every n ∈ Z

∞
v . A solution y of (1.1) on Tv−k is asymptotically convergent if the

limit limn→∞y(tn) exists and is finite. For a given v ∈ Z
∞
n0

and ϕ ∈ C, we say that y = y(tv,ϕ) is
a solution of (1.1) defined by the initial conditions (tv, ϕ) if y(tv,ϕ) is a solution of (1.1) on Tv−k
and y(tv,ϕ)(tv+m) = ϕ(tm) form ∈ Z

0
−k.

2.1. Auxiliary Inequality

The inequality

Δω(tn) ≥ β(tn)
[
ω
(
tn−j
) −ω(tn−k)

]
(2.1)
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is a helpful tool in the analysis of solutions of (1.1). Let v ∈ Z
∞
n0
. The function ω : Tv−k → R

is said to be a solution of (2.1) on Tv−k if ω satisfies (2.1) for n ∈ Z
∞
v . A solution ω of (2.1) on

Tv−k is asymptotically convergent if the limit limn→∞ω(tn) exists and is finite.
We give some properties of solutions of inequalities of type (2.1) to be used later on.

We will also compare the solutions of (1.1)with those of (2.1).

Lemma 2.1. Let ϕ ∈ C be increasing (nondecreasing, decreasing, nonincreasing) on T
n0
n0−k. Then the

solution y(n0,ϕ)(tn) of (1.1), where n ∈ Z
∞
n0

is increasing (nondecreasing, decreasing, nonincreasing)
on Tn0 , too.

Lemma 2.2. Let ϕ ∈ C be increasing (nondecreasing) and ω : T → R be a solution of inequality
(2.1) with ω(tm) = ϕ(tm),m ∈ Z

n0
n0− k. Then, ω(tn), where n ∈ Z

∞
n0

is increasing (nondecreasing).

The proofs of both lemmas above follow directly from the form of (1.1), (2.1), and from
the properties β(tn) > 0, n ∈ Z

∞
n0− k

, k > j ≥ 0.

Theorem 2.3. Let ω : T → R be a solution of (2.1) on T. Then there exists a solution y : T → R of
(1.1) on T such that

y(tn) ≤ ω(tn) (2.2)

holds for every n ∈ Z
∞
n0− k

. In particular, a solution y(n0,φ) of (1.1) with φ ∈ C, defined by

φ(tn) := ω(tn), n ∈ Z
n0
n0−k, (2.3)

is such a solution.

Proof. Let ω(tn) be a solution of (2.1) defined on T. We will show that the solution y(tn) :=
y(n0,φ)(tn) of (1.1)with φ defined by (2.3) satisfies (2.2), that is,

y(n0,φ)(tn) ≤ ω(tn) (2.4)

for every n ∈ Z
∞
n0− k. Let W : T → R be defined by

W(tn) := ω(tn) − y(tn). (2.5)

ThenW(tn) = 0 if n ∈ Z
n0
n0− k

and, in addition,W is a solution of (2.1) on T. Lemma 2.2 implies
that W is nondecreasing. Consequently,

W(tn) = ω(tn) − y(tn) ≥ W(tn0) = ω(tn0) − y(tn0) = 0, (2.6)

and y(tn) ≤ ω(tn) for all n ≥ n0.
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2.2. A Solution of Inequality (2.1)

Now we will construct a solution of (2.1). The result obtained will help us obtain sufficient
conditions for the existence of an increasing and asymptotically convergent solution of (1.1)
(see Theorem 4.1 below).

Lemma 2.4. Let there exists a function ε : T → R
+ such that

ε(tn+1) ≥
n−j∑

i=n−k+1
β(ti−1)ε(ti) (2.7)

for every n ∈ Z
∞
n0
. Then there exists a solution ω = ωε of (2.1) defined on T and having the form

ωε(tn) :=
n∑

i=n0−k+1
β(ti−1)ε(ti). (2.8)

Proof. Assuming that ωε defined by (2.8) is a solution of (2.1) for n ∈ Z
∞
n0
, we will deduce the

inequality for ε. We get

Δωε(tn) = ωε(tn+1) −ωε(tn) =
n+1∑

i=n0−k+1
β(ti−1)ε(ti) −

n∑

i=n0−k+1
β(ti−1)ε(ti) = β(tn)ε(tn+1),

ωε

(
tn−j
) −ωε(tn−k) =

n−j∑

i=n0−k+1
β(ti−1)ε(ti) −

n−k∑

i=n0−k+1
β(ti−1)ε(ti) =

n−j∑

i=n−k+1
β(ti−1)ε(ti).

