Cable algebras and rings of \mathbb{G}_{a}-invariants

Gene Freudenburg and Shigeru Kuroda

Abstract

For a field k, the ring of invariants of an action of the unipotent k-group \mathbb{G}_{a} on an affine k-variety is quasiaffine, but not generally affine. Cable algebras are introduced as a framework for studying these invariant rings. It is shown that the ring of invariants for the \mathbb{G}_{a}-action on \mathbb{A}_{k}^{5} constructed by Daigle and Freudenburg is a monogenetic cable algebra. A generating cable is constructed for this ring, and a complete set of relations is given as a prime ideal in the infinite polynomial ring over k. In addition, it is shown that the ring of invariants for the well-known \mathbb{G}_{a}-action on \mathbb{A}_{k}^{7} due to Roberts is a cable algebra.

1. Introduction

We introduce cable algebras to describe the structure of rings of invariants for algebraic actions of the unipotent group \mathbb{G}_{a} on affine varieties over a ground field k. Winkelmann [14] has shown that such rings are always quasiaffine over k, but they are not generally affine. Roberts [12] gave the first example of a nonaffine invariant ring for a \mathbb{G}_{a}-action on an affine space. Specifically, Roberts's example involved an action of \mathbb{G}_{a} on the affine space \mathbb{A}_{k}^{7}, where k is of characteristic zero. Subsequent examples of \mathbb{G}_{a}-actions of nonfinite type were constructed by Freudenburg [4] and by Daigle and Freudenburg [2], for \mathbb{A}_{k}^{6} and \mathbb{A}_{k}^{5}, respectively. These examples are counterexamples to Hilbert's fourteenth problem.

Kuroda [8] used subalgebra analogue to Groebner bases for ideals (SAGBI) basis techniques to show that an infinite system of invariants constructed by Roberts for the action on \mathbb{A}_{k}^{7} generates the invariant ring as a k-algebra. Tanimoto [13] used the same techniques to identify generating sets for the actions on \mathbb{A}_{k}^{6} and \mathbb{A}_{k}^{5}. Our results show that Tanimoto's generating sets are not minimal (see Section 9.1). From the point of view of classical invariant theory, a structural description of a ring of invariants involves the determination of a minimal set of generators of the ring as a k-algebra, together with a minimal set of generators for the ideal of their relations. However, for an infinite set of generators, or even a large finite set of generators, such a description can be complicated, and the choice of generating set can seem arbitrary.

When k is of characteristic zero, \mathbb{G}_{a}-actions on an affine k-variety X are equivalent to locally nilpotent derivations of the coordinate ring $k[X]$, and the invariant ring $k[X]^{\mathbb{G}_{a}}$ equals the kernel of the derivation. In many cases, $k[X]^{\mathbb{G}_{a}}$ admits a nonzero locally nilpotent derivation, and this gives additional structure to exploit.

For a commutative k-domain B, a locally nilpotent derivation D of B induces a directed tree structure on B. A D-cable is any complete linear subtree rooted in the kernel of D. The condition for B to be a cable algebra is a finiteness condition: B is a cable algebra if (for some D) $D \neq 0$ and B is generated by a finite number of D-cables over the kernel of D. Then B is a simple cable algebra if it is generated by one D-cable over k. Elements in the ideal of relations in the infinite polynomial ring for the generating cables are cable relations.

To illustrate this, consider a nilpotent linear operator N on a finitedimensional k-vector space V. Choose a basis $\left\{x_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq n_{i}\right\}$ of V so that the effect of N for fixed i is

$$
x_{i, n_{i}} \rightarrow x_{i, n_{i}-1} \rightarrow \cdots \rightarrow x_{i, 2} \rightarrow x_{i, 1} \rightarrow 0 .
$$

This defines the Jordan form of N, which in turn gives a cable structure on the symmetric algebra $S(V)$. In particular, N induces a locally nilpotent derivation D on $S(V)$, and each sequence $x_{i, j}$ for fixed i is a D-cable \hat{x}_{i}, where $S(V)=k\left[\hat{x}_{1}, \ldots, \hat{x}_{m}\right]$. In this sense, the cable algebra structure induced by a locally nilpotent derivation can be viewed as a generalization of Jordan block form for a nilpotent linear operator.

For rings of nonfinite type over k, the ring $S=k\left[x, x v, x v^{2}, \ldots\right]$ is a prototype, where $k[x, v]$ is the polynomial ring in two variables over k. The partial derivative $\partial / \partial v$ restricts to a locally nilpotent derivation D of S, and the infinite sequence $\frac{1}{n!} x v^{n}$ defines a D-cable \hat{s} for which $S=k[\hat{s}]$. So S is a simple cable algebra. Although S is not quasiaffine, it plays an important role in our investigation. For example, one of our main objects of interest is the ring A of invariants for the \mathbb{G}_{a}-action on \mathbb{A}^{5} constructed by Daigle and Freudenburg, and we show that A admits a mapping onto S.

1.1. Description of main results

We assume throughout that k is a field of characteristic zero. On the polynomial ring $B=k[a, v, x, y, z]=k^{[5]}$, define the locally nilpotent derivation D of B by

$$
D=a^{3} \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}+a^{2} \frac{\partial}{\partial v} .
$$

For the corresponding \mathbb{G}_{a}-action on $X=\mathbb{A}_{k}^{5}$, the ring of invariants $k[X]^{\mathbb{G}_{a}}$ is not finitely generated over k (see [2]).

