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1. Introduction. In these lectures I am going to describe several com
plimentary methods which have been used in the past to analyze lattice 
dynamics, to indicate some of the ways these methods have been ap
plied to study irreversibility in simple lattices, and to contrast these ap
proaches with more recent nonlinear results. One of my objectives will 
be to point out that the recent successes in nonlinear lattice dynamics 
has so far proved to be a mixed blessing in clarifying several aspects of 
irreversibility. The two aspects of irreversibility I will consider are 
those related to the temporal relaxation to equilibrium and the spatial 
problem of lattice thermal conductivity. Both of these are, of course, 
closely (if mystically) connected with the classic ergodic and mixing 
problems of statistical mechanics, as well as to each other, at least ac
cording to the Kubo [8], [18b], fluctuation-dissipation concepts. It is in 
this context that many of the recent advances in both stochastic dynam
ics and soliton concepts may offer an opportunity for significant ad
vances in our understanding of the origin of irreversibility. 

While conceptual difficulties associated with the relationship between 
analytical dynamics and statistical irreversibility have been evident 
since the work of Boltzmann (see, e.g., [5]) the case of lattice dynamics 
presents both unique problems as well as analytic opportunities. A lat
tice is distinguished from a gas or liquid by the fact that the atoms 
maintain their relative spatial order in the course of time. This proper
ty permits nearest-neighbor interaction approximations, which yield a 
simple linear normal mode description of lattice dynamics, and is also 
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responsible for the one-to-one (nonlinear) transcription from the La-
grangian to the Eulerian representation of lattice dynamics. This latter 
continuum description, involving nonlinear partial differential equations, 
has generated a major area of mathematical research in recent years, 
centering around coherent nonlinear disturbances ("solitons"). The re
discovery of these nonlinear disturbances, originally studied in hydro
dynamics, had its genesis in the present context in the nonergodic be
havior of one-dimensional lattices, noted in computer calculations made 
by Fermi, Pasta, and Ulam [61] before 1955. It is interesting to note 
the interplay here between the question of the temporal relaxation to 
equilibrium (the FPU problem) and the spatial transport of energy (soli-
ton picture). This field of continuum research has, of course, expanded 
greatly during the past ten years with the discovery of many beautiful 
analytic results, such as the inverse scattering technique (Gardner, 
Greene, Kruskal, Miura [43], [44]) and a wide variety of appli
cations—as is attested to by this conference. Fortunately many of these 
results have been reviewed quite clearly in the literature (see refer
ences) and need not be discussed here. 

My concern here will be to discuss some of the ways in which these 
results have clarified (or mystified!) our understanding of irreversibility 
in lattices. It does not require any great insight to appreciate that soli-
tons are in fact the antithesis of a "resistance" to the energy flux 
through a lattice, in analogy to a gas of free particles (Knudsen gas), 
because they describe noninteracting collective degrees of freedom. 
Thus the occurrence of "perfect" nonlinear dynamics is as "non-mixing" 
as harmonic motion, so the origin of irreversibility in a lattice depends 
upon the demise of the simplistic picture of noninteracting coherent 
disturbances traveling through a nonlinear lattice. This statement, of 
course, rests upon the assumption that the conventional wisdom (as ex
pressed for example by Fourier's Law of heat conduction) is indeed 
valid for perfect infinite lattices. In any case these nonlinear results 
should yield in the future important insights into the origin of statistical 
irreversible lattice dynamics, which will complement the historic linear 
techniques. 

To clarify the contributions of these nonlinear results, as well as their 
present limitations, it is necessary to begin with a brief review of the 
methods used to analyze the harmonic lattice. It is from this basis that 
most of the detailed theories of irreversibility and stochastic behavior 
have been developed, with the aid of various perturbation methods. To 
simplify matters the description which will be presented will be largely 
(but not entirely) limited to one-dimensional lattices. The extension of 
some of these results to higher dimensions and more general lattice 
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structures is not generally a trivial affair, particularly in the nonlinear 
aspects (for harmonic generalizations, see the general references). The 
mathematical problems however are already quite formidable in the 
one-dimensional system, and the question as to the "realistic behavior" 
of such models can be viewed as somewhat secondary to the primary 
conceptual problem of understanding their irreversible properties. It is 
largely in that spirit that the following discussion will be conducted. 

§ 2 contains an elementary introduction to lattice dynamics, primarily 
to introduce notation. § 3 contains some of the historic concepts con
cerning energy transport through lattices which have dominated past 
theoretical considerations (I might add that I have not done justice to 
theories of the past five to ten years. See, e.g., reviews in Horton and 
Maradudin [7]). In § 4 various results from computer calculations of 
energy transport are presented, with a brief examination of soliton ef
fects and contributions. The famous Fermi-Pasta-Ulam problem, the 
grandfather of this conference, is discussed in § 5. Because I believe 
that this is a very fundamental problem, I have examined it from sever
al points of view. The very interesting and basic area of stochastic dy
namics is touched on only briefly in § 6. Its interface with soliton dy
namics is presently a nearly virgin field of research. In § 7 I have 
attempted to summarize a number of questions and comments raised in 
these lectures, which I feel are of particular interest for future research. 
Perhaps this potpourri will be of some assistance to mathematicians 
looking for further applications of soliton concepts and needed general
izations. 

2. One-Dimensional Lattices. As mentioned above, much of the fol
lowing will be limited to one-dimensional lattices (chains). For more 
general descriptions, involving higher dimension, various lattice struc
tures, boundary and disorder effects, etc., see the general references. 
Some limited references will be made below concerning higher dimen
sional cubic lattices, but it is a matter of some optimistic/ faith that 
one-dimensional systems should contain many of the "essential features" 
required to produce ergodicity, irreversibility, and the like. It is very 
doubtful, because of the severely limited dynamical freedom imposed 
by one-dimensional motion, that all irreversible properties can be prop
erly accounted for in such systems. Thus the present discussion should 
be viewed with some reservation concerning its relevance to real solids. 
Nonetheless such investigations are basic to a more fundamental under
standing of irreversibility. 

In the Lagrangian description of a lattice the position, xn(t), and ve
locity, xn(t) = dxjdt, of the nth particle are functions of the indepen-
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dent variable t. Let h be the interparticle distance, and yn(t) the dis
placement from its equilibrium position, so that 

xn(t) = nh + yn(t) ( n = l , . - . , 2 V ) 
(2 .1) 

Vn+i - î/n = ~h (ordering condition) 
where there are N degrees of freedom. If mn is the mass of the n'th 
particle, and there are only nearest neighbor forces (see below) which 
are all the same, then the equations of motion are 

(2 2) m^n^ = F ( ? / n + 1 ~ Vn) 

- % n - î/n-i) (n = 1, '"'Hi
Note the order of the displacement variables in the force F(z). It should 
perhaps be emphasized at this point that these equations are time re
versible (e.g., they contain no dissipative friction), and that the "irrever
sibility" used throughout has only a statistical (ensemble) significance. 
The most common forms of the forces which have been used to study 
nonlinear lattices are: 

(2.3) Polynomial: F(z) = ju,(z + K2z
2 + K^T? + • • •) 

Lennard-Jones approximation: K2 = —10.5, K3 = 371/16 

(2.4) Piecewise linear: F(z) — iifz (zf^z^ zf+1; i — 1, 2, • • • ) 

(2.5) Harmonic-plus-Hard-core (HHCj: F(z) = \iz, z> —b 
= —oo, z = — b 

(2.6) Exponential (Toda Lattice): F(z) = a (1 — exp( — bz)) 
(i.e., ii = ab, Kn = (-fo)»-i/n! in (2.3)) 

A remarkable feature of the exponential lattice (among many remark
able results, see Toda 14]) is that this nonlinear system is apparently 
completely integrable for suitable boundary conditions. This in-
tegrability arises because the N analytic constants of the motion discov
ered by Hénon [85] are in involution, and can therefore yield the re
maining N constants (see [17, p. 323]). It is not obvious, however, that 
these additional constants are analytic or single-valued functions—which 
is presumably relevant with regards to irreversible behavior. This offers 
a unique opportunity to probe the relationship (and folklore) between 
constants of the motion and irreversibility. This topic will be discussed 
below. 

An extension of (2.2) to longer range forces (which, for example, are 
of critical importance in explaining compressibility properties of real 
solids) would be 
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N-n+1 n 

(2-7) mnyn = 2 Fk («/„+* - « / * ) - 2 F^yn - ?/»-*)• 
kzzl h—1 

A basic constant of the motion (the energy) is 

(2.8) H = 2 Kfc.2 + 2 v*(</„+* - y») 

where Vk(z) is the potential energy, related to the function F(z) by 

(2.9) Fk(z) = + dVk/dz. 

The use of such extended forms of the equations of motion appears to 
have been very limited to date, and may represent a very interesting 
future line of research. 

The harmonic lattice corresponds to the case Kn = 0 in (2.3), and if 
one introduces the dimensionless time 

(2.10) T = 2 y > / m t = co0t 

for the monatomic lattice (mn = m), then (2.2) reduces to 

(2.11) U*) = V4(ïn+1 + »n-1 - 2?/TC). 

À normal mode solution of these equations consists of the special solu
tion yn = ak(r)eikn where the normal mode, ak{r), is simple harmonic 

(2.12) ak = -iok
2ak; <ofc = sin (fc/2). 

If one sets k = ich (h given in (2.1)), then K is called the wave num
ber, and the group velocity of the waves is given by 

(2.13) vg = j - \ - j - % sin(Kfc/2) = vt cos(Kh/2) 

where vs = hi/p/mis the sound speed. It will be noted that the group 
velocity decreases with large K (shorter wavelength)—a phenomena 
which disperses a localized spatial disturbance because it must contain 
large values of k. The property is fundamental to harmonic lattices, and 
has numerous repercussions, as will be seen (e.g., Figure 2.3). 

The general solution of (2.11) is 

,ikn (2.14) yn= 2a*(*y 

Note that a_k = ak* is required by the reality of yn. The allowed val
ues of k in the summation (2.14) are determined by the boundary con-
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ditions y0(t) and yN+1(t). Several common boundary conditions, and re
sulting values of k, are: 

Free Ends: y0(t) = yx{t); yN+1(t) = y^t) 

(2.15) k=fa/N(t = 0, 1, • • • , N - 1); 

yn= yr2/N^akcos((2N - l)Jk). 

Periodic (Born-von Karman): yn+N{t) = yn(t) 

(2.16) k = 277//JV, (-2V/2 ^ / ^ 2V/2); 

yn=l/y/N2ake"«. 

Fixed Ends: y0 = 0 i/^^j = 0 

(2.17) k = /TT/(ÌV + 1) (/ = 0, • • -, N); 

y n = V 2 / ( i V + l ) 2a fcsin(fcn). 

Several elementary points should be noted. The boundary conditions do 
not influence the functional form of the frequencies cok, (2.12), but only 
slightly shift the values of k—a feature of presumably little irreversible 
consequence. The periodic boundary condition, which is very popular 
due to its simplicity, is clearly inappropriate for the description of heat 
conduction (where the two ends of the lattice are in contact with ther
mal reservoirs at different temperatures, and hence not equivalent). 
This point is frequently ignored, but it is an example of the difficulty 
which arises in describing spatial inhomogeneity, while at the same 
time trying to ignore the necessary correlations which must thereby ex
ist between these normal modes. 

It is possible to introduce modes which have a certain degree of in
homogeneity incorporated in their definition (through their boundary 
condition). An example which I considered ten years ago is the "vis-
cous-antiviscous" boundary conditions. 

Vo-yi = Miîfi; ïjv+i - yN = fcvSfor 
(2.18) 

MiJ% = - !>• (Mi + /% ^ °)-

In the physical terms, one end particle is in a frictional fluid (negative 
/i) whereas the other end continually receives energy ("antiviscous"). 
This can be seen by substituting (2.18) into (2.11) for n = N and n = 1. 
This model has a dynamical irreversible coupling to the outside world, 
in contrast to a statistical coupling to a thermal reservoir. An appli
cation of this model will be given below. 

If the normal modes (2.15-2.17) are substituted into the appropriate 
Hamiltonian (2.8), and the dimensionless time (2.10) is used, one obtains 
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where the quantities 

.. Ek = k K*-* + "k2aka-klfor (2-16); 

or Ek - l-(ófc
2 + Jak% for (2.15) and (2.17) 

are frequently referred to as the energy of the normal modes, even in 
the cases where there are nonlinear forces (and hence there is an inter
action energy between the normal modes). Much of the computer anal
ysis of nonlinear lattices has been presented in terms of the behavior of 
the functions Ek, which are constant in the harmonic lattice. The ratio 
Nk = Ekfiœk is the (semi-classical) representation of the "number of 
phonons", with wavenumber k. 

If the more general harmonic interaction, corresponding to nonlocal 
forces (2.7), is used so that (2.11) is generalized to 

JV-n+l - n 

(2.21a) i/„ = - 2 Y/</„+ , - « / „ ) - j 2 Y/Î/„ - «/„_,) 
4 / = i 4 / - l 

the frequencies of the normal modes ak(r) are formally given by 

(2.21b) <ofc
2 = 2Y/Sin2(fc//2). 

The satisfaction of boundary conditions, however, now becomes a 
much more complicated proposition. This form of the frequency begins 
to exhibit some of the complexity of real solids. In particular, it is not 
necessarily a monotonie function of k—a point of possible importance 
in the theory of heat conduction (e.g., see the L curve in Figure 2.2). It 
clearly can also have a considerable effect on the group velocity, (2.13). 

Another description of the dynamics of harmonic lattices which is 
frequently used is in terms of the action-angle variables (Jk, 0k), defined 
by 

(2.22) àk = ( 2 V , ) 1 ' 2 cos ek, ak = (2/ fc/w,)1/2 sin 8k. 