(2.9)

We substitute ωε for ω in (2.1). Then, using (2.9), (2.1) turns into

β(tn)ε(tn+1) ≥ β(tn)
n−j∑

n−k+1
β(ti−1)ε(ti). (2.10)

Reducing the last inequality by β(tn), we obtain the desired inequality.

2.3. Decomposition of a Function into the Difference of
Two Increasing Functions

It is well-known that every absolutely continuous function is representable as the difference
of two increasing absolutely continuous functions [20, page 318]. We will need a simple
analogue of this result on discrete time scales under consideration.

Lemma 2.5. Every function ϕ ∈ C can be decomposed into the difference of two increasing functions
ϕj ∈ C, j = 1, 2, that is,

ϕ(tn) = ϕ1(tn) − ϕ2(tn), n ∈ Z
n0
n0−k. (2.11)
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Proof. Let constants Mn > 0, n ∈ Z
n0
n0−k be such that

Mn+1 > Mn +max
{
0, ϕ(tn) − ϕ(tn+1)

}
(2.12)

is valid for each n ∈ Z
n0−1
n0−k. We set

ϕ1(tn) := ϕ(tn) +Mn, n ∈ Z
n0
n0−k,

ϕ2(tn) := Mn, n ∈ Z
n0
n0−k.

(2.13)

It is obvious that (2.11) holds. Now we verify that both functions ϕj , j = 1, 2 are increasing.
The first one should satisfy ϕ1(tn+1) > ϕ1(tn) for n ∈ Z

n0−1
n0−k, which means that

ϕ(tn+1) +Mn+1 > ϕ(tn) +Mn (2.14)

or

Mn+1 > Mn + ϕ(tn) − ϕ(tn+1). (2.15)

We conclude that the last inequality holds because, due to (2.12), we have

Mn+1 > Mn +max
{
0, ϕ(tn) − ϕ(tn+1)

} ≥ Mn + ϕ(tn) − ϕ(tn+1). (2.16)

The inequality ϕ2(tn+1) > ϕ2(tn) obviously holds for every n ∈ Z
n0−1
n0−k due to (2.12) as well.

2.4. Auxiliary Asymptotic Decomposition

The following lemma can be proved easily by induction. The symbol O (capital “O”) stands
for the Landau order symbol.

Lemma 2.6. For fixed r, σ ∈ R \ {0}, the asymptotic representation

(n − r)σ = nσ

[
1 − σr

n
+O
(

1
n2

)]
(2.17)

holds for n → ∞.

3. Convergence of All Solutions

The main result of this part is the statement that the existence of an increasing and
asymptotically convergent solution of (1.1) implies the asymptotical convergence of all
solutions.

Theorem 3.1. If (1.1) has an increasing and asymptotically convergent solution on Z
∞
n0− k, then all

the solutions of (1.1) defined on Z
∞
n0−k are asymptotically convergent.
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Proof. First we prove that every solution defined by amonotone initial function is convergent.
We will assume that a monotone initial function ϕ ∈ C is given. For definiteness, let ϕ
be increasing or nondecreasing (the case when it is decreasing or nonincreasing can be
considered in much the same way). By Lemma 2.1, the solution y(n0,ϕ) is monotone, that is, it
is either increasing or nondecreasing. We prove that y(n0,ϕ) is convergent.

Denote the assumed increasing and asymptotically convergent solution of (1.1) as y =
Y (tn), n ∈ Z

∞
n0−k. Without loss of generality, we assume that y(n0,ϕ) /≡Y on Z

∞
n0−k since, in the

opposite case, we can choose another initial function. Similarly, without loss of generality, we
can assume

ΔY (tn) > 0, n ∈ Z
n0−1
n0− k. (3.1)

Hence, there is a constant γ > 0 such that

ΔY (tn) − γΔy(tn) > 0, n ∈ Z
n0−1
n0− k

(3.2)

or

Δ
(
Y (tn) − γy(tn)

)
> 0, n ∈ Z

n0−1
n0− k. (3.3)

This implies that the function Y (tn) − γy(tn) is increasing on Z
n0−1
n0− k

, and Lemma 2.1 implies
that Y (tn) − γy(tn) is increasing on Z

∞
n0− k

. Thus,

Y (tn) − γy(tn) > Y (tn0) − γy(tn0), n ∈ Z
∞
n0

(3.4)

or

y(tn) < y(tn0) +
1
γ
(Y (tn) − Y (tn0)), n ∈ Z

∞
n0

(3.5)

and, consequently, y(tn) is a bounded function on Z
∞
n0− k

because of the boundedness of Y (tn).
Obviously, in such a case, y(tn) is asymptotically convergent and has a finite limit.