If $A=\operatorname{ker} D$, the kernel of D, then the partial derivative $\frac{\partial}{\partial v}$ restricts to A, and ∂ denotes the restriction of $\frac{\partial}{\partial v}$ to A. We give a complete description of the ring A as a cable algebra relative to ∂, including its relations as a cable ideal in the infinite polynomial ring $\Omega=k\left[x_{0}, x_{1}, x_{2}, \ldots\right]$. Moreover, we construct a specific ∂-cable $\hat{\sigma}=\left(\sigma_{n}\right)$ from these relations, wherein σ_{n+1} is expressed as
an explicit rational function in $\sigma_{0}, \ldots, \sigma_{n}$. Our proofs do not use SAGBI bases, relying instead on properties of the down operator Δ on Ω, a k-derivation defined by

$$
\Delta x_{i}=x_{i-1} \quad(i \geq 1) \quad \text { and } \quad \Delta x_{0}=0
$$

Let $\Omega[t]=\Omega^{[1]}$, and extend Δ to $\tilde{\Delta}$ on $\Omega[t]$ by $\tilde{\Delta} t=0$.
Generators. Theorem 5.1: There exists an infinite homogeneous ∂-cable \hat{s} rooted at a, and for any such ∂-cable we have $A=k[h, \hat{s}]$ for $h \in \operatorname{ker} \partial$. Moreover, this is a minimal generating set for A over k.

Relations. Theorem 7.1: There exists an ideal $\mathcal{I}=\left(\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right)$ in $\Omega[t]$ generated by quadratic homogeneous $\tilde{\Delta}$-cables $\hat{\Theta}_{n}$ such that $A \cong \Omega[t] / \mathcal{I}$.

Constructs. Theorem 7.6: Let A_{a} be the localization of A at a, and define a sequence $\sigma_{n} \in A_{a}$ by $\sigma_{0}=a$ and

$$
\begin{aligned}
\sigma_{1} & =a v-x, \quad \sigma_{2}=\frac{1}{2}\left(a v^{2}-2 x v+2 a^{2} y\right), \\
\sigma_{3} & =\frac{1}{6}\left(a v^{3}-3 x v^{2}+6 a^{2} y v-6 a^{4} z\right) .
\end{aligned}
$$

Given $n \geq 4$, let $e \geq 1$ be such that $-2 \leq n-6 e \leq 3$. If $\sigma_{0}, \ldots, \sigma_{n-1} \in A_{a}$ are known, define $\sigma_{n} \in A_{a}$ implicitly as follows.
(i) If $n=6 e-2$ or $n=6 e+2$, then $\sum_{i=0}^{n}(-1)^{i} \sigma_{i} \sigma_{n-i}=0$.
(ii) If $n=6 e-1$ or $n=6 e+3$, then $\sum_{i=1}^{n}(-1)^{i} i \sigma_{i} \sigma_{n-i}=0$.
(iii) If $n=6 e$, then $\sum_{i=0}^{n+2}(-1)^{i}(3 i(i-1)-n(n+2)) \sigma_{i} \sigma_{n+2-i}=0$.
(iv) If $n=6 e+1$, then $\sum_{i=1}^{n+3}(-1)^{i+1}((i-1)(i-2)-n(n+2)) i \sigma_{i} \sigma_{n+3-i}=0$.

Then $\sigma_{n} \in A$ for each $n \geq 0$ and $\hat{\sigma}=\left(\sigma_{n}\right)$ is a ∂-cable rooted at a.
As seen in these results, quadratic relations in Ω are especially important. A basis for the vector space of quadratic forms in ker Δ is given by $\left\{\theta_{n}^{(0)} \mid n \in 2 \mathbb{N}\right\}$, where

$$
\theta_{n}^{(0)}=\sum_{i=0}^{n}(-1)^{i} x_{i} x_{n-i} .
$$

If $\left\{\hat{\theta}_{n}\right\}$ is any system of quadratic Δ-cables with $\hat{\theta}_{n}$ rooted at $\theta_{n}^{(0)}$, then the vertices of these cables form a basis for Ω_{2}, the space of quadratic forms in Ω (see Lemma 3.8). Moreover, the quadratic ideals

$$
\mathcal{Q}_{n}=\left(\hat{\theta}_{n}, \hat{\theta}_{n+2}, \hat{\theta}_{n+4}, \ldots\right), \quad n \in 2 \mathbb{N}
$$

are independent of the system of cables chosen (see Theorem 3.12). These ideals, called fundamental Q-ideals, are intrinsically important to the theory at hand. Compare this to the linear case. The only linear form in ker Δ is x_{0}, up to a constant, and if $\hat{L}=\left(L_{n}\right)$ is any homogeneous Δ-cable rooted at x_{0}, then the linear forms $L_{n}, n \geq 0$, form a basis of the space of linear forms Ω_{1} and we have equality of Ω-ideals:

$$
(\hat{L})=\left(L_{0}, L_{1}, L_{2}, \ldots\right)=\left(x_{0}, x_{1}, x_{2}, \ldots\right)
$$

Therefore, $\Omega /(\hat{L})=k$ and (\hat{L}) is a maximal ideal of Ω.

We show the following. We have that \mathcal{Q}_{2} is a prime ideal of Ω and $\Omega / \mathcal{Q}_{2} \cong_{k}$ S, where $S \subset k[x, v]=k^{[2]}$ is the simple cable algebra of nonfinite type and of transcendence degree 2 over k defined by $S=k\left[x, x v, x v^{2}, \ldots\right]$ (see Theorem 3.21). We have that \mathcal{Q}_{4} is a prime ideal of Ω and $\Omega / \mathcal{Q}_{4} \cong_{k} A / h A$, which is a simple cable algebra of nonfinite type and of transcendence degree 3 over k (see Theorem 6.1).

Finally, we show that the ring of invariants for the Roberts action in dimension 7 is a cable algebra. On the polynomial ring $k[X, Y, Z, S, T, U, V]$, define the locally nilpotent derivation

$$
\mathcal{D}_{2}=X^{3} \frac{\partial}{\partial S}+Y^{3} \frac{\partial}{\partial T}+Z^{3} \frac{\partial}{\partial U}+(X Y Z)^{2} \frac{\partial}{\partial V},
$$

where \mathcal{D}_{2} commutes with the 3 -cycle α defined by $\alpha(X, Y, Z, S, T, U, V)=(Z, X$, $Y, U, S, T, V)$. The partial derivative $\partial / \partial V$ restricts to the kernel \mathcal{A}_{2} of \mathcal{D}_{2}, and δ_{2} denotes the restricted derivation. There exists a δ_{2}-cable \hat{P} in \mathcal{A}_{2} rooted at X, and for any such δ_{2}-cable,

$$
\mathcal{A}_{2}=k\left[H_{2}, \alpha H_{2}, \alpha^{2} H_{2}, \hat{P}, \alpha \hat{P}, \alpha^{2} \hat{P}\right],
$$

where $H_{2} \in \operatorname{ker} \delta_{2}$ (see Theorem 8.2).

