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Abstract For a field k, the ring of invariants of an action of the unipotent k-groupGa on

an affine k-variety is quasiaffine, but not generally affine. Cable algebras are introduced

as a framework for studying these invariant rings. It is shown that the ring of invariants

for theGa-action on A5
k constructed by Daigle and Freudenburg is a monogenetic cable

algebra. A generating cable is constructed for this ring, and a complete set of relations

is given as a prime ideal in the infinite polynomial ring over k. In addition, it is shown

that the ring of invariants for the well-knownGa-action on A7
k due to Roberts is a cable

algebra.

1. Introduction

We introduce cable algebras to describe the structure of rings of invariants for

algebraic actions of the unipotent group Ga on affine varieties over a ground

field k. Winkelmann [14] has shown that such rings are always quasiaffine over k,

but they are not generally affine. Roberts [12] gave the first example of a nonaffine

invariant ring for a Ga-action on an affine space. Specifically, Roberts’s example

involved an action of Ga on the affine space A7
k, where k is of characteristic

zero. Subsequent examples of Ga-actions of nonfinite type were constructed by

Freudenburg [4] and by Daigle and Freudenburg [2], for A6
k and A5

k, respectively.

These examples are counterexamples to Hilbert’s fourteenth problem.

Kuroda [8] used subalgebra analogue to Groebner bases for ideals (SAGBI)

basis techniques to show that an infinite system of invariants constructed by

Roberts for the action on A7
k generates the invariant ring as a k-algebra. Tani-

moto [13] used the same techniques to identify generating sets for the actions on

A6
k and A5

k. Our results show that Tanimoto’s generating sets are not minimal

(see Section 9.1). From the point of view of classical invariant theory, a structural

description of a ring of invariants involves the determination of a minimal set of

generators of the ring as a k-algebra, together with a minimal set of generators

for the ideal of their relations. However, for an infinite set of generators, or even

a large finite set of generators, such a description can be complicated, and the

choice of generating set can seem arbitrary.
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When k is of characteristic zero, Ga-actions on an affine k-variety X are

equivalent to locally nilpotent derivations of the coordinate ring k[X], and the

invariant ring k[X]Ga equals the kernel of the derivation. In many cases, k[X]Ga

admits a nonzero locally nilpotent derivation, and this gives additional structure

to exploit.

For a commutative k-domain B, a locally nilpotent derivation D of B induces

a directed tree structure on B. A D-cable is any complete linear subtree rooted

in the kernel of D. The condition for B to be a cable algebra is a finiteness

condition: B is a cable algebra if (for some D) D �= 0 and B is generated by a

finite number of D-cables over the kernel of D. Then B is a simple cable algebra

if it is generated by one D-cable over k. Elements in the ideal of relations in the

infinite polynomial ring for the generating cables are cable relations.

To illustrate this, consider a nilpotent linear operator N on a finite-

dimensional k-vector space V . Choose a basis {xi,j | 1 ≤ i ≤ m,1 ≤ j ≤ ni} of

V so that the effect of N for fixed i is

xi,ni → xi,ni−1 → · · · → xi,2 → xi,1 → 0.

This defines the Jordan form of N , which in turn gives a cable structure on the

symmetric algebra S(V ). In particular, N induces a locally nilpotent deriva-

tion D on S(V ), and each sequence xi,j for fixed i is a D-cable x̂i, where

S(V ) = k[x̂1, . . . , x̂m]. In this sense, the cable algebra structure induced by a

locally nilpotent derivation can be viewed as a generalization of Jordan block

form for a nilpotent linear operator.

For rings of nonfinite type over k, the ring S = k[x,xv,xv2, . . . ] is a prototype,

where k[x, v] is the polynomial ring in two variables over k. The partial derivative

∂/∂v restricts to a locally nilpotent derivation D of S, and the infinite sequence
1
n!xv

n defines a D-cable ŝ for which S = k[ŝ ]. So S is a simple cable algebra.

Although S is not quasiaffine, it plays an important role in our investigation. For

example, one of our main objects of interest is the ring A of invariants for the

Ga-action on A5 constructed by Daigle and Freudenburg, and we show that A

admits a mapping onto S.

1.1. Description of main results
We assume throughout that k is a field of characteristic zero. On the polynomial

ring B = k[a, v, x, y, z] = k[5], define the locally nilpotent derivation D of B by

D = a3
∂

∂x
+ x

∂

∂y
+ y

∂

∂z
+ a2

∂

∂v
.

For the corresponding Ga-action on X =A5
k, the ring of invariants k[X]Ga is not

finitely generated over k (see [2]).

If A= kerD, the kernel of D, then the partial derivative ∂
∂v restricts to A,

and ∂ denotes the restriction of ∂
∂v to A. We give a complete description of

the ring A as a cable algebra relative to ∂, including its relations as a cable

ideal in the infinite polynomial ring Ω = k[x0, x1, x2, . . . ]. Moreover, we construct

a specific ∂-cable σ̂ = (σn) from these relations, wherein σn+1 is expressed as
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an explicit rational function in σ0, . . . , σn. Our proofs do not use SAGBI bases,

relying instead on properties of the down operator Δ on Ω, a k-derivation defined

by

Δxi = xi−1 (i≥ 1) and Δx0 = 0.

Let Ω[t] = Ω[1], and extend Δ to Δ̃ on Ω[t] by Δ̃t= 0.

Generators. Theorem 5.1: There exists an infinite homogeneous ∂-cable ŝ

rooted at a, and for any such ∂-cable we have A= k[h, ŝ] for h ∈ ker∂. Moreover,

this is a minimal generating set for A over k.

Relations. Theorem 7.1: There exists an ideal I = (Θ̂4, Θ̂6, Θ̂8, . . . ) in Ω[t]

generated by quadratic homogeneous Δ̃-cables Θ̂n such that A∼=Ω[t]/I.
Constructs. Theorem 7.6: Let Aa be the localization of A at a, and define a

sequence σn ∈Aa by σ0 = a and

σ1 = av− x, σ2 =
1

2
(av2 − 2xv+ 2a2y),

σ3 =
1

6
(av3 − 3xv2 + 6a2yv− 6a4z).

Given n ≥ 4, let e ≥ 1 be such that −2 ≤ n − 6e ≤ 3. If σ0, . . . , σn−1 ∈ Aa are

known, define σn ∈Aa implicitly as follows.

(i) If n= 6e− 2 or n= 6e+ 2, then
∑n

i=0(−1)iσiσn−i = 0.

(ii) If n= 6e− 1 or n= 6e+ 3, then
∑n

i=1(−1)iiσiσn−i = 0.

(iii) If n= 6e, then
∑n+2

i=0 (−1)i(3i(i− 1)− n(n+ 2))σiσn+2−i = 0.

(iv) If n= 6e+1, then
∑n+3

i=1 (−1)i+1((i−1)(i−2)−n(n+2))iσiσn+3−i = 0.

Then σn ∈A for each n≥ 0 and σ̂ = (σn) is a ∂-cable rooted at a.

As seen in these results, quadratic relations in Ω are especially important.

A basis for the vector space of quadratic forms in kerΔ is given by {θ(0)n | n ∈ 2N},
where

θ(0)n =

n∑
i=0

(−1)ixixn−i.

If {θ̂n} is any system of quadratic Δ-cables with θ̂n rooted at θ
(0)
n , then the

vertices of these cables form a basis for Ω2, the space of quadratic forms in Ω

(see Lemma 3.8). Moreover, the quadratic ideals

Qn = (θ̂n, θ̂n+2, θ̂n+4, . . . ), n ∈ 2N,

are independent of the system of cables chosen (see Theorem 3.12). These ideals,

called fundamental Q-ideals, are intrinsically important to the theory at hand.

Compare this to the linear case. The only linear form in kerΔ is x0, up to a

constant, and if L̂ = (Ln) is any homogeneous Δ-cable rooted at x0, then the

linear forms Ln, n≥ 0, form a basis of the space of linear forms Ω1 and we have

equality of Ω-ideals:

(L̂) = (L0,L1,L2, . . . ) = (x0, x1, x2, . . . ).

Therefore, Ω/(L̂) = k and (L̂) is a maximal ideal of Ω.
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We show the following. We have that Q2 is a prime ideal of Ω and Ω/Q2
∼=k

S, where S ⊂ k[x, v] = k[2] is the simple cable algebra of nonfinite type and of

transcendence degree 2 over k defined by S = k[x,xv,xv2, . . . ] (see Theorem 3.21).

We have that Q4 is a prime ideal of Ω and Ω/Q4
∼=k A/hA, which is a simple cable

algebra of nonfinite type and of transcendence degree 3 over k (see Theorem 6.1).

Finally, we show that the ring of invariants for the Roberts action in dimen-

sion 7 is a cable algebra. On the polynomial ring k[X,Y,Z,S,T,U,V ], define the

locally nilpotent derivation

D2 =X3 ∂

∂S
+ Y 3 ∂

∂T
+Z3 ∂

∂U
+ (XY Z)2

∂

∂V
,

where D2 commutes with the 3-cycle α defined by α(X,Y,Z,S,T,U,V ) = (Z,X,

Y,U,S,T,V ). The partial derivative ∂/∂V restricts to the kernel A2 of D2, and

δ2 denotes the restricted derivation. There exists a δ2-cable P̂ in A2 rooted at

X , and for any such δ2-cable,

A2 = k[H2, αH2, α
2H2, P̂ , αP̂ ,α2P̂ ],

where H2 ∈ ker δ2 (see Theorem 8.2).

1.2. Additional background
Let K be any field. For n ≤ 3, the ring of invariants of a Ga-action on An

K is

of finite type, due to a fundamental theorem of Zariski. It is not known if the

ring of invariants of a Ga-action on A4
K is always of finite type (see Section 9.4).

According to the classical Mauer–Weitzenböck theorem, if the characteristic of

K is zero, then K[An
K ]Ga is of finite type when Ga acts on An

K by linear trans-

formations. However, it is not known if this is true for all fields. To date, there

is no known example of a field K of positive characteristic and a Ga-action on

An
K for which K[An

K ]Ga is of nonfinite type.

2. Locally nilpotent derivations

Let k be a field of characteristic zero, and let B be a commutative k-domain.

A locally nilpotent derivation of B is a derivation D :B →B such that, for each

b ∈B, there exists n ∈N (depending on b) such that Dnb= 0. Let kerD denote

the kernel of D. The set of locally nilpotent derivations of B is denoted by

LND(B). Note that k ⊂ kerD for any D ∈ LND(B) (cf. [5, Principle 1]).

It is well known that the study of Ga-actions on an affine k-variety X is

equivalent to the study of locally nilpotent derivations on the corresponding

coordinate ring k[X]. In particular, the action induced by D ∈ LND(B) is given

by the exponential map exp(tD), t ∈Ga, and k[X]Ga = kerD.

In this section, we give some of the basic properties for rings with locally

nilpotent derivations. The reader is referred to [5] for further details on the

subject.
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2.1. Basic definitions and properties
Given D ∈ LND(B), if A= kerD, then A is filtered by the image ideals

In :=A∩DnB (n≥ 0) and I∞ :=
⋂
n≥0

In.

Note that I0 =A and In+1 ⊂ In for n≥ 0. We call I1 the plinth ideal for D, and

we call I∞ the core ideal for D.

A slice for D is any s ∈B such that Ds= 1. Note that D has a slice if and

only if D :B →B is surjective.

A local slice for D is any s ∈ B such that D2s= 0 but Ds �= 0. For a local

slice s ∈ B of D, let BDs and ADs denote the localizations of B and A at Ds,

respectively. Then BDs = ADs[s], where s is transcendental over ADs. Given

b ∈B, degD b is the degree of b as a polynomial in s, which is independent of the

choice of local slice s. The corresponding Dixmier map πs : BDs → ADs is the

algebra map defined by

πs(f) =
∑
i≥0

(−1)i

i!
Dif ·

( s

Ds

)i

for all f ∈BDs.

If E is any k-derivation of B which commutes with D, then it is immediate from

this definition that

(1) Eπs(f) = πs(Ef)− πs(Df)E(s/Ds) for all f ∈BDs.

Let S ⊂B be a nonempty subset, and let k ⊂R⊂A be a subring. Define the

subring

R[S,D] =R[Dis | s ∈ S, i≥ 0].

Note that D restricts to R[S,D], and note that R[S,D] is the smallest subring

of B containing R and S to which D restricts.

2.2. The down operator
Let Ω = k[x0, x1, x2, . . . ] be the infinite polynomial ring, and let Ω+ be the ideal

of Ω defined by

Ω+ =
∑
n≥0

xn ·Ω.

Let Δ ∈ LND(Ω) denote the down operator on Ω

Δxn = xn−1 (n≥ 1) and Δx0 = 0.

Then Δ : Ω+ →Ω+ is surjective (see [6, Theorem 3.1]).

The ring Ω has a Z2-grading defined by degxi = (1, i), where each xi is

homogeneous (i≥ 0). For this grading, Δ is homogeneous and degΔ = (0,−1).

Given r, s≥ 0, let Ω(r,s) denote the vector space of homogeneous elements of Ω

of degree (r, s), and let Ωr =
∑

sΩ(r,s). Then Δ : Ω(r,s) → Ω(r,s−1) is surjective

for each r, s≥ 1.
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2.3. Tree structure induced by an LND
Let B be a commutative k-domain. To any D ∈ LND(B) we associate the rooted

tree Tr(B,D) whose vertex set is B and whose (directed) edge set consists of

pairs (f,Df), where f �= 0. Equivalently, Tr(B,D) is the tree defined by the

partial order on B defined by a≤ b if and only if Dnb= a for some n≥ 0.