Summarizing the previous section, we state that every monotone solution is
convergent. It remains to consider a class of all nonmonotone initial functions. For the
behavior of a solution y(n0,ϕ) generated by a nonmonotone initial function ϕ ∈ C, there are two
possibilities: y(n0,ϕ) is either eventually monotone and, consequently, convergent, or y(n0,ϕ) is
eventually nonmonotone.

Now we use the statement of Lemma 2.5 that every discrete function ϕ ∈ C can be
decomposed into the difference of two increasing discrete functions ϕj ∈ C, j = 1, 2. In
accordance with the previous part of the proof, every function ϕj ∈ C, j = 1, 2 defines an
increasing and asymptotically convergent solution y(n0,ϕj ). Now it is clear that the solution
y(n0,ϕ) is asymptotically convergent.

From Theorem 3.1, it follows that a crucial property assuring the asymptotical conver-
gence of all solutions of (1.1) is the existence of a strictly monotone and asymptotically con-
vergent solution. In the next part, we will focus our attention on the relevant criteria. Now, in
order to finish this section, we need an obvious statement concerning the asymptotic conver-
gence. From Lemma 2.1 and Theorem 2.3, we immediately derive the following result.
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Theorem 3.2. Let ω be an increasing and bounded solution of (2.1) on T. Then there exists an
increasing and asymptotically convergent solution y of (1.1) on T.

Combining the statements of Theorems 2.3, 3.1, and 3.2, we get a series of equivalent
statements.

Theorem 3.3. The following three statements are equivalent.

(a) Equation (1.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0− k

.

(b) All solutions of (1.1) defined on Z
∞
n0− k are asymptotically convergent.

(c) Inequality (2.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0−k.

4. Increasing Convergent Solutions of (1.1)

This part deals with the problem of detecting the existence of asymptotically convergent
increasing solutions. We provide sufficient conditions for the existence of such solutions of
(1.1).

The important theorem below is a consequence of Lemma 2.1, Theorem 2.3, and
Lemma 2.4.

Theorem 4.1. Let there exists a function ε : T → R
+ satisfying

∞∑

i=n0−k+1
β(ti−1)ε(ti) < ∞,

ε(tn+1) ≥
n−j∑

i=n−k+1
β(ti−1)ε(ti)

(4.1)

for every n ∈ Z
∞
n0
. Then the initial function

ϕ(tn) :=
n∑

i=n0−k+1
β(ti−1)ε(ti), n ∈ Z

n0
n0−k (4.2)

defines an increasing and asymptotically convergent solution y(tn0 ,ϕ)(tn) of (1.1) on T satisfying

y(tn0 ,ϕ)(tn) ≤
n∑

i=n0−k+1
β(ti−1)ε(ti) (4.3)

for every n ∈ Z
∞
n0
.

Although Theorem 4.1 itself can serve as a source of various concrete criteria, later we
will apply its following modification which can be used easily. Namely, assuming that β in
(1.1) can be estimated by a suitable function, we can deduce that (1.1) has an increasing as-
ymptotically convergent solution. We consider such a case.
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Theorem 4.2. Let there exist functions β∗ : T → R
+ and ε : T → R

+ such that the inequalities

β(tn) ≤ β∗(tn), (4.4)

ε(tn+1) ≥
n−j∑

i=n−k+1
β∗(ti−1)ε(ti) (4.5)

hold for all n ∈ Z
∞
n0−k, and moreover

∞∑

i=n0−k+1
β∗(ti−1)ε(ti) < ∞. (4.6)

Then there exists an increasing and asymptotically convergent solution y : T → R of (1.1) satisfying

y(tn) ≤
n∑

i=n0−k+1
β(ti−1)ε(ti) (4.7)

for every n ∈ Z
∞
n0
. Such a solution is defined, for example, by the initial function

ϕ(tn) :=
n∑

i=n0−k+1
β(ti−1)ε(ti), n ∈ Z

n0
n0−k. (4.8)

Proof. From (4.5) and (4.6), we get

ε(tn+1) ≥
n−j∑

i=n−k+1
β∗(ti−1)ε(ti) ≥

n−j∑

i=n−k+1
β(ti−1)ε(ti),

∞ >
∞∑

i=n0−k+1
β∗(ti−1)ε(ti) ≥

∞∑

i=n0−k+1
β(ti−1)ε(ti).

(4.9)

Then all assumptions of Theorem 4.1 are true. From its conclusion now follows the statement
of Theorem 4.2.