1.2. Additional background

Let K be any field. For $n \leq 3$, the ring of invariants of a \mathbb{G}_{a}-action on \mathbb{A}_{K}^{n} is of finite type, due to a fundamental theorem of Zariski. It is not known if the ring of invariants of a \mathbb{G}_{a}-action on \mathbb{A}_{K}^{4} is always of finite type (see Section 9.4). According to the classical Mauer-Weitzenböck theorem, if the characteristic of K is zero, then $K\left[\mathbb{A}_{K}^{n}\right]^{\mathbb{G}_{a}}$ is of finite type when \mathbb{G}_{a} acts on \mathbb{A}_{K}^{n} by linear transformations. However, it is not known if this is true for all fields. To date, there is no known example of a field K of positive characteristic and a \mathbb{G}_{a}-action on \mathbb{A}_{K}^{n} for which $K\left[\mathbb{A}_{K}^{n}\right]^{\mathbb{G}_{a}}$ is of nonfinite type.

2. Locally nilpotent derivations

Let k be a field of characteristic zero, and let B be a commutative k-domain. A locally nilpotent derivation of B is a derivation $D: B \rightarrow B$ such that, for each $b \in B$, there exists $n \in \mathbb{N}$ (depending on b) such that $D^{n} b=0$. Let ker D denote the kernel of D. The set of locally nilpotent derivations of B is denoted by $\operatorname{LND}(B)$. Note that $k \subset \operatorname{ker} D$ for any $D \in \operatorname{LND}(B)$ (cf. [5, Principle 1]).

It is well known that the study of \mathbb{G}_{a}-actions on an affine k-variety X is equivalent to the study of locally nilpotent derivations on the corresponding coordinate ring $k[X]$. In particular, the action induced by $D \in \operatorname{LND}(B)$ is given by the exponential map $\exp (t D), t \in \mathbb{G}_{a}$, and $k[X]^{\mathbb{G}_{a}}=\operatorname{ker} D$.

In this section, we give some of the basic properties for rings with locally nilpotent derivations. The reader is referred to [5] for further details on the subject.

2.1. Basic definitions and properties

Given $D \in \operatorname{LND}(B)$, if $A=\operatorname{ker} D$, then A is filtered by the image ideals

$$
I_{n}:=A \cap D^{n} B \quad(n \geq 0) \quad \text { and } \quad I_{\infty}:=\bigcap_{n \geq 0} I_{n}
$$

Note that $I_{0}=A$ and $I_{n+1} \subset I_{n}$ for $n \geq 0$. We call I_{1} the plinth ideal for D, and we call I_{∞} the core ideal for D.

A slice for D is any $s \in B$ such that $D s=1$. Note that D has a slice if and only if $D: B \rightarrow B$ is surjective.

A local slice for D is any $s \in B$ such that $D^{2} s=0$ but $D s \neq 0$. For a local slice $s \in B$ of D, let $B_{D s}$ and $A_{D s}$ denote the localizations of B and A at $D s$, respectively. Then $B_{D s}=A_{D s}[s]$, where s is transcendental over $A_{D s}$. Given $b \in B, \operatorname{deg}_{D} b$ is the degree of b as a polynomial in s, which is independent of the choice of local slice s. The corresponding Dixmier map $\pi_{s}: B_{D s} \rightarrow A_{D s}$ is the algebra map defined by

$$
\pi_{s}(f)=\sum_{i \geq 0} \frac{(-1)^{i}}{i!} D^{i} f \cdot\left(\frac{s}{D s}\right)^{i} \quad \text { for all } f \in B_{D s}
$$

If E is any k-derivation of B which commutes with D, then it is immediate from this definition that

$$
\begin{equation*}
E \pi_{s}(f)=\pi_{s}(E f)-\pi_{s}(D f) E(s / D s) \quad \text { for all } f \in B_{D s} \tag{1}
\end{equation*}
$$

Let $S \subset B$ be a nonempty subset, and let $k \subset R \subset A$ be a subring. Define the subring

$$
R[S, D]=R\left[D^{i} s \mid s \in S, i \geq 0\right] .
$$

Note that D restricts to $R[S, D]$, and note that $R[S, D]$ is the smallest subring of B containing R and S to which D restricts.

2.2. The down operator

Let $\Omega=k\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ be the infinite polynomial ring, and let Ω_{+}be the ideal of Ω defined by

$$
\Omega_{+}=\sum_{n \geq 0} x_{n} \cdot \Omega .
$$

Let $\Delta \in \operatorname{LND}(\Omega)$ denote the down operator on Ω

$$
\Delta x_{n}=x_{n-1} \quad(n \geq 1) \quad \text { and } \quad \Delta x_{0}=0 .
$$

Then $\Delta: \Omega_{+} \rightarrow \Omega_{+}$is surjective (see [6, Theorem 3.1]).
The ring Ω has a \mathbb{Z}^{2}-grading defined by $\operatorname{deg} x_{i}=(1, i)$, where each x_{i} is homogeneous $(i \geq 0)$. For this grading, Δ is homogeneous and $\operatorname{deg} \Delta=(0,-1)$. Given $r, s \geq 0$, let $\Omega_{(r, s)}$ denote the vector space of homogeneous elements of Ω of degree (r, s), and let $\Omega_{r}=\sum_{s} \Omega_{(r, s)}$. Then $\Delta: \Omega_{(r, s)} \rightarrow \Omega_{(r, s-1)}$ is surjective for each $r, s \geq 1$.