The harmonic Hamiltonian is then simply H = 2^.0)^, and the equa
tions of motion are 

(W ;,= - f = ». ». = f - . . 
Thus tne action is constant, and the angle is proportional to the time. 
Since the physical state is identical modulo 277 in the angle variable, 
the action-angle description can be viewed as an iV-dimensional 
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Optic 

7T k 

Figure 2.1. Normal mode frequency spectrum for a one-dimensional diatomic lattice. 

Figure 2.2. Schematic frequency spectrum for the longitudinal and transverse modes of 
a three-dimensional lattice as a function of one component of the wave vector. 

torus—a point of view frequently emphasized in the Russian literature. 
A generalization of the frequency spectrum (2.12) is illustrated in 

Figure 2.1. In the case of a diatomic one-dimensional lattice, there are 
two modes of oscillation called the optic and acoustic branch. A typical 
displacement, (2.14), is illustrated in each case. The expression for the 
(dimensional) frequencies is now 

(2.24) + 
(1 + cos k)2 

*1'"2 
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which reduces to a "folded" version of (2.12) if m1 = ra2 (see general 
references). It will be noted that the group velocity of the optic branch 
is very small, and hence these modes are not directly effective in trans
ferring energy through a lattice. Another generalization is shown in 
Figure 2.2. In this case the lattice is a monatomic three dimensional 
lattice, so that there are two transverse and one longitudinal branches. 
These frequency spectra are at the heart of much of the historic devel
opment of irreversible results, as I will outline below. 

In considering lattice systems involving large numbers of particles, 
two limiting situations should be clearly distinguished, namely the ther
modynamic limit 

N —» oo, L —* oo, L/N = h (finite) 
(2.25) 

o)k = co0 = 2 v/x/ra (frequency spectrum 
becomes dense); 

and what I will call a continuum limit: 

(2.26) 
N-+ oo, m -»0 Nm =M (finite); h -+ 0 Nh = L (finite) 

jit —*oo, ixh2/m = v2 (finite); cofc —* co0k/2 
(uk become uniformly spaced, hence commensurable). 

The effect of these two limits on the frequency spectrum is illustrated 
in Figure 2.3 (note that the / intervals are uniformly spaced, and the k 
intervals become dense). The thermodynamic limit simply consists of a 

N/2 I 

Thermodynamic Limit 

N/2 i 

Continuum Limit 

Figure 2.3. Frequency spectrum in the two limits (2.25) and (2.26). 
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larger system, thereby hopefully reducing the influence of boundary ef
fects. It is this limit which is normally considered in the study of statis
tical (e.g., irreversible) properties. It is also the limit in which phonons 
can be treated semiclassically (because the energy spectrum, ficok, be
comes dense). The continuum limit on the other hand involves changing 
properties of the system (ra, \x, h) so as to remove its discrete particle 
characteristics, and making it closer (in some sense) to a fluid system. It 
is this limit (or some generalization) which has been used in recent 
years to obtain the Korteweg-deVries, the Boussinesq, and other non
linear partial differential equations from the lattice equations (2.2). This 
limiting process will be considered in greater detail below. In particu
lar, note that (2.26) does not specify what limits should be used for the 
nonlinear coefficients Kn in (2.3) and (2.6), and hence does not fully de
fine a limiting process. 

Finally I would like to review briefly a solution of (2.11) apparently 
known to Hamilton (but unpublished) and discovered by Schrödinger, 
among others (see [12, p. 668 ff\, for a historical survey). This solution 
contrasts with the normal mode solution in that it is appropriate for the 
description of a localized disturbance, rather than the nonlocal normal 
modes. This is particularly interesting in light of the localized nonlinear 
solutions which are now known. The connection between these soliton 
solutions and the following localized solutions has not been made to 
date, and represents an interesting and possibly enlightening study. The 
solutions result from introducing the functions 

(2.27) z2n = Vmyn; z2n+1 = VM (î/n ~ î/n+i) 

in the harmonic equations 

myn = Kyn+i - yn) - KVn - y»-i) 

and showing that these functions satisfy the equations 

(2.28) * » = £(*•.-! " V u ) (»Un) 

where r is the dimensionless time (2.10). The equations (2.28) will be 
recognized as the recurrence relation for Bessel functions, so that the 
solution which is finite at T = 0 is 

00 

*»M = 2 xJO) Jn_Jr). 
m=—oo 

Thus, for example, if only one particle is initially disturbed, so that 

*/n(°) = V08n0> t h e n Z2n(°) = V ™ V0ôn0> a n d î/n(T) = V 2 » ~ V V^ 

Such a simple result would be quite difficult to obtain using normal 
modes. The beauty of the solution (2.29) is somewhat complicated when 
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boundary conditions are taken into account. Thus, if particle n = 1 is 
free, then Yt(t) — y0(t) = 0 = zx(r) must hold. This condition will be 
satisfied for all times if the initial conditions 

(2.30) *i - J0 ) = ( - l ) m + 1 A 1 + J0) (m = 1, 2, • - •) 

are imposed in (2.29). To illustrate this with the above example, assume 
that the end particle initially receives an impulse, so that t/n(0) — vfì^ 
and all t/n(0) = 0. One finds that in this case 

(2.31) yn(r) = vt2(2n - 1) / ^ M / T 

which asymptotically proportional to 2v1(2n — 1 ) /T 3 / 2 . This is very dif
ferent from the infinite lattice result noted above (r~1/2). This differ
ence is a consequence of the fact that the harmonic lattice does not 
"forget" its boundary condition, even in the thermodynamic limit 
(2.25)—a point which will recur below. This solution is illustrated in 
Figure 2.4, and it exhibits the dispersive character of the harmonic lat
tice due to the variable group velocity, (2.13). It is this dispersive prop-

yn 

0.5 h t = 2 
y, (2) = 1.09 

A 

i 
i 

i 

• \ / 5 

• 

t 

. y 

I s 

= 5 
(5) = 1.02 

i i i 

10 

t = 12 
y (12) =1/003 

^ - ^ n 

Figure 2.4. The Schrödinger solution (2.29) in a semi-infinite lattice for an initial im
pulse on the left end (vx = 1). Here t = T/2 is used, to compare with the sound velocity 

which is one unit per (t) seconds. 
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erty which is counteracted by the nonlinear forces in forming solitons. 
The figure also contains the value of y^t) — 2n/2n(f), showing that the 
harmonic lattice remains compressed—a point that also occurs with res
ervoir interactions (§ 4). 

We note finally that the equations (2.28) admits the following con
stants of the motion (for an infinite system) 

00 

(2.32) Im — 2J ZnZn+m' 
nzz—oo 

These constants were used by Brout and Prigogine [4] and will be rele
vant in the discussion of energy transport through harmonic lattices. 
We now turn to the transport considerations. 

3. Classic Concepts of Energy Transport. One of the major appli
cations of lattice dynamics which interests physicists is in the problem 
of energy flux due to the lattice motion. Historically this field dealt 
mostly with the problem of lattice thermal conductivity, but in recent 
years interest has also extended to large amplitude coherent excitations, 
second sound, and other "exotic" problems (see the references for a few 
examples). Actually some of the "exotic" problems are more easily ana
lyzed than the historic problem of lattice thermal conductivity, which 
not only involves nonlinear dynamics, but statistical considerations, spa
tial inhomogeneity, and coupling of the lattice with thermal reservoirs 
(for a stationary state). Indeed this transport problem has the unique 
complication, both analytical and conceptual, of involving a spatial in
homogeneity in a statistical quantity, the "temperature"—which is an 
equilibrium concept. While such difficulties are presumably of little 
pragmatic concern, they have recurred repeatedly in various disguises 
in theoretical treatments ever since the classic theory was developed by 
Peierls [33] in 1929. This theory was a clever application (to phonons) 
of the concepts which had been developed by Boltzmann so successfully 
in the theory of gas dynamics. However this theory loses a great deal 
of the intuitive appeal enjoyed by Boltzmann's theory due to the non
local nature of normal modes, as contrasted with gas molecules. Thus 
for example, the introduction of localized wave packets to define local 
properties encounters difficulties if "mean free paths" are shorter than 
normal mode wave lengths (see, e.g., Ziman [18] for some discussion 
and references). The recent development of solitons reintroduces this 
feature of localization, but at the expense of much of the "interactions" 
in the lattice—and hence a loss of irreversibility. It thus appears that 
the theory of lattice thermal conductivity is damned if it does and 
damned if it doesn't localize the lattice disturbances. This point will be 
encountered in several mathematical problems below. 
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The energy flux can be established most completely through the use 
of the conservation of energy. If tf(x, t) is the energy density and J(x, t) 
is the energy flux density, then the conservation of energy is expressed 
through the equation 

Following Hardy [22], if one introduces a differentiate, localized 5-
type function A(x — x{) > 0 which is normalized to unity, 
Jl0^ A(x — Xi) dx = 1, then the energy density can be written in the 
transparent form 

(3.2) t\x, t) = 2 A(x - *„(*)) { i mn±„2 + \ 2 V(X/ - * „ ) ) . 
n-1 v ^ * ten J 

If this is substituted into (3.1), then it can be shown that, for the poten
tial V(z) — jLt(V2 z

2 — fc/3 z3) (corresponding to the polynomial force 
(2.3)), the total energy flux in the entire lattice 

(3.3) ftt)= £j{x,t)dx 

is given by 

N , N-1 ç 1 

2 r . . V 2 ' (*n+l + *») i -O/n+1 + î/n)2 

& n-L V. 4 
f(t,N) 

(3-4) - | (y, n+1 !/n) J 

- 2 £ (*n+l + ^nKî/n+1 ~ î/n ~ * % n + l ~ î/n)2} 

where the dimensionless time (2.10) has been introduced, and the flux 
normalized to mv3 (t>s, the sound speed, (2.13)). One of the con
sequences of lattice ordering is that the first two summations in (3.4) do 
not contribute significantly to the lattice thermal conductivity (as they 
do in gases), so that one can consider only the total "lattice energy 
flux", defined as 

hit, AO = - 2 2 (jfw+i + yn)
F(yn+i - yn) 

= - 2 ö (Sfn+i + yn){(yn+i - yn) - K(yn+i - Î / J 2 ) -
n = l Zi 
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Moreover, historically (e.g., in Peierls' theory) only the harmonic por
tion of (3.5) was considered, 

N-l 

fmit> N)= - 2 ö (*n+i + yn)(yn+i - yn) 
n~l £ 

(3.6) 

3ft 
•cii,a k"-k-

As can be seen from a computer calculation of JL and JHL, shown in fig
ure 3.1, the harmonic contribution to the energy flux, fHL, need not be 
the dominant contribution to the total lattice energy flux, fL, which 
casts doubts on some theories from the outset. This also shows up dra-

Figure 3.1. The total energy flux in an equilibrium nonlinear lattice, fL, and the usual 
harmonic approximation, JHL, at concurrent times. 
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matically in the comparison of the time averaged equilibrium values of 
P, (3.4), and ff^ (Jackson, Pasta, and Waters [24]), namely 
(Py = 5.2 <)^>. This fact does not seem to be widely appreciated in 
the literature. 

Irreversibility, as it occurs in lattice thermal conductivity is presum
ably expressed through Fourier's statistical law of heat conduction 

(3.7) (J) = -KTVT(x) 

where KT is called the coefficient of heat conductivity. Here the quan
tity (/) signifies a "short" time average of the / appearing in (3.1). It is 
the time averaged energy flux of course which is observed experimen
tally. 

One implication of (3.7) is that Kj(N) associated with a finite lattice 
should become an intrinsic ("intensive") property of the lattice as N 
goes to infinity (the thermodynamic limit, (2.25)), that is 

lim KjiN) - lim QL(t, N))/(AT/N) 
N-oo N-+O0 

(3.8) 
= lim (JL(t,N))/AT =KT(finite) 

N-+O0 

where AT is the temperature difference between the two thermal res
ervoirs at the ends of the lattice and </) again represents a time aver
aged flux. The basic problem is to understand for what lattice systems 
(3.7) is indeed satisfied, and to predict the values of KT in terms of the 
interparticle forces. 

Presumably the "temperature" in (3.7) should be defined dynamically 
in terms of the time averaged energy density (3.2) by the relationship 
(for the one-dimensional system) 

(3.9) kBT(x)/h = (é>(x, t)) 

where kB is the Boltzmann constant and h is the interparticle spacing 
(2.1). Legitimate questions can be raised as to whether this is the tem
perature actually measured in any experiment, which is normally sensi
tive only to the local kinetic energy. The condition (3.8) avoids this 
problem by using the reservoir temperatures. However (3.8) is thereby 
only a necessary and not sufficient condition for (3.7) to be valid, be
cause the latter involves the internal temperature gradient. Indeed (3.8) 
is not even necessary unless the boundary thermal resistance, 
Rb = (AT)b/(jy (b = boundary), is also an intrinsic property of the lat
tice reservoir interface. These points are raised not to complicate mat
ters, but simply to show that the matter is complicated—even to de-
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fine! This is unfortunate, because the dynamic origin of irreversibility is 
sufficiently baffling in itself without having the additional weight of in
decisive definitions. These difficulties are, of course, usually bypassed so 
that practical theories suitable for real solids, which presumably contain 
many generators of irreversibility (defects, impurities, boundary scatter
ing, etc.), can be roughly estimated (e.g., see the recent book by Parrott 
and Stuckes [3]). 

The present concern centers on the detailed dynamic behavior of 
(possibly unrealistic) one-dimensional lattices, and the degree to which 
they satisfy Fourier's law (3.7). It does not appear to me that this ques
tion has been clarified significantly since, for example, Kirkwood asked 
Brout "Does a one-dimensional crystal have a finite thermal con
ductivity?" some twenty years ago (in [34, p. 139]). Or, to be more ac
curate, it does not appear that any basic theory can answer "yes" to 
the above question, despite computer calculations which give some evi
dence that it might be true. 

