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STABILITY ANALYSIS FOR A VECTOR 
DISEASE MODEL 

KENNETH L. COOKE* 

1. Introduction. In this note, we shall analyze the scalar delay-
differential equation 

(1) y'(t) = by(t - T)[l - y(t)] - cy(t) 

where b, c, and T are positive constants. This equation represents the 
proportion of infectious persons in a very simple deterministic model 
for the spread of a communicable disease carried by a vector. The as­
sumptions of the model are explained in § 2. 

Despite its simplicity, the nonlinear equation (1) has apparently not 
been investigated heretofore, except in the case c = 0. For c = 0, it is 
equivalent to the equation of Hutchinson for single species population 
growth and has been studied by a number of authors. However, their 
assumptions generally seem to exclude the case b > 0 of interest to us. 
See § 7 for further discussion of this. 

In § 3, we begin our mathematical analysis by proving that the re­
gion 0 = y ^ 1 is invariant for (1). That is, if <p is a continuous initial 
function satisfying 0 ^ <j>(0) ^ 1 for — T ^ 0 ^ 0, then the solution sat­
isfies 0 = y(t) = 1. See Lemma 1. We then conduct a linear stability 
analysis of equilibrium solutions and prove the following theorem. 

THEOREM 1. Let P denote the class of all nonnegative solutions y(t) of 
(1) on 0 ^ t < oo. Assume that b > 0, c = 0. Then y = 0 is (locally) 
asymptotically stable within this class provided c > b. The solution 
y — 1 — (c/b) is (locally) asymptotically stable within the class P if 
c<b. 

In Sections 4-7, we carry out a global stability analysis, using Liapu-
nov functional, obtaining the following results. 

THEOREM 2. If c = b > 0, the solution y — 0 is asymptotically stable 
and the set {<j> G C : 0 ^ <j>(6) ^ 1 for - T ^ 0 ^ 0} is a region of at­
traction. If 0 ^ c <b, the solution y = 1 — (c/b) is asymptotically 
stable and the set {<j> G c : 0 < <t>(0) = 1 for —T ^ 6 ^ 0} is a region 
of attraction. 

The biological interpretation of these results is that there is a thresh-
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old at b — c, in the following sense. If b = c, then the proportion y(t) 
of infectious individuals tends to zero as t becomes large, and the dis­
ease dies out. If b > c, the proportion y(f) tends to an endemic level 
y — 1 — (c/b) as t becomes large. Since c represents the recovery rate 
and b represents a contact rate, this is a very reasonable conclusion. 
We note that non-constant periodic solutions cannot exist within the re­
gion O ^ i / ^ l . 

In § 8, several possible extensions of this work are mentioned. No at­
tempt has been made to fit actual data to the model. This is because 
our principal interest is in determining the general qualitative features 
of solutions of various functional equations arising from biological mod­
els, with the hope that this will show the consequences of the sundry 
assumptions in these models. 

2. The Model. The assumptions of this model are as follows. 
(A) The infection is transmitted to man by a vector, such as a mos­

quito. That is, susceptible persons receive the infection from infectious 
vectors, and susceptible vectors receive the infection from infectious 
persons. 

(B) The infection in humans confers negligible immunity and does 
not result in death or isolation. 

(C) The human population in the community under consideration is 
fixed. Births, deaths, and migration are ignored. 

(D) When a susceptible vector is infected by a person, there is a 
fixed time T during which the infectious agent develops in the vector. 
At the end of this time, the vector can infect a susceptible human. 

(E) There is homogeneous mixing of the human and vector popu­
lations. 

(F) Infected humans have a recovery rate c. 
These assumptions apply as a very rough approximation to a disease 

such as malaria. 
Let y(t) denote the proportion of humans in the community who are 

infectious at time t and let S(t) denote the proportion who are suscep­
tible. Then y(f) + S(t) — 1, by assumption (B). Let z(t) denote the 
number of infectious vectors in the community at time t. For the sake 
of simplicity, assume that 

(G) The vector population is very large and z(t) is simply proportion­
al to y(t — T). 

As usual, interpret assumption (E) to mean that the number of new 
infections per unit time is a multiple of S(t)z(t). Then, by assumptions 
(F) and (G) we have 
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y\t) = bS(t)y(t - T) - cy(t) 

and 

(1) y\t) = by(t - T)[l - y(t)] - cy(t). 

Here b > 0 and c ^ 0. 