Let A= kerD.

(i) Given a, b ∈ B with b �= 0, b is a predecessor of a if and only if a is a

successor of b if and only if a < b. Similarly, b is an immediate predecessor of a

if and only if a is an immediate successor of b if and only if Db= a.

(ii) The terminal vertices of Tr(B,D) are those without predecessors, that

is, elements of B \DB. If D has a slice, that is, DB =B, then Tr(B,D) has no

terminal vertices.

(iii) Every subtree X of Tr(B,D) has a unique root, denoted rt(X).

(iv) A subtree X of Tr(B,D) is complete if every vertex of X which is not

terminal in Tr(B,D) has at least one predecessor in X .

(v) A subtree X of Tr(B,D) is linear if every vertex of X has at most one

immediate predecessor in X .

(vi) If B is graded by an abelian group, then any homogeneous b ∈ B is a

homogeneous vertex of Tr(B,D). A subtreeX of Tr(B,D) is homogeneous if every

b ∈ vert(X) is homogeneous. If D is homogeneous, then the full homogeneous

subtree is the subtree of Tr(B,D) spanned by the homogeneous vertices.

3. Cables and cable algebras

3.1. D-cables
DEFINITION 3.1

Let B be a commutative k-domain, and let D ∈ LND(B). A D-cable is a complete

linear subtree ŝ of Tr(B,D) rooted at a nonzero element of kerD. Then ŝ is a

terminal D-cable if it contains a terminal vertex, and ŝ is an infinite D-cable if

it is not terminal.

We make several remarks and further definitions, assuming that B is a commu-

tative k-domain, D ∈ LND(B), In = kerD ∩DnB (n≥ 0), and I∞ =
⋂

n≥0 In.

(i) If ŝ is a D-cable, then ŝ is terminal if and only if its vertex set is finite,

and ŝ is infinite if and only if ŝ⊂DB.

(ii) A D-cable is denoted by ŝ = (sj), where sj ∈ B for j ≥ 0 and Dsj =

sj−1 for j ≥ 1. It is rooted at s0 ∈ kerD, which is nonzero. For multiple D-cables

ŝ1, . . . , ŝn, we will write ŝi = (s
(j)
i ) for 1≤ i≤ n and j ≥ 0.

(iii) The length of a D-cable ŝ is the number of its edges (possibly infi-

nite), denoted length(ŝ). If ŝ= (sn) and N = length(ŝ), then s0 ∈ IN , and if ŝ is

terminal, then sN is its terminal vertex.

(iv) Every b ∈ kerD \DB is a terminal vertex of Tr(B,D) and defines a

terminal D-cable of length zero.
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(v) If B is graded by an abelian group, then a D-cable is homogeneous if

it is a homogeneous subtree of Tr(B,D).

(vi) Every nonzero vertex b ∈ B belongs to a D-cable. If two D-cables

ŝ= (sn) and t̂= (tn) have sm = tn for some m,n≥ 0, then m= n and si = ti for

all i≤m. If ŝ and t̂ share an infinite number of vertices, then ŝ= t̂.

(vii) Suppose that B′ ⊂B is a subset with DB′ ⊂B′. If ŝ⊂B is a D-cable

such that either ŝ∩B′ is infinite, or ŝ is terminal of length N and sN ∈B′, then

ŝ⊂B′.

(viii) If P ∈ Ω is a polynomial in x0, . . . , xn and ŝ is a D-cable of length at

least n, then P (ŝ) means P (s0, . . . , sn).

(ix) Given D-cables ŝ1, . . . , ŝn for n ≥ 0, the notation k[ŝ1, . . . , ŝn] (resp.,

(ŝ1, . . . , ŝn)) indicates the k-subalgebra of B (resp., ideal of B) generated by the

vertices of ŝi for 1≤ i≤ n.

(x) Let ŝ= (sn) be a D-cable of length N . If ŝ is terminal, define the map

φŝ : k
[N+1] → B by φŝ(xi) = si for 0 ≤ i ≤N . If ŝ is infinite, define φŝ : Ω→ B

by φŝ(xi) = si for all i≥ 0. Elements of kerφŝ are the cable relations associated

to ŝ. Note that Dφŝ = φŝΔ where Δ is the down operator on Ω or its restriction

to k[N+1].

(xi) ExtendD to a derivationD∗ on B[t] =B[1] byD∗t= 0. If ŝ(t) = (sn(t))

is a D∗-cable and α ∈ kerD is such that s0(α) �= 0, then ŝ(α) = (sn(α)) is a D-

cable rooted at s0(α).

EXAMPLE 3.2

Let Ω = k[x0, x1, x2, . . . ] be the infinite polynomial ring, and let Δ ∈ LND(Ω)

be the down operator. Then x̂ = (xj)j≥0 is an infinite Δ-cable, x0 ∈ I∞, and

Ω= k[x̂]. Relabel the variables xi by y
(j)
n so that Ω = k[x0, y

(j)
n | n≥ 1,1≤ j ≤ n].

Define Δ̃ ∈ LND(Ω) so that, for n≥ 1,

Δ̃ : y(n)n → y(n−1)
n → · · · → y(1)n → y(0)n := x0 → 0.

Then ŷn := (y
(j)
n )0≤j≤n is a terminal Δ̃-cable rooted at x0 of length n for each

n≥ 1. If Ĩ∞ is the core ideal for Δ̃, then x0 ∈ Ĩ∞ but there is no infinite Δ̃-cable

rooted at x0, since otherwise there would exist a homogeneous infinite Δ̃-cable

rooted at x0. It is easy to check that this is not the case.

Note that an infinite D-cable ŝ has ŝ ⊂ DB and DB is an A-module, where

A= kerD. Therefore, addition and A-multiplication of infinite D-cables can be

defined in certain situations, as described in the next result, which follows imme-

diately from the definitions.

LEMMA 3.3

Let B be a commutative k-domain, let D ∈ LND(B), and let A= kerD.

(a) If ŝ= (sn) is an infinite D-cable and a ∈A is nonzero, then aŝ := (asn)

is an infinite D-cable.
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(b) If ŝ= (sn) and t̂= (tn) are infinite D-cables and s0+ t0 �= 0, then ŝ+ t̂ :=

(sn + tn) is an infinite D-cable.

(c) If ŝ= (sn) and t̂= (tn) are infinite D-cables and m ∈ Z has m≥ 1, define

the sequence un ∈ B by un = sn if n < m and un = sn + tn−m if n ≥m. Then

û := (un) is an infinite D-cable.

DEFINITION 3.4

The D-cable û in Lemma 3.3(c) is called the m-shifted sum of ŝ and t̂, and is

denoted by û= ŝ+m t̂.

DEFINITION 3.5

Let I ⊂N be either N \ {0} or {1,2, . . . , t} for some integer t≥ 1. Suppose that a

sequence 	s= {ŝi}i∈I of infinite D-cables is given, together with a strictly increas-

ing sequence 	m = {mi}i∈I of positive integers and a sequence 	c = {ci}i∈I with

ci ∈ kerD \ {0} for all i ∈ I . Define a sequence of D-cables ûi rooted at s
(0)
1

inductively by

û1 = ŝ1 and ûi+1 = ûi +mi ciŝi+1 for i ∈ I.

Note that if ûi = (u
(j)
i ), then given j ≥ 0, there exist u(j) ∈B and an integer Nj

such that u
(j)
i = u(j) for all i ∈ I with i≥Nj . The D-cable û := (u(j)) so obtained

is rooted at s
(0)
1 and is denoted by

û= lim(	s, 	m,	c ).

Note that, in this definition, we have û= ût when I = {1,2, . . . , t}.

EXAMPLE 3.6

Let B be a commutative k-domain, and let D ∈ LND(B). Given nonzero f ∈
kerD, let exp(fD) : B → B be the corresponding exponential automorphism of

B. If ŝ= (sn) is a D-cable, then

D exp(fD)(sn) = exp(fD)(sn−1) for n≥ 1.

Note that exp(fD)(s0) = s0, and note that si ∈DB if and only if exp(fD)(si) ∈
DB. Therefore, exp(fD)(ŝ) := (exp(fD)(sn)) defines a D-cable rooted at s0. If

ŝ is infinite, then it is given by

exp(fD)(ŝ) = lim(	s, 	m,	c ),

where 	s= (ŝ, ŝ, ŝ, . . . ), 	m= (1,2,3, . . . ) and 	c=
(
f,

1

2!
f2,

1

3!
f3, . . .

)
.

3.2. Quadratic Δ-cables
Note that we can view the vector space Ω1 as being generated by the vertices of

the Δ-cable x̂= (xn). Similarly, Ω2 admits a basis of homogeneous Δ-cables.
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3.2.1. Monomial basis

Given n≥ 0, the monomial basis for Ω(2,n) is

{x0xn, x1xn−1, . . . , x
2
n
2
} (n even)

or

{x0xn, x1xn−1, . . . , xn−1
2

xn+1
2
} (n odd).

Therefore, dimΩ(2,n) equals (n+ 2)/2 if n is even or (n+ 1)/2 if n is odd.

3.2.2. Δ-basis

Given n ∈ 2N, define θ
(0)
n ∈Ω(2,n) ∩ kerΔ by

θ(0)n =
∑

0≤i≤n

(−1)ixixn−i.

Note that, since n is even, θ
(0)
n �= 0. Since Δ : Ω(2,s+1) →Ω(2,s) is surjective for all

s≥ 0, there exists a homogeneous Δ-cable θ̂n = (θ
(j)
n ) rooted at θ

(0)
n . Note that

θ̂n is necessarily infinite. By definition, we have θ
(j)
n ∈Ω(2,n+j) for each j ≥ 0. By

Section 3.2.1, kerΔ ∩ Ω(2,s) equals {0} if s is odd, and it equals k · θ(0)s if s is

even (cf. [6, Corollary 3.3]). Therefore, Δ : Ω(2,n+1) →Ω(2,n) is an isomorphism.

It follows that if θ̂n = (θ
(j)
n ) is any homogeneous Δ-cable rooted at θ

(0)
n , then θ

(1)
n

is uniquely determined. It is given by

θ(1)n =

n+1∑
i=1

(−1)i+1ixixn+1−i.

DEFINITION 3.7

A Δ-basis for Ω2 is any set {θ̂n | n ∈ 2N} of homogeneous Δ-cables such that,

given n ∈ 2N, θ̂n is rooted at θ̂
(0)
n .

LEMMA 3.8

Let {θ̂n | n ∈ 2N} be a Δ-basis for Ω2.

(a) Given j ≥ 0, the set {θ(j−2i)
2i | 0≤ i≤ j/2} is a basis for Ω(2,j).

(b) The vertices of θ̂n (n ∈ 2N) form a basis for Ω2.

Proof

To prove part (a), we proceed by induction on j ≥ 0. We have that

Ω(2,0) = 〈x2
0〉= 〈θ(0)0 〉.

So the statement of part (a) holds if j = 0.

Assume that, for j ≥ 1, the set {θ(j−1−2i)
2i | 0≤ i≤ (j − 1)/2} forms a basis

for Ω(2,j−1). If j is odd, then Δ : Ω(2,j) → Ω(2,j−1) is an isomorphism, and the

set {θ(j−2i)
2i | 0 ≤ i ≤ j/2} is a basis for Ω(2,j). If j is even, then the kernel of
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Δ : Ω(2,j) →Ω(2,j−1) is k · θ(0)j , and again we conclude that {θ(j−2i)
2i | 0≤ i≤ j/2}

is a basis for Ω(2,j). This proves part (a).

Part (b) is an immediate consequence of part (a). �

3.2.3. Balanced Δ-basis

We define a particular Δ-basis for Ω2 by using binomial coefficients
(
i
j

)
. Given

n ∈ 2N and j ∈N, define β
(j)
n ∈Ω(2,n+j) by

β(j)
n =

n+j∑
i=j

(−1)j+i

(
i

j

)
xixn+j−i.

Note that β
(0)
n = θ

(0)
n .

LEMMA 3.9

If n ∈ 2N and j ≥ 1, then Δβ
(j)
n = β

(j−1)
n .

Proof

If n≥ 1 and c0, . . . , cn ∈ k, then

(2) Δ

n∑
i=0

cixixn−i =

n−1∑
i=0

(ci+1 + ci)xixn−1−i.

Given i ∈ N with 0 ≤ i < j, we extend the definition of binomial coefficient by

setting
(
i
j

)
= 0. Then for all i, j ∈N we have(

i

j

)
+

(
i

j − 1

)
=

(
i+ 1

j

)
.

In addition, we can write

β(j)
n =

n+j∑
i=0

(−1)j+i

(
i

j

)
xixn+j−i.