The most elementary picture of heat conductivity (Debye) yields, in 
analogy with the kinetic theory of gases, KT = CvJ/3, where C is the 
specific heat capacity, v8 the velocity of sound and / a "mean free 
path". In terms of a "relaxation t ime" T = l/v8 of a normal mode, and 
taking into account their differing group velocities, (2.13), this becomes 

(3.10) KT = \ f C(co)t)/ (<o)r(<o)g(co) dœ 

where g(co) is the density of normal modes. 

In this type of expression, the fundamental problems rest on the com
bined use of the harmonic normal modes and the adequacy of the con
cept of their "relaxation time", T(O>). This concept has its origin in tran
sition probabilities obtained frequently from second order perturbation 
theory (Fermi's "golden rule") and is closely associated with Fermi's in
terest in the computer calculations made by Fermi, Pasta and Ulam to 
be discussed below (§ 4). 

In a harmonic lattice the normal modes do not interact so that their 
relaxation time is infinite. This gives rise to the misleading statement 
that a harmonic lattice has an infinite heat conductivity, when in fact it 
simply means that Fourier's law (3.7) is not valid. The correct state
ment is that JL(r, N) is finite, so that the limit in (3.8) is infinite. In an 
infinite harmonic lattice this lack of "resistance" to an energy flux is 
clear from the first constant of the motion in (2.32), because 

dljdt = dfHL(t, oo)/dt - 0 

where JHL is given in (3.6). 
The fact that the energy transport through a harmonic lattice is not 
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related to the local kinetic energy is nicely illustrated by the "viscous-
antiviscous" boundary conditions (2.18). Using 

(3.11) </„> - l i m - i - £T (f/l + y0)(y0 - yd dt 

it is easy to show that 

(a) sign </„> = sign Ml; 

(b) <y i 2 >/<^ 2 >=% 2 - (MiMiv=-l)-

Thus the direction of the energy flow, given by (a), is independent of 
which end of the lattice is "hotter", given by (b)! Such "anomalous" 
(nonirreversible) properties of harmonic lattices can be found in many 
examples. 

An outstanding case in point is the exact results obtained by Rieder, 
Lebowitz, and Lieb [38] for an ensemble of harmonic lattices coupled 
to two thermal reservoirs at different temperatures TL (left) and TR 

(right). They found that in the thermodynamic limit, 

(3.13) (J(N,X))^C(X)(TL-TR) 

that is, (J) is proportional to (TL — TR) rather than (TL — TR)/N, re
quired for a finite KT in (3.8). The parameter X in (3.13) is essentially 
the collision frequency between the lattice and the thermal reservoirs. 
A similar dependence on (TL — TR) was found by Helleman [23] in the 
exact solution for the two-dimensional harmonic lattice. They also 
found an interesting effect which amounts to a boundary (coupling) re
sistance with the reservoir, namely C(X) takes on a maximum value for 
X — \ /3 <o0/2. The reason for this is due to the fact that a lattice is a 
low pass filter (transmitting frequencies only within its normal mode 
range—see Figures 2.1 and 2.2). Thus if the interaction with the reser
voir is too frequent, X becomes too large, the lattice cannot respond 
(accept the energy), so C(X) decreases. If X is too small there is no cou
pling to the reservoirs, so C(X) goes to zero—hence C(X) has a max
imum. 

This coupling to the reservoirs is not an academic point but one of 
both practical interest, and a difficulty which arises in computer calcu
lations of lattice thermal conductivity. Their rigorous result (for their 
reservoir coupling) moreover yielded a totally anomalous interior tem
perature distribution, Tp shown in Figure 3.2. Although TL > TR they 
found T2<T< TN_V where f is the mean temperature, (TL - TR)/2. 
Thus near the hot reservoir there are relatively cold particles, and vice 
versa! Such anomalous results, like (3.12), obviously defy intuition, and 
certainly Fourier's law. 
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Figure 3.2. Theoretical temperature distribution in a harmonic lattice between two ther
mal reservoirs (Rieder, Lebowitz, and Lieb). 

In an attempt to discover a system for which Fourier's law could be 
rigorously established in a system not involving nonlinear forces, 
O'Connor and Lebowitz [30] investigated heat conduction through iso-
topically disordered harmonic lattices, considering the influences of var
ious boundary conditions. Visscher, who has made extensive computer 
studies with his co-workers, has recently [41] given a nice review of 
these results for isotopically disordered lattices. The fact that a harmon
ic lattice has variable masses does not, of course, alter the fact that it 
still possesses harmonic normal modes, and hence is still nonergodic. It 
is thus perhaps to be expected that such lattices also do not satisfy Fou
rier's law. Indeed the limit (3.8) vanishes for a lattice with fixed ends, 
and diverges if the ends are free (it is conjectured that KT ~ N~1/2 and 
~N+1/2 respectively), again indicating the "abnormal" influence of the 
boundaries on a harmonic lattice. In any case, (J(N)) - ^ 0 asiV-^oo in 
contrast with (3.13). 

The first theory to take into account the effects due to the nonlinear 
coupling within the lattice was due to Peierls [33], who obtained a 
"Boltzmann equation" for the "distribution function" Nk(x, t) for the 
probable number of phonons (energy of the normal mode, (2.2)) of 
wave number k around r at the time t. Obviously some limitations are 
required for the simultaneous use of k and r descriptions—a point usu
ally left vague. This nonlinear integrodifferential equation is of the 
form (e.g., Ziman [18, p. 293 ff.]). 



NONLINEARITY AND IRREVERSIBILITY 145 

f J [{NkNk(l + Nk„) 

- (1 + Nk)(l + Nk,)Nk„}Q*kk, 

+ Y{Nk(l+Nk,)(l+Nk„) 

- (1 + Nk)Nk,Nk„}Qk
kk,]dk'dk". 

Not only is it impossible to solve this equation, but its original deriva
tion was essentially based on second order perturbation theory (through 
the kernel Qf, involving the use of random phase assumptions between 
the normal modes, which is certainly less appealing than the stosszah-
lansatz used by Boltzmann in the case of molecular collisions (see the 
discussion in the FPU problem, § 5). Studies have been made to extend 
Peierls' equation to long times without the repeated use of the random 
phase approximation (e.g., Brout and Prigogine [4]) as well as basic 
studies of the application of perturbation theories to such collective 
many-body problems (e.g., Van Hove [15]). More recent derivations of 
the phonon Boltzmann equation, with corrections, have been given by 
Horie and Krumhansl [6] and Kwok [9]. Despite these efforts some bas
ic questions remain about the conditions necessary for irreversibility, 
and particularly about stationary nonequilibrium states, as in thermal 
conductivity (see, e.g., the review by Carruthers [21], and more recent 
reviews in [7]). 

Without getting unduly involved in these considerations, it is perhaps 
useful to point out one feature that all of the perturbation theories find 
essential to irreversibility in lattices, but which so far has played no 
role in the soliton picture of energy conduction. This can be illustrated 
if the anharmonic forces only involve second and third order non-
linearities, so the normal modes satisfy equations of the form 

/ 0 _ÄX
 äk= - "h2ah - 2 V_kmafim 

(3.16) 
+ 2 W_k(mnaflman. 

It is not difficult to show that the rate of change of the total harmonic 
energy flux, (3.6) is then given by 

(3.15) 

dt 
+ Vk dx 
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dt - 3 2 L w* I T + w ' ~ ^ ~ + "m 

—^- J *WW« 

(3-17) " i 2 L " * l f + W 17 
V"n 1 WHlmnakaflman 
0«. J 

+ <°m — + <°fc _ 
ora cL 

a result first obtained by Peierls. Note that (3.17) is not a statistical 
equation, and is therefore not subject to any irreversibility inter
pretations. The first and second sum in (3.17) are sometimes referred to 
as three- and four-phonon processes. In a perfect lattice 

(3.18) kSm y 

Wk(mn * ° 0 n l v if k + * + m + n = 0, ± 277. 

If there is no dispersion, so that cok — kvs, then both the three- and 
four-phonon contributions to (3.17) will vanish unless 

(3.19) k + / + ra = ±2TT, or k + i + m + n = ± 2TT. 

This follows because the [] coefficients in (3.17) will vanish otherwise. 
Peierls called the terms (3.19) "Umklapp" processes, in contrast to the 
"normal" processes (e.g., k + / + m = 0), and emphasized their impor
tance in producing thermal resistance (e.g., d JLH/dt ¥= 0). An inter
esting situation arises however when one considers the time average of 
(3.17) and uses the harmonic solutions (2.13) for the ak(t). It follows im
mediately that the three- and four-phonon contributions do not vanish 
when time averaged only under the following conditions: 

^/LÌ//C^3P * ° ° n l y if "* + W/ + Wm = ° 
(dJLH/dt)4p * 0 only if cofc + co, + com + con = 0. 

Now, because of the dispersive behavior of the wk, Figure 2.1, it fol
lows that if 

fc + / + ra = 0, ±2TT then cofc + to, + <ow ¥* 0 
(3.21) 

(in one-dimensional lattices). 

However it is possible for 
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fc + / + m + n = 0, ±2TT and cok + coe + <ow + coM = 0 
(3.22) 

(in one dimension). 

The net result of this analysis due to Peierls is to conclude that there is 
only resistance to heat conduction in a one-dimensional system due to 
four-phonon umklapp processes—which is obviously a rather restricted 
class of the nonlinear interactions. In higher dimensions the situation 
changes because it is possible for wk + co£ + com = 0 if k + / + m = K 
(called a reciprocal lattice vector, which has the property 
exp[i(k + K) • rn] = exp[ik • £ j for all atomic locations r^. In the 
simple case (2.14) this corresponds to 2ir). Moreover because of the dif
ferent (longitudinal-transverse) branches of the frequency spectrum (see 
figure 2.2) it is possible to satisfy both (3.20) and (3.18) for even three 
phonon interactions. This is the basis for much of the belief that there 
should be a significant difference in the thermal conduction of one- and 
two-dimensional perfect lattices—a result so far not found in any com
puter calculations (see, e.g., Rich, Visscher, and Pay ton [36], and Naka-
zawa [28]). 

These results concerning the influence of the nonlinear forces on the 
energy flux are subject to a number of doubts. Thus the harmonic solu
tion was used in the time averages (3.20)—a point noted before by 
MacDonald [26] in obtaining zero resistance to the energy flux in a 
one-dimensional system. MacDonald obtained this result even when the 
total lattice energy flux, (3.5), is considered. Indeed the result is entirely 
altered if fL is used instead of fLH> (3.6), for then 

(3.23) Z Vhhn œk dk ö*ö/a™ 

àkat aman + * 2 Whtmn — ± u ^ -
dk 

and one finds from (3.16) that 

dfL/dt=-2i 2 Vktm J- ^ W m 
il)r OK 

(3.24) 
+ 3i 2 Wktmn fan äkäflman 

dk 
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and this bears essentially no resemblance to the expression (3.17). Mac-
Donald's result would indicate that the time average of (3.24) should 
vanish for harmonic ak(t). Thus these theoretical considerations of the 
influence of nonlinear forces has been considerably less than satisfac
tory. There is still plenty of room for good basic research in this area. 

An entirely different approach to coefficient of heat conduction is in 
terms of the energy flux autocorrelation (see, Kubo [8], [18]) 

(3.25) KT = lim lim — i - £ (J(N, t')j'(N, 0)> df 

where L = Nh, and 

(3.26) </W/(0)> - lim - r J(N, t')J(N, t + f)df. 
T-+00 T 

In (3.25) the limit N—* oo is to be taken before the long time limit so 
as to avoid the problems associated with the Poincaré recurrence effect 
(for an estimate of the recurrence time in lattices, see the discussion in 
§ 5). While this theory appears to be very "clean" compared with the 
above discussion, it too suffers from some significant problems. Even 
aside from questions relating to the validity of (3.25) (see Visscher [40] 
for a recent defense), the expression (3.26) appears to be unusable in 
any direct computer experiment, where N must remain very finite. 
Thus this formalism has not shed much light to date on the origin of 
thermal resistance in lattices. In fairness, however, one should point out 
that this same limiting difficulty arises in the (theoretical!) definition 
(3.8) of KT. 

In this section I have attempted to present a few of the theoretical 
ideas and results concerning the energy flux through lattices which have 
historically dominated this field. The lack of contact, much less agree
ment, between these ideas and either computer calculations or soliton 
concepts will be quite obvious in what follows. 

4. Computer Studies of Energy Transport. In recent years there have 
been a number of numerical investigations of the energy flux through a 
lattice between two thermal reservoirs. These calculations have been 
made for both one- and two-dimensional systems, with and without iso
topie disordering, and with a limited variation of the anharmonicity. 
One of the more complete reviews of these computations has been giv
en recently by Visscher [41] who is responsible for much of the com
putational results in this area. The computations for one-dimensional 
systems involve a lattice shown in Figure 4.1, where the reservoirs are 
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Figure 4.1. Two models for coupling a lattice to thermal reservoirs. 
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Figure 4.2. The time averaged kinetic energy ("temperature") of the particles in a non-
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Figure 4.3. The same as Figure 4.2, except that lattice is now very anharmonic. 
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characterized by statistical energy distributions appropriate to two tem
peratures, TL and TR. The lattice can be coupled to the reservoirs by 
different methods, as illustrated in the two figures 4.1a and 4.1b. In the 
former case, the lattice interacts with the reservoir only when it reach
es the reservoir wall, whereas in Figure 4.1b, the end partice interacts 
with the reservoir regardless of its location. Another model involving N 
"self-consistent" reservoirs along the lattice has also been employed by 
Visscher. The interior reservoir temperatures are fixed so that, in the 
steady state, no heat flows in or out of them. 