3. Linearized Stability Analysis. We wish to determine the nature of 
all solutions of (1) within the biologically meaningful range 0 = y = 1. 
We first give a simple lemma on invariance of this region. 

LEMMA 1. Let <j> be a continuous function on [ —T, 0] into R satis­
fying 0 ^ <t>(6) ^ 1 for -T ^ 0 ^ 0. If y : [-T, a) — R is a solution 
of (1) for 0 < t < a satisfying the initial condition 

y{0) = m> -T^O^O 

then 

(2) 0 ^ y(t) ^ 1, 0 ^ f < a. 

Moreover, if 0 < <f>(0) ^ 1 tfien 0 < y(f) ^ 1. If 0 < <J>(0) < 1 and 
c>0, then 0 < y(t) < 1. 

PROOF. First suppose that 0 ^ <j>(0) ^ 1. Then from (1) 

(3) ft^
eCtî = ^ ' - ^ - ^ 

Now suppose that y(t) does not satisfy (2). By continuity of y(t), there is 
a largest number ß, 0 ^ ß < «, such that 0 ^ i/(f) ^ 1 for 0 ^ £ ^ ß, 
and either 

(i) i/(ß) = 0 and y(t) < 0 on (/?, ß + c) for some € > 0, or 
(ii) t/(/î) - 1 and t/(£) > 1 on (/}, ß + c) for some e> 0. 

Consider (i). From (3) (assuming, as we may, that c < T) we see that 
y(t)ect is non-decreasing on (ß, ß + e), which is a contradiction. Next, 
consider (ii). Then from (1) we get y\t) = —cy(t) = —c for ß ^ t tà 
ß + c. Hence [/(f) is non-increasing on (/?, /? + c), which is a con­
tradiction. This proves that y satisfies (2). 

Next, suppose that 0 < <f>(0) = 1. From the above, we know that y 
satisfies (2), and we wish to show that y(t) remains strictly positive. If 
not, let t1 be the first point where y(tt) — 0. Then y\t^j = 0. However, 
from (3) we have y'it^j > 0, a contradiction. 

Finally, if 0 < <j>(0) < 1 and c > 0, y(t) must remain strictly less than 
one. If not, let tx be the first point where j/(f1) — 1. Then (1) implies 
y\t^j — — c < 0, a contradiction. 

Our next result concerns local stability of equilibrium solutions. 
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Clearly y — 0 is an equilibrium point for all b, c, T. The only other 
equilibrium point is y = 1 — {c/b), which is within the allowable 
range if b > 0 and 0 ^ c ^ b. 

THEOREM 1. Let P denote the class of all nonnegative solutions y{t) of 
(1) on 0 = t < oo. Assume that b > 0, c = 0. Then y = 0 is (locally) 
asymptotically stable within the class P provided c > b. The solution 
y — 1 — {c/b) is (locally) asymptotically stable within the class P if 
c<b. 

PROOF. We begin by considering the linearization of (1) near y = 0, 
which is the equation 

(4) u\t) = bu{t - T) - cu(t). 

The associated characteristic equation is 

(5) X = be~TX - c. 

Let z — TK. Then 

(6) Tb - Tcez - zez = 0. 

We now apply the following well-known theorem of Hayes [3]. 

THEOREM. A necessary and sufficient condition in order that every 
root of the equation 

pez + q — zez — 0 

have negative real part is that 
(a) p < 1, and 
(b) p< - 9 < K 2 + p2)1/2 

where ax is the root of a — p (tan a) such that 0 < a < 77. {If p — (V 
take ax = ir/2.) 

Applying this to (6) with p — —Te, v Tb, we observe that (a) cer­
tainly holds since Tc = 0, and (b) reduces to c > b. Assume that c > b. 
Then the zero solution of (4) is uniformly asymptotically stable. More­
over, (1) is a nonlinear perturbation of (4) that may be written, in the 
notation of functional differential equations, in the form 

y'(t) = L(yt) + f(yt) 

where L and f are the functions 

L(4>) = H(-ï)-c4>(0), 

m= -&*(-3>(o). 
Let ||4>|| denote the usual supremum norm. Then for any e > 0, 
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[/fo)| ^ c||^||, for t G R, II4.II S e/6. 

Using Hale [2], Theorem 18.3),we may conclude that the zero solution 
of (1) is also uniformly asymptotically stable. Thus, if y(t) is any solu­
tion of (1) with y in class P and \\<j>\\ sufficiently small, then y(t) remains 
within the class P (by Lemma 1) and y(t) tends to zero as t —> oo. 