By (2) we have

Δβ(j)
n =

n+j−1∑
i=0

(
(−1)j+i+1

(
i+ 1

j

)
+ (−1)j+i

(
i

j

))
xixn+j−1−i

=

n+j−1∑
i=0

(−1)j+i+1

((
i+ 1

j

)
−
(
i

j

))
xixn+j−1−i

=

n+j−1∑
i=0

(−1)j−1+i

(
i

j − 1

)
xixn+j−1−i

= β(j−1)
n . �

We thus see that β̂n = (β
(j)
n ) defines a homogeneous Δ-cable rooted at θ

(0)
n and

that {β̂n} is a Δ-basis for Ω2, which we call the balanced Δ-basis.
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Note that each β
(j)
n involves at most n+1 monomials. Moreover, the mono-

mials xixn+j−i (j ≤ i ≤ n+ j) are distinct if j ≥ n, meaning that β
(j)
n involves

exactly n+ 1 monomials when j ≥ n.

3.2.4. Small Δ-basis

Given n ∈ 2N and j ∈N, let

W (j)
n = 〈x0xn+j , x1xn+j−1, . . . , xn

2
xn

2 +j〉,

noting that W
(j)
n ⊂ Ω(2,n+j) and dimW

(j)
n = n/2 + 1 for all j ≥ 0. Then Δ :

W
(j+1)
n →W

(j)
n is an isomorphism, since θ

(0)
n+j+1 /∈W

(j+1)
n if j is odd. Since θ

(0)
n ∈

W
(0)
n , we conclude that there exists a unique Δ-cable η̂n = (η

(j)
n ) rooted at θ

(0)
n

such that η
(j)
n ∈W

(j)
n for each j ≥ 0. We call {η̂n} the small Δ-basis for Ω2. Note

that each η
(j)
n involves at most n

2 + 1 monomials.

It is easy to check that the first three cables in this basis are given by

η
(j)
0 = x0xj , η

(j)
2 = (j + 2)x0x2+j − x1x1+j ,

η
(j)
4 =

(j + 1)(j + 4)

2
x0x4+j − (j + 2)x1x3+j + x2x2+j .

In particular, η̂4 will be used to give certain 3-term recursion relations (see

Remark 6.6).

3.2.5. Q-ideals

DEFINITION 3.10

Let {θ̂n} be a Δ-basis for Ω2.

(1) A Q-ideal is an ideal of Ω generated by {θ̂n | n ∈ S}, where S ⊂ 2N is

any nonempty subset.

(2) Given n ∈ 2N, the corresponding fundamental Q-ideal is

Qn = (θ̂n, θ̂n+2, θ̂n+4, . . . ).

LEMMA 3.11

For any Q-ideal I, ΔI = I.

Proof

Since Δθ̂n = θ̂n for each n ∈ 2N, we see that ΔI ⊂ I . To verify ΔI ⊃ I , it suffices

to show that, for each n with θ̂n ⊂ I , each i≥ 0, and f ∈Ω, we have fθ
(i)
n ∈ΔI .

Choose m such that Δmf = 0, and define g ∈ I by

g =

m−1∑
j=0

(−1)jΔj(f)θ(i+j+1)
n .

Then, ΔI contains

Δ(g) =

m−1∑
j=0

(−1)j
(
Δj(f)θ(i+j)

n +Δj+1(f)θ(i+j+1)
n

)
= fθ(i)n .

�
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LEMMA 3.12

The following properties hold.

(a) Q0 ⊃Q2 ⊃Q4 ⊃ · · · .
(b) Given n ∈ 2N, Qn is independent of the choice of Δ-basis.

(c) Ωr ⊂ (x0, . . . , xn
2 −1)

r−1 +Qn for each integer r ≥ 1 and n ∈ 2N.

Proof

Part (a) is clear from the definition.

For part (b), let {θ̂m} be the given Δ-basis, and let {μ̂m} be any other

Δ-basis for Ω2. For each n ∈ 2N, define Q-ideals

Qn = (θ̂n, θ̂n+2, θ̂n+4, . . . ) and Q̃n = (μ̂n, μ̂n+2, μ̂n+4, . . . ).

By part (a), it suffices to check μ
(j)
n ∈ Qn for each integer j ≥ 0. By

Lemma 3.8(a), there exist ci ∈ k, 0≤ i≤ (n+ j)/2, such that

μ(j)
n =

∑
0≤i≤(n+j)/2

ciθ
(n+j−2i)
2i .

Since degΔ μ
(j)
n = j, degΔ θ

(n+j−2i)
2i = n+ j − 2i, and the integers n+ j − 2i are

distinct for distinct i, it follows that ci = 0 when n+ j − 2i > j, that is, when

n > 2i. Thus, we obtain

μ(j)
n =

∑
n/2≤i≤(n+j)/2

ciθ
(n+j−2i)
2i ∈Qn.

This proves part (b).

We prove part (c) by induction on r, where the case r = 1 is clear. Fix n ∈ 2N

and the integer r ≥ 2, and let ξ ∈ Ωr be given. Observe that ξ may be written

as a sum of elements of Ω(r−2) ·Ω2. Since the vertices of the small Δ-basis {η̂m}
form a k-basis for Ω2 by Lemma 3.8(b), we may write

ξ =
∑
i≥0

∑
j≥0

L(2i,j)η
(j)
2i =

n/2−1∑
i=0

∑
j≥0

L(2i,j)η
(j)
2i +

∑
i≥n/2

∑
j≥0

L(2i,j)η
(j)
2i ,

where L(2i,j) ∈ Ωr−2. If 0 ≤ i < n/2, then η
(j)
2i ∈ W

(j)
2i ⊂ Ω1x0 + · · · + Ω1xn

2 −1.

Also, by part (b) we have

Qn = (η̂n, η̂n+2, η̂n+4, . . . ).

Together, these imply ξ = ξ0x0 + · · · + ξn
2 −1xn

2 −1 + ξ′ for some ξ0, . . . , ξn
2 −1 ∈

Ωr−1 and ξ′ ∈ Qn. By the induction hypothesis, we have ξ0, . . . , ξn
2 −1 ∈ (x0, . . . ,

xn
2 −1)

r−2 +Qn. Therefore, ξ belongs to (x0, . . . , xn
2 −1)

r−1 +Qn. �

3.3. Cable algebras
DEFINITION 3.13

Let B be a commutative k-domain.
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(a) B is a cable algebra if there exist nonzero D ∈ LND(B) and a finite

number of D-cables ŝ1, . . . , ŝn such that B = A[ŝ1, . . . , ŝn], where A= kerD. In

this case, we say that the pair (B,D) is a cable pair.

(b) B is a monogenetic cable algebra if B =A[ŝ] for some cable pair (B,D)

with A= kerD and some D-cable ŝ.

(c) B is a simple cable algebra over k if B = k[ŝ] for some D-cable ŝ, where

D ∈ LND(B) is nonzero. A simple cable algebra B is of terminal type if ŝ can be

chosen to be a terminal D-cable.

We remark that if there exists nonzero D ∈ LND(B) for which B is finitely

generated as an algebra over kerD, then B is a cable algebra.

EXAMPLE 3.14

Let B be a commutative k-domain, let D ∈ LND(B), and let A= kerD. If

S ⊂B \ (A∪DB) and |S|= n≥ 1,

then there exist terminal D-cables ŝ1, . . . , ŝn such that A[S,D] = A[ŝ1, . . . , ŝn].

Let D′ be the restriction of D to A[S,D]. Then D′ �= 0, A[S,D] is a cable algebra,

and (A[S,D],D′) is a cable pair.

EXAMPLE 3.15

Given n≥ 1, let Bn = k[x0, . . . , xn] = k[n+1], and let Dn be the restriction of the

down operator to Bn. The classical covariant rings An = kerDn are known to be

finitely generated over k, but have been calculated only for n≤ 8 (see [6]). Since

∂/∂xn commutes with Dn, ∂/∂xn restricts to An. If we denote this restriction

by δn, then ker δn =An−1. Therefore, each An is a cable algebra. In particular,

A1 = k[x0] = k[1] (see Lemma 3.16(a)); A2 = A1[ŝ], where ŝ is the δ2-cable of

length 1 with terminal vertex s1 = 2x0x2 − x2
1; A3 = A2[t̂ ], where t̂ is the δ3-

cable of length 2 with terminal vertex

t2 = 9x2
0x

2
3 − 18x0x1x2x3 + 6x3

1x3 + 8x0x
3
2 − 3x2

1x
2
2;

and A4 =A3[û, v̂], where û, v̂ are the δ4-cables of length 1 with terminal vertices

u1 = 2x0x4 − 2x1x3 + x2
2

and

v1 = 12x0x2x4 − 6x2
1x4 − 9x0x

2
3 + 6x1x2x3 − 2x3

2.

The rings A2,A3,A4 are calculated in [5, Section 8.6]. The rings A5, . . . ,A8 are

considerably more complicated, and it would be of interest to analyze their cable

structures.
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3.4. Simple cable algebras
A natural goal is to classify the simple cable algebras of finite transcendence

degree over k according to transcendence degree. We start with the following

observation.

LEMMA 3.16 (a) k[1] is a simple cable algebra over k of nonterminal type.

(b) For each n≥ 2, k[n] is a simple cable algebra over k of terminal type.

Proof

Let B = k[t] = k[1], and let d/dt denote the usual derivative. Define the sequence

tn = 1
n! t

n. Then t̂= (tn) is an infinite d/dt-cable and B = k[t̂ ]. Therefore, B = k[1]

is a simple cable algebra. In addition, any nonzero D ∈ LND(B) has a slice, so

Tr(B,D) has no terminal vertices. Therefore, B is of nonterminal type. This

proves part (a).

For part (b), let B = k[x1, . . . , xn] = k[n], and define D by Dxi+1 = xi for

i≥ 2 and Dx1 = 0. Note that xn /∈ (DB) = (x1, . . . , xn−1). Therefore, x̂= (xi) is

a terminal D-cable and B = k[x̂]. �

Suppose that B is a cable algebra with tr.degkB = 1. Then B = L[1], where L

is an algebraic extension field of k (see [5, Corollary 1.24]). Therefore, when k

is algebraically closed, B is simple (over k) if and only if B = k[1]. When k is

not algebraically closed, there are simple cable algebras over k other than k[1].

For example, consider the usual derivative D = d/dx on the ring B =Q[
√
2, x] =

Q[
√
2][1]. We have that ŝ= (

√
2xn/n!) is a D-cable and B =Q[ŝ], but B �=Q[1].

For simple cable algebras of transcendence degree 2, we give several illustra-

tive examples.

EXAMPLE 3.17

Let B = k[x, v] = k[2], and let D = ∂/∂v. If sn = 1
n!v

n for n≥ 0, then ŝ= (sn) is

a D-cable rooted at 1. Let t̂= ŝ+2 xŝ be given by t̂= (tn). Then B = k[t̂ ], since

k[t̂ ] contains t1 = v and t2 = x+ 1
2v

2. This shows that a simple cable algebra of

terminal type can also be generated by an infinite D-cable for some D.

EXAMPLE 3.18

Continuing the notation of the preceding example, we see that the subring k[xŝ]

of k[x, v] is a simple cable algebra which is not finitely generated as a k-algebra

and therefore not of terminal type. More generally, let D = ∂/∂v, and let pn(v)

be any infinite sequence of polynomials in k[x, v] with Dpn(v) = pn−1(v) for n≥ 1

and p0(v) ∈ k[x] \ k. Then p̂ := (pn(v)) is a D-cable and k[p̂] is a simple cable

algebra of transcendence degree 2 over k.

EXAMPLE 3.19

Let B = k[y0, y1, y2] where 2y0y2 = y21 . Define D ∈ LND(B) by y2 → y1 → y0 → 0.
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It is easy to see that y2 /∈DB. Therefore, ŷ := (yn) is a terminal D-cable and

B = k[ŷ].

EXAMPLE 3.20

The ring B = k[z0, z1, z2] where 2z20z2 = z21 is not a simple cable algebra. To see

this, let D ∈ LND(B), and let a D-cable ŝ= (sn) be given. Define E ∈ LND(B)

by z2 → z1 → z20 → 0. It is known that LND(B) = k[z0] ·E (see [10]). Therefore,

DB ⊂ J = (z20 , z1). Assume that k[ŝ] = B. If sn ∈ DB for every n ≥ 0, then

B/J = k. However, if π : B → B/J is the canonical surjection, then π(z2) is

transcendental over k, so this case cannot occur. Therefore, sn /∈DB for some

n≥ 0, meaning that sn is a terminal vertex and s0, . . . , sn−1 ∈ J . It follows that

B/J = k[π(sn)]∼= k[1]/(p) for some p ∈ k[1] \ k∗. If p= 0, then B/J is an integral

domain, a contradiction. If p �= 0, then every element of B/J is algebraic over k,

a contradiction. Therefore, k[ŝ] �=B.

3.5. Cable relations for S
Define the simple cable algebra S ⊂ k[x, v] = k[2] by S = k[xŝ], where ŝ= ( 1

n!v
n).

THEOREM 3.21

We have S ∼=k Ω/Q2. Consequently, Q2 is a prime ideal of Ω.

Proof

The surjections φŝ : Ω→ k[v] and φxŝ : Ω→ S are given by

φŝ(xi) = si and φxŝ(xi) = xsi (i≥ 0).

Let g ∈ kerΔ be given, and let {θ̂n} be a Δ-basis for Ω2. If d/dv denotes the

standard derivative on k[v], then we have

(3) 0 = φŝΔg =
d

dv
φŝg ⇒ φŝg ∈ ker

d

dv
= k ⇒ g ∈ k+ kerφŝ.

If n ≥ 2 is even, then φŝθ
(0)
n = λvn for some λ ∈ k. Therefore, θ

(0)
n ∈ kerφŝ for

each even n≥ 2.