2.3. Tree structure induced by an LND

Let B be a commutative k-domain. To any $D \in \operatorname{LND}(B)$ we associate the rooted tree $\operatorname{Tr}(B, D)$ whose vertex set is B and whose (directed) edge set consists of pairs $(f, D f)$, where $f \neq 0$. Equivalently, $\operatorname{Tr}(B, D)$ is the tree defined by the partial order on B defined by $a \leq b$ if and only if $D^{n} b=a$ for some $n \geq 0$.

Let $A=\operatorname{ker} D$.
(i) Given $a, b \in B$ with $b \neq 0, b$ is a predecessor of a if and only if a is a successor of b if and only if $a<b$. Similarly, b is an immediate predecessor of a if and only if a is an immediate successor of b if and only if $D b=a$.
(ii) The terminal vertices of $\operatorname{Tr}(B, D)$ are those without predecessors, that is, elements of $B \backslash D B$. If D has a slice, that is, $D B=B$, then $\operatorname{Tr}(B, D)$ has no terminal vertices.
(iii) Every subtree X of $\operatorname{Tr}(B, D)$ has a unique root, denoted $\operatorname{rt}(X)$.
(iv) A subtree X of $\operatorname{Tr}(B, D)$ is complete if every vertex of X which is not terminal in $\operatorname{Tr}(B, D)$ has at least one predecessor in X.
(v) A subtree X of $\operatorname{Tr}(B, D)$ is linear if every vertex of X has at most one immediate predecessor in X.
(vi) If B is graded by an abelian group, then any homogeneous $b \in B$ is a homogeneous vertex of $\operatorname{Tr}(B, D)$. A subtree X of $\operatorname{Tr}(B, D)$ is homogeneous if every $b \in \operatorname{vert}(X)$ is homogeneous. If D is homogeneous, then the full homogeneous subtree is the subtree of $\operatorname{Tr}(B, D)$ spanned by the homogeneous vertices.

3. Cables and cable algebras

3.1. D-cables

DEFINITION 3.1
Let B be a commutative k-domain, and let $D \in \operatorname{LND}(B)$. A D-cable is a complete linear subtree \hat{s} of $\operatorname{Tr}(B, D)$ rooted at a nonzero element of $\operatorname{ker} D$. Then \hat{s} is a terminal D-cable if it contains a terminal vertex, and \hat{s} is an infinite D-cable if it is not terminal.

We make several remarks and further definitions, assuming that B is a commutative k-domain, $D \in \operatorname{LND}(B), I_{n}=\operatorname{ker} D \cap D^{n} B(n \geq 0)$, and $I_{\infty}=\bigcap_{n \geq 0} I_{n}$.
(i) If \hat{s} is a D-cable, then \hat{s} is terminal if and only if its vertex set is finite, and \hat{s} is infinite if and only if $\hat{s} \subset D B$.
(ii) A D-cable is denoted by $\hat{s}=\left(s_{j}\right)$, where $s_{j} \in B$ for $j \geq 0$ and $D s_{j}=$ s_{j-1} for $j \geq 1$. It is rooted at $s_{0} \in \operatorname{ker} D$, which is nonzero. For multiple D-cables $\hat{s}_{1}, \ldots, \hat{s}_{n}$, we will write $\hat{s}_{i}=\left(s_{i}^{(j)}\right)$ for $1 \leq i \leq n$ and $j \geq 0$.
(iii) The length of a D-cable \hat{s} is the number of its edges (possibly infinite), denoted length (\hat{s}). If $\hat{s}=\left(s_{n}\right)$ and $N=\operatorname{length}(\hat{s})$, then $s_{0} \in I_{N}$, and if \hat{s} is terminal, then s_{N} is its terminal vertex.
(iv) Every $b \in \operatorname{ker} D \backslash D B$ is a terminal vertex of $\operatorname{Tr}(B, D)$ and defines a terminal D-cable of length zero.
(v) If B is graded by an abelian group, then a D-cable is homogeneous if it is a homogeneous subtree of $\operatorname{Tr}(B, D)$.
(vi) Every nonzero vertex $b \in B$ belongs to a D-cable. If two D-cables $\hat{s}=\left(s_{n}\right)$ and $\hat{t}=\left(t_{n}\right)$ have $s_{m}=t_{n}$ for some $m, n \geq 0$, then $m=n$ and $s_{i}=t_{i}$ for all $i \leq m$. If \hat{s} and \hat{t} share an infinite number of vertices, then $\hat{s}=\hat{t}$.
(vii) Suppose that $B^{\prime} \subset B$ is a subset with $D B^{\prime} \subset B^{\prime}$. If $\hat{s} \subset B$ is a D-cable such that either $\hat{s} \cap B^{\prime}$ is infinite, or \hat{s} is terminal of length N and $s_{N} \in B^{\prime}$, then $\hat{s} \subset B^{\prime}$.
(viii) If $P \in \Omega$ is a polynomial in x_{0}, \ldots, x_{n} and \hat{s} is a D-cable of length at least n, then $P(\hat{s})$ means $P\left(s_{0}, \ldots, s_{n}\right)$.
(ix) Given D-cables $\hat{s}_{1}, \ldots, \hat{s}_{n}$ for $n \geq 0$, the notation $k\left[\hat{s}_{1}, \ldots, \hat{s}_{n}\right]$ (resp., $\left(\hat{s}_{1}, \ldots, \hat{s}_{n}\right)$) indicates the k-subalgebra of B (resp., ideal of B) generated by the vertices of \hat{s}_{i} for $1 \leq i \leq n$.
(x) Let $\hat{s}=\left(s_{n}\right)$ be a D-cable of length N. If \hat{s} is terminal, define the map $\phi_{\hat{s}}: k^{[N+1]} \rightarrow B$ by $\phi_{\hat{s}}\left(x_{i}\right)=s_{i}$ for $0 \leq i \leq N$. If \hat{s} is infinite, define $\phi_{\hat{s}}: \Omega \rightarrow B$ by $\phi_{\hat{s}}\left(x_{i}\right)=s_{i}$ for all $i \geq 0$. Elements of $\operatorname{ker} \phi_{\hat{s}}$ are the cable relations associated to \hat{s}. Note that $D \phi_{\hat{s}}=\phi_{\hat{s}} \Delta$ where Δ is the down operator on Ω or its restriction to $k^{[N+1]}$.
(xi) Extend D to a derivation D^{*} on $B[t]=B^{[1]}$ by $D^{*} t=0$. If $\hat{s}(t)=\left(s_{n}(t)\right)$ is a D^{*}-cable and $\alpha \in \operatorname{ker} D$ is such that $s_{0}(\alpha) \neq 0$, then $\hat{s}(\alpha)=\left(s_{n}(\alpha)\right)$ is a D cable rooted at $s_{0}(\alpha)$.