If b > c > 0, then the result of Hayes shows that the zero solution of 
(4) is unstable. We therefore consider the other equilibrium point, 
y = i - (c/b). 

To examine (1) around this point, we set 

(7) y(t) = ( 1 - £ ) (1 + v(t)) 

and find the equation 

(8) v'(t) = cv(t - T) - bv(t) - (b - c)v(t)v(t - T). 

Note that the region 0 = y = 1 corresponds to the region 
— 1 ^ v ^ c/(b — c). The latter therefore has invariance properties for 
solutions v(t) of (8) which are like those in Lemma 1. 

The linearization of (8) near v = 0 is 

(9) u'(t) = cu(t - T) - bu(t). 

This equation has the same form as (4), but with b and c interchanged. 
Therefore by the previous discussion (theorem of Hayes), u — 0 is uni­
formly asymptotically stable for (9) if c < b and unstable if c > b. 
Since the nonlinearity in (8) is again quadratic, the previous argument 
also shows that v = 0 is uniformly asymptotically stable for (8) relative 
to solutions v in the specified region. Translating this result back to 
y(f), we find that if c < b, then y = 1 — (c/b) is uniformly asymptot­
ically stable within the class P. Note that if c > b, the point 
y — 1 — (c/b) becomes unstable for the linearized equation. This com­
pletes the proof of Theorem 1. 

In the following sections, we shall obtain global stability results for 
the cases b < c and b > c, as well as for the case b — c where there is 
an "exchange of stabilities". 

4. Liapunov Stability Analysis for c > b > 0. We shall now establish 
asymptotic stability of y — 0 for (1) when c > b by using a Liapunov 
functional. Let C = C([-T, 0], R) and for <f> in C define 

(io) v(*) = ^ #))2 + \ S-T W? d0-
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For the sake of convenience, write (1) in the form 

(ii) y'(t) = f(yt)-

It is easy to see that / a s a map from C to R is continuous and takes 
closed bounded sets into bounded sets. Now for $ in C, let yt denote 
the solution with initial condition <£. Then the derivative of V is 

V(4>) = lim sup \ [V(yt) - V(*)] 

iim sup (-1 yw-wr 
t^o+ I 2c t 

+ 2 

The first term on the right is 

„ i w-wf =i 
e-o+ 2c t c 

- mm 
c 

and the second is 

hm ! p y i t + e f ~ ^ ) 2 

s-*o+ 2 
d0 

= S-T *W*'W ^ = | WO)2 - # - Î)2]-

Using the definition of / , we obtain 

V(4>) = ì <t>(0)[b<t>(-T) - H ( - ï > ( 0 ) - c#0)] 

+ hm2-H-m 
(12) 

1 2h 

= - £ WO)2- -WM-T) 
£ C 

+ <t>(-m- -4>(oM-n 
c 
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We now define 

G = { ( f ) G C : 0 ^ (j>(0) ^ 1 for - T ^ 0 ^ 0}. 

It is clear that V is continuous on G = G. Also, the quadratic form 
x2 — 1bc~xxy + y2 is positive definite since 0 < b < c. Therefore for <f> 
in G we have 

V(<f>)^ - ^4>(0) 2 <K-7^0. 
c 

Thus, V is a Liapunov function on G relative to the given equation. 
Further, let 

E = {cj> (EG: %>)=0} . 

From (12) it is clear that 

E = (4> 6G:<(.(0) = <j>(-T) = 0}. 

Let M denote the largest subset of E that is invariant under the equa­
tion (1). Now if <j>(0) = <t>( — T) — 0 then the corresponding solution y 
of (1) satisfies y(t) = 0 for t = 0. Consequently, M consists of the iden­
tically zero function only. 

Now let <f> E G and let y be the corresponding solution of (1). By 
Lemma 1, y remains in G for all t = 0. Also, the positive trajectory 

y+(*) = { y , : 0 ^ t < o o } 

is compact in C. For, this family is uniformly bounded, and equi-
continuous since 

\y'(t)\ ^ b\y(t - T)|[l + \y(t)\] + c\y(t)\ ^ 2b + c. 

It follows from Theorem 4.7, Chapter 3, in La Salle [7] that yt tends to 
M as t —> oo. That is, y(t) —» 0 as t —• oo. This proves that 0 is asymp­
totically stable for (1), and G is a region of attraction. 