4.1. Some Special Criteria

It will be demonstrated by examples that, in many applications, the function β∗ mentioned in
Theorem 4.2 can have the form

β∗(tn) = c − γ(tn), (4.10)

where c is a positive constant and γ : T → R
+ is a suitable function such that γ(tn) < c (at

least for all sufficiently large n) and

lim
n→∞

γ(tn) = 0. (4.11)



Abstract and Applied Analysis 9

Below we carry on in this way and give sufficient conditions for the existence of increasing
and asymptotically convergent solutions of (1.1) for general discrete time scale under con-
sideration. For several special time scales, we derive such criteria in subsequent sections.

Theorem 4.3. Let there exist constants c > 0, p > 0 and α > 0 such that

β(tn) ≤ c − p

tn
, (4.12)

1
tαn+1

≥
n−j∑

i=n−k+1

[
c − p

ti−1

]
1
tαi

(4.13)

hold for all n ∈ Z
∞
n0−k, and moreover

∞∑

i=n0−k+1

1
tαi

< ∞. (4.14)

Then there exists an increasing and asymptotically convergent solution y : T → R
+ of (1.1)

satisfying

y(tn) ≤
n∑

i=n0−k+1

[
c − p

ti−1

]
1
tαi

(4.15)

for every n ∈ Z
∞
n0
. Such a solution is defined, for example, by the initial function

ϕ(tn) :=
n∑

i=n0−k+1

[
c − p

ti−1

]
1
tαi
, n ∈ Z

n0
n0−k. (4.16)

Proof. We will apply Theorem 4.2 with

β∗(tn) := c − p

tn
, ε(tn) :=

1
tαn
. (4.17)

Inequality (4.5) turns into

ε(tn+1) =
1

tαn+1
≥

n−j∑

i=n−k+1
β∗(ti−1)ε(ti) =

n−j∑

i=n−k+1

[
c − p

ti−1

]
1
tαi

(4.18)

and is true due to (4.13). Inequality (4.6) holds due to assumption (4.14) as well because
limn→∞tn = ∞ and

∞∑

i=n0−k+1
β∗(ti−1)ε(ti) =

∞∑

i=n0−k+1

[
c − p

ti−1

]
1
tαi

< ∞. (4.19)

Now, all assumptions of Theorem 4.2 are true, and its statement gives the statement of
Theorem 4.3.
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Theorem 4.4. Let there exist constants c > 0, p > 0 and α > 0 such that the inequalities

β(tn) ≤ c − p

ln tn
, (4.20)

1
(ln tn+1)

α ≥
n−j∑

i=n−k+1

[
c − p

ln ti−1

]
1

(ln ti)
α (4.21)

hold for all n ∈ Z
∞
n0−k, and moreover

∞∑

i=n0−k+1

1
(ln ti)

α < ∞. (4.22)

Then there exists an increasing and asymptotically convergent solution y : T → R
+ of (1.1)

satisfying

y(tn) ≤
n∑

i=n0−k+1

[
c − p

ln ti−1

]
1

(ln ti)
α (4.23)

for every n ∈ Z
∞
n0
. Such a solution is defined, for example, by the initial function

ϕ(tn) :=
n∑

i=n0−k+1

[
c − p

ln ti−1

]
1

(ln ti)
α , n ∈ Z

n0
n0−k. (4.24)

Proof. We will apply Theorem 4.2 with

β∗(tn) := c − p

ln tn
, ε(tn) :=

1
(ln tn)

α . (4.25)

Inequality (4.5) turns into

ε(tn+1) =
1

(ln tn+1)
α ≥

n−j∑

i=n−k+1
β∗(ti−1)ε(ti) =

n−j∑

i=n−k+1

[
c − p

ln ti−1

]
1

(ln ti)
α (4.26)

and is true due to (4.21). Inequality (4.6) holds due to assumption (4.22) as well because
limn→∞tn = ∞ and

∞∑

i=n0−k+1
β∗(ti−1)ε(ti) =

∞∑

i=n0−k+1

[
c − p

ln ti−1

]
1

(ln ti)
α < ∞. (4.27)

Now, all assumptions of Theorem 4.2 are true, and its statement gives the statement of
Theorem 4.4.
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4.2. Time Scale T(t) := {n(1 + δ(n))}
Now, using Theorem 4.3, we derive sufficient conditions for the existence of an increasing
and asymptotically convergent solution y : T → R

+ of (1.1) in the case when the time scale
is defined as T = T(t) = {tn}, tn := n(1 + δ(n)), where δ : T → R, |δ(n)| ≤ δ∗, δ∗ ∈ (0, 1),
n ∈ Z

∞
n0−k, and

δ(n) = O
(

1
n2

)
. (4.28)

Theorem 4.5. Let (4.12) be true for

c :=
1

k − j
, p :=

p∗
(
k + j + 1

)

2
(
k − j

) , (4.29)

where p∗ > 1, that is,

β(tn) ≤ 1
k − j

− p∗
(
k + j + 1

)

2
(
k − j

)
tn

(4.30)

holds for all n ∈ Z
∞
n0−k. Let, moreover, α ∈ (1, p∗). Then there exists an increasing and asymptotically

convergent solution y : T → R
+ of (1.1) satisfying (4.15) for n ∈ Z

∞
n0
. Such a solution is defined, for

example, by the initial function (4.16).