Characteristically, for a harmonic lattice the internal time-averaged 
energy ("temperature") bears no relationship to the applied temper
ature difference, TR — TL. Thus Jackson, Pasta, and Waters [24] using 
the boundary condition shown in Figure 4.1a, found the spatially peri
odic (!) "temperature" distribution shown in Figure 4.2. The applied 
temperature gradient is shown by the sloping straight line (the opti
mum Fourier coupling between the reservoirs). By way of contrast, 
compare the theoretical Figure 3.2, which is more closely related to the 
coupling 4.1b. A result similar to this was obtained in computations 
made by Nakazawa [28]. For a sufficiently nonlinear lattice (K2 — 10, 
K3 = 2 K2

2/3) one finds an internal temperature gradient, but with 
very large boundary resistance effects (temperature jumps), as shown in 
Figure 4.3. These boundary effects are naturally influenced by the de
tails of the coupling (Figure 4.1) to the reservoir, but Nakazawa [28] 
and Helleman [23] also found similar discontinuities. The important fact 
to note here is that a one-dimensional monatomic lattice can support 
an energy (real temperature?) gradient. The inclusion of defects increas
es this gradient (Jackson, Pasta, and Waters [24]), as does isotopie impu
rities (Visscher, et al., [32], [35], [36], [37], [40], [41]). However, wheth
er any of these systems obey Fourier's law, with an intensive coefficient 
of heat conduction, (3.8), is not clear at present. Most computations of 
Kj(N) have been for N = 100, except for some results due to Helleman 
[23] with N = 200, and Visscher involving N as large as 1000. 

The displacements of 100 particles in a harmonic lattice as a function 
of time is illustrated in Figure 4.4. Note that, because of the coupling 
shown in Figure 4.1a, there are periods of time when the end particle 
is not in contact with the thermal reservoir. This is similar to the com
pression noted in Figure 2.4. It will be noted that, despite the dis
persion of the harmonic modes, the reservoir impulses can propagate 
across the system and even interact with each other as coherent pulses, 
much like the nonlinear solitons (presumably due to the limited time it 
takes to cross the lattice). The corresponding picture for a nonlinear 
lattice is shown in Figure 4.5. The contact with the reservoir is now 
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Figure 4.4. The locations, xn(t), of the particles in a harmonic lattice between two ther
mal reservoirs. Crossing pulses slow down during interaction because of the bulk dis

placements of lattice sections (Jackson, Pasta, and Waters). 

improved (a stiffer lattice), which should reduce the temperature jump 
at the boundary. 

What is of more interest in Figure 4.4 and 4.5 is that the pulses in
terfere with each other (have a velocity change where they cross) in 
the harmonic lattice, and interfere relatively little in the anharmonic 
lattice. One might expect that disturbances should superimpose in a 
harmonic lattice, and hence not exhibit this interference. The origin of 
this effect (as noted by K. Miura [27]) is that the Figures 4.4 and 4.5 
show the displacement in physical space, x, (so that one observes the 
Eulerian density n(x, t)), rather than the values of the Lagrangian dis
placements, xn(t), (2.1). It is, of course the Lagrangian equations which 
are linear (for a harmonic lattice) and thereby enjoy the superposition 
property. The transcription from the Lagrangian to Eulerian picture is 
a nonlinear mapping (see below), which accounts for this interference 
effect. (I am indebted to F. Tappert for raising this point at the confer-
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Figure 4.5. The same as Figure 4.4, except the lattice is now very anharmonic. 

enee, and for subsequent discussions with him, K. Miura, and J. Pasta, 
clarifying this effect.) 

This transcription from the Lagrangian to the Eulerian description 
will be outlined briefly here, not only because it clarifies the above ef
fect, but because it makes clear the fact that the space variable in the 
usual continuum equations, obtained from the lattice equation (e.g., the 
Korteweg-deVries equation), is not the spatial coordinate x. To show 
this, consider the usual continuum limit (h—* 0) and write the spatial 
location of a particle (2.1) in the form 

(4.1) x(x0) = x0+ y{x0, t) 

where x0 = nh represents the continuous undisplaced locations of the 
particles (particle labels). In figures such as 4.4 and 4.5, what one no
tices is the Eulerian density of lines, n(x, t). Because of the conservation 
of particles, this density satisfies 

(4.2) n0dx0 = n(x, t) dx 
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where n0 is the unperturbed density, and (dx, dx0) are related by (4.1). 
Actually (4.2) holds only if the particles retain their spatial ordering, 
(2.1), which I will assume is the case. From (4.1) and (4.2) one readily 
obtains 

(4.3) n(x, t) = 
1 + 9t//3x0 xa(x,t) 

where x0(x, t) is given implicitly by (4.1). Spatial ordering is maintained 
if dy/dx0 > — 1. Obviously the relationship between this density, 
which is observed in the above displacement figures, and the particles' 
locations, is very nonlinear. (Another application of these ideas arose in 
nonlinear plasma oscillations; see, J. Dawson, Phys. Rev. 113, 383 
(1959), and E. A. Jackson, Phys. Fluids, 3, 831 (I960)). 

In the usual derivation of the continuum equations from the lattice 
equations (Zabusky [69], [57], or see the review by Toda [14]), the re
placement 

(4.4) fcM = j t ± » _ | L + » W _ ^ + . . . 

is made, where x — nh. As is clear from (4.1), a change in the value of 
n corresponds to a proportional (h) change in x0, rather than a propor
tional change in the spatial coordinate x. Thus, if we wish to retain 
that meaning for the symbol x, one should write instead of (4.4) 

(4.5, ^ , = , ± » £ + 1 » ^ + x0 2 dx0
2 

This makes it quite clear that the displacement, t/, is expressed in terms 
of the undisplaced locations ("labels") of the particles. In this sense 
these continuum equations are not the usual Eulerian (field) equations, 
and care must be taken in the physical interpretation of phase shifts 
(e.g., of interacting solitons), as well as the application of boundary 
conditions for such equations. 

Perhaps this is an appropriate place to also mention another aspect 
of these "continuum equations" which could use further elucidation. 

The lattice equations 

(4-6) m Vu = %n+l - Vn) ~ % n ~ tfn+l) 

or the related equations 

(4.7) m «„ = F(un+l) - 2 F(un) + F(un_t) 

where 
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(4-8) un = yn+i - yK 

can be used as the basis for deriving continuum equations. Thus, for ex
ample, using 

(4.9) „.± 1 = l l W ± f c _ + _ * _ + . . . 

equation (4.7) can be written in the form 

(4.10) m ü ( % t) = 4 sintf ( | - 1 — ) F^t)) 

if F(z) is a polynomial force. The continuum limit (2.26), h —•» 0, can not 
be simply employed, since it would lead to the linear wave equation 
(note: u(x0> t) = 0(h), by (2.1), and F = 0(/xw) in this limit). 

What has been done in the past is to make a judicious selection of 
derivative terms from the infinite number generated by (4.5) (e.g., in 
(4.10) or the corresponding equation from (4.6)). Such a selection may 
be equivalent to increasing select nonlinear coefficients, Kn in equation 
(2.3) as h —-» 0, but this clearly has no physical basis. It would be of 
considerable interest to better understand the physical content of these 
continuum equations, and under what conditions they adequately repre
sent the lattice dynamics. Some discussion along these lines has been 
given recently by Toda [14]. 

One of the interesting features found by Payton, Rich and Visscher 
[32] was that the "thermal conductivity" of an isotopically disordered 
one-dimensional lattice is increased as the anharmonic strength is in
creased. This feature is illustrated in Figure 4.6, taken from their paper. 
The lattice was 50% disordered with masses in the ratio 3:2. The anhar
monic force constant K2 was varied, retaining a constant ratio K3/K2 

(equation (2.3)). As K2 is increased, both (/) and Kj(N) increase, where
as VT is relatively constant. They interpreted this increase in Kj(N) 
(also see Visscher [41]) as being due to the fact that the nonlinar forces 
break down the spatially localized character of many of the disordered 
lattice modes which do not transport energy effectively, thereby increas
ing the flux </). Zabusky [59] proposed that this increase in con
ductivity could be viewed as being due to the increased importance of 
soli tons in the transport of energy through the lattice. While both pic
tures appear consistent, the soliton interpretation is clouded somewhat 
by the relatively unknown influence which isotopie disorder has on 
their behavior. Thus both Payton, Rich and Visscher as well as Jackson, 
Pasta, and Waters [24] found that the addition of different defects 
caused Kj(N) to decrease, for constant anharmonicity, as one would ex-
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Figure 4.6. The energy flow, (VI)" 
50% mass mixture (3:2) as a function of the anharmonic strength (Visscher). 

pect from phonon arguments. This would also seem to imply that soli-
tons lose their effectiveness with increased defects. 

An example which avoids this uncertainty is a calculation carried out 
in [24] in which the only change that was made was in the cubic force 
coefficient (both cases without defects). When K3, equation (2.3), was 
changed from K3 = (2/3) K2

2 to K3 = (1/4) K2
2 (and K2 = -10) ' then 

(VT X 105, (J) x 104, and Kj(N)) were found to change from (1.48, 
7.53, 51) respectively to (2.58, 8.19, 31.7). Thus a reduction in the cu
bic force caused a decrease in Kj(N)y which is certainly not what one 
expects from the phonon scattering picture of the last section. The "ex
planation" of this decrease in KT being due to the less efficient produc
tion of solitons when K3 is smaller, is probably too simplistic however. 
Thus </> increases as K3 decreased, so that the energy flux did not de
crease as one might expect if there were fewer solitons. Moreover in 
other (limited) calculations it was found that if K3 = (2/3) K2

2, and K2 

was increased from 5 to 10 the energy flux decreased by a factor of 
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two, while the temperature gradient increased by less than 1.3, again 
implying a decreased Kj(N). Neither of these results would appear to 
be consistent with a simple picture that the soliton flux should become 
more important with increasing (K2, K3). Another feature clouding the 
issue is the role which the temperature jumps at the boundary thermal 
resistance (temperature discontinuities) may play in these comparisons 
(see, Nakazawa [28] and K. Miura [27].) 

Another very basic difficulty with the soliton explanation of the 
above increase in KT, is that solitons are not related in any obvious 
fashion with a temperature gradient, on which KT is based. This is true 
even if there are phase shifts due to interactions, and different average 
soliton velocities coming from the two reservoirs. The solitons indeed 
form a "Knudsen gas" of noninteracting excitations, which is the anti
thesis of thermal resistance. To obtain a temperature gradient requires 
some "breakdown" of the solitons—possibly a "stochastic" breakdown 
when sufficiently energetic solitons interact, or a nonsoliton (dispersive 
wave) production at the boundary. In an attempt to find such a source 
of temperature gradient, K. Miura [27] investigated the propagation 
and interaction of pulses generated by impulses at the end of a finite 
lattice. As an example, the initial velocity, Vp was given to the end 
particle in a polynomial force lattice (K2 = —10, K3 = 2/3 K2

2 in 
(2.3)), and the percentage of that energy which was propagated in the 
form of a "soliton" (a nondispersive pulse) was determined, as indicated 
in the following table: 

TABLE 4.1 

v, 

.08 

.10 

.20 

.30 

.40 

.50 

.60 

.80 
1.00 

VsSoliton 
velocity 

1.13 
1.19 
1.39 
1.57 
1.75 
1.89 
2.02 
2.27 
2.51 

As: Soliton 
amplitude 

.0364 

.0465 

.0900 

.1252 

.1550 

.1819 

.2066 

.2482 

.2840 

% Energy 
in soluton 

91.1 
93.4 
98.0 
99.0 
99.4 
99.6 
99.67 
99.8 
99.99 

where the velocity is in units of the sound velocity of the lattice, Cs. 
The velocity of the soliton is found to be somewhat greater than the 
theoretical value 

(4.11) Vs
2 = Cs

2[l + (2K2/3)AS + (K3/2) As
2] 
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predicted from the continuum equation 

(4.12) 
32 r 

+ K2u
2 + k3u

3 + (h2/l2) 
fu 1 
9*o2 / 

obtained from a truncated version of (4.10). If K3 = 0, then (4.12) 
would be the usual Boussinesq equation. The above table shows rapid 
increase in the efficiency of the energy conversion to solitons as Vi is 
increased. This increase in efficiency is also evident in the displacement 
profiles for un(t) shown in Figure 4.7. The smaller impulse (V̂  = .05) 

•oi I-

0 

-.oil-

-.06 

(a) V, = . 2 , t = 15 

u 

(b) V. = .05 , t = 15 

Figure 4.7. The disturbance produced in an semi-infinite anharmonic lattice by a strong 
and weak impulse at the left end (K. Miura). 
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produces a significant amount of dispersive "tail" to the soliton. In the 
interaction with a reservoir, it seems very reasonable therefore that a 
substantial fraction of the energy is deposited in these dispersive modes 
(because most Vi are small). It would be very nice to have a theoretical 
prediction of £s(Vi), the energy of the soliton vs. Vi9 but that has yet to 
be obtained. It appears quite possible that such a source of dispersive 
energy might be responsible for the "temperature" gradient observed in 
computer calculations. K. Miura also found that a major portion of the 
energy flux between the reservoirs was carried by the solitons. This 
clearly leads to the possibility of a totally different explanation for the 
relationship between (/) and VT, from the "classic" (i.e., historical) 
theory described in the last section. The degree to which this boundary 
production may be a significant source for the energy gradient, possibly 
only in the one-dimensional lattice, remains for future studies to deter
mine. It is rather difficult to see how this can lead to an intrinsic 
coefficient of heat conductivity as N is increased, unless there is some 
internal resistance phenomenon. 