5. Liapunov Stability Analysis for 0 < c < b. When c <b, we study 
the equation in the form (8), which for convenience we can write as 
*>'(*) = g(vt)

 w h e r e 

(13) gfo) = c<t>( - T) - H(0) - (b - ^(0)cf>( - T). 

Define 

(14) V(<J>) = ^ ^,(0)2+ * £Ttifffd8. 
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The constant k will be chosen later. Then 

%>) = I <t>(0)g(4>) + | WO)2 - <M-T) 2 ] . 

Using (13), and defining d = c/b, we get 

%>)= / - - l ) ^ + # H ( - l l 

- -<M-7? + (d-i)#))2<j»(-:0. 

Define 

G = j <f> E C: - 1 <<K#) ^ ^ — f o r - T^ 8^ o | . 

For <£ in G, we have 

(d - i )<M0) 2 <K-7 iê ( i -d>H0) 2 

and hence 

%,) g ( | - d ) <«0)2 + d#m-T) - § <K-Tf. 

Choosing k = d, we obtain 

V(4>)^ - ^[^>(0)-<ï>(-T)]2^0. 
2 

Since V is continuous on G, and V(<̂ ) ^ 0 on G, V is a Liapunov func­
tion on G. Let 

E = (<j> EG:V(cj>) = 0}. 

If <f> is in E, and d > 0, then it is necessary that <j>(0) — <t>(—T). Then 

% ) = (d - i)cf>(o)2[i + mi 

Therefore <J>(0) = 0 or 0(0) = — 1. Hence E contains <j> for which <J>(0) 
= <f>(-T) = 0 and $ for which <f>(0) = * ( - r ) = - 1 . We find that M, 
the largest invariant set in E, consists of the functions <#>(#) = — 1 and 

m = o. 
If <J> E G, and v is the corresponding solution of v'(t) = g(vt), it fol­

lows from Lemma 1 that v remains in G for all t = 0. The positive tra­
jectory Y+(<£) is compact in C. Therefore, vt tends to M as t —* oo. That 
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is, either v(t) —* 0 or v(t) —* — 1 as t —• oo. Equivalently, y(t) tends to 
1 — (c/b) or to 0 as t tends to oo. However, we showed in the proof of 
Theorem 1 that when b > c, the zero solution is unstable. Con­
sequently, y = 1 — (c/b) is asymptotically stable and the set (which 
corresponds to G) 

{<£ G C:O<<j>(0) ̂  1} 

is a region of attraction. 

6. Stability Analysis for c = b > 0. If c = 6 > 0, (1) takes the form 

(15) y\t) = by(t -T)- by(t)y(t - T) - by(t). 

The only equilibrium point is y = 0. Defining V(<j>) as in (10), we ob­
tain (12) with b = c, that is, 

% ) = - £ WO) - <K-7T - <K0)2<K -n 
We again take 

G = {<£ G C : 0 ^ 4>(0) ^ 1 for - T ̂  0 ^ 0} 

and we have V(<f>) = 0 for <#> in G. Defining the set E as before, we find 
that if <t> is in E then <f>(0) = <t>(-T) and 4>(0)2</>(-T) = 0. Therefore 

E = (4> GG:(f)(0) = 4>(-T) = 0} 

and M contains only the zero function. Thus, y = 0 has G as a region 
of attraction, for (15). 

7. The case c — 0, fr > 0. If c = 0 then (1) reduces to 

(16) y\t) = by(t - T)[l - y(t)]. 

There are two equilibrium solutions, y = 0 and y = 1. The local stabil­
ity analysis of § 3 shows that y = 0 is unstable for all b > 0. The sub­
stitution y — 1 + v yields the equation 

(17) v'(t)= -bv(t)[l + v(t -T)]. 

The linearization near v — 0 is 

t*'(t) zr - feu(f) 

and clearly M = 0 is stable. Therefore y = 1 is stable for (16). It should 
also be noted that Lemma 1 is still valid for (16). Therefore the region 
— 1 ^ v = 0 is invariant for (17). 

Now we choose 
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and find for (17) 

%>) = - | (f)(0)2 - 4<0)2H-T) -l^(-T)2. 

Let 

G = { < j ) 6 C : - l ^ <f>(0) ^ 0 for - T ^ 0 ^ 0}. 

If </> is in G, we have -<p(0)2^(-T) ^ |̂ >(0)2 >̂( — T)| ^ <f>(0>f>(-T). There­
fore, for <f> in G, 

% ) S - | # ) ) 2 + <?»(0)<|>(-T) - | <K-Tf 

= - I[<f>(0)-<K-7)]2=iO. 