Proof. We use Theorem 4.3 and assume (without loss of generality) that n0 is sufficiently large
for the asymptotic computations performed below to be correct. Let us verify that (4.13)
holds. For the right-hand side R(tn) of (4.13), we have

R(tn) =
n−j∑

i=n−k+1

[
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
ti−1

]
1
tαi

=
1

k − j

n−j∑

i=n−k+1

1
tαi

− p∗
(
k + j + 1

)

2
(
k − j

)
n−j∑

i=n−k+1

1
ti−1tαi

=
1

k − j

n−j∑

i=n−k+1

1
iα(1 + δ(i))α

− p∗
(
k + j + 1

)

2
(
k − j

)
n−j∑

i=n−k+1

1
(i − 1)(1 + δ(i − 1))iα(1 + δ(i))α

.

(4.31)

Since i ∈ {n − k + 1, n − k + 2, . . . , n − j} and n → ∞, we can asymptotically decompose R(tn)
as n → ∞ using decomposition formula (2.17) in Lemma 2.6. Applying this formula to the
term i−α in the first sum with σ = −α and with r = n − i, we get

1
iα

=
1

(n − (n − i))α
=

1
nα

[
1 +

α(n − i)
n

+O
(

1
n2

)]
. (4.32)
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In addition to this, we have

1
(1 + δ(i))α

= 1 +O
(
1
i2

)
= 1 +O

(
1
n2

)
. (4.33)

To estimate the second sum, we need only the first terms of the asymptotic decomposition
and the order of accuracy, which can be computed easily without using Lemma 2.6. We also
take into account that

1
i − 1

=
1

n − (n − i + 1)
=

1
n
· 1
1 + (n − i + 1)/n

=
1
n
·
(
1 +O

(
1
n

))
, (4.34)

1
1 + δ(i − 1)

= 1 +O
(

1

(i − 1)2

)

= 1 +O
(

1
n2

)
. (4.35)

Then we get

R(tn) = 1
(
k − j

)
nα

[
1 +O

(
1
n2

)] n−j∑

i=n−k+1

[
1 +

α(n − i)
n

+O
(

1
n2

)]

− p∗
(
k + j + 1

)

2
(
k − j

)
nα+1

[
1 +O

(
1
n

)] n−j∑

i=n−k+1

[
1 +O

(
1
n

)]

=
1

(
k − j

)
nα

[
1 +

α(k − 1)
n

+ 1 +
α(k − 2)

n
+ · · · + 1 +

αj

n
+O
(

1
n2

)]

− p∗
(
k + j + 1

)

2
(
k − j

)
nα+1

[
1 + 1 + · · · + 1 +O

(
1
n

)]

=
1

(
k − j

)
nα+1

[(
k − j

)
n + α(k − 1) + α(k − 2) + · · · + αj +O

(
1
n

)]

− p∗
(
k + j + 1

)

2
(
k − j

)
nα+1

[(
k − j

)
+O
(
1
n

)]

=
1
nα

+
α

(
k − j

)
nα+1

(
k + j − 1

)(
k − j

)

2
− p∗

(
k + j + 1

)

2
(
k − j

)
nα+1

(
k − j

)
+O
(

1
nα+2

)
,

(4.36)

and, finally,

R(tn) = 1
nα

+
α

2nα+1

(
k + j − 1

) − p∗
(
k + j + 1

)

2nα+1
+O
(

1
nα+2

)
. (4.37)
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A similar decomposition of the left-hand side L(tn) in (4.13) leads to (we use the
decomposition formula (2.17) in Lemma 2.6 with σ = −α and r = −1)

L(tn) =
1

tαn+1
=

1
(n + 1)α(1 + δ(n + 1))α

=
1
nα

[
1 − α

n
+O

(
1
n2

)][
1 +O

(
1
n2

)]
=

1
nα

− α

nα+1
+O
(

1
nα+2

)
.

(4.38)

Comparing L(tn) and R(tn), we see that, for L(tn) ≥ R(tn), it is necessary to match the
coefficients of the terms n−α−1 because the coefficients of the terms n−α are equal. It means
that we need

−α >
1
2
α
(
k + j − 1

) − 1
2
p∗
(
k + j + 1

)
. (4.39)

Simplifying this inequality, we get

1
2
p∗
(
k + j + 1

)
> α +

1
2
α
(
k + j − 1

)
, (4.40)

and, finally, p∗ > α. This inequality is assumed, and therefore (4.13) that holds n0 is
sufficiently large.