To study this further within the context of solitons, K. Miura looked 
for the possible breakdown of solitons when they interact. Thus the two 
end atoms of the above 50 atom lattice were given initial velocities 
Vi = 0.5 and —0.5. The result of their encounter at n = 25, is to leave 
behind a very small amount of dispersive energy (0.3% of the initial 
energy). Miura also investigated the production and interaction of "soli
tons" in harmonic-plus-hardcore potential (HHC, equation (2.5), with 
b — 0.5), and also the piecewise linear force, (2.4), with various values 
of b. As might be expected solitons are not formed in such lattices un
less the impulse velocity at the end is sufficiently large to induce the 
nonlinearity (now requiring a minimum displacement). The result for 
various Vi in the HHC lattice are given in the following table: 

V, 

.79 

.80 

.90 
1.00 
1.5 
2.0 

vs 

(decays at n = 
1.19 
1.60 
1.82 
3.07 
4.0 

= 12) 

TABLE 4.2 

E, 

(decays at n = 
.4043 
.4999 

1.125 
2.00 

= 38) 

^ta i l 

.0007 

.0001 
2 x l 0 - 6 

5 x l 0 - 8 

Energy 
lost in 

collision 

.01502 
— 

.00248 
— 

In the case of the solitons created by Vi — .90 (note that it requires a 
Vi > 0.5 before there can be any hardcore interactions), one sees that 
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nearly 4% of the energy is lost when they interact, which is quite sub
stantial. The more energetic "soliton" however is quite stable. Indeed, 
for very large Vi9 the "soliton" is simply a moving particle which ex
changes all its momentum with the next particle through a hard core 
collision. Fairly similar results were also found for the piecewise linear 
force lattice, which K. Miura analyzed in some detail. 

A potentially very important phenomenon was indicated in calcu
lations made by Ooyama and Saito [46], They observed that a soliton 
passing through random disturbances in an exponential lattice 
(a = .471, b = 2.121 in (2.6) experienced a frictional drag, apparently 
of the form 

(4.13) V, = - f(e)V, 

Here the frictional coefficient, f(c), increases as the fraction of the total 
energy, c, in the background disturbances increases. Moreover there ap
pears to be a critical value, c = cc, below which f(c) = 0. Unfortunately 
the energy density of disturbances, which is presumably the governing 
quantity, could not be established from their data. The slow down of 
the soliton is correlated, of course, with a loss in its energy. It would 
be very interesting to have information about this "irreversible" relaxa
tion time r(c) =f_1(e), or "mean-free-path", \(c) = V8(c)/f(c), of solitons 
in this situation. 

Finally, because of the results of Northcote and Potts [66] indicating 
that the harmonic-plus-hardcore model may be ergodic (see § 5), it 
would appear that this lattice is one of the more likely candidates to 
have an intensive KT within the constraint of a one-dimensional system. 
Visscher has noted however that, depending on the local energy in the 
lattice, it can vary from a harmonic behavior to a system of free hard
core particles, as noted above. Both of these limits certainly do not 
have the desired irreversible behavior so that, on this basis, Visscher ar
gues that such a lattice could give a normal KT only over a limited 
temperature range (which does not encompass either of the above ex
tremes). While the argument is appealing, the fact that one is dealing 
with an energy distribution may always introduce a sufficient number 
of (ergodic type) interactions to produce the desired irreversibility. 
While both Visscher and Helleman have made initial studies of thermal 
conduction in such systems, additional calculations are needed to settle 
this matter. 

5. The Fermi-Pasta-Ulam Recurrence Problem. Much of the present 
activity in the solution of nonlinear partial differential equations is due 
to extensions of the novel approach which was taken by Kruskal and 
Zabusky to explain the computer calculations made by Fermi, Pasta, 
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and Ulam [61] before 1955. The subsequent beautiful inverse scattering 
technique, originally proposed by Greene, Gardner, Kruskal, and Miura 
[43], [44] and its generalizations are well known to the mathematical 
community (e.g., see Whitham [55], Scott, Chu, McLaughlin [48], and 
papers by Flaschka, Kruskal, and Newell in [18a]. What is perhaps not 
as well known to this community is why physicists were interested, sur
prised, or concerned with a phenomenon such as the FPU recurrence, 
and the fact that the above beautiful results have yet to clarify some of 
the original questions! Indeed there is an example which raises ques
tions about the continuum soliton picture of FPU recurrence, which I 
will discuss below. I make these latter statements in the spirit of a fu
ture challenge to our understanding lattice dynamics, not to detract 
from past successes, which are obvious! 

Among Fermi's many interests was his long concern about ergodic 
questions in statistical mechanics [7], and the process of relaxation to 
thermal equilibrium. It should perhaps be emphasized that these prob
lems are quite distinct in the sense that the knowledge that a system is 
ergodic gives no indication on how fast a system will approach equilib
rium. This latter question is, of course, of great practical importance to 
physicists. Fermi's use of second order perturbation methods to arrive 
at time independent transition probabilities (relaxation times), still forms 
the backbone of much of the irreversible estimates which are made in 
quantum mechanics for example the relaxation time r(co) which appears 
in the thermal conductivity expression (3.10). Another early example of 
the application of this estimate was the theory of sound absorption in 
solids, developed by Landau and Rumer [25]. Such estimates of transi
tion probabilities are affectionately referred to as Fermi's "golden rule" 
(e.g., Bethe and Jackiw [2]), and certainly "golden" is an appropriate 
adjective for such a fruitful estimate. However, perhaps because such 
estimates were so easy to obtain, physicists tended to believe that na
ture must also find it as equally easy to approach equilibrium, given a 
little nonlinearity between the normal modes of a lattice. In the spirit 
of observing such a relaxation to equilibrium (i.e., an equipartition of 
energy among the normal modes of the lattice), Fermi, Pasta, and Ulam 
made their classic calculation illustrated in Figure 5.1 and 5.2. These 
figures show the energy in the modes, Ek in (5.2), as a function of 
co^/277, when initially all of the energy was placed into the lowest 
mode, fc = 1. The lattice they used in these figures had N = 32 (hence 
32 modes), and a polynomial force F(z) = \x{z + az2), with a — 1/4 and 
a = 1 in the two figures respectively. The unexpected (and unwanted!) 
feature of these results is the lack of energy sharing among the modes 
the "rapid recurrence" (see below) of the initial values of Ek—namely 
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CU,t/27T 

Figure 5.1. The FPU calculation of the normal mode energies, Ek(t) (k = 1, • • -, 4 are 
shown, and £ 5 < .015), for the case N — 32, a = 1/4 (lattice force F(z) = z + az2). 

in about 160 periods (277/cOj) for a = 1/4 and 80 periods for a = 1. 
Even more disheartening from the historic point of view, is the de
crease in this recurrence time with an increase in the nonlinear cou
pling, a, and nearly total lack of excitation of the modes kl^l (say). 
At the same time (1954) a proof was developed by Kolmogorov [89] 
which showed why such lack of energy sharing would indeed occur for 
most initial states provided that a suitable parameter is sufficiently 
small {related to the FPU a, see § 6). 

Before turning to more exact treatments of this problem, I would like 
to give a "back of the envelope" derivation which shows how the FPU 
recurrence differs from the classic relaxation process, the role of the 
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Figure 5.2. The same as Figure 5.1 except that a — 1. Note the decrease in the recur
rence time. 

thermodynamic limit (2.25) in these types of considerations, and trivial 
estimates for the periods of time one would expect any relaxation proc
ess to break down. To do this consider the nonlinear normal mode 
Hamiltonian 

^ = 2 | K 2 + «*V) 
(5.1) i 

+ 2 g VjkfiPkar 

Since the "normal mode energy" 

(5.2) Ek - 1 (V + akW) = "JK 
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is the quantity of interest in the FPU problem, it is useful to transform 
(5.1) into the action-angle variables (2.22) 

9T = 2 "A 
(5.3) 

+ 2 \ V*' L -^rfr J 1 / 2 « n ^ sinÖ, sino, 

with the equations of motion 

IKA\ h dH T dH 

(5-4) eK= — ;jK=- — . 

In the harmonic approximation this gives 

(5.5) èK = co* 

which will be assumed in all that follows (for simplicity). On the other 
hand, (5.4) yields in general 

[ er j j "1 1/2 
- f f - \ cos 0, sin ek sino, 

Mathematicians may be amused by the fact that (5.6) does not satisfy 
the Lipschitz condition at Jn = 0. To examine a relaxation process ap
propriate for the FPU problem assume that at time t — 0 only one 
mode is initially excited, Ji ^ 0, then ]j changes according to (5.6) with 
both k = i and / = i. Moreover, because of (5.5), the slowest varying 
term arising from the trignometric factors is 

^ v - - ^ ( i - ) 1 / 2 c o s ^ - ^ 
Refinements to this procedure are given below. In any case, for short 
times during which J% is essentially constant, this yields 

(57) 7-1/2^ J k _ A MMj - »Ù 
K ' } * 2 V 2 ^ «4 (2«, - «,) 

assuming, of course, that the denominator does not vanish, and one ig
nores the spurious second solution J^t) = 0. The fate of the initial ac
tion, Jx{t\ is determined by substituting (5.7) into (5.6). Again retaining 
only the slowest varying terms yields for the energy (5.2). 

(58)
 d l i ^ - * y ( v i i ^ ) 2 *&&i-'/) 

K ' ' dt dt * 4(0^ (2«4 - u,f ' 
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Using (5.5), it will be noted that for very short times (5.8) reduces to 

(5.9) dE^ 2 ( V " Ä ) 2 t 
dt ^co/Oj3 

This does not give E^dEJdt which is independent of time explicitly 
(a time independent "relaxation time"). Instead T - 1 is explicitly pro
portional to t. One only obtains a time independent E^xdEJ dt over a 
limited range of time, during which one can make the approximation 

(5.10) sin2(2^ - 0,)/(2Wi - c o / = 7rrô(2<o. - W/) 

(see, e.g., D. Böhm, Quantum Theory (Prentice Hall, 1951)), where 8 is 
the Dirac delta function. In this case (5.8) can be written 

which is not explicitly dependent on t. The last identity in (5.11) is 
clearly fanciful, since ri itself is a function of Ei (i.e., a nonlinear equa
tion is made to "look" like a linear relaxation equation). Indeed the fact 
that the FPU does behave like a relaxation process over a limited peri
od (see below) is not explained by this derivation (a model example is 
given in Jackson [64, Appendix B]). The use of (5.10) in (5.8) requires 
that t be neither too large nor too small. Specifically, one has as neces
sary conditions 

(5.12) max(2coi - w,) » 2ir/t » min(2wi - œf) 

in addition to other conditions which may be required to justify the 
perturbation approximation. The first inequality of (5.12) eliminates the 
result (5.9). The second condition is necessary in order to have a large 
number of terms in the summation lying inside the first minimum of 
sin(2^i — 0t). It is this condition which is satisfied by taking the ther
modynamic limit, (2.25), because the normal mode frequencies become 
dense, in contrast with the continuum limit (2.26). In addition to the 
conditions (5.12), it is clear, that (5.11) cannot be valid over times of 
the order of the Poincaré recurrence time. This is another reason for 
considering the limit N—* oo (e.g., in (3.25)), but even for quite finite 
values of N the Poincaré time is very large. 

To be more specific consider, following Hemmer, Maximom, and 
Wergeland [84] (also see additional references), let 

(5.13) zk - ak + iukak = \/2^jk eieK 
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For a harmonic system the actions are constant, so a near recurrence 
only involves the near return of the angle variables. We assume, of 
course, that the frequencies 6K — (^k = co0sin(7rfc/2N) do not satisfy 
^tmKo)K = 0 for a nonzero set of integers {mK}, since otherwise the 
system is periodic. Recurrence is now defined in terms of the allowable 
range of the angles from some specified value/, i.e., 

(5.14) ek0^argzk^ekO + àek. 

The recurrence time is then given by 

(5.15) TR = f t (tor/Mk)/ i K/A0fe). 
*=i k=1 

The harmonic system just considered is not ergodic because each of the 
energies, Ek, are constants of the motion, implying that much of the 
energy surface, E = 2 Ek, does not contain the trajectory of prescribed 
initial state. Since one expects an anharmonic lattice to distribute its 
energy among all the modes, its recurrence time certainly should not be 
any less than (5.15). Assume that we now require Mk = 277/100, then 
(5.15) becomes approximately 

(5.17) TR ^ (v/N) l02N-24(years). 

Based on this type of estimate, physicists obviously had no reason to be 
concerned with the Poincaré recurrence for macroscopic systems (say 
N — 1020). This also lent vague support to the assumption that many of 
the mode interactions, neglected in a derivation such as given for 
(5.11), could be justified at least over experimental periods of time (usu
ally much less than a day). 

Unfortunately the above estimate of the recurrence time has essen
tially nothing to do with the recurrence of the energies in an anhar
monic lattice. The recurrence time one is interested in here is the one 
defined by conditions 

(5.18) IVI2 S Kl2 ë \zkr + AKI2 

rather than (5.14). In the harmonic lattice the recurrence time defined 
only by (5.18) is of course zero! The only way to determine this recur
rence time is to investigate the nonlinear lattice. Moreover it is ob
viously this recurrence time which is relevant to the limitation of the 
validity of (5.11). One should in fact distinguish between the Poincaré 
recurrence time for the anharmonic lattice (defined by the simultaneous 
satisfaction of (5.14) and (5.18)), and what probably should be referred 
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to as the FPU recurrence time, defined only by the requirement (5.18). 
Obviously the latter recurrence time will usually be much less than the 
Poincaré time. 