EXAMPLE 3.2

Let $\Omega=k\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ be the infinite polynomial ring, and let $\Delta \in \operatorname{LND}(\Omega)$ be the down operator. Then $\hat{x}=\left(x_{j}\right)_{j \geq 0}$ is an infinite Δ-cable, $x_{0} \in I_{\infty}$, and $\Omega=k[\hat{x}]$. Relabel the variables x_{i} by $y_{n}^{(j)}$ so that $\Omega=k\left[x_{0}, y_{n}^{(j)} \mid n \geq 1,1 \leq j \leq n\right]$. Define $\tilde{\Delta} \in \operatorname{LND}(\Omega)$ so that, for $n \geq 1$,

$$
\tilde{\Delta}: y_{n}^{(n)} \rightarrow y_{n}^{(n-1)} \rightarrow \cdots \rightarrow y_{n}^{(1)} \rightarrow y_{n}^{(0)}:=x_{0} \rightarrow 0 .
$$

Then $\hat{y}_{n}:=\left(y_{n}^{(j)}\right)_{0 \leq j \leq n}$ is a terminal $\tilde{\Delta}$-cable rooted at x_{0} of length n for each $n \geq 1$. If \tilde{I}_{∞} is the core ideal for $\tilde{\Delta}$, then $x_{0} \in \tilde{I}_{\infty}$ but there is no infinite $\tilde{\Delta}$-cable rooted at x_{0}, since otherwise there would exist a homogeneous infinite $\tilde{\Delta}$-cable rooted at x_{0}. It is easy to check that this is not the case.

Note that an infinite D-cable \hat{s} has $\hat{s} \subset D B$ and $D B$ is an A-module, where $A=\operatorname{ker} D$. Therefore, addition and A-multiplication of infinite D-cables can be defined in certain situations, as described in the next result, which follows immediately from the definitions.

LEMMA 3.3
Let B be a commutative k-domain, let $D \in \operatorname{LND}(B)$, and let $A=\operatorname{ker} D$.
(a) If $\hat{s}=\left(s_{n}\right)$ is an infinite D-cable and $a \in A$ is nonzero, then $a \hat{s}:=\left(a s_{n}\right)$ is an infinite D-cable.
(b) If $\hat{s}=\left(s_{n}\right)$ and $\hat{t}=\left(t_{n}\right)$ are infinite D-cables and $s_{0}+t_{0} \neq 0$, then $\hat{s}+\hat{t}:=$ $\left(s_{n}+t_{n}\right)$ is an infinite D-cable.
(c) If $\hat{s}=\left(s_{n}\right)$ and $\hat{t}=\left(t_{n}\right)$ are infinite D-cables and $m \in \mathbb{Z}$ has $m \geq 1$, define the sequence $u_{n} \in B$ by $u_{n}=s_{n}$ if $n<m$ and $u_{n}=s_{n}+t_{n-m}$ if $n \geq m$. Then $\hat{u}:=\left(u_{n}\right)$ is an infinite D-cable.

DEFINITION 3.4

The D-cable \hat{u} in Lemma 3.3(c) is called the m-shifted sum of \hat{s} and \hat{t}, and is denoted by $\hat{u}=\hat{s}+{ }_{m} \hat{t}$.

DEFINITION 3.5

Let $I \subset \mathbb{N}$ be either $\mathbb{N} \backslash\{0\}$ or $\{1,2, \ldots, t\}$ for some integer $t \geq 1$. Suppose that a sequence $\vec{s}=\left\{\hat{s}_{i}\right\}_{i \in I}$ of infinite D-cables is given, together with a strictly increasing sequence $\vec{m}=\left\{m_{i}\right\}_{i \in I}$ of positive integers and a sequence $\vec{c}=\left\{c_{i}\right\}_{i \in I}$ with $c_{i} \in \operatorname{ker} D \backslash\{0\}$ for all $i \in I$. Define a sequence of D-cables \hat{u}_{i} rooted at $s_{1}^{(0)}$ inductively by

$$
\hat{u}_{1}=\hat{s}_{1} \quad \text { and } \quad \hat{u}_{i+1}=\hat{u}_{i}+{ }_{m_{i}} c_{i} \hat{s}_{i+1} \quad \text { for } i \in I
$$

Note that if $\hat{u}_{i}=\left(u_{i}^{(j)}\right)$, then given $j \geq 0$, there exist $u^{(j)} \in B$ and an integer N_{j} such that $u_{i}^{(j)}=u^{(j)}$ for all $i \in I$ with $i \geq N_{j}$. The D-cable $\hat{u}:=\left(u^{(j)}\right)$ so obtained is rooted at $s_{1}^{(0)}$ and is denoted by

$$
\hat{u}=\lim (\vec{s}, \vec{m}, \vec{c}) .
$$

Note that, in this definition, we have $\hat{u}=\hat{u}_{t}$ when $I=\{1,2, \ldots, t\}$.