It remains to prove that (4.14) holds for α > 1. But it is a well-known fact that the series

∞∑

i=n0−k+1

1
tαi

=
∞∑

i=n0−k+1

1
iα(1 + δ(i))α (4.41)

is convergent for α > 1.
Thus, all assumptions of Theorem 4.3 are fulfilled and, from the conclusions, we

deduce that all conclusions of Theorem 4.5 hold.

4.3. Time Scale T(t) := {n}
The time scale T = T(t) = {tn}, tn := n, where n ∈ Z

∞
n0−k is a particular case of the previous

time scale defined in Section 4.2 if δ(n) = 0 for every n ∈ Z
∞
n0−k. Then (1.1) turns into

Δy(n) = β(n)
[
y
(
n − j

) − y(n − k)
]

(4.42)

and (4.30), which is crucial for the existence of an increasing and asymptotically convergent
solution, takes the form

β(n) ≤ 1
k − j

− p∗
(
k + j + 1

)

2
(
k − j

)
n

, n ∈ Z
∞
n0−k (4.43)

with a p∗ > 1. Equation (4.42) has recently been considered in [12] and (4.43) coincides with
(3.4) in [12, Theorem 3.3]. Thus, Theorem 4.5 can be viewed as a generalization of Theorem
3.3 in [12]. Moreover, using the following example, we will demonstrate that (4.43) is, in a
sense, the best one.
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Example 4.6. Consider (4.42), where

β(n) :=
1

(n + 1)
∑n−j

i=n−k+11/i
. (4.44)

It is easy to verify that (4.42) has a solution y(n) =
∑n

i=11/i, which is the nth partial sum of
harmonic series and, therefore, is divergent as n → ∞. Now we asymptotically compare the
function β with the right-hand side of (4.43). First we develop an asymptotic decomposition
of β when n → ∞. We get

β(n) =
1

(n + 1)
∑n−j

i=n−k+11/i
=

1
1 + 1/n

· 1
∑k−j

i=1 (1/(1 + ((i − k)/n)))

=
1

1 + 1/n
· 1
∑k−j

i=1 [1 − (i − k)/n +O(1/n2)]

=
[
1 − 1

n
+O
(

1
n2

)]
· 1
k − j

· 1

1 −∑k−j
i=1

[
(i − k)/

(
k − j

)
n +O(1/n2)

]

=
1

k − j
·
[
1 − 1

n
+O
(

1
n2

)]
·
⎡

⎣1 +
k−j∑

i=1

i − k
(
k − j

)
n
+O
(

1
n2

)
⎤

⎦

=
1

k − j
·
[
1 − 1

n
+O
(

1
n2

)]
·
[
1 − k

n
+
k − j + 1

2n
+O
(

1
n2

)]

=
1

k − j
·
[
1 − k

n
+
k − j + 1

2n
− 1
n
+O
(

1
n2

)]

=
1

k − j
− k + j + 1
2
(
k − j

)
n
+O
(

1
n2

)
.

(4.45)

Now, (4.43) requires that

β(n) =
1

k − j
− k + j + 1
2
(
k − j

)
n
+O
(

1
n2

)
≤ 1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

. (4.46)

The last will hold if

− k + j + 1
2
(
k − j

)
n
< −p

∗(k + j + 1
)

2
(
k − j

)
n

, (4.47)

that is, if p∗ < 1. This inequality is the opposite to p∗ > 1 guaranteeing the existence of an
increasing and asymptotically convergent solution. The example also shows that the criterion
(4.43) is sharp in a sense. We end this part with a remark that Example 4.6 corrects the
Example 4.4 in [12], where the case j = 0 and k = 1 was considered.
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4.4. Time Scale T(t) := {qn}, q > 1

We will focus our attention on the sufficient conditions for the existence of an increasing
and asymptotically convergent solution y : T → R

+ of (1.1) if the time scale is defined as
T = T(t) = {tn}, tn := qn, where n ∈ Z

∞
n0−k and q > 1. We will apply Theorem 4.4.

Theorem 4.7. Let (4.20) hold for

c :=
1

k − j
, p :=

p∗
(
k + j + 1

)
ln q

2
(
k − j

) , (4.48)

where p∗ > 1, that is, the inequality

β(tn) ≤ 1
k − j

− p∗
(
k + j + 1

)
ln q

2
(
k − j

)
ln tn

=
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

(4.49)

holds for all n ∈ Z
∞
n0−k. Let, moreover, α ∈ (1, p∗). Then there exists an increasing and asymptotically

convergent solution y : T → R
+ of (1.1) satisfying (4.23) for n ∈ Z

∞
n0
. Such a solution is defined, for

example, by the initial function (4.24).