Given an even integer n ≥ 2, assume that θ
(j)
n ∈ kerφŝ for some j ≥ 0. We

have

0 = φŝθ
(j)
n = φŝΔθ(j+1)

n =
d

dv
φŝθ

(j+1)
n ⇒ φŝθ

(j+1)
n ∈ ker

d

dv
= k.

As before, since n≥ 2, we must have φŝθ
(j+1)
n = 0. It follows by induction that

θ
(j)
n ∈ kerφŝ for every even n≥ 2 and every j ≥ 0. Therefore, Q2 ⊂ kerφŝ.

Given r ≥ 2 and P ∈ Ωr, note that φxŝP = xrφŝP . Therefore, if P ∈ Ω is

homogeneous, then P ∈ kerφxŝ if and only if P ∈ kerφŝ. In particular, this implies

Q2 ⊂ kerφxŝ.

Suppose that P ∈Ωr ∩kerφxŝ. By Lemma 3.12(c), we see that P ∈ (x0)
r−1+

Q2. Write P = xr−1
0 L + Q for L ∈ Ω and Q ∈ Q2. Since the element P and

the ideals (x0)
r−1 and Q2 are homogeneous, we may assume that L and Q are
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homogeneous. By degree considerations, L ∈ Ω1. We have that xr−1
0 L ∈ kerφxŝ.

If L �= 0, then since kerφxŝ is a prime ideal, either x0 ∈ kerφxŝ or L ∈ kerφxŝ,

a contradiction. Therefore, L= 0 and P ∈Q2.

We have thus shown Ωr ∩ kerφxŝ ⊂ Q2 for all r ≥ 2. This suffices to prove

kerφxŝ =Q2. �

4. The derivation D in dimension 5

4.1. Definitions
Define the polynomial ring B = k[a,x, y, z, v] = k[5]. We define the locally nilpo-

tent derivation D of B by its action on a set of generators

z → y→ x→ a3, v→ a2, a→ 0.

Define A = kerD and R = k[a,x, y, z], noting that D restricts to R. In fact,

D restricts to a linear derivation of the subring k[a3, x, y, z], and this kernel is

well known. Let k[t, x, y, z] = k[4], and define the linear derivation D̃ on this ring

by z → y→ x→ t→ 0. Then ker D̃ = k[t, F̃ , G̃, h̃], where (see [5, Example 8.9])

F̃ = 2ty− x2, G̃= 3t2z − 3txy+ x3, and t2h̃= F̃ 3 + G̃2.

Note that the restriction of D to R is equal to the k[a]-derivation idk[a]⊗D̃

on k[a] ⊗k[t] k[t, x, y, z] = R, and its kernel R ∩ A is equal to ker(idk[a]⊗D̃) =

k[a]⊗k[t] ker D̃. Therefore, if F = F̃ |t=a3 , G= G̃|t=a3 , and h= h̃|t=a3 , then

R ∩A= k[a,F,G,h], where a6h= F 3 +G2.

Specifically,

F = 2a3y− x2, G= 3a6z − 3a3xy+ x3,

h = 9a6z2 − 18a3xyz + 8a3y3 + 6x3z − 3x2y2.

Define a Z2-grading of B by declaring that a,x, y, z, v are homogeneous and

deg(a,x, y, z, v) =
(
(1,0), (3,1), (3,2), (3,3), (2,1)

)
.

Then D is a homogeneous derivation of degree (0,−1) and A is a graded sub-

ring of B. Given integers r, s≥ 0, let B(r,s) be the vector space of homogeneous

polynomials in B of degree (r, s), and define

A(r,s) =A∩B(r,s).

Then we have

F ∈A(6,2), G ∈A(9,3), h ∈A(12,6).

Since k[a,F,G,h] =R∩A= kerD|R is factorially closed in R, we see that F , G,

and h are irreducible by degree considerations. Note that [D,∂/∂v] = 0, that is, D

commutes with the partial derivative ∂/∂v on B. Therefore, ∂/∂v restricts to A.

If ∂ denotes the restriction of ∂/∂v to A, then ∂ ∈ LND(A) and ∂ is homogeneous

of degree (−2,−1).

The following result is needed below.



Cable algebras and rings of Ga-invariants 341

LEMMA 4.1

Given n≥ 0, write n= 6e+ � for e≥ 0 and 0≤ �≤ 5.

(a)

R ∩A(2n+1,n) =

{
〈ahe〉 �= 0,

{0} � �= 0.

(b)

R ∩A(2n+2,n) =

⎧⎪⎪⎨
⎪⎪⎩
〈a2he〉 �= 0,

〈Fhe〉 �= 2,

{0} �= 1,3,4,5.

Proof

Since R ∩ A = k[a,F,G,h] with a, F , G, and h homogeneous, each k-vector

space R ∩ A(r,s) is spanned by monomials in a, F , G, and h. If the monomial

ae1F e2Ge3he4 ∈R (ei ∈N) has degree (2n+ 1, n), then{
e1 + 6e2 + 9e3 + 12e4 = 2n+ 1,

2e2 + 3e3 + 6e4 = n.

The solutions to this system are e1 = 1, e2 = e3 = 0, and 6e4 = n. This proves

part (a).

Similarly, if deg(ae1F e2Ge3he4) = (2n+ 2, n), then{
e1 + 6e2 + 9e3 + 12e4 = 2n+ 2,

2e2 + 3e3 + 6e4 = n.

The solutions to this system are

{e1 = 2, e2 = e3 = 0, n= 6e4} and {e1 = e3 = 0, e2 = 1, n= 6e4 + 2}.

This proves part (b). �

4.2. Homogeneous ∂-cables
Let Sa denote the set of infinite homogeneous ∂-cables rooted at a.

THEOREM 4.2

We have Sa �= ∅.

Proof

We show that there exists a sequence sn ∈A, n≥ 0, such that

(a) s0 = a,

(b) sn ∈A(2n+1,n) for each n≥ 0,

(c) ∂sn = sn−1 for each n≥ 1.



342 Gene Freudenburg and Shigeru Kuroda

Let d denote the restriction of D to the subring Q ⊂ B defined by Q = k[t, x,

y, z]∼= k[4], where t= a3. Then d is a linear derivation defined by

z → y→ x→ t→ 0.

In addition, d is homogeneous of degree (0,−1) for the Z2-grading of Q for which

deg(t, x, y, z) =
(
(1,0), (1,1), (1,2), (1,3)

)
.

Let Q(r,s) denote the vector space of homogeneous polynomials in Q of degree

(r, s). Then according to [6, Proposition 4.1], the mapping

d :Q(r,s+1) →Q(r,s)

is surjective if 2s < 3r. Thus, given m ≥ 1, each mapping in the following

sequences of maps is surjective:

t ·Q(2m,3m) ⊂Q(2m+1,3m)
d←−Q(2m+1,3m+1)

d←−Q(2m+1,3m+2)

and

t ·Q(2m−1,3m−1) ⊂Q(2m,3m−1)
d←−Q(2m,3m).

Consequently, there exists a sequence wn ∈Q, n≥ 0, such that w0 = 1, and for

all m≥ 0,

w3m ∈Q(2m,3m), w3m+1 ∈Q(2m+1,3m+1), w3m+2 ∈Q(2m+1,3m+2),

where

dw3m+3 = t ·w3m+2, dw3m+2 =w3m+1, dw3m+1 = t ·w3m.

With the sequence wn so constructed, it follows that, for m≥ 1,

D3iw3m = d3iw3m = t2iw3(m−i) = a6iw3(m−i) = (Dv)3iw3(m−i) (0≤ i≤m).

Therefore, for 0≤ i≤m, we have

(i) D3i(aw3m) = a(Dv)3iw3(m−i),

(ii) D3i+1(aw3m) = d(a(Dv)3iw3(m−i)) = a(Dv)3itw3(m−i)−1 =

a2(Dv)3i+1w3(m−i)−1,

(iii) D3i+2(aw3m) = d(a2(Dv)3i+1w3(m−i)−1) = a2(Dv)3i+1w3(m−i)−2 =

(Dv)3i+2w3(m−i)−2.

We see that

(4) (Dv)j divides Dj(aw3m) for each j (0≤ j ≤ 3m).

Therefore, if we define s3m = (−1)3mπv(aw3m) for m≥ 0, then s3m ∈A for each

m≥ 0. Using (1) in Section 2.1, it follows that for m≥ 1

∂3

∂v3
s3m =

∂2

∂v2
(−1)3m−1πv(aDw3m)

∂

∂v

v

a2

=
∂

∂v
(−1)3m−2πv(aD

2w3m)
1

a2
∂

∂v

v

a2
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= (−1)3m−3πv(aD
3w3m)

1

a4
∂

∂v

v

a2

= (−1)3m−3πv

(
a(a2)3w3(m−1)

) 1

a6

= (−1)3(m−1)πv(aw3(m−1))

= s3(m−1).

Define

s3m−1 =
∂

∂v
s3m and s3m−2 =

∂

∂v
s3m−1 (m≥ 1).

Then ŝ := (sn) is a ∂-cable rooted at a with sn ∈A(2n+1,n) for each n≥ 0. �

REMARK 4.3

Let ŝ= (sn) ∈ Sa be given. Since dimA(2n+1,n) = 1 for n= 0, . . . ,5, the elements

s0, . . . , s5 are uniquely determined (see Corollary 5.5(a)). They are given by

0!s0 = a,

1!s1 = av− x,

2!s2 = av2 − 2xv+ 2a2y,

3!s3 = av3 − 3xv2 + 6a2yv− 6a4z,

4!s4 = av4 − 4xv3 + 12a2yv2 − 24a4zv + 24a3xz − 12a3y2,

5!s5 = av5 − 5xv4 + 20a2yv3 − 60a4zv2 + 120a3xzv − 60a3y2v− 72x2a2z

+ 36xa2y2 + 24a5yz.

Note the identities

F = 2s0s2 − s21, −G= 3s20s3 − 3s0s1s2 + s31,
(5)

2s0s4 = 2s1s3 − s22, 5s0s5 = 3s1s4 − s2s3.

5. Generators of Ā and A

The main result of this section is the following.

THEOREM 5.1

Let ŝ= (sn) ∈ Sa be given.

(a) A= k[h, ŝ].

(b) A is not finitely generated as a k-algebra.

(c) The generating set {h, sn}n≥0 is minimal in the sense that no proper

subset generates A.
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5.1. Generators of Ā
Let π : B → B/hB be the canonical surjection. Given b ∈ B, let b̄ denote π(b),

and for a subalgebra M ⊂B, let M̄ = π(M). Since h is homogeneous, π induces

a Z2-grading on B̄, and Ā is a graded subring with

Ā(r,s) = π(A(r,s)).

Note that, since h is irreducible, hB is a prime ideal of B. Hence, B/hB and its

subring Ā are integral domains. Since D(h) = 0, we have hB ∩A= hA. Indeed,

if P ∈B is such that hP ∈A, then hDP =D(hP ) = 0, and hence DP = 0. Thus,

Ā ∼= A/hA and so hA is a prime ideal of A. Since h ∈ ker∂, we can define δ ∈
LND(Ā) by δπ(g) = π∂(g). Then δ is a homogeneous locally nilpotent derivation

of Ā of degree (−2,−1). Recall that ker∂ =R ∩A= k[a,F,G,h].

LEMMA 5.2

We have ker δ = π(ker∂) = k[ā, F̄ , Ḡ].

Proof

It must be shown that ∂−1(hA) = R ∩ A + hA. The inclusion R ∩ A + hA ⊂
∂−1(hA) is clear. For the converse, we first show that if H =R ∩A+ hB, then

H ∩ aB = aH .

Since R ∩A= k[a,F,G,h] and F 3 +G2 ∈ hR, we have

H = k[a,F ] + k[a,F ]G+ hB.

In addition, H is a graded subring of B, and if g ∈H(r,s), then g ∈ k[a,F ] + hB

for s even and g ∈ k[a,F ]G + hB for s odd. Write g = p(a,F )Gε + hρ, where

p ∈ k[2], ρ ∈ B, and ε ∈ {0,1}. If g ∈ aB, then setting a= 0 yields the following

equation in k[x, y, z, v]:

(hρ)|a=0 = 3x2(2xz − y2)ρ|a=0 =−p(0,−x2)x3ε ∈ k[x].

This means ρ ∈ aB, since 2xz−y2 is transcendental over k[x]. Therefore, p(a,F ) ∈
aB, and since R∩A is factorially closed in B it follows that p(a,F ) ∈ a(R∩A).

So g ∈ aH . This shows that H ∩ aB = aH .

Suppose that f ∈ A and ∂f ∈ hA. Let L ∈ R[1] be such that f = L(v) =∑
i
1
i!L

(i)(0)vi. We have

∂if = L(i)(v) ∈ hA ∀i≥ 1 ⇒ L(i)(0) ∈ hR ∀i≥ 1.

Therefore, f = hq + r for q ∈ B and r = L(0) ∈ R. It follows that 0 = Df =

hDq+Dr, which implies Dr ∈R ∩ hB = hR.

The restriction of D to R has kernel R ∩A and local slice x. So there exist

n≥ 0 and P ∈ (R ∩A)[1] with anr = P (x) =
∑

i
1
i!P

(i)(0)xi. We thus have

anDir = P (i)(x)a3i ∈ hR ∀i≥ 1 ⇒ P (i)(x) ∈ hR ∀i≥ 1

⇒ P (i)(0) ∈ h(R ∩A) ∀i≥ 1.