Thus V is a Liapunov function on G. If we define E in the usual 
way, then <j> in E implies <f>(0) — <p( — T) and therefore 

% ) = -<MO)2[I + mi = o-

Hence E consists of <f> in G for which <£(0) = <j>( — T) — 0 or <£(0) = 
<J>( — T) = — 1, and M consists of the functions <J>(0) = — 1 and <j>(0) = 
0. Arguing as in § 5, we deduce that v(t) tends to 0 or - 1 as f-̂  oo, 
or correspondingly y(t) tends to 1 or 0. Since y = 0 is unstable, we 
conclude that y = 1 has as region of attraction the set of <£ satisfying 
0 < <t>(0) ä= 1. By combining the results in Sections 4-7, we find that 
we have now completed the proof of Theorem 2. 

Equation (16) is closely related to several equations that have been 
studied in the literature. For example, Waltman [8, page 52] has men­
tioned the equation 

(18) S'(t) = -rS(t)[N - S(t - m/Pl)]. 

If we define T — m/p1 and 

S(t) = N[1- y(t)}, 

this equation reduces to (16) with b = rN. 
By a change of time scale in (16), we may assume without loss of 

generality that T = 1. If we then let y(t) — —x(t) we obtain 

(19) *'(*) = bx(t - 1)[1 + x(t)]. 
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This equation has been extensively studied by Hutchinson [4], Wright 
[9], Kakutani and Markus [6], Jones [5], and others. However, almost all 
this work has concentrated on the case in which b is negative, which is 
not the case of interest to us here. For b < —IT/2, (19) has a periodic 
solution. Braddock and van den Driessche [1] have studied the equation 

(20) x\t) = -[ax{t) + ßx(t - 1)][1 + x(t)] 

which reduces to (19) for a = 0, ß = — b, but their work is also pri­
marily for the case ß > 0 (b < 0). 

8. Extensions, although the above discussion is definitive for (1) in 
all cases of physical interest in the model, it might be of mathematical 
interest to investigate other cases. For example, we can drop the as­
sumption that b and c are positive. In this connection, we note that a 
modification of the argument of § 4 can be used to show that y = 0 is 
stable when 0 < \b\ ^ c. In fact, defining V(<J>) as in (10), and using 
(12), we get 

+ bc-V(0)<K-r)[i-#))]. 

If <j>( - T) ^ 0 and 0 ^ <j>(0) ^ 1 then for negative b we obtain 

% ) g - !fo(0)2 + # - T j 2 ] ë O . 

The argument is completed as before. 
Another possible extension is obtained by discarding the restriction to 

solutions satisfying 0 ^ y = 1. In a number of numerical solutions with 
c > b > 0 and initial functions such as <j>(t) = 2.0, sin 2irt, sin 377f, we 
have found that y(t) tends to zero as t —* co. In a few computer runs 
with 0 < c < b, we have found the results in the following table. 

b c m y(t) 

2 

4.5 

6 

9 

8 

1 

3 

2 

7 

4 

- 1 . 0 

0(0 + £X* + 1) 
1 + 2 sin 2TT0 

1 + 2 sin 2TT0 

4 sin 4770 

y-+ - c o 

y — 1 / 3 

1 / - 2 / 3 

y - » - c o 

!/-* - ° ° 

A generalization of the model which may permit greater biological 
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realism or flexibility can be formulated as follows. Instead of assuming 

that the number of new infectives per unit time is proportional to 

S(t)z(t), let us assume that it is a function g(S(t)9 z(t)). Also, assume that 

z(t) = h(y(t — T)) rather than z(t) — y(t — T). Any biologically desir­

able assumptions about the nature of the functions g(S, z) and h(y) can 

be imposed. We now obtain the equation 

«/'(*) = g(l - M h(y(t - T))) - cy(t). 

If we let /(S, y) = g(S, h(y)), we may write this in the form 

(21) y'(t) = / ( l - y(t), y(t - T ) ) - cy(t). 

It might be of interest to determine conditions on / or on g and h un­

der which results such as those in Lemma 1 or Theorem 1 will remain 

valid. 

In (1), we have assumed that b and c are constants. In real cases, 

however, there often is a considerable seasonal fluctuation of contact or 

recovery rates. With Professor S. Busenberg, we have accordingly be­

gun to study an equation of the form (1) having periodic coefficient 

functions. 
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