Proof. Weuse Theorem 4.4 and assume (without loss of generality) that n0 is sufficiently large
for the asymptotic computations performed below to be correct. Let us verify (4.21). For the
right-hand side R(tn) of (4.21), we have

R(tn) =
n−j∑

i=n−k+1

[
1

k − j
− p∗

(
k + j + 1

)
ln q

2
(
k − j

)
ln ti−1

]
1

(ln ti)
α

=
1

k − j

n−j∑

i=n−k+1

1
(ln ti)

α − p∗
(
k + j + 1

)
ln q

2
(
k − j

)
n−j∑

i=n−k+1

1
(ln ti−1)(ln ti)

α

=
1

k − j

n−j∑

i=n−k+1

1
iα
(
ln q
)α − p∗

(
k + j + 1

)
ln q

2
(
k − j

)
n−j∑

i=n−k+1

1

(i − 1)iα
(
ln q
)α+1

=
1

(
k − j

)(
ln q
)α

n−j∑

i=n−k+1

1
iα

− p∗
(
k + j + 1

)

2
(
k − j

)(
ln q
)α

n−j∑

i=n−k+1

1
(i − 1)iα

=
[
we apply decompositions (4.32) and (4.34)

]

=
1

(
k − j

)(
ln q
)α
nα

n−j∑

i=n−k+1

[
1 +

α(n − i)
n

+O
(

1
n2

)]

− p∗
(
k + j + 1

)

2
(
k − j

)(
ln q
)α
nα+1

n−j∑

i=n−k+1

[
1 +O

(
1
n

)]
.

(4.50)
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Finally, applying some of the computations from the proof of Theorem 4.5, we get

R(tn) = 1
(
ln q
)α
nα

+
α

2
(
ln q
)α
nα+1

(
k + j − 1

) − p∗
(
k + j + 1

)

2
(
ln q
)α
nα+1

+O
(

1
nα+2

)
. (4.51)

and, for the left-hand side L(tn) of (4.20),

L(tn) =
1

(
ln q
)α(n + 1)α

=
1

(
ln q
)α
nα

− α
(
ln q
)α
nα+1

+O
(

1
nα+2

)
. (4.52)

Comparing L(tn) and R(tn), we see that, for L(tn) ≥ R(tn),

− α
(
ln q
)α >

α
(
k + j − 1

)

2
(
ln q
)α − p∗

(
k + j + 1

)

2
(
ln q
)α (4.53)

is sufficient. Simplifying it, we get

p∗
(
k + j + 1

)
> α
(
k + j + 1

)
, (4.54)

and, finally, p∗ > α. This inequality is assumed, and therefore (4.21) is valid if n0 is sufficiently
large.

It remains to prove that (4.22) holds for α > 1. But it is a well-known fact that the series

∞∑

i=n0−k+1

1
(ln ti)

α =
∞∑

i=n0−k+1

1
iα
(
ln q
)α (4.55)

is convergent for α > 1.
Thus, all assumptions of Theorem 4.4 are true, and, from its conclusions, we deduce

that all conclusions of Theorem 4.7 are true.

Example 4.8. Consider (1.1), where

β(tn) :=
1

(n + 1)
∑n−j

i=n−k+1
(
ln q
)
/(ln ti)

=
1

(n + 1)
∑n−j

i=n−k+11/i
. (4.56)

Then it is easy to verify that (1.1) has a solution

y(tn) =
n∑

i=1

ln q
ln ti

=
n∑

i=1

1
i
, (4.57)

which is the nth partial sum of harmonic series and, as such, is divergent as n → ∞. Now
we asymptotically compare the function β with the right-hand side of (4.49). Proceeding as
in Example 4.6, we get

β(tn) =
1

k − j
− k + j + 1
2
(
k − j

)
n
+O
(

1
n2

)
. (4.58)
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Inequality (4.49) is valid if

β(tn) =
1

k − j
− k + j + 1
2
(
k − j

)
n
+O
(

1
n2

)
≤ 1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

, (4.59)

that is if p∗ < 1. This inequality is the opposite to p∗ > 1 guaranteeing the existence of
an increasing and asymptotically convergent solution. Thus, the example also shows that
criterion (4.49) is sharp in a sense.