Therefore, anr ∈ (R ∩A) + h(R ∩A)[x]⊂H .
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By repeated application of the identity H ∩ aB = aH , we have that H ∩
anB = anH . It follows that anr ∈ H ∩ anB = anH . Therefore, r ∈ H and f =

hq + r ∈ hB +H =H . Since A is factorially closed in B, we conclude that f ∈
R ∩A+ hA. �

Given ŝ = (sn) ∈ Sa, we have s0 = a /∈ hB, and so s̄0 �= 0. Since δπ = π∂, we

see that πŝ := (s̄n) is a δ-cable. If φπŝ : Ω→ Ā is the associated mapping, then

φπŝΔ = δφπŝ (cf. Section 3.1(x)). We also note that kerφπŝ is a homogeneous

ideal of Ω, since φπŝ(Ω(r,s))⊂ Ā(2s+r,s) for each r, s≥ 0.

THEOREM 5.3

We have that φπŝ is surjective.

Proof

Define

A′ = φπŝ(Ω) = k[πŝ], A′
+ = φπŝ(Ω+), and A′

(r,s) =A′ ∩ Ā(r,s).

Since Δ : Ω+ → Ω+ is surjective and φπŝΔ= δφπŝ, it follows that the mapping

δ :A′
+ →A′

+ is surjective. In addition, define

C = ker δ and C(r,s) =C ∩ Ā(r,s).

Then from Lemma 5.2 and (5) we see that

(6) C = k[ā, F̄ , Ḡ], F̄ = 2s̄0s̄2 − s̄21, −Ḡ= 3s̄20s̄3 − 3s̄0s̄1s̄2 + s̄31.

Therefore, C ⊂A′ and ker δ|A′ =C.

Fix � ∈ Z. We show by induction on n that, for each integer n≥ 0,

(7) A′
(2n+�,n) = Ā(2n+�,n).

For n = 0, it is easy to see that Ā(�,0) = {0} if � < 0. If � ≥ 0, then Ā(�,0) =

〈a�〉= 〈s̄�0〉, since B(�,0) = 〈a�〉. So (7) holds for n= 0. Since B(2,1) = 〈v〉, we have
A′

(2,1) = Ā(2,1) = {0}. Hence, (7) also holds for n= 1 and �= 0.

Given n≥ 1, assume that

(n, �) �= (1,0) and A′
(2(n−1)+�,n−1) = Ā(2(n−1)+�,n−1).

Since δ :A′
+ →A′

+ is surjective and A′
+ =

⊕
(r,s) �=(0,0)A

′
(r,s), it follows that

δA′
(2n+�,n) =A′

(2(n−1)+�,n−1) = Ā(2(n−1)+�,n−1).

Since A′
(2n+�,n) ⊂ Ā(2n+�,n), we have

Ā(2(n−1)+�,n−1) = δA′
(2n+�,n) ⊂ δĀ(2n+�,n) ⊂ Ā(2(n−1)+�,n−1),

which implies δA′
(2n+�,n) = δĀ(2n+�,n). Therefore,

dim Ā(2n+�,n) = dimC(2n+�,n) +dim δĀ(2n+�,n)

= dimC(2n+�,n) +dim δA′
(2n+�,n) = dimA′

(2n+�,n).
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It follows that A′
(2n+�,n) = Ā(2n+�,n). By induction, we conclude that (7) holds

for all n≥ 0. �

COROLLARY 5.4

Let ŝ= (sn) ∈ Sa be given.

(a) Ā= k[πŝ].

(b) Ā is not finitely generated as a k-algebra.

(c) The generating set {s̄n}n≥0 is minimal in the sense that no proper subset

generates Ā.

Proof

Part (a) is implied by Theorem 5.3. For part (b), let Σ ⊂ N2 be the degree

semigroup of A. Then part (a) implies that

Σ =
〈
(2n+ 1, n) | n≥ 0

〉
.

It will suffice to show that Σ is not finitely generated as a semigroup. However,

this is obvious, since the element (2n+1, n) does not belong to the subsemigroup

generated by (2i+ 1, i) for i < n. This proves part (b). In fact, (2n+ 1, n) does

not even belong to the larger subsemigroup generated by (2i+1, i) for i �= n, and

this implies part (c). �

5.2. Proof of Theorem 5.1
Set Γ = k[ŝ]. Then Γ is a graded subring of A, where Γ(r,s) = Γ ∩ A(r,s). By

Corollary 5.4(a), each g ∈A has the form g = γ + h · α, where γ ∈ Γ and α ∈B.

Since g, γ,h ∈A, it follows that α ∈A. Write

γ =
∑

γ(r,s) and α=
∑

α(r,s),

where γ(r,s) ∈ Γ(r,s) and α(r,s) ∈ A(r,s) for each r, s ∈ Z. Then the homogeneous

decomposition of g is

g =
∑
(r,s)

(γ(r,s) + h · α(r−12,s−6)).

When g is homogeneous, there exists (r, s) such that g = γ(r,s) + h · α(r−12,s−6).

For each fixed r ≥ 0, we show by induction on s that A(r,s) ⊂ Γ[h]. We have

A(r,0) = k · ar ⊂ Γ, which gives the basis for induction. Given s≥ 1, suppose that

A(r,i) ⊂ Γ[h] for 0≤ i≤ s− 1. Given g ∈A(r,s), write g = γ(r,s)+h ·α(r−12,s−6) as

above. By the induction hypothesis, we have that α(r−12,s−6) ∈ Γ[h]. Therefore,

g ∈ Γ[h]. We conclude that A(r,s) ⊂ Γ[h] for all (r, s) with r, s≥ 0, and therefore,

A⊂ Γ[h]. This proves part (a).

Part (b) is immediately implied by Corollary 5.4(b) and the fact that Ā is

the image of A under a k-algebra homomorphism.

For part (c), note that Corollary 5.4(c) implies that any generating subset of

{h, sn}n≥0 must include each sn. We also cannot exclude h, since (12,6) does not
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belong to the degree semigroup generated by {(2n+ 1, n) | n ≥ 0}. This proves

part (c) and completes the proof of Theorem 5.1.

For the next result, the reader is reminded that A(r,s) = {0} if r < 0 or s < 0.

COROLLARY 5.5

Let ŝ= (sn) ∈ Sa. Given n≥ 0, let e≥ 0 be such that 0≤ n− 6e≤ 5.

(a) A(2n+1,n) = k · sn ⊕ h ·A(2(n−6)+1,n−6).

(b) dimA(2n+1,n) = e+ 1.

(c) A basis for A(2n+1,n) is given by {sn, sn−6h, sn−12h
2, . . . , sn−6eh

e}.

Proof

Part (a) is implicit in the first paragraph of the proof of Theorem 5.1 with (r, s) =

(2n+1, n), since Γ(2n+1,n) = k · sn and sn /∈ hB. It follows that A(2n+1,n) = k · sn
for n= 0, . . . ,5. Therefore, using part (a), we get parts (b) and (c) by induction

on n. �

REMARK 5.6

Consider the field k(h) = k(1) and the k(h)-algebra k(h)⊗k[h] A= k(h)[ŝ]. Since

∂h = 0, ∂ extends to a locally nilpotent derivation ∂̃ of k(h)[ŝ], ŝ is a ∂̃-cable,

and k(h)[ŝ] is a simple cable algebra over k(h) which is of transcendence degree

3 over k(h).

5.3. The ∂-cable σ̂

THEOREM 5.7

There exists a unique σ̂ = (σn) ∈ Sa such that n!σn ≡ −nxvn−1 (mod aB) for

each n≥ 1. In addition, σ̂ satisfies the following.

(a) If n, e≥ 0 with n �= 1, then σ0σ1h
e /∈ 〈σiσn−i | 0≤ i≤ n/2, i �= 1〉.

(b) If n, e≥ 0 with n �= 2, then Fhe /∈ 〈σiσn−i | 0≤ i≤ n/2〉.

Proof

Given P ∈ B, let P (0) denote evaluation at v = 0. An explicit sequence wn ∈
k[t, x, y, z] of the type used in the proof of Theorem 4.2 is constructed in [5, Sec-

tion 7.2.1], and in this example, wn has the property that t divides wn whenever

n≥ 4 and n≡ 1 (mod 3). Let σ̂ = (σn) ∈ Sa be the ∂-cable constructed from this

sequence. Given m ≥ 1, it follows from the definition of the functions sn = σn

given in the proof of Theorem 4.2 that

σ3m = (−1)3maw3m −D
(
(−1)3maw3m

) v

a2
+

1

2
D2

(
(−1)3maw3m

)v2
a4

+ · · · .

Since ∂iσ3m/∂vi = σ3m−i for 0≤ i≤ 3m, this implies that

σ3m(0) = (−1)3maw3m, σ3m−1(0) = (−1)3m−1a2w3m−1,

σ3m−2(0) = (−1)3m−2w3m−2.
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Since t= a3 divides w3m−2 for m≥ 2 and σ0(0) = σ0 = a, it follows that a divides

σn(0) for all n≥ 0 with n �= 1. We now show by induction on n that

(8) a divides Pn(v) := (n− 1)!σn + xvn−1 (n≥ 1).

First, observe that Corollary 5.5(b) implies that the functions σ0, . . . , σ5 are

uniquely determined. In particular, we have σ1 = av−x (see Remark 4.3). Hence,

property (8) holds for n= 1.

Given n≥ 2, assume that a divides Pi(v) for 1≤ i≤ n− 1. We have

P ′
n(v) = (n− 1)!σn−1 + (n− 1)xvn−2 = (n− 1)Pn−1(v).

The inductive hypothesis implies that P ′
n(v) ∈ aB, which means Pn(v)−Pn(0) ∈

aB. Since Pn(0) = (n−1)!σn(0) ∈ aB, we conclude that Pn(v) ∈ aB for all n≥ 1.

This proves the existence of σ̂ = (σn) ∈ Sa such that n!σn ≡−nxvn−1 (mod aB).

For uniqueness, let ŝ = (sn) ∈ Sa be such that n!sn ≡ −nxvn−1 (mod aB)

for n ≥ 1. Choose N ≥ 1 such that 6 does not divide N , and let e ≥ 0 be such

that 1≤N − 6e≤ 5. By Corollary 5.5(c), a basis for A(2N+1,N) is given by

s′N , s′N−6h, s
′
N−12h

2, . . . , s′N−6eh
e, where s′n := n!sn.

Therefore, there exist ci ∈ k with N !σN = c0s
′
N +c1s

′
N−6h+ · · ·+ces

′
N−6eh

e. The

substitution a �→ 0 yields

−NxvN−1 =−c0NxvN−1 − c1(N − 6)xvN−7h′ − · · · − ce(N − 6e)xvN−6e−1(h′)e,

where h′ = 3x2(2xz−y2). This implies that c0 = 1 and c1 = · · ·= ce = 0, meaning

that σN = sN . Therefore, σ̂ and ŝ agree on an infinite number of vertices, which

implies that σ̂ = ŝ (see Section 3.1(vi)). This proves the uniqueness assertion.

To prove properties (a) and (b), recall that σi(0) ∈ aB for all i≥ 0 with i �= 1.

Hence, σi(0)σn−i(0) ∈ a2B (0≤ i≤ n/2, i �= 1) if n �= 1, and σi(0)σn−i(0) ∈ aB

(0 ≤ i ≤ n/2) if n �= 2. To show (a), suppose that σ0σ1h
e ∈ 〈σiσn−i | 0 ≤ i ≤

n/2, i �= 1〉. Then, we have

−axhe = (σ0σ1h
e)|v=0 ∈

〈
σi(0)σn−i(0)

∣∣ 0≤ i≤ n/2, i �= 1
〉
⊂ a2B,

and so xhe ∈ aB, a contradiction. Since Fhe ∈ R \ aB, property (b) is proved

similarly. �

We remark that Theorem 5.7(b), together with Lemma 4.1(b), implies R ∩
A(2n+2,n) ∩ φσ̂(Ω(2,n)) = {0} if n≡ 2 (mod 6) and n �= 2.

COROLLARY 5.8

Let S ⊂ k[x, v] = k[2] be the subalgebra S = k[x,xv,xv2, . . .]. Given λ ∈ k, put

Jλ = aA+(h−λ)A. Then A/Jλ is isomorphic to S. In particular, Jλ is a prime

ideal of A for each λ ∈ k.

Proof

Let σ̂ ∈ Sa be as in Theorem 5.7. By Theorem 5.1, we have A= k[h, σ̂].
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Given f ∈B, let f(0) denote the evaluation of f at a= 0. Since D(a) = 0, we

have aB ∩A= aA. Indeed, if b ∈B is such that ab ∈A, then aD(b) =D(ab) = 0,

and so D(b) = 0. Hence, the kernel of the map A→B defined by f → f(0) equals

aA. Therefore,

A := A/aA∼= k
[
h(0), σ0(0), σ1(0), σ2(0), . . .

]
= k

[
h(0), x, xv,xv2, . . .

]
= S

[
h(0)

]
= S[1].

The last equality holds because h(0) = 6x3z−3x2y2 is transcendental over k[x, v].

We conclude that

A/Jλ ∼=A/
(
h(0)− λ

)
A∼= S. �

6. Relations in Ā

We continue the notation of the preceding section. The main goal of this section

is to show the following.