EXAMPLE 3.6

Let B be a commutative k-domain, and let $D \in \operatorname{LND}(B)$. Given nonzero $f \in$ ker D, let $\exp (f D): B \rightarrow B$ be the corresponding exponential automorphism of B. If $\hat{s}=\left(s_{n}\right)$ is a D-cable, then

$$
D \exp (f D)\left(s_{n}\right)=\exp (f D)\left(s_{n-1}\right) \quad \text { for } n \geq 1
$$

Note that $\exp (f D)\left(s_{0}\right)=s_{0}$, and note that $s_{i} \in D B$ if and only if $\exp (f D)\left(s_{i}\right) \in$ $D B$. Therefore, $\exp (f D)(\hat{s}):=\left(\exp (f D)\left(s_{n}\right)\right)$ defines a D-cable rooted at s_{0}. If \hat{s} is infinite, then it is given by

$$
\begin{aligned}
\exp (f D)(\hat{s}) & =\lim (\vec{s}, \vec{m}, \vec{c}) \\
\quad \text { where } \vec{s} & =(\hat{s}, \hat{s}, \hat{s}, \ldots), \vec{m}=(1,2,3, \ldots) \text { and } \vec{c}=\left(f, \frac{1}{2!} f^{2}, \frac{1}{3!} f^{3}, \ldots\right) .
\end{aligned}
$$

3.2. Quadratic Δ-cables

Note that we can view the vector space Ω_{1} as being generated by the vertices of the Δ-cable $\hat{x}=\left(x_{n}\right)$. Similarly, Ω_{2} admits a basis of homogeneous Δ-cables.

3.2.1. Monomial basis

Given $n \geq 0$, the monomial basis for $\Omega_{(2, n)}$ is

$$
\left\{x_{0} x_{n}, x_{1} x_{n-1}, \ldots, x_{\frac{n}{2}}^{2}\right\} \quad(n \text { even })
$$

or

$$
\left\{x_{0} x_{n}, x_{1} x_{n-1}, \ldots, x_{\frac{n-1}{2}} x_{\frac{n+1}{2}}\right\} \quad(n \text { odd }) .
$$

Therefore, $\operatorname{dim} \Omega_{(2, n)}$ equals $(n+2) / 2$ if n is even or $(n+1) / 2$ if n is odd.

3.2.2. Δ-basis

Given $n \in 2 \mathbb{N}$, define $\theta_{n}^{(0)} \in \Omega_{(2, n)} \cap \operatorname{ker} \Delta$ by

$$
\theta_{n}^{(0)}=\sum_{0 \leq i \leq n}(-1)^{i} x_{i} x_{n-i}
$$

Note that, since n is even, $\theta_{n}^{(0)} \neq 0$. Since $\Delta: \Omega_{(2, s+1)} \rightarrow \Omega_{(2, s)}$ is surjective for all $s \geq 0$, there exists a homogeneous Δ-cable $\hat{\theta}_{n}=\left(\theta_{n}^{(j)}\right)$ rooted at $\theta_{n}^{(0)}$. Note that $\hat{\theta}_{n}$ is necessarily infinite. By definition, we have $\theta_{n}^{(j)} \in \Omega_{(2, n+j)}$ for each $j \geq 0$. By Section 3.2.1, $\operatorname{ker} \Delta \cap \Omega_{(2, s)}$ equals $\{0\}$ if s is odd, and it equals $k \cdot \theta_{s}^{(0)}$ if s is even (cf. [6, Corollary 3.3]). Therefore, $\Delta: \Omega_{(2, n+1)} \rightarrow \Omega_{(2, n)}$ is an isomorphism. It follows that if $\hat{\theta}_{n}=\left(\theta_{n}^{(j)}\right)$ is any homogeneous Δ-cable rooted at $\theta_{n}^{(0)}$, then $\theta_{n}^{(1)}$ is uniquely determined. It is given by

$$
\theta_{n}^{(1)}=\sum_{i=1}^{n+1}(-1)^{i+1} i x_{i} x_{n+1-i}
$$

DEFINITION 3.7

A Δ-basis for Ω_{2} is any set $\left\{\hat{\theta}_{n} \mid n \in 2 \mathbb{N}\right\}$ of homogeneous Δ-cables such that, given $n \in 2 \mathbb{N}, \hat{\theta}_{n}$ is rooted at $\hat{\theta}_{n}^{(0)}$.

LEMMA 3.8

Let $\left\{\hat{\theta}_{n} \mid n \in 2 \mathbb{N}\right\}$ be a Δ-basis for Ω_{2}.
(a) Given $j \geq 0$, the set $\left\{\theta_{2 i}^{(j-2 i)} \mid 0 \leq i \leq j / 2\right\}$ is a basis for $\Omega_{(2, j)}$.
(b) The vertices of $\hat{\theta}_{n}(n \in 2 \mathbb{N})$ form a basis for Ω_{2}.

Proof
To prove part (a), we proceed by induction on $j \geq 0$. We have that

$$
\Omega_{(2,0)}=\left\langle x_{0}^{2}\right\rangle=\left\langle\theta_{0}^{(0)}\right\rangle .
$$

So the statement of part (a) holds if $j=0$.
Assume that, for $j \geq 1$, the set $\left\{\theta_{2 i}^{(j-1-2 i)} \mid 0 \leq i \leq(j-1) / 2\right\}$ forms a basis for $\Omega_{(2, j-1)}$. If j is odd, then $\Delta: \Omega_{(2, j)} \rightarrow \Omega_{(2, j-1)}$ is an isomorphism, and the set $\left\{\theta_{2 i}^{(j-2 i)} \mid 0 \leq i \leq j / 2\right\}$ is a basis for $\Omega_{(2, j)}$. If j is even, then the kernel of
$\Delta: \Omega_{(2, j)} \rightarrow \Omega_{(2, j-1)}$ is $k \cdot \theta_{j}^{(0)}$, and again we conclude that $\left\{\theta_{2 i}^{(j-2 i)} \mid 0 \leq i \leq j / 2\right\}$ is a basis for $\Omega_{(2, j)}$. This proves part (a).