Before turning to the question of determining the FPU recurrence 
time, let me point out that the time dependence of Et(t), shown in Fig
ure 5.1, in fact does have a relaxation process behavior, and only in the 
time interval required by (5.12). This fact is illustrated in Figure 5.3, 

-7.7 exp {(^— -9.7 )/ 16.5 } 

O 
x 

u7 

0 ü | t / 2 7 T 

Figure 5.3. An exponential fit to the FPU result for E1(t) shown in Figure 5.1. 
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which is roughly the "breaking time" of Kruskal and Zabusky [70], to 
periods (2?r/co1) after a suitable initial period (first inequality of (5.12)), 
which is roughly the "breaking time" of Kruskal and Zabusky [70] to 
be discussed below. The long time limit of (5.12) in the present case is 
(o1/(2co1 — co2) = 415 i^ w^/277 which is far larger than the end of the 
relaxation behavior in Figure 5.3 (about 50 periods). Let me emphasize 
that this is curve fitting, not derived results, and is being presented as a 
curiosity because of the ubiquitous expectations of relaxation processes 
in physics. Indeed I think that one of the interesting future programs, 
pointed out at the end of § 4, is to see whether even solitons, under 
suitable background interactions, cannot exhibit a lifetime behavior (il
lustrating again perhaps how hard fixations die!). 

It was soon shown by Northcote and Potts [66] that the FPU lack of 
equipartition between the Ek does not apply to the very nonlinear har
monic-plus-hardcore lattice, F(z) — pz (z > —b), F(z) — — oo(z — — b), 
with fixed ends (x0 = xN+1 — 0). They considered the same lowest mode 
excitation used by FPU, with an initial energy E1 = Ne, with 
c = fx/2 b2 (the energy per particle equals the potential energy required 
for a hardcore collision). For N = 15 the percentage time averaged 
energy in the modes, l00(Ei)/E, is illustrated in the following table 
(only some typical modes are tabulated—see [66] for complete data). C 
indicates the number of hardcore collisions that have taken place up to 
that time. 

uxt/2m 

0.0 
.018 
.025 
.037 
.49 

1.02 
3.85 
8.19 

12.30 
20.85 

C 

0 
5 

10 
15 
60 

105 
300 
600 
900 

1500 

t = l 

100 
99 
96.8 
93.1 
69.7 
47.9 
19.6 
11.3 
8.7 
7.2. 

2 

0 
.1 
.5 

1.7 
10.2 
9.8 
7.8 
9.2 
9.5 
7.5 

3 

0 
.1 
.6 

1.5 
2.2 
3.1 
5.9 
8.8 
8.6 
7.8 

TABLE 5.1 

7 

0 
.1 
.1 
.4 

3.4 
3.7 
6.6 
6.6 
6.7 
6.5 

8 

0 
.1 
.2 
.6 

1.4 
3.0 
5.5 
6.0 
5.9 
6.3 

9 

0 
.1 
.2 
.5 

1.2 
3.3 
4.1 
5.3 
6.1 
6.5 

13 

0 
0 

.1 

.2 
1.0 
2.9 
4.5 
5.2 
6.1 
6.7 

14 

0 
0 

.1 

.2 
1.8 
3.5 
4.6 
4.9 
4.8 
5.6 

15 

0 
0 

.1 

.1 
2.0 
6.1 
8.6 
6.7 
6.7 
7.3 

These results are presented on the same time scale used in Figures 5.1 
and 5.2. It will be noted that the average C(*)27r/co1f is 72, so that <a± 

has lost its physical significance. One can see that by 21 periods all the 
modes have roughly the same time averaged energy. The rapidity with 
which this system reaches an equipartition of energy is impressive when 
compared to the FPU weak coupling. Although it is not demonstrated 
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in the above table, the behavior which they found for Et(t) decidedly 
did not exhibit a relaxation time character (nor did E^C)), indicating 
this behavior may be more exceptional than characteristic. 

The importance of the FPU recurrence, (5.18), (5.13), in contrast 
with more general problems of ergodicity and mixing, centers on the 
historic importance attached to the mode energy Ek (or the number of 
phonons, Nk = Ek/Ao)k) and how these quantities relax, or fail to relax. 
From this point of view, the recent emphasis on solitons is a study in 
the behavior of a coherent group of modes (phonons) which, of course, 
do not "relax" into the remaining modes. The fact that relaxation does 
not take place need not be obvious from a limited examination of the 
Ek(t). This is illustrated rather nicely in Figure 5.4, due to K. Miura 
[27], which shows the energy in various modes at different times, when 
the end particle of the lattice is given an initial velocity Vi = 0.5 (sim
ilar to the situation shown in Figure 4.7). The system then has essen
tially only one soliton, yet it appears as if there is a "relaxation" to all 
of the available modes (N — 25). This masking of the mode correlation, 
which is obvious in the spatial representation y(x0, t), is a problem 
which may make it very difficult to delineate the onset of stochastic 
behavior in lattices which have more degrees of freedom than have 
been recently studied (e.g., see the review by Ford [81])—a point I will 
return to in § 6. 

In addition to the reason cited above, the theoretical prediction of 
the FPU recurrence time is important because it represents a test of 
our understanding of the nonlinear dynamics in such lattices. It is also 
very instructive because it brings into contrast perturbative methods 
and the soliton picture of lattice dynamics. The initial perturbative 
analysis of this problem was made by Ford [62] (see also Ford and Wa
ters ([63]), who drew attention to the importance of the combination 
frequencies co(ra) = 2 m^cox ({m /J : integers). Because E2 was directly 
excited by El9 (5.7), the minimum time that would be required for re
currence is the "beat period" between these two modes, 2*n (2(ox — <o2). 
This yields the minimum recurrence time for weak coupling 

(5.19) min(co1TÄ/277) = ——^ ~ (2N/77)2. 
Zoo-* — co« 

Later [64] I proposed a theory for analysing nonlinear coupled os
cillators based on a generalization of the Brillouin-Wigner perturbation 
theory. This method introduces unknown frequencies, tik, ab initio into 
the equations of motion, so that the original normal mode equations 

(5.20) ak + (ck
2ak = -X 'òH1/'òak 
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Figure 5.4. The normal mode energies corresponding to a single soliton generated by an 
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are written formally as 

(5.21) äk + Qk2ak=-\ML+ 2 X W 
dak n-i 

where 

(5.22) ß,2 - u* + 2 *W"W 
n = l 

and À is a formal ordering parameter. (5.22) is not an analytic expres
sion in X, since the functions are also dependent on X. The unknown 
functions /xfc

(n)(X) are determined in each explicit order of X by the con
dition that the right side of (5.21) be orthogonal to the homogeneous 
solutions, akcos(tikt + <j>k) 

(5.23) J%os(ßfc* + </>,) ( 9 | L _ - 2 Xn-Vn,a* ) d= 0. 

In this case the solution of (5.21) can be written 

ak = ak cos(fìfcf + ój.) 
(5.24) 

- A £ Gfc(t 0 [ ̂  - 2 / - W ] ^ 

where the Green's function contains only the unknown frequencies 

K 9«n C It f\- V ' co s( f i(m)* + # " ) ) cos(Q(m)f + <fr(m)) (5.25) Gk(t, f) - ± ßfc2 _ Q 2 ( m ) 

where 

ö(m) - 2 ™A>' <K"0 = 2 *M>jr 
[m} {m} 

The summation in the Green's function (5.25) is over all positive and 
negative integers {mk}, such that £22(ra) ¥= Qk

2, denoted by the prime 
on the summation. This perturbation method then consists of an itera
tion in the explicit powers of À, using the ak from (5.24) in (5.23) to de
termine the nk

{n\ hence Q,k (5.22). This then gives the new Gk(t, tf), 
(5.25), to yield the corrected ak, (5.24). It is not difficult to show that 
this method always adjusts the frequencies Qk so that one never obtains 
the classic problem of small denominators. On the other hand the con
vergence of the method is totally unknown, probably being only an as
ymptotic method. Nonetheless this theory, at least for a limited range 
of a, gave fairly accurate results. It would be of considerable interest to 
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improve these calculations, or perhaps to use the more recent per-
turbative theory developed by Eminhizer, Helleman and Montroll [60], 
which has been shown to yield convergent series for periodic solutions. 
They use the clever method, similar in spirit to Kolmogorov's device 
[89] of readjusting the initial conditions at each order so as to retain a 
precisely periodic solution—and then showing that this leads to a con-

0 40 80 120 
<*>it/2TT 

Figure 5.5. Rough theoretical calculation of the FPU problem shown in Figure 5.1, 
based on (5.22)-{5.25). 
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NORMALIZED DISTANCE 

TEMPORAL DEVELOPMENT OF WAVEFORM 

Figure 5.6. A solution of the Korteweg-deVries equation showing the development of 
eight solitons from an initial sine wave displacement (Zabusky). 

vergent result. While it may be quite true that perturbation methods 
are the "conventional physicists" approach to such nonlinear problems, 
nonetheless they are the only methods to date to yield an accurate pre
diction of the recurrence times (see below), or a complete description 
of the intermediate dynamics of the lattice. As an illustration of the lat
ter see Figure 5.5, which is a crude "hand calculation" of the Ek(t), for 
a — 1/4, using the above perturbation theory. Obviously it has its 
shortcomings when compared with the FPU Figure 5.1, yet it is recog
nizable. While perturba ti ve methods are not the primary interest of this 
conference, I think it is worth pointing out that some of the recent suc
cesses in nonlinear methods may still have competition from more con
ventional methods, when it comes to predicting (rather than inter
preting) nonlinear properties. 

The above theory yields a minimum recurrence time as a function of 
the nonlinear coupling parameter a 

(5.26) min(co1/2w)rÄ(a) = c^ /ßö^a) - ß2(a)] 

which reduces to Ford's result, (5.19), as a —» 0. Whether (5.26) is the 
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actual recurrence time, depends on an examination of the other com
bination frequencies fl(m) = 2 ra^fì^a) and ascertaining whether the 
relevant combinations are approximately commensurate with 
(2ßj — fl2). This was in fact the case over the ranges of a which were 
considered. Some values of (cox TR/2<n) obtained from computer studies 
and approximate values using the above theory are listed in the follow
ing table (where F(z) = fi[z + a z2], t/n(0) = sin(n7r/N), and 
cok = 2 sin(far/2N)). The last column will be discussed below. It will be 
noted that TR(a) is predicted quite well by the above theory, despite 
the limited accuracy of the calculations, at least for small a. Note also 
how rapidly TR(a) changes near a = 0, particularly for large N. 

TABLE 5.2 

N = 6 4 «JA Theory (5.26) R 

a = 0 
a = 1/4 

N =32 

a = 0 
a = 1/4 
<x= 1 

N = 9 

a = 0 
a = 1/4 

N = 4 

a = 0 
a = 1/4 
a = 1/2 
a = 3/4 

341 

156 
78 

21.6 

— 
5.48 
4.14 
3.35 

1660 
-

415 
142 
68 

32.9 
22.1 

6.57 
5.58 
.47 
3.75 

.33G 

.43 

.43 

.40 

.34 

.37 

.36 

The above perturbative method contrasts with the novel approach of 
Kruskal and Zabusky, which led to the interpretation of the FPU recur
rence as consisting of a sequence of events, shown in Figures 5.6 and 
5.7 (Zabusky and Kruskal [56], Zabusky [57]). The initial wave form 
(t = 0 in Figure 5.6) develops into a steep shock where its profile 
"breaks" into a number of solitons (t — tB — TÄ/30.4), labeled 1 
through 8. As shown in Figure 5.7, these solitons then travel at differ
ent speeds, interact the experience rather complicated phase shifts, and 
finally collect back ("unbreak") into the first normal mode (not shown 
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NORMALIZED DISTANCE 
Figure 5.7. The propagation of the solitons shown in Figure 5.6 (Zabusky). 
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POSITION OF THE MASS POINT 
Figure 5.8. The displacement y(n, t), of the particles in the FPU calculation correspond
ing to Figure 5.1. The numbers on the curves are values of co^/Zn (after Fermi, Pasta, 

and Ulam). 

in Figure 5.7; see Toda [14, p. 28]). As Zabusky noted, one of the re
markable features of this result is the persistence of the solitons' identi
ties through many interactions. To me, an equally remarkable feature is 
that "unbreaking" in fact ever occurs, given the apparent chaotic shifts 
in some trajectories (a point I will return to below). 

Figures 5.6 and 5.7 are based on the Korteweg-deVries equation 
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(5.27) ut + uux + 82uxxx = 0 

with S = 0.022 and u(0, x) = COS(TTX), which Zabusky proposed as a con
tinuum approximation of the lattice equations. Presumably the profile 
yn(t) (or y(x9 £)?) shown at different times in the (modified) FPU Figure 
5.8, should be understood to be a combination of the left and right 
traveling Riemann invariants considered by Zabusky. Figure 5.8 corre
sponds to the dynamics shown in Figure 5.1, with the curves labeled 
with values of (ü)1t/2ir). Of course many oscillations occur between 
each illustrated configuration of the lattice. While the derivative of 
y(x0> t), which corresponds to the u ( % t) in Figure 5.6, does exhibit as 
many as five extrema in Figure 5.6 (corresponding to the excitation of 
five normal modes), it does not appear to contain the complexity exhib
ited by the soliton picture—a fact which is presumably due to the su
perposition of left and right traveling nonlinear wave forms (Zabusky 
[58]; Toda [14]). Obviously, regardless of this comparison, the revival of 
the Korteweg-deVries equation and the subsequent mathematical devel
opments have proved to be a very fruitful area of research. 