THEOREM 6.1

For every ŝ ∈ Sa, we have kerφπŝ =Q4. Consequently, Ā∼=k Ω/Q4 and Q4 is a

homogeneous prime ideal of Ω.

6.1. Quadratic relations
Let ŝ ∈ Sa be given, and let {θ̂n} be a Δ-basis for Ω2, where θ̂n = (θ

(j)
n ) for

given n.

LEMMA 6.2 (a) If n≥ 4 is even, then θ
(j)
n ∈ kerφπŝ holds for any j ≥ 0.

(b) 〈θ(j)0 , θ
(j−2)
2 〉 ∩ kerφπŝ = {0} holds for every j ≥ 0, where θ

(j−2)
2 = 0 if

j = 0,1.

Proof

(a) Fixing n ≥ 4, we proceed by induction on j to show that θ
(j)
n ∈ kerφπŝ for

each j ≥ 0. We have

δφπŝ(θ
(0)
n ) = φπŝΔ(θ(0)n ) = 0 ⇒ φπŝ(θ

(0)
n ) ∈ ker δ = k[ā, F̄ , Ḡ].

From line (5) in Remark 4.3, we have that F̄ = φπŝ(2x0x2 − x2
1) and −Ḡ =

φπŝ(3x
2
0x3− 3x0x1x2+x3

1). Therefore, there exists P ∈ kerφπŝ ∩Ω(2,n) such that

θ(0)n − P ∈ k[x0,2x0x2 − x2
1,3x

2
0x3 − 3x0x1x2 + x3

1]∩Ω2

= k · x2
0 + k · (2x0x2 − x2

1)⊂Ω(2,0) +Ω(2,2).

Since θ
(0)
n , P ∈ Ω(2,n) and n≥ 4, we conclude that θ

(0)
n = P ∈ kerφπŝ. This gives

the basis for induction.

Assume that θ
(j−1)
n ∈ kerφπŝ for j ≥ 1. Then

0 = φπŝ(θ
(j−1)
n ) = φπŝΔ(θ(j)n ) = δφπŝ(θ

(j)
n ) ⇒ φπŝ(θ

(j)
n ) ∈ ker δ.
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Since θ
(j)
n ∈ Ω(2,n+j), we conclude as above that θ

(j)
n ∈ kerφπŝ. This proves

part (a).

(b) Since θ
(j)
0 = x0xj /∈ kerφπŝ for j = 0,1, the assertion holds for j = 0,1.

By Lemma 3.8(a), we have〈
φŝ(θ

(2)
0 ), φŝ(θ

(0)
2 )

〉
= φŝ(Ω(2,2)) = φŝ

(
〈β(2)

0 , β
(0)
2 〉

)
= 〈as2, s21〉.

Since dim〈as2, s21〉= 2 and 〈as2, s21〉 ∩ hB ⊂B(6,2) ∩ hB = {0}, the assertion also

holds for j = 2. We prove the case j ≥ 3 by contradiction. Let j ≥ 3 be the smallest

integer for which there exists (0,0) �= (α,β) ∈ k2 such that f := αθ
(j)
0 +βθ

(j−2)
2 ∈

kerφπŝ. Then

0 = φπŝ(f) ⇒ 0 = δφπŝ(f) = φπŝΔ(f) = φπŝ(αθ
(j−1)
0 + βθ

(j−3)
2 )

and so αθ
(j−1)
0 + βθ

(j−3)
2 ∈ kerφπŝ. This contradicts the minimality of j, proving

part (b). �

Combining Lemmas 3.8 and 6.2, we obtain the following result.

LEMMA 6.3 (a) Given j ≥ 4, the set {θ(j−2i)
2i | 2≤ i≤ j/2} is a basis for Ω(2,j)∩

kerφπŝ.

(b) The vertices of θ̂n (n ∈ 2N, n≥ 4) form a basis for Ω2 ∩ kerφπŝ.

6.2. Proof of Theorem 6.1
Note that, by Corollary 5.5(a), if t̂ ∈ Sa, then πt̂ = πŝ. So there is no loss in

generality in assuming that ŝ= σ̂, where σ̂ is the ∂-cable specified in Theorem 5.7.

By Lemma 6.3(b), the ideal generated by Ω2 ∩ kerφπσ̂ equals Q4. Since φπσ̂

is a homogeneous ideal of Ω, it suffices to show that

Ω(r,s) ∩ kerφπσ̂ ⊂Q4 (r, s≥ 0).

Let nonzero ζ ∈Ω(r,s) ∩ kerφπσ̂ be given (r, s≥ 0). Then r ≥ 2. We prove ζ ∈Q4

by induction on r, where the case r = 2 holds as mentioned. Assume that r ≥ 3.

By Theorem 3.12(c) we have

Ωr ⊂ (x0, x1)
r−1 +Q4.

So it suffices to assume that ζ ∈ (x0, x1)
r−1. By degree considerations, we see

that ζ is a linear combination of the monomials

xr−i−1
0 xi

1xs−i such that r− i− 1, i, s− i≥ 0.

Suppose that x0 does not divide ζ . Then s− r+1≥ 1, and there exist ζ0 ∈Ωr−1

and nonzero c ∈ k with ζ = x0ζ0 + cxr−1
1 xs−r+1. Since ζ ∈ kerφπσ̂ , we see that

φσ̂(ζ) ∈ hA, which implies that, for some q ∈A,

(9) cσr−1
1 σs−r+1 = hq− aφσ̂(ζ0).
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By Theorem 5.7, we have that n!σn ≡−nxvn−1(mod aB) for each n≥ 1. From

(9), it follows that

c

(s− r)!
(−x)rvs−r = 3x2(2xz − y2) · q|a=0.

Since c �= 0, this is a contradiction. Therefore, x0 divides ζ . If ζ = x0ζ0 for ζ0 ∈
Ω, then ζ0 ∈ Ω(r−1,s) ∩ kerφπσ̂ . We conclude by induction on r that ζ0 ∈ Q4.

Therefore, ζ ∈Q4. This completes the proof of Theorem 6.1. �

EXAMPLE 6.4

Consider the well-known cubic Δ-invariant given by

ξ = 2x3
2 + 9x0x

2
3 − 6x1x2x3 − 12x0x2x4 + 6x2

1x4.

Let θ̂4 be a Δ-cable rooted at θ
(0)
4 such that

θ
(2)
4 = 5x1x5 − 8x2x4 +

9

2
x2
3, θ

(1)
4 = 5x0x5 − 3x1x4 + x2x3,

θ
(0)
4 = 2x0x4 − 2x1x3 + x2

2.

We have

1

2
ξ = x0θ

(2)
4 − x1θ

(1)
4 + x2θ

(0)
4 ∈Q4.

Notice that, to express ξ ∈ k[x0, x1, x2, x3, x4] by using quadratics in Q4, it was

necessary to use x5.

EXAMPLE 6.5

Since the transcendence degree of Ā over k is 3, s̄0, s̄1, s̄2, s̄3 are algebraically

dependent in Ā. Their minimal algebraic relation is quartic and can be obtained

as follows.

Let ξ be as in the preceding example. The x4-coefficient of ξ is −6θ
(0)
2 , and

the x4-coefficient of θ
(0)
4 is 2x0. Thus, to eliminate x4, we take

χ := 3θ
(0)
2 θ

(0)
4 + x0ξ = 9x2

0x
2
3 − 3x2

1x
2
2 + 8x0x

3
2 − 18x0x1x2x3 + 6x3

1x3.

We see that χ ∈ k[x0, x1, x2, x3]∩kerΔ∩Q4. Since χ is irreducible, χ is a minimal

algebraic relation among s̄0, s̄1, s̄2, and s̄3.

REMARK 6.6

Let η̂4 be the Δ-cable belonging to the small Δ-basis for Ω2. According to

Lemma 6.2, η̂4 ⊂ kerφπŝ for every ŝ ∈ Sa. Recall that

η
(j)
4 =

(j + 1)(j + 4)

2
x0x4+j − (j + 2)x1x3+j + x2x2+j .

Since we know s̄0, s̄1, s̄2, s̄3 (see Remark 4.3), we can easily determine the δ-cable

πŝ by using these 3-term recursion relations in Ā.
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7. Relations in A

Let Ω[t] = Ω[1], and extend the Z2-grading on Ω to Ω[t] by setting deg t= (0,6).

Note that Ω[t]r =Ωr[t] for each r ≥ 0. In addition,

Ω[t](r,n) =Ω(r,n) ⊕ t ·Ω(r,n−6) ⊕ · · · ⊕ te ·Ω(r,n−6e) where 0≤ n− 6e≤ 5.

Extend Δ to Δ̃ on Ω[t] by setting Δ̃(t) = 0. Then Δ̃ is homogeneous and deg Δ̃ =

(0,−1). Since Δ : Ω(r,s) → Ω(r,s−1) is surjective for each r, s ≥ 1, we see that

Δ̃ : Ω[t](r,n) → Ω[t](r,n−1) is surjective for each r,n ≥ 1. Given n ≥ 0, define the

vector space

Vn =Ω[t](2,n) ∩ ker Δ̃ = Ω[t](2,n) ∩ (kerΔ)[t].

Since kerΔ ∩ Ω(2,s) equals {0} if s is odd and equals k · θ(0)s if s is even as

mentioned in Section 3.2.2, the reader can easily check that Vn = {0} if n is odd

and that for n even

(10) Vn = 〈θ(0)n , tθ
(0)
n−6, . . . , t

eθ
(0)
n−6e〉 where n− 6e ∈ {0,2,4}.

7.1. The mapping Φŝ

Let ŝ ∈ Sa. By Theorem 5.1(a), φŝ : Ω→A extends to the surjection

Φŝ : Ω[t]→A, Φŝ(t) = h.

Note that ΦŝΔ̂ = ∂Φŝ, since φŝΔ= ∂φŝ, ΦŝΔ̂t= 0, and ∂Φŝt= 0.

THEOREM 7.1

There exists a set {Θ̂4, Θ̂6, Θ̂8, . . .} of homogeneous Δ̃-cables such that Θ̂n is

rooted in Vn for each n and

kerΦŝ = (Θ̂4, Θ̂6, Θ̂8, . . . ).

Proof

The proof proceeds in three steps.

Step 1. This step constructs a set {Θ̂4, Θ̂6, Θ̂8, . . .} of homogeneous Δ̃-cables

such that Θ̂n is rooted in Vn for each n and (Θ̂4, Θ̂6, Θ̂8, . . . ) ⊂ kerΦŝ. For the

integer n≥ 4, write n= 6e+ � (e≥ 0,0≤ �≤ 5). Given P ∈ Vn, we have

0 = ΦŝΔ̃(P ) = ∂Φŝ(P ) ⇒ Φŝ(Vn)⊂ ker∂ =R ∩A.

Since Φŝ(Vn)⊂Φŝ(Ω[t](2,n))⊂A(2n+2,n), it follows that

(11) Φŝ(Vn)⊂R ∩A(2n+2,n) =

⎧⎪⎪⎨
⎪⎪⎩
〈a2he〉 �= 0,

〈Fhe〉 �= 2,

{0} otherwise,

by Lemma 4.1(b). Now assume that n is even. In view of (10), there exists cn ∈ k

such that Φŝ(θ
(0)
n ) = cnΦŝ(t

eθ
(0)
� ). Note that we may take cn = 0 when � = 4.

Then, we have

(12) Θ(0)
n := θ(0)n − cnt

eθ
(0)
� ∈ kerΦŝ − {0},
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since e≥ 1 except when n= 4. Suppose that, for some j ≥ 0, we have constructed

Θ
(0)
n , . . . ,Θ

(j)
n ∈ kerΦŝ, which satisfy Θ

(i)
n ∈ Ω[t](2,n+i) and Δ̃Θ

(i)
n = Θ

(i−1)
n , 1 ≤

i≤ j. Since the mapping

Δ̃ : Ω[t](2,n+j+1) →Ω[t](2,n+j)

is surjective, we may choose P ∈Ω[t](2,n+j+1) with Δ̃P =Θ
(j)
n . We have

0 = ΦŝΘ
(j)
n =ΦŝΔ̃(P ) = ∂Φŝ(P ) ⇒ Φŝ(P ) ∈R ∩A(2(n+j+1)+2,n+j+1).

We again apply the equality in (11). In fact, if � ∈ {0,2}, then θ
(0)
n−6e = θ

(0)
� /∈

kerφπŝ by Lemma 6.2(b), and so Φŝ(t
eθ

(0)
n−6e) = heφŝ(θ

(0)
n−6e) �= 0. Thus, as above,

there exist κ ∈ k and ε, l ∈N with

Θ(j+1)
n := P − κtεθ

(0)
l ∈ kerΦŝ ∩Ω[t](2,n+j+1),

where κ= 0 if n+j+1 is odd, since Vn+j+1 = {0}. Then, we have Δ̃Θ
(j+1)
n =Θ

(j)
n ,

since Δ̃(tεθ
(0)
l ) = 0. Therefore, for each even n≥ 4, there exists a homogeneous

Δ̃-cable Θ̂n rooted in Vn and contained in kerΦŝ ∩ Ω[t]2. Note that Θ
(j)
4 = θ

(j)
4

for j = 0,1 by construction.