4.5. A General Criterion for the Existence of an Increasing and
Asymptotically Convergent Solution

Analysing two criteria for the existence of an increasing and asymptotically convergent
solution y : T → R

+ of (1.1) expressed by (4.12) and (4.20), that is, by inequalities

β(tn) ≤ c − p

tn
,

β(tn) ≤ c − p

ln tn

(4.60)

with suitable constants c and p, we can state the following. The first criterion (4.12) can
successfully be used, for example, for the time scale T(t) = {tn}, where tn = n. In this case, as
stated in Theorem 4.5, (4.30), that is,

β(tn) ≤ 1
k − j

− p∗
(
k + j + 1

)

2
(
k − j

)
tn

=
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

(4.61)

is assumed with a p∗ > 1.
The second criterion (4.20) can successfully be used, for example, for the time scale

T(t) = {tn}where tn = qn and q > 1. Then, as stated in Theorem 4.7, (4.49), that is,

β(tn) ≤ 1
k − j

− p∗
(
k + j + 1

)
ln q

2
(
k − j

)
ln tn

=
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

(4.62)

is assumed with a p∗ > 1. Comparing (4.61) and (4.62), we see that, although their left-hand
sides are different due to different meaning of tn in every case, their right-hand sides are
identical.

The following result gives a criterion for every discrete time scale T(t) = {tn} with
properties described in introduction.

Theorem 4.9. Let

β(tn) ≤ 1
k − j

− p∗
(
k + j + 1

)

2
(
k − j

)
n

(4.63)

holds for all n ∈ Z
∞
n0−k and for a fixed p

∗ > 1. Let, moreover, α ∈ (1, p∗). Then there exists an increasing
and asymptotically convergent solution y : T → R

+ of (1.1) satisfying

y(tn) ≤
n∑

i=n0−k+1

[
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
(i − 1)

]
1
iα

(4.64)
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for every n ∈ Z
∞
n0
. Such a solution is defined, for example, by the initial function

ϕ(tn) :=
n∑

i=n0−k+1

[
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
(i − 1)

]
1
iα
, n ∈ Z

n0
n0−k. (4.65)

Proof. We will apply Theorem 4.2 with

β∗(tn) :=
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

, ε(tn) :=
1
nα

. (4.66)

Inequality (4.5) turns into

ε(tn+1) =
1

(n + 1)α
≥

n−j∑

i=n−k+1
β∗(ti−1)ε(ti) =

n−j∑

i=n−k+1

[
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
(i − 1)

]
1
iα
. (4.67)

Asymptotic decompositions of the left-hand and right-hand sides were used in the proof of
Theorem 4.5 (if δ(n) = 0, i.e., tn = n for every n ∈ Z

∞
n0−k) and a similar decomposition was

used in the proof of Theorem 4.7. Therefore, we will not repeat it. We will only state that the
above inequality holds for p∗ > α. (4.6) holds as well because the series

∞∑

i=n0−k+1

[
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
(i − 1)

]
1
iα

(4.68)

is obviously convergent.

Remark 4.10. Although Theorem 4.9 is a general result, it has a disadvantage in applications
because of its implicit character. Unlike (4.61) and (4.62), where the left-hand and middle
parts are explicitly expressed in terms of tn, the right-hand side of the crucial inequality (4.63)
cannot, in a general situation of arbitrary time scale {tn}, be explicitly expressed using only
the tn terms. This is only possible if, for a given time scale, a function f is explicitly known
such that f(tn) = n. Then, (4.63) can be written in the form

β(tn) ≤ 1
k − j

− p∗
(
k + j + 1

)

2
(
k − j

)
f(tn)

=
1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

. (4.69)

Remark 4.11. On the other hand, in a sense, Theorem 4.9 gives the best possible result. Indeed,
(1.1) with

β(tn) :=
1

(n + 1)
∑n−j

i=n−k+11/i
(4.70)

has an increasing asymptotically divergent solution y(tn) =
∑n

i=11/i. An asymptotic decom-
position of the right-hand side of (4.70)was performed in Example 4.6 and an increasing and
asymptotically convergent solution exists if (4.63), that is,

β(tn) =
1

(n + 1)
∑n−j

i=n−k+11/i
≤ 1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

(4.71)
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holds, or if

β(tn) =
1

k − j
− k + j + 1
2
(
k − j

)
n
+O
(

1
n2

)
≤ 1

k − j
− p∗

(
k + j + 1

)

2
(
k − j

)
n

. (4.72)

The last holds for p∗ < 1. This inequality is the opposite to p∗ > 1 guaranteeing the existence
of an increasing and asymptotically convergent solution. Thus, the example shows that our
general criterion is sharp in a sense.

Acknowledgments

This research was supported by the Grant P201/10/1032 of the Czech Grant Agency
(Prague), by the project FEKT-S-11-2(921) and by the Council of Czech Government MSM
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