Part (b) is an immediate consequence of part (a).

3.2.3. Balanced Δ-basis

We define a particular Δ-basis for Ω_{2} by using binomial coefficients $\binom{i}{j}$. Given $n \in 2 \mathbb{N}$ and $j \in \mathbb{N}$, define $\beta_{n}^{(j)} \in \Omega_{(2, n+j)}$ by

$$
\beta_{n}^{(j)}=\sum_{i=j}^{n+j}(-1)^{j+i}\binom{i}{j} x_{i} x_{n+j-i} .
$$

Note that $\beta_{n}^{(0)}=\theta_{n}^{(0)}$.

LEMMA 3.9
If $n \in 2 \mathbb{N}$ and $j \geq 1$, then $\Delta \beta_{n}^{(j)}=\beta_{n}^{(j-1)}$.
Proof
If $n \geq 1$ and $c_{0}, \ldots, c_{n} \in k$, then

$$
\begin{equation*}
\Delta \sum_{i=0}^{n} c_{i} x_{i} x_{n-i}=\sum_{i=0}^{n-1}\left(c_{i+1}+c_{i}\right) x_{i} x_{n-1-i} . \tag{2}
\end{equation*}
$$

Given $i \in \mathbb{N}$ with $0 \leq i<j$, we extend the definition of binomial coefficient by setting $\binom{i}{j}=0$. Then for all $i, j \in \mathbb{N}$ we have

$$
\binom{i}{j}+\binom{i}{j-1}=\binom{i+1}{j} .
$$

In addition, we can write

$$
\beta_{n}^{(j)}=\sum_{i=0}^{n+j}(-1)^{j+i}\binom{i}{j} x_{i} x_{n+j-i} .
$$

By (2) we have

$$
\begin{aligned}
\Delta \beta_{n}^{(j)} & =\sum_{i=0}^{n+j-1}\left((-1)^{j+i+1}\binom{i+1}{j}+(-1)^{j+i}\binom{i}{j}\right) x_{i} x_{n+j-1-i} \\
& =\sum_{i=0}^{n+j-1}(-1)^{j+i+1}\left(\binom{i+1}{j}-\binom{i}{j}\right) x_{i} x_{n+j-1-i} \\
& =\sum_{i=0}^{n+j-1}(-1)^{j-1+i}\binom{i}{j-1} x_{i} x_{n+j-1-i} \\
& =\beta_{n}^{(j-1)} .
\end{aligned}
$$

We thus see that $\hat{\beta}_{n}=\left(\beta_{n}^{(j)}\right)$ defines a homogeneous Δ-cable rooted at $\theta_{n}^{(0)}$ and that $\left\{\hat{\beta}_{n}\right\}$ is a Δ-basis for Ω_{2}, which we call the balanced Δ-basis.

Note that each $\beta_{n}^{(j)}$ involves at most $n+1$ monomials. Moreover, the monomials $x_{i} x_{n+j-i}(j \leq i \leq n+j)$ are distinct if $j \geq n$, meaning that $\beta_{n}^{(j)}$ involves exactly $n+1$ monomials when $j \geq n$.

3.2.4. Small Δ-basis

Given $n \in 2 \mathbb{N}$ and $j \in \mathbb{N}$, let

$$
W_{n}^{(j)}=\left\langle x_{0} x_{n+j}, x_{1} x_{n+j-1}, \ldots, x_{\frac{n}{2}} x_{\frac{n}{2}+j}\right\rangle,
$$

noting that $W_{n}^{(j)} \subset \Omega_{(2, n+j)}$ and $\operatorname{dim} W_{n}^{(j)}=n / 2+1$ for all $j \geq 0$. Then Δ : $W_{n}^{(j+1)} \rightarrow W_{n}^{(j)}$ is an isomorphism, since $\theta_{n+j+1}^{(0)} \notin W_{n}^{(j+1)}$ if j is odd. Since $\theta_{n}^{(0)} \in$ $W_{n}^{(0)}$, we conclude that there exists a unique Δ-cable $\hat{\eta}_{n}=\left(\eta_{n}^{(j)}\right)$ rooted at $\theta_{n}^{(0)}$ such that $\eta_{n}^{(j)} \in W_{n}^{(j)}$ for each $j \geq 0$. We call $\left\{\hat{\eta}_{n}\right\}$ the small Δ-basis for Ω_{2}. Note that each $\eta_{n}^{(j)}$ involves at most $\frac{n}{2}+1$ monomials.

It is easy to check that the first three cables in this basis are given by

$$
\begin{aligned}
& \eta_{0}^{(j)}=x_{0} x_{j}, \quad \eta_{2}^{(j)}=(j+2) x_{0} x_{2+j}-x_{1} x_{1+j}, \\
& \eta_{4}^{(j)}=\frac{(j+1)(j+4)}{2} x_{0} x_{4+j}-(j+2) x_{1} x_{3+j}+x_{2} x_{2+j}
\end{aligned}
$$

In particular, $\hat{\eta}_{4}$ will be used to give certain 3 -term recursion relations (see Remark 6.6).