The question remains, nonetheless, as to how detailed one can predict 
such features as the FPU recurrence time from the soliton picture. 
From a number of computations, Zabusky proposed [57], [58] that the 
recurrence time could be expressed in terms of the empirical formula 

(5.28) (« i / 2 *) r Ä = R N 3 7 2 / « 1 7 2 

where R ~ 0.44, F(z) = z + az2, and y JO) = sin(n7r/N); yw(0) = 0. As 
can be seen from the last column of Table 5.2, this expression does 
agree (within 25%) with the calculated values if a ^ 1/4. Clearly (5.28) 
cannot hold as a —» 0, but its limitations for small a are unclear. A very 
nice explanation of the empirical relationship (5.28) has been proposed 
by Toda [14], using the fact that the soliton amplitudes (and hence ve
locities) arising from the initial state w(0, x) = COS(TTX) form an arithmet
ic series. This feature of Figure 5.6 was also noted but not explained by 
Kruskal and Zabusky [56]. Because of this common difference in the ve
locities of the solitons, Aus, if the solitons do not accelerate as they pass 
through one another, then the ordering of the solitons will recur in a 
time L / A Ü S , where L is the length of the (periodic) system. Toda con
cluded that this reordering time is the recurrence time, TR = L / A Ü S , 
leading to the prediction 

3 N 3 / 2 
(5.29) K / 2 . ) ^ = - 3 ^ 

which corresponds to R — 3/ir3/2 ^ .54 in Zabusky's formula. 
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I feel that Toda's expression (5.29) is the closest that the soliton pic
ture has come to date in the prediction of any of the FPU results. Un
fortunately I do not believe that even this derivation can be considered 
complete at present, because of two reasons: 

(i) It does not explain why the obvious shifts in Figure 5.7 play no 
role in this recurrence effect—or to put it more negatively, "how is it 
possible that recurrence occurs at all, in virtue of these apparent 'in
commensurable ' shifts?". The resolution of this problem may rest with 
the recognition that the shift may only occur in the "particle label" 
space XQ, rather than physical space, x, as noted in the last section (note 
again the lack of accelerations in Figure 4.5). This however has yet to 
be established. 

(ii) The reordering time, L/àvs> is not generally, or even usually, a 
recurrence time. The latter requires a reordering between the solitons 
as well as with the ends of the lattice (simultaneously). This will only 
occur if min(t>5) = At>s/n > 0, where n = integer, in which case 

(5.30) TR = nL/Aüs. 

Toda's expression (5.29) comes from using n = 1. 
In addition to these problems, there appears to be nothing in the de

rivation which limits the size of a. Clearly (5.28) and (5.29) cannot be 
correct as a —*• 0, for we know that in the present case 

lim (u1/2ir)TR = co1/(2co1 — <o2). 

How this arises from a soliton picture is unclear at present. 
I would like to conclude this section concerning the interrelation be

tween the FPU recurrence and solitons, by discussing a result obtained 
by K. Miura during our investigations in 1973, but not included in his 
thesis. This result concerns a lattice with the polynomial force 
F(z) = ii[z -f K3zP] (i.e., with no quadratic term), which was one of the 
examples also studied by Fermi, Pasta, and Ulam [61] (with K3 = +8, 
their Figure 4). The continuum equation usually retained from (4.10) 
for a polynomial force F(z) = \i[z + K$? + K3z

3] is 

(5.31) utt = uxx + K2(u\x + K3(u\x + uxxxx 

where t is in units of h(\2)~1/2/C, and x is in units of (12)~1/2h. Now, if 
K2 = 0, then (5.31) has a solitary wave solution 

(5.32) u(x, t) = w(x - vt) = w(z); lim w(z) = 0 
2-+±00 

only if K3 > 0. This is easily proved after making three integrations of 
(5.31), using the boundary conditions (5.32), to obtain 
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CÜ,t/27T 

Figure 5.9. The mode energies for the lattice with a force F(z) = z + 8z3, which has a 
continuum soliton solution, with the FPU initial condition (K. M iura). 



NONLINEARITY AND IRREVERSIBILITY 179 

LU 

X 

CD 

Cü ( t /27T 

Figure 5.10. The mode energies for the lattice with a force F(z) = z — 8z3, which has 
no continuum soliton solution (5.32) (K. Miura). 
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(5.33) (u/)2 = [v2 - 1 - ±K3w
2]w2 - P(w). 

Obviously P(w) > 0, which means that v2 > 1, in order for tv2 — 0 (as 
z—• ±oo). In order for (5.33) to have a nontrivial solution w' must van
ish for some finite z, which can only happen if K3 > 0. Indeed the soli
tary wave solution is found to be 

(5.34) 17 = K(2/K3)
1/2 sech[K(x ± ^/m?t)]; (K2 = 0) 

which may be compared with the solution (5.32) of the Boussinesque 
equation (K3 = 0, in (5.31)) 

(5.35) u = K 2 ( 3 / 2 K 2 ) sech 2 [ l /2 K(X ± y/TTic* t)]; (K3 = 0). 

K. Miura calculated the values of Ek(t) for the polynomial force lattice 
with K2 = 0 and K3 = ± 8 , using fixed ends and the initial condition 
yn = sin(n?r/32), yn = 0 (there are N = 31 particles). The results of 
these calculations are shown in Figures 5.9 and 5.10 (the former may 
be compared with FPU Figure 4). The difference in the two results is 
dramatic, both in terms of the relative amount of energy exchanged be
tween the modes, and the time scale over which the recurrence takes 
place. Only the odd modes are excited because of the odd powers of z 
in F(z). Note that the energy exchange is much greater when K3 = + 8 
(Figure 5.9), than when K3 = —8, and that the time for recurrence in 
the latter case is about one half of that in the case K3 — + 8 . The lack 
of energy exchange between the linear normal modes in the case 
K3 — —8 is one way of expressing the fact that a solitary (localized) 
disturbance does not develop, which agrees with the above result. On 
the other hand there is clearly a significant energy exchange in Figure 
5.10 (Ej decrease by 15-20% of its initial value during part of the 
time), and a well defined recurrence time ( ^ 3 3 ( 2 T T / W 1 ) ) . This particular 
recurrence phenomenon is an example which cannot be interpreted in 
terms of continuum solitary waves, arising from equation (5.31). Wheth
er there are discrete (lattice) solitons when K3 < 0 is not known at 
present. On the other hand the difference between the cases K3 > 0 
and K3 < 0 can be expected from the above perturbation theory. This 
is because H1 contains factors K3a

4, so there is a frequency shift /xfc
(1) 

proportional to the first power of K3. This can produce dramatic differ
ences depending on the sign of K3 (the details, however, have not been 
confirmed to date). 

6. Stochasticity, Ergodicity, and Solitons. One of the fundamental 
areas of research in irreversible lattice dynamics is the study of the on
set of "stochastic" behavior as the nonlinearity of the lattice is in
creased. "Stochastic" is a widely used, and rather imprecise term which 
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indicates the erratic, wild, and hopefully "statistical" behavior of at 
least some set of dynamic variables. The FPU recurrence phenomena is 
therefore a classic example of non-stochastic dynamics, as is the long
time existence of a soliton. The variables which have been usually con
sidered are the (harmonic) normal mode energies, or the intersection of 
the phase trajectory with some Poincaré surface of section (see below), 
or a set of action-angle variables generated by a canonical transforma
tion selected to make the Hamiltonian conform with the conditions of 
the KAM theorem (also see below). One of the interesting results that 
has been found (Ford, Stoddard, and Turner [82]) is that the "stochasti-
city" observed in computer calculations can be strongly influenced by 
the selection of the dynamic variables, and that several tests may be 
warranted before statistical conclusions can be anticipated. 

Early investigations which indicated the onset of stochastic behavior 
in lattice systems were made by Izrailev and Chirikov [86], Chirikov 
[76], and Zaslavsky and Sagdeev [102]. These were followed by studies 
of one-dimensional lattices (Saito, Ooyama, Aizawa, and Hirooka [95]), 
two-dimensional lattices (Hirooka and Saito [94]) with varying amounts 
of nonlinear coupling. They found from computer experiments that, not 
only did energy sharing occur for larger coupling, but that there ap
peared to exist an "induction period" during which there is very little 
energy exchange, followed by an apparent equipartition of energy (see 
also, Saito et al. [95]). More recently Bivins, Metropolis, and Pasta [74] 
examined how this induction time is influenced by the number of 
modes used to describe the dynamics of the system, and to relate it to 
instability regions of the Mathieu equation. It is interesting to note that 
Northcote and Potts [66] also showed an example where their Et(t) ex
hibited such an induction period, before it rapidly lost energy (their 
Figure 2). The existence of an induction period is, of course, quite con
trary to the usual "relaxation time" picture of energy loss noted in pre
vious sections. Both the existence of this induction period, and the ap
parent stochastic nature of the equipartition of energy contrast sharply 
(at least in some cases) with another method of examining (small) lattice 
dynamics which has been widely used by Ford and his coworkers [75], 
[79]-[82], [101]. Since Ford [80], [81] has written very clear and exten
sive reviews on this method, I will discuss it only briefly in order to 
contrast it with other methods. 

Their method is based on the use of Poincaré's surface of section, 
which had been applied by M. Henon and C. Heiles (Astron. J. 69, 73 
(1964)) and others in astronomy, as well as applications in unimolecular 
dissociation in chemistry. (See Walker and Ford [101] for a very nice 
discussion and additional references. A recent application in chemistry 
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can be found in D. W. Noid and R. A. Marcus, J. Chem. Phys. 62, 2119 
(1975).) Henon and Heiles studied the bounded motion of a system with 
the Hamiltonian 

(6.1) H = \(p* + P* + 9 l* + qfi + q*q2 - i 9 2 3 

and used the Poincaré surface of section to determine whether the sys
tem has any other "well-behaved" constants of the motion besides H. 
To determine this they examined the points at which the system trajec
tory intersected the (p2, q2) plane when qx — 0 and pt i? 0. If these 
points fall on a "smooth" closed curve this indicates that there is anoth
er "regular" constant of the motion, l(pv qv p2, q2) so that I and H re
strict the trajectory motion to a smooth two-dimensional surface in the 
phase space (pv qv p2, q2). Figures 6.1 and 6.2 show some of the results 
presented by Walker and Ford for the Henon and Heiles' Hamiltonian 
(6.1), with the intersection points connected by freehand curves where 
appropriate. In Figure 6.1 H = 1/12, and it appears that, within com
puter accuracy, all initial states have trajectories lying on smooth two-
dimensional surfaces (tori). In Figure 6.2 H = 1/8, and there is now a 
large region with dynamic states which exhibit instabilities, or "sto-
chasticity". These observations were extended later to include the de
termination of the separation distance between pairs of trajectories 
which initially are very close to each other. They found that this sepa
ration, S(t), is essentially proportional to time for those pairs which lie 
in the region with the smooth curves, but that S(t) increases essentially 
exponentially with time if the pairs lie in the "stochastic" region. This 
latter property is one which is associated with C-systems, and therefore 
presumably very suggestive of ergodic behavior. Unfortunately, in a 
computer calculation it is not always possible to make a precise deter
mination of when a system goes from a linear to an exponential behav
ior of S(t), unless the growth rate of S(t) is short compared with the 
computation time. Nonetheless, this added measure of stochasticity is a 
very important addition to the Poincaré plane "smooth curve" method, 
because the latter is probably only useful for systems with very few de
grees of freedom. If the system has a large number of degrees of free
dom then the intersection of its trajectory with such a two-dimensional 
surface can be very complicated, even if other "regular" constants of 
the motion do exist. The separation test however would appear to be 
usable with more degrees of freedom. Here the difficulty may be that 
S(t) will behave like S(t) = tP(t), or S(t) = exp(at) P(t), but where P(t) is 
itself sufficiently erratic that it may be difficult to distinguish linear and 
exponential separations. 

Regardless of these questions on the extension of this method to lat-
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Figure 6.1. The intersection of several two-dimensional tori in phase space (pv qv p2, 
q2), associated with different dynamical trajectories, with a Poincaré surface of section. 

The Henon-Heiles system has energy E — 1/12. (Walker and Ford). 

tices with more degrees of freedom, this approach was strikingly suc
cessful in predicting the existence of well-behaved (indeed analytic) in
tegrals of the motion for the exponential lattice. Ford, Stoddard, and 
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Figure 6.2. The surface of section for the Henon-Heiles system with a larger energy 
(E = 1/8) than in Figure 6.1. The unconnected dots are produced by the intersection of 
a single trajectory with this surface (Walker and Ford). 

Turner [82] computed the surface of section for a three particle expo
nential "lattice" with periodic boundary conditions, characterized by 

(6.2) 
_|_ e-(Qr-Qd _|_ e-(Q3r-Qd _ 3 

-Q3) 
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They concluded, both from the persistence of smooth intersection 
curves even at very large energies, and from the linear time depen
dence of the separation distance, S(f), that the exponential lattice must 
possess well behaved integrals of the motion in addition to H (and an
other which they had accounted for). This computer prediction led He-
non [85] (also see Flaschka [78]) to seek and find N analytic constants 
of the motion which are in involution (Whittaker [17]), and certainly is 
an outstanding example of the useful interplay which may result be
tween computer calculations and theory. 

One of the greatest benefits which may result from Toda's exponen
tial lattice model is that it presents a clear distinction between ergodi-
city and FPU energy sharing. As noted by Ford, Stoddard, and Turner, 
the above result establishes the fact that the exponential lattice is cer
tainly not ergodic. On the other hand, as shown in the computer studies 
by Saito, Ooyama, Aizawa, and Hirooka [95], the exponential lattice 
can exhibit energy sharing for sufficiently strong nonlinearity. (They 
used N — 15, a — 0.471, b = 2.127, and initially excited the eleventh 
mode, apparently with an amplitude au = 2.0). Also Ooyama and Saito 
[46] observed that solitons passing through a sufficiently energetic back
ground of "ripples" experience a viscous drag, slow down, and hence 
must be losing energy (see the end of § 5). This deterioration of a soli-
ton appears to be related to the stochastic energy sharing, in that a 
minimum background energy seems to be required before there is an 
observable drag. The important fundamental point to be learned here is 
that energy sharing and ergodicity are quite distinct. Nothing precludes 
a system which has a number of independent analytic integrals of the 
motion from exhibiting energy sharing, or a transition to this form of 
"stochasticity" as a nonlinear parameter is increased. 