Step 2. By construction, the ideal J := (Θ̂4, Θ̂6, Θ̂8, . . . ) of Ω[t] is contained in

kerΦŝ. This step shows that kerΦŝ ⊂ J +(t). Define polynomials H
(j)
n ∈Ω(2,n+j)

(n ∈ 2N, n ≥ 4, j ≥ 0) by H
(j)
n = Θ

(j)
n |t=0. Note that, by (12), we have H

(0)
n =

θ
(0)
n �= 0. Therefore, by Section 3.1(xi), for each even n ≥ 4, Ĥn := (H

(j)
n ) is a

homogeneous Δ-cable rooted at θ
(0)
n . By Definition 3.10(2) and Lemma 3.12(b),

we get

Q4 + (t) = (Ĥ4, Ĥ6, Ĥ8, . . . ) + (t) = (Θ̂4, Θ̂6, Θ̂8, . . . ) + (t) = J + (t).

Consider the map πΦŝ : Ω[t]
Φŝ→A

π→A/hA. Since πΦŝ|Ω = φπŝ, we see from The-

orem 6.1 that

kerΦŝ ⊂ kerπΦŝ =Q4 + (t) = J + (t).

Step 3. This step shows that J = kerΦŝ. Since Φŝ(Ω[t](r,s)) ⊂ A(2s+r,s) for

each r, s≥ 0, we see that kerΦŝ is a homogeneous ideal of Ω[t]. So, given integers

r,N ≥ 0, we show by induction on N that

(13) kerΦŝ ∩Ω[t](r,N) ⊂ J.

If r ≤ 1, then kerΦŝ ∩Ω[t](r,N) = {0}, so assume that r ≥ 2.

Consider first the case in which 0≤N ≤ 5. In this case, Ω[t](r,N) =Ω(r,N) =

k[x0, . . . , xN ](r,N), since deg t= (0,6). Let

P ∈ kerΦŝ ∩Ω[t](r,N) = kerφŝ ∩ k[x0, . . . , xN ](r,N)

be given. If N ≤ 3, then P = 0, since s0, s1, s2, s3 are algebraically independent

over k (see Remark 4.3).

Suppose that N = 4. The only monomial in k[x0, . . . , x4](r,4) in which x4

appears is xr−1
0 x4. Therefore, noting that θ

(0)
4 = 2(x0x4 − x1x3) + x2

2, we have

k[x0, . . . , x4](r,4) = k · xr−1
0 x4 ⊕ k[x0, . . . , x3](r,4) = k · xr−2

0 θ
(0)
4 ⊕ k[x0, . . . , x3](r,4).
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So there exists λ ∈ k such that P − λxr−2
0 θ

(0)
4 ∈ k[x0, . . . , x3]. Since θ

(0)
4 ∈ kerφŝ

by Lemma 7.2(a) below, we get P −λxr−2
0 θ

(0)
4 ∈ kerφŝ∩k[x0, . . . , x3] = {0}. Since

θ
(0)
4 =Θ

(0)
4 ∈ J , P ∈ J in this case.

Suppose that N = 5. The only monomial in k[x0, . . . , x5](r,5) in which x5

appears is xr−1
0 x5. Therefore, noting that θ

(1)
4 = 5x0x5 − 3x1x4 + x2x3, we have

k[x0, . . . , x5](r,5) = k · xr−1
0 x5 ⊕ k[x0, . . . , x4](r,5) = k · xr−2

0 θ
(1)
4 ⊕ k[x0, . . . , x4](r,5).

Since θ
(1)
4 ∈ kerφŝ by Lemma 7.2(a) below, there exists λ ∈ k such that

P − λxr−2
0 θ

(1)
4 ∈ kerφŝ ∩ k[x0, . . . , x4](r,5)

as above. Similarly, the only monomial in k[x0, . . . , x4](r+1,5) in which x4 appears

is xr−1
0 x1x4. Therefore,

k[x0, . . . , x4](r+1,5) = k · xr−1
0 x1x4 ⊕ k[x0, . . . , x3](r+1,5)

= k · xr−2
0 x1θ

(0)
4 ⊕ k[x0, . . . , x3](r+1,5).

So there exists μ ∈ k such that

x0P − λxr−1
0 θ

(1)
4 − μxr−2

0 x1θ
(0)
4 ∈ kerφŝ ∩ k[x0, . . . , x3] = {0}.

If r = 2, then μx1θ
(0)
4 ∈ x0Ω implies μ= 0 and P = λxr−2

0 θ
(1)
4 . If r ≥ 3, then

P = λxr−2
0 θ

(1)
4 + μxr−3

0 x1θ
(0)
4 .

In either case, P ∈ J , since θ
(1)
4 = Θ

(1)
4 ∈ J . Therefore, the inclusion (13) holds

when 0≤N ≤ 5, which gives the basis for induction.

Suppose that N0 is an integer such that N0 ≥ 5 and (13) holds for all integers

0 ≤ N ≤ N0. Let P ∈ kerΦŝ ∩ Ω[t](r,M) be given, where N0 <M ≤ N0 + 6. We

show that P is of the form

(14) P = PJ + tQ where PJ ∈ J ∩Ω[t](r,M) and Q ∈Ω[t](r,M−6).

Since kerΦŝ ⊂ J + (t) by Step 2, we may write P = E + C for E ∈ J and C ∈
t ·Ω[t]. Since J and t ·Ω[t] are homogeneous ideals, each homogeneous summand

of E belongs to J , and each homogeneous summand of C belongs to t ·Ω[t]. Since
P is homogeneous, statement (14) holds.

In addition, since PJ ∈ J ⊂ kerΦŝ, we have

tQ= P − PJ ∈ kerΦŝ ⇒ Q ∈ kerΦŝ ∩Ω[t](r,M−6).

By the inductive hypothesis, Q ∈ J , which implies P ∈ J . Therefore, statement

(13) holds for all N ≥ 0. This proves J = kerΦŝ. �

7.2. The cable σ̂

Let σ̂ ∈ Sa be the ∂-cable defined in Theorem 5.7. The goal of this section is to

give an explicit recursive definition of σ̂ (see Theorem 7.6).

LEMMA 7.2

Let n ∈ 2N, n≥ 4, and ŝ ∈ Sa be given.
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(a) If n≡ 4 (mod 6), then θ
(0)
n , θ

(1)
n ∈ kerφŝ for every ŝ ∈ Sa.

(b) If n≡ 2 (mod 6), then θ
(0)
n , θ

(1)
n ∈ kerφσ̂.

Proof

For both (a) and (b), it suffices to show that θ
(0)
n ∈ kerφŝ, since

0 = φŝ(θ
(0)
n ) = φŝΔ(θ(1)n ) = ∂φŝ(θ

(1)
n ) ⇒

φŝ(θ
(1)
n ) ∈ ker∂|A(2n+4,n+1)

=R ∩A(2n+4,n+1) = {0}

by Lemma 4.1(b) with �= 5,3. If n≡ 4 (mod 6), then inclusion (11) shows that

θ
(0)
n ∈ kerφŝ. This proves part (a). For part (b), write n= 6e+ 2 for some e≥ 1.

Inclusion (11) shows that

φσ̂(θ
(0)
n ) = cFhe (c ∈ k).

By Theorem 5.7(b), it follows that φσ̂(θ
(0)
n ) = 0. This proves part (b). �

For n ∈ 2N, let Jn be the set of integers j ≥ 3 such that n+ j ≡ 1 (mod 6). In

particular, each j ∈ Jn is odd.

Let {θ̂n} be a Δ-basis for Ω2. Given n ∈ 2N and j ∈ N (and j ≥ 1 if n= 0),

let ξ(θ
(j)
n ) ∈ k be the coefficient of x1xn+j−1 in θ

(j)
n . Note that ξ(θ

(j)
n ) = 0 if and

only if θ
(j)
n ∈ k[x0, x2, x3, . . . , xn+j ], since θ

(j)
n ∈Ω(2,n+j). Define

μ(θ̂n) =min
{
j ∈ Jn

∣∣ ξ(θ(j)n ) �= 0
}
,

where it is understood that μ(θ̂n) =∞ if ξ(θ
(j)
n ) = 0 for all j ∈ Jn.

LEMMA 7.3

If μ(θ̂n) =∞, then the following are equivalent.

(i) θ
(j)
n ∈ kerφσ̂ for some j ≥ 0.

(ii) θ
(0)
n ∈ kerφσ̂.

(iii) θ
(j)
n ∈ kerφσ̂ for all j ≥ 0.

Proof

It is clear that (i) ⇐ (ii) ⇐ (iii). We also have (i) ⇒ (ii), since

φσ̂(θ
(0)
n ) = φσ̂(Δ

jθ(j)n ) = ∂jφσ̂(θ
(j)
n ) = 0.

We show (ii) ⇒ (iii). Suppose that θ
(0)
n ∈ kerφσ̂ , noting that n≥ 4, since φσ̂(θ

(0)
0 )

and φσ̂(θ
(0)
2 ) cannot be zero by Lemma 6.2(b). We prove by induction on j that

θ
(j)
n ∈ kerφσ̂ for all j ≥ 0.

Assume that θ
(j)
n ∈ kerφσ̂ for some j ≥ 0. Then, ∂φσ̂(θ

(j+1)
n ) = φσ̂(Δθ

(j+1)
n ) =

φσ̂(θ
(j)
n ) = 0. Hence, we get

φσ̂(θ
(j+1)
n ) ∈ ker∂|A(2(n+j+1)+2,n+j+1)

=R ∩A(2(n+j+1)+2,n+j+1).



356 Gene Freudenburg and Shigeru Kuroda

Now, suppose that θ
(j+1)
n /∈ kerφσ̂ . Then, by Lemma 4.1(b) and the remark after

Theorem 5.7, we have n+ j + 1 ≡ 0 (mod 6) and φσ̂(θ
(j+1)
n ) = λa2he for some

λ ∈ k∗ and e≥ 0. Note that

∂ :A(2(n+j+2)+2,n+j+2) →A(2(n+j+1)+2,n+j+1)

is an injection by Lemma 4.1(b), since n + j + 2 ≡ 1 (mod 6). Because

∂φσ̂(θ
(j+2)
n ) = φσ̂(Δθ

(j+2)
n ) = φσ̂(θ

(j+1)
n ) and ∂σ0σ1h

e = a2he, it follows that

φσ̂(θ
(j+2)
n ) = λσ0σ1h

e. By assumption, the monomial x1xn+j+1 does not appear

in θ
(j+2)
n . Hence, θ

(j+2)
n is a k-linear combination of xixn+j+2−i for 0 ≤ i ≤

(n+ j + 2)/2 with i �= 1. This contradicts Theorem 5.7(a). Therefore, we must

have θ
(j+1)
n ∈ kerφσ̂ . It follows by induction that θ

(j)
n ∈ kerφσ̂ for all j ≥ 0. This

completes the proof. �

Combining Lemmas 7.2 and 7.3 gives the following result.

LEMMA 7.4

Suppose that {θ̂n} is a Δ-basis such that μ(θ̂n) =∞ for each n= 6e± 2, e≥ 1.

Define the Q-ideal J by J = (θ̂n | n= 6e± 2, e≥ 1). Then J ⊂ kerφσ̂.

We next describe a procedure to modify a given Δ-basis {θ̂n} to obtain a Δ-basis

{ψ̂n} for which μ(ψ̂n) =∞ for each n.

Given n ∈ 2N, if μ(θ̂n) =∞, set ψ̂n = θ̂n. If μ(θ̂n)<∞, then define constants

j = μ(θ̂n), m= j − 1, and c=
ξ(θ

(j)
n )

n+ j − 2
,

noting that j ≥ 3 is odd and ξ(θ
(1)
n+j−1) =−(n+ j − 2) �= 0. It follows that

μ(θ̂n)< μ(θ̂n +m cθ̂n+m).

If μ(θ̂n +m cθ̂n+m) = ∞, set ψ̂n = θ̂n +m cθ̂n+m. If μ(θ̂n +m cθ̂n+m) < ∞, the

process can be repeated. Continuing in this way, we construct a strictly increasing

sequence 	m = {mi}i∈I of positive integers, together with sequences 	c = {ci}i∈I

for ci ∈ k∗ and 	s= {θ̂n+mi}i∈I such that if ψ̂n = lim(	s, 	m,	c ), then μ(ψ̂n) =∞.

Note that, with this algorithm, {ψ̂n} is uniquely determined by {θ̂n}. The
resulting Δ-basis {ψ̂n} is the reduction of {θ̂n}.

To illustrate, let {ψ̂n} be the reduction of the balanced Δ-basis {β̂n}. Assume

that n≡ 4 (mod 6). Then ξ(β
(3)
n ) =−

(
n+2
3

)
, and if

c=−
(
n+2
3

)
n+ 3− 2

=−n(n+ 2)

6
,

then the first eight terms of ψ̂n equal those of β̂n+2 cβ̂n+2. In particular, we have

(15) ψ(2)
n = β(2)

n − n(n+ 2)

6
β
(0)
n+2 =

1

6

n+2∑
i=0

(−1)i
(
3i(i− 1)− n(n+ 2)

)
xixn+2−i
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and

ψ(3)
n = β(3)

n − n(n+ 2)

6
β
(1)
n+2

(16)

=
1

6

n+3∑
i=1

(−1)i+1
(
(i− 1)(i− 2)− n(n+ 2)

)
ixixn+3−i.

Note that, by Lemma 7.4, ψ
(2)
n and ψ

(3)
n above both belong to kerφσ̂ .