This question of whether "stochasticity" may not frequently be "in 
the eye of the beholder", depending on which dynamic variables (not a 
complete set) he chooses to examine, strikes me as a very important 
consideration in future research. Thus the breakdown of a physically in
teresting quantity, such as the soli ton, may not require anything like er
godic behavior, to say nothing of mixing and other more exotic proper
ties (e.g., Arnol'd and Avez [73]). Therefore, while the system may 
appear quite "regular" dynamically in one set of variables, the phys
ically interesting variables may exhibit quite "irreversible" properties. 
This fact may be worth keeping in mind when one draws physical con
clusions about limited variables from some mathematical theorems. 

In this respect I would like to make a few comments about the very 
beautiful and important Kolmogorov-Arnord-Moser (KAM) theorem 
(e.g., Moser [91]), which is presumably closely related to the FPU re-
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currence phenomena, and perhaps more directly to the existence of the 
regular regions in Figure 6.2 (see Ford [80], [81] for a discussion of this 
connection). The KAM theorem states roughly the following: 

Let the Hamiltonian H(J, 0, X) be an analytic function of its 
arguments near X = 0, and over some open set of values 
(/, 0) E 3?2N. Assume also that H has period 2T7 in each of 
the variables 0 = (8V • • -, 0N) and that, for À = 0, the Ham 
iltonian depends only on / = (Jv • • •, JN)9 so that 
H(J, 0, 0) = H0(J). Consider the N-dimensional tori defined at 
X = 0by 

(6.3) h = -Ml- - 0fc(J); 4 = 4 ° (constants). 

Assume that the frequencies Qk(J) are independent functions of / at J°, 
so that the following Jacobian does not vanish at J° 

(6.4) 3(fi1; • • •, ÜN)/d(Jv •••,JN)*0 (J = f). 

Then, for sufficiently small X, most of these tori are invariant, in the 
sense that 

(6.5) 0 = *+ / fo ,X) , / = /> + g(fcX) 

where f(<f>, X) and g(<j>, X) are analytic functions, periodic in <j>, which 
vanish at X = 0. Moreover <j> = Qfc(J°). 

These invariant tori therefore remain close to their surfaces at X = 0 
(i.e., they are "stable", not erratic, or "stochastic"). Thus the smooth 
curves in the surface of section in Figure 6.1 is an example of the inter
section of two-dimensional invariant tori with this surface. The break
down of this invariance is then demonstrated by the erratic region in 
Figure 6.2. This interpretation, and an analogous "explanation" of the 
FPU invariance of periodic motion, leaves some questions which would 
be useful to have clarified. 

The difficulty centers on the condition (6.4), and the introduction of 
the parameter X. Such a parameter does not occur naturally in a phys
ical Hamiltonian, and is introduced usually as a measure of the non-
linearity of the system (for a fixed region &2N). Then, at X — 0, one has 
a harmonic lattice, so H0 = 2 WjJk, and Ük(J) = wk. Since the functions 
ßfc(J) are all constants, they are not independent, and (6.4) is not satis
fied. Note that this condition has nothing to do with whether the cok 

are commensurable. This means that, if the KAM theorem is to be asso
ciated with the FPU study, then the À of this theorem cannot be simply 
the physical measure of nonlinearity (e.g., the a in the FPU force 
F(z) = ii[z + az3]). Indeed what is required, before the KAM theorem 
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can be applied, is to make a canonical transformation to another set of 
action-angle variables, (7,0), givenby 7 = dK(J,Ö)/dÖ; 0 = dK(J,Ö)/dJ9 

such that the new Hamiltonian H(J9 0) has an additive part which is at 
least quadratic in / . One can then write 

(6-6) H(7,Ô) = Hom + Hs+1(7,6) 

where H0
(s)(/) is of order s in / . The process of carrying out such trans

formation was discussed by G. D. Birkhoff (Dynamical Systems, Amer. 
Math. Soc, 1927, p. 82ff.) and in the present contest by Arnol'd [71, p. 
108ff]. To perform this transformation requires that the frequencies cjk 

satisfy 

N 

(6.7) 2 mkiok * 0 if |m| = 2 \mk\ ^ 2s - 1. 
k—i 

If F0<
s> (J) satisfies (6.4), Arnol'd calls the system H(J, Ô) = H0

is\T) a 
general elliptic type. A system with this Hamiltonian is, of course, quite 
stable because the Jk are constants. However the system with the Ham
iltonian H(J, 6) remains close to this stable trajectory only for a time of 
the order €~s, where c is their initial distance from the origin. One can
not draw any conclusion about the stability of the original system by 
taking s —* oo, because the Birkhoff series diverges in this limit, due to 
the classic problem of small denominators. What one can do instead is 
to stop at s = 2 (say), and then proceed to use the KAM theorem, as
suming that its conditions are now met. A study establishing when this 
procedure satisfies the conditions of the KAM theorem has been made 
by Nishida [92] (I am indebted to J. Ford for bringing this reference to 
my attention). This theorem is again based on canonical transforma
tions, but since the Q(J) are now functions of J, one can use the result 
from the theory of Diophantine approximations to conclude that, in a 
region c, nearly all fl(/) satisfy (for \m\ > 0) 

(6.8) 
N 

2 ™kti k*uk ^ K€.\m\-\v = N + 1) 

for some K > 0. Using this fact, one can then establish the convergence 
of the series of transformations, for nearly all initial states. This very 
pretty procedure has the disadvantage of introducing a parameter, and 
new canonical variables which have no direct physical significance. 
This presumably is of no consequence as long as one does establish sta
bility, because everything is stable (so to speak). However, if one is in
terested in extending these results, and considers the destruction of the 
tori for larger nonlinearity, then the physical significance of the varia-
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bles may be quite important in judging the statistical effect of some de
stroyed region. Thus, to return to Ford, Stoddard and Turner's result, 
they found stability for Toda's exponential lattice, yet the physically in
teresting normal mode energies can exhibit a "stochastic" behavior [95]. 
It would be very nice to understand better how such a stable system 
can exhibit such stochasticity in some variables. Similarly above, the 
fact that some tori in the (/, 6) space are invariant may not indicate a 
"smooth" dynamical behavior in the original (/, 0) space. In a similar 
way the stability of such tori may not indicate the apparent stability of 
solitons. At present the connection between stochastic dynamics and the 
onset of soliton breakdown is nearly a totally virgin'field. 

POSTSCRIPT. Recently some very interesting calculations have been 
made by Casartelli, Diana, Galgani, and Scotti [103] and by Benettin, 
Galgani, and Strelcyn [104] which study the relationship between the 
onset of stochasticity and the Kolmogorov-Sinai dynamical entropy (or 
a related entropy). Previous important studies of this type have been 
made by Chirikov [76], Chirikov, Keil, and Sessler [105], and by Chiri-
kov, Izrailev, and Tayursky [106]. 

7. Suggestions for Future Research. Perhaps, after this excursion 
through various irreversible thickets, one of the more useful exercises 
would be to extract some more or less specific problems which have 
been eluded to in the above discussion. While this represents one more 
distillation, nonetheless I apologize for the obvious vagueness and pos
sible bias of some of these questions. Perhaps mathematicians can 
sharpen some of them, and thereby find a problem worthy of future re
search. In random order of importance: 

1. What is the relationship (if any) between the "stochastic" tempor
al behavior of a lattice and its ability to support highly independent 
spatially localized disturbances? This, of course, involves the question of 
a bridge between the temporal and spatial behavior of a lattice. 

2. Is there an N dependence to the stochastic behavior of a lattice 
(for given energy per particle)? That is, how does stochasticity change 
in the thermodynamic limit? 

3. So far there is much more theoretical than computational reason 
to believe that a temperature gradient is easier to establish in a two-di
mensional rather than a one-dimensional lattice. Is there a nonexistence 
proof of two-dimensional solitons (in a nondispersive, noninteracting 
sense) which would further support this contention? 
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4. How is the temperature gradient, observed in many computer cal
culations of one-dimensional lattices, compatible with soliton transport 
of energy? Is the temperature gradient correlated with the oscillatory 
"tails" of the solitons which are produced at the reservoirs, or does it 
represent a "local stochastic breakdown" produced by the interaction of 
two "solitons"? K. Miura's calculations indicate that in the interaction 
of less energetic solitons they lose both a larger percentage and abso
lute amount of energy to "thermal noise". 

5. It appears to be an untested consensus that anything beyond near
est-neighbor interactions adds nothing essential to the irreversible prop
erties of a lattice. Perhaps long range interactions can produce "dynam
ic transitions" (e.g., to stochastic behavior) in analogy to phase 
transitions in equilibrium statistical mechanics. It should be noted that 
for the long range interactions V(r) = r2 + r~2 (Collegro lattice) the 
system is integrable (J. Moser, Adv. Math., to be published), and does 
not exhibit stochasticity (G. Casati and J. Ford, J. Math. Phys., to be 
published). A less nebulous question is what is the influence of longer 
range interactions on the ability of lattices to maintain independent lo
calized disturbances (nonsolitary solitons!)? 

6. FPU recurrence can occur in lattices which have no "continuum" 
soliton solutions (in the standard continuum approximation). Do the cor
responding discrete lattices support solitons? What does this result im
ply about the explanation of FPU recurrence in terms of solitons, or 
that solitons are more basic than periodic solutions (which these same 
lattices do possess). 

7. Obtain an accurate prediction of the FPU recurrence time from 
continuum equations (if possible, or with accuracy related to the num
ber of higher derivatives), or from the Toda lattice. In either case ac
count should be taken of the phase delays introduced by interactions 
between solitons or with the fixed ends. Perhaps even more basic is to 
prove that FPU recurrence should occur, even with these phase delays. 
That already appears to be very mysterious, and may be related to the 
Euler vs. Lagrange descriptions (see problem 9). Also how does the soli
ton picture become modified as a —* 0 in (5.28)? 

8. Push the perturbation theory predictions of the FPU recurrence 
times to their convergence limits—whatever that may mean precisely. 
The calculations ten years ago were crude, being done by hand (with
out even a calculator!). It would be of great interest to see how these, 
or more recent methods (Eminhizer, Helleman, and Montroll [60]) may 
give indications of the onset of stochasticity (e.g., a rapid lengthening 
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of the recurrence time with increased energy or N—perhaps a "phase 
transition" to the Poncaré's time?). These perturbation calculations are 
still the only methods which have given answers accurate to (say) 20%. 

9. A careful analysis of the continuum limit should be made, dis
tinguishing carefully between the Lagrangian and Eulerian pictures 
(xn(t), and (x, t)). Much of the Eulerian nonlinearity can arise in a tran
scription of simple linear (harmonic) Lagrangian dynamics, and thus is 
trivial (Figure 4.4). For example, is it possible that a "lattice-shift" 
slowdown (e.g., Figure 4.4) can combine with the "Lagrangian speed
up" of y(x0, t) for crossing impulses (e.g., Toda [14]) to yield a net zero 
acceleration in space (e.g., Figure 4.5)? 

10. It would be interesting to determine to what extent the local 
energy in a computer calculation of lattice thermal conductivity has in 
fact a local canonical distribution. This is a basic assumption of the 
Kubo formulation of thermal conductivity, and is distinct from the 
Hamiltonian modification used for other irreversible processes (e.g., 
electrical conductivity). Perhaps Fourier's "temperature" is not canoni
cal, and the law thereby does not imply "strong mixing" of the modal 
energies (or solitons). 

11. The coupling of a lattice to an outside source (e.g., thermal res
ervoir) presents several interesting problems (see the temperature 
jumps, Figure 4.3). What conditions insure the best energy ex
change—e.g., in terms of collision frequencies, sound velocities, mass ra
tios, etc.? 

12. The integrability of the Toda lattice affords a unique opportu
nity to clarify the importance of such integrability on macroscopic irre
versible behavior. Good energy sharing can occur in such a system 
(Saito's calculations), but this may not imply Fourier's law (Visscher's 
observation about the energy sharing HHC lattice, found by Northcote 
and Potts). The important investigation of Casati and Ford (to be pub
lished in Phys. Rev. A) on the influence of the unequal mass Toda 
"molecule" (N — 2; p3 — q3 — 0 and p1 —* p1

2/m1, p2—• p2
2/m2 in 

(6.2)), should be extended to larger systems, where thermal conductivity 
and solitons are meaningful. 

13. Is stochasticity in nonlinear (say polynomial) lattices perhaps 
most simply understood in terms of the harmonic plus hardcore model 
(2.5)? This system, which is obviously nonergodic for small energies, is 
at least energy sharing for larger energies [66] and this division should l 

be quite sharp. An apparent paradox arises however since only at the 
larger energies can the HHC lattice apparently support a nonergodic 
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disturbance similar to a soliton. Actually this is unclear since K. Miura's 
calculations were not over sufficiently long times to draw a definite 
conclusion about their dispersion, and the interacting pulses did show a 
loss of energy. The HHC model does however seem to give a particu
larly transparent example of exponentially diverging states (because of 
totally different futures, resulting from a few hardcore interactions). 

14. What is the relationship between the velocity, Vp imparted to 
the end of a finite lattice, and the energy (and velocity) of the resulting 
soliton (Figure 4.7)? 

15. Is there a continuous transition from Schrödinger's (et al.) local
ized solution of the harmonic lattice (2.29, and Figure 2.4) to the non
linear soliton? The exponential lattice offers an explicit example 
(a —• oo, b —* 0, ab = constant). 
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