REMARK 7.5

The results of this section show that a Δ-basis of the type described in Lemma 7.4

exists, and therefore, J ⊂ kerφσ̂ for the associated Q-ideal J . But we do not

know if J = kerφσ̂ .

Next, let {ψ̂n} be the reduction of the balanced Δ-basis {β̂n}. The Δ-cables ψ̂n

for n= 6e± 2 (e≥ 1) give us a way to implicitly calculate the ∂-cable σ̂. Recall

that σ0, . . . , σ5 are uniquely determined and are given in Remark 4.3.

THEOREM 7.6

For n≥ 2, we have

σn =
1

2a

n−1∑
i=1

(−1)i+1σiσn−i if n≡ 2,4 (mod 6),

σn =
1

na

n−1∑
i=1

(−1)iiσiσn−i if n≡ 3,5 (mod 6),

σn =
1

n(n+ 1)a

n−1∑
i=1

(−1)i+1
(
3i(i− 1)− n(n− 2)

)
σiσn−i if n≡ 0 (mod 6),

σn =
1

n(n− 1)a

n−1∑
i=1

(−1)i
(
(i− 1)(i− 2)− (n− 1)(n− 3)

)
iσiσn−i

if n≡ 1 (mod 6).

Proof

The first two equalities are equivalent to φσ̂(θ
(0)
n ) = 0 and φσ̂(θ

(1)
n−1) = 0, respec-

tively, which follow from Lemma 7.2. The last two equalities follow from

Lemma 7.4 together with (15) and (16). �

To illustrate, the following relations can be used to construct σ6, . . . , σ19:

ψ
(2)
4 = β

(2)
4 − 4β

(0)
6 = 7x0x6 − 2x1x5 − x2x4 + x2

3,

ψ
(3)
4 = β

(3)
4 − 4β

(1)
6 = 7x0x7 − 2x2x5 + x3x4,

ψ
(0)
8 = β

(0)
8 = 2x0x8 − 2x1x7 + 2x2x6 − 2x3x5 + x2

4,
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ψ
(1)
8 = β

(1)
8 = 9x0x9 − 7x1x8 + 5x2x7 − 3x3x6 + x4x5,

ψ
(0)
10 = β

(0)
10 = 2x0x10 − 2x1x9 + 2x2x8 − 2x3x7 + 2x4x6 − x2

5,

ψ
(1)
10 = β

(1)
10 = 11x0x11 − 9x1x10 + 7x2x9 − 5x3x8 + 3x4x7 − x5x6,

ψ
(2)
10 = β

(2)
10 − 20β

(0)
12 = 26x0x12 − 15x1x11 + 6x2x10 + x3x9 − 6x4x8

+ 9x5x7 − 5x2
6,

ψ
(3)
10 = β

(3)
10 − 20β

(1)
12 = 26x0x13 − 15x2x11 + 21x3x10 − 20x4x9 + 14x5x8 − 5x6x7,

ψ
(0)
14 = β

(0)
14 = 2x0x14 − 2x1x13 + 2x2x12 − 2x3x11 + 2x4x10

− 2x5x9 + 2x6x8 − x2
7,

ψ
(1)
14 = β

(1)
14 = 15x0x15 − 13x1x14 + 11x2x13 − 9x3x12 + 7x4x11

− 5x5x10 + 3x6x9 − x7x8,

ψ
(0)
16 = β

(0)
16 = 2x0x16 − 2x1x15 + 2x2x14 − 2x3x13 + 2x4x12 − 2x5x11

+ 2x6x10 − 2x7x9 + x2
8,

ψ
(1)
16 = β

(1)
16 = 17x0x17 − 15x1x16 + 13x2x15 − 11x3x14 + 9x4x13

− 7x5x12 + 5x6x11 − 3x7x10 + x8x9,

ψ
(2)
16 = β

(2)
16 − 48β

(0)
12 = 57x0x18 − 40x1x17 + 25x2x16 − 12x3x15 + x4x14

+ 8x5x13 − 25x6x12 + 20x7x11 − 23x8x10 + 12x2
9,

ψ
(3)
16 = β

(3)
16 − 48β

(1)
12 = 57x0x19 − 40x2x17 + 65x3x16 − 77x4x15 + 78x5x14

− 70x6x13 + 55x7x12 − 35x8x11 + 12x9x10.

REMARK 7.7

The reader can compare these relations with relations for the sequence wn given

in [5]. In particular, w0, . . . ,w13 are given in [5, pp. 162, 165]. The construction

used there is as follows. Given n= 6e− 4 (e≥ 2), suppose that w0, . . . ,w6e−5 are

known. Then w6e−4, . . . ,w6e+1 are defined by solving certain systems of linear

equations, but in the language of cables this amounts to finding ψ
(0)
n , . . . , ψ

(5)
n .

Our current approach uses the simpler relations

ψ(0)
n , ψ(1)

n , ψ
(0)
n+2, ψ

(1)
n+2, ψ

(2)
n+2, ψ

(3)
n+2.

Note that if ψ
(j)
n =

∑n
i=0 c

(j)
(n,i)xixn−i, then the coefficient c

(j)
(n,i) is a polynomial of

degree j in i. Thus, using smaller j-values has a big advantage computationally.

However, the reader should note that both methods produce the same sequence

σn, by the uniqueness established in Theorem 5.7.
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8. Roberts’s derivations in dimension 7

Roberts [12] constructed a family of counterexamples to Hilbert’s fourteenth

problem in the form of subrings Am ⊂ k[7] for integers m≥ 2. Although Roberts

does not use the language of derivations, the maps he defines are triangular

derivations. In this section, we give a description of the ring A2 as a cable algebra.

Let B = k[X,Y,Z,S,T,U,V ] = k[7]. For m≥ 2, the subring Am is the kernel

of the derivation Dm of B defined by

S →Xm+1, T → Y m+1, U → Zm+1,

V → (XY Z)m, X,Y,Z → 0.

Define Hm ∈Am by Hm = Y m+1S−Xm+1T . Define an action of the cyclic group

Z3 = 〈α〉 on B by

α(X,Y,Z,S,T,U,V ) = (Z,X,Y,U,S,T,V ).

Then α, Dm, and the partial derivative ∂/∂V commute pairwise with each other.

Therefore, α and ∂/∂V restrict to Am. We denote the restriction of ∂/∂V to Am

by δm.

Let m ≥ 2 be given. In [12, Lemma 3], Roberts showed the existence of

a sequence in Am of the form XV i + (terms of lower degree in V ), i ≥ 0. By

combining this with homogeneity conditions, he concluded that Am is not finitely

generated over k. Note that, by applying α, we also obtain sequences in Am of the

form Y V i+(terms of lower degree in V ) and ZV i+(terms of lower degree in V )

for i≥ 0. The second author showed the following.

THEOREM 8.1 ([8, THEOREM 3.3])

Given m≥ 2, let I(m,X,i), I(m,Y,i), I(m,Z,i) ∈Am (i≥ 0) be sequences of the form

I(m,X,i) =XV i + (terms of lower degree in V ),

I(m,Y,i) = Y V i + (terms of lower degree in V ),

I(m,Z,i) = ZV i + (terms of lower degree in V ).

Then

Am = k
[
{Hm, αHm, α2Hm} ∪

{
I(m,W,i)

∣∣ i≥ 0,W ∈ {X,Y,Z}
}]
.

We use this to show the following result.

THEOREM 8.2

There exists an infinite δ2-cable P̂ in A2 rooted at X, and for any such P̂ we

have

A2 = k[H2, αH2, α
2H2, P̂ , αP̂ ,α2P̂ ].

To construct P̂ we first study the restriction of D2 to a subring B′ of B, where
B′ ∼= k[6].
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8.1. The derivation E in dimension 6

Let R= k[x, y, s, t, u, v] = k[6], and define the triangular derivation E of R by

(17) v→ x2y2, u→ y3t, t→ y3s, s→ x3, x→ 0, y→ 0.

Then E commutes with ∂
∂v and we let τ denote the restriction of ∂

∂v to kerE.

THEOREM 8.3

There exists an infinite τ -cable κ̂ rooted at x.

Proof

Let πv :R→ (kerE)xy be the Dixmier map for E associated to the local slice v.

According to [4, (6) and Lemma 2], there exists a sequence wn ∈ k[x, y, z, s, t, u],

n≥ 0, with the following properties.

(i) w0 = 1.

(ii) E3iw3m = (x3y3)2iw3(m−i) (m≥ 1,0≤ i≤m).

(iii) (−1)3mπv(xw3m) ∈R (m≥ 0).

Given m ≥ 0, define κ3m ∈ R by κ3m = (−1)3mπv(xw3m). By using (1) in

Section 2.1, we see that for m≥ 1

∂3

∂v3
κ3m =

∂2

∂v2
(−1)3m−1πv(xEw3m)

∂

∂v

v

x2y2

=
∂

∂v
(−1)3m−2πv(xE

2w3m)
1

x2y2
∂

∂v

v

x2y2

= (−1)3m−3πv(xE
3w3m)

1

x4y4
∂

∂v

v

x2y2

= (−1)3m−3πv

(
x(x3y3)2w3(m−1)

) 1

x6y6

= (−1)3(m−1)πv(xw3(m−1))

= κ3(m−1).

Define

κ3m−1 =
∂

∂v
κ3m and κ3m−2 =

∂

∂v
κ3m−1 (m≥ 1).

Then κ̂ := (κn) is a τ -cable rooted x. �

8.2. Proof of Theorem 8.2
Given f1, . . . , fn ∈ B, recall that the Wronskian of f1, . . . , fn relative to D2 is (see

[5, Section 2.6])

WD2(f1, . . . , fn) = det(Di
2fj) where 0≤ i≤ n− 1,1≤ j ≤ n.

Define F1, F2, F3 ∈ B by

F1 = S, F2 =
1

2
WD2(S,TU), F3 =

1

6
X−3WD2(S,TU,STU).
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Then D2 restricts to the subring B′ = k[X,Y Z,F1, F2, F3, V ] = k[6], where

D2F3 = (Y Z)3F2, D2F2 = (Y Z)3F1, D2F1 =X3, D2V =X2(Y Z)2.

Therefore, setting x=X , y = Y Z, s= F1, t= F2, u= F3, and v = V , we see that

the restriction of D2 to B′ equals E, as defined in (17) above. By Theorem 8.3

there exists a δ2-cable P̂ rooted at X such that P̂ ⊂ B′. In particular, P̂ = (Pi)

has the form Pi =
1
i!XV i + (terms of lower degree in V ).

Consequently, αP̂ is a δ2-cable P̂ rooted at Y , and α2P̂ is a δ2-cable P̂ rooted

at Z. The proof is thus completed by applying Kuroda’s result (Theorem 8.1

above). �

REMARK 8.4

It seems likely that the structure of A2 given in Theorem 8.2 can be extended

from m= 2 to all m≥ 2. To do so by the method above requires a generalization

of Theorem 8.3.

9. Further comments and questions

9.1. Tanimoto’s generators
Tanimoto [13] gives a set of generators for the ring A by specifying a SAGBI

basis consisting of h together with homogeneous sequences λn, μn, and νn whose

leading v-terms are avn, Fvn, and Gvn, respectively. From Corollary 5.5(a) we

see that A is generated as a k-algebra by h and the sequence λn, meaning that μn

and νn are redundant. Tanimoto also computed the Hilbert series for A, which

is rational even though A is not finitely generated.

9.2. Fundamental problem for cable algebras
If B is an affine k-domain and D ∈ LND(B) is nonzero, then B is a cable algebra

and (B,D) is a cable pair. We ask the following.

QUESTION

Let B be an affine k-domain, and let D ∈ LND(B). If I∞ �= (0), does B have an

infinite D-cable? Equivalently, if every D-cable of B is terminal, does I∞ = (0)?

Note that if every D-cable of B is terminal, then since B is affine, there exist an

integer n≥ 1 and terminal D-cables t̂1, . . . , t̂n such that B = k[t̂1, . . . , t̂n].

9.3. Q-ideals
We would like to know which Q-ideals are prime ideals of Ω. For each even n≥ 2,

consider the following statements regarding the fundamental Q-ideals.

(a) Qn is a prime ideal of Ω.

(b) tr.degkΩ/Qn = n
2 + 1.

(c) Ω/Qn is a simple cable algebra over k.
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It is shown above that these are true statements for n= 2 and n= 4. Are these

statements true for n≥ 6?

9.4. The dimension 4 case
Nagata [11] presented the first counterexamples to Hilbert’s fourteenth problem.

In one of these, the transcendence degree of the ring of invariants over the ground

field is 4, and Nagata asked whether this could be reduced to 3. The second author

[7] gave an affirmative answer to Nagata’s question in the form of the kernel of

a derivation of k[4], but this derivation is not locally nilpotent (see also [9]).

It remains an open question whether an algebraic Ga-action on the polyno-

mial ring k[4] always has a finitely generated ring of invariants. In [3] it is shown

that this is the case for triangular actions, and this result was later generalized

in [1] to the case of actions having rank less than 4. The next natural case to

consider is the case in which T is a locally nilpotent derivation of k[4] of rank 4

and T restricts to a coordinate subring B = k[3]. If k[4] =B[v], then the partial

derivative ∂/∂v restricts to kerT . It is hoped that a good understanding of cable

structures of invariant rings might lead to a complete solution of the dimension

4 case.
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