3.2.5. Q-ideals

DEFINITION 3.10
Let $\left\{\hat{\theta}_{n}\right\}$ be a Δ-basis for Ω_{2}.
(1) A Q-ideal is an ideal of Ω generated by $\left\{\hat{\theta}_{n} \mid n \in S\right\}$, where $S \subset 2 \mathbb{N}$ is any nonempty subset.
(2) Given $n \in 2 \mathbb{N}$, the corresponding fundamental Q-ideal is

$$
\mathcal{Q}_{n}=\left(\hat{\theta}_{n}, \hat{\theta}_{n+2}, \hat{\theta}_{n+4}, \ldots\right) .
$$

LEMMA 3.11
For any Q-ideal $I, \Delta I=I$.
Proof
Since $\Delta \hat{\theta}_{n}=\hat{\theta}_{n}$ for each $n \in 2 \mathbb{N}$, we see that $\Delta I \subset I$. To verify $\Delta I \supset I$, it suffices to show that, for each n with $\hat{\theta}_{n} \subset I$, each $i \geq 0$, and $f \in \Omega$, we have $f \theta_{n}^{(i)} \in \Delta I$. Choose m such that $\Delta^{m} f=0$, and define $g \in I$ by

$$
g=\sum_{j=0}^{m-1}(-1)^{j} \Delta^{j}(f) \theta_{n}^{(i+j+1)} .
$$

Then, ΔI contains

$$
\Delta(g)=\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j}(f) \theta_{n}^{(i+j)}+\Delta^{j+1}(f) \theta_{n}^{(i+j+1)}\right)=f \theta_{n}^{(i)} .
$$

LEMMA 3.12
The following properties hold.
(a) $\mathcal{Q}_{0} \supset \mathcal{Q}_{2} \supset \mathcal{Q}_{4} \supset \cdots$.
(b) Given $n \in 2 \mathbb{N}, \mathcal{Q}_{n}$ is independent of the choice of Δ-basis.
(c) $\Omega_{r} \subset\left(x_{0}, \ldots, x_{\frac{n}{2}-1}\right)^{r-1}+\mathcal{Q}_{n}$ for each integer $r \geq 1$ and $n \in 2 \mathbb{N}$.

Proof
Part (a) is clear from the definition.
For part (b), let $\left\{\hat{\theta}_{m}\right\}$ be the given Δ-basis, and let $\left\{\hat{\mu}_{m}\right\}$ be any other Δ-basis for Ω_{2}. For each $n \in 2 \mathbb{N}$, define Q-ideals

$$
\mathcal{Q}_{n}=\left(\hat{\theta}_{n}, \hat{\theta}_{n+2}, \hat{\theta}_{n+4}, \ldots\right) \quad \text { and } \quad \tilde{\mathcal{Q}}_{n}=\left(\hat{\mu}_{n}, \hat{\mu}_{n+2}, \hat{\mu}_{n+4}, \ldots\right) .
$$

By part (a), it suffices to check $\mu_{n}^{(j)} \in \mathcal{Q}_{n}$ for each integer $j \geq 0$. By Lemma 3.8(a), there exist $c_{i} \in k, 0 \leq i \leq(n+j) / 2$, such that

$$
\mu_{n}^{(j)}=\sum_{0 \leq i \leq(n+j) / 2} c_{i} \theta_{2 i}^{(n+j-2 i)}
$$

Since $\operatorname{deg}_{\Delta} \mu_{n}^{(j)}=j, \operatorname{deg}_{\Delta} \theta_{2 i}^{(n+j-2 i)}=n+j-2 i$, and the integers $n+j-2 i$ are distinct for distinct i, it follows that $c_{i}=0$ when $n+j-2 i>j$, that is, when $n>2 i$. Thus, we obtain

$$
\mu_{n}^{(j)}=\sum_{n / 2 \leq i \leq(n+j) / 2} c_{i} \theta_{2 i}^{(n+j-2 i)} \in \mathcal{Q}_{n} .
$$

This proves part (b).
We prove part (c) by induction on r, where the case $r=1$ is clear. Fix $n \in 2 \mathbb{N}$ and the integer $r \geq 2$, and let $\xi \in \Omega_{r}$ be given. Observe that ξ may be written as a sum of elements of $\Omega_{(r-2)} \cdot \Omega_{2}$. Since the vertices of the small Δ-basis $\left\{\hat{\eta}_{m}\right\}$ form a k-basis for Ω_{2} by Lemma 3.8(b), we may write

$$
\xi=\sum_{i \geq 0} \sum_{j \geq 0} L_{(2 i, j)} \eta_{2 i}^{(j)}=\sum_{i=0}^{n / 2-1} \sum_{j \geq 0} L_{(2 i, j)} \eta_{2 i}^{(j)}+\sum_{i \geq n / 2} \sum_{j \geq 0} L_{(2 i, j)} \eta_{2 i}^{(j)},
$$

where $L_{(2 i, j)} \in \Omega_{r-2}$. If $0 \leq i<n / 2$, then $\eta_{2 i}^{(j)} \in W_{2 i}^{(j)} \subset \Omega_{1} x_{0}+\cdots+\Omega_{1} x_{\frac{n}{2}-1}$. Also, by part (b) we have

$$
\mathcal{Q}_{n}=\left(\hat{\eta}_{n}, \hat{\eta}_{n+2}, \hat{\eta}_{n+4}, \ldots\right)
$$

Together, these imply $\xi=\xi_{0} x_{0}+\cdots+\xi_{\frac{n}{2}-1} x_{\frac{n}{2}-1}+\xi^{\prime}$ for some $\xi_{0}, \ldots, \xi_{\frac{n}{2}-1} \in$ Ω_{r-1} and $\xi^{\prime} \in \mathcal{Q}_{n}$. By the induction hypothesis, we have $\xi_{0}, \ldots, \xi_{\frac{n}{2}-1} \in\left(x_{0}, \ldots\right.$, $\left.x_{\frac{n}{2}-1}\right)^{r-2}+\mathcal{Q}_{n}$. Therefore, ξ belongs to $\left(x_{0}, \ldots, x_{\frac{n}{2}-1}\right)^{r-1}+\mathcal{Q}_{n}$.

3.3. Cable algebras

DEFINITION 3.13
Let B be a commutative k-domain.
(a) B is a cable algebra if there exist nonzero $D \in \operatorname{LND}(B)$ and a finite number of D-cables $\hat{s}_{1}, \ldots, \hat{s}_{n}$ such that $B=A\left[\hat{s}_{1}, \ldots, \hat{s}_{n}\right]$, where $A=\operatorname{ker} D$. In this case, we say that the pair (B, D) is a cable pair.
(b) B is a monogenetic cable algebra if $B=A[\hat{s}]$ for some cable pair (B, D) with $A=\operatorname{ker} D$ and some D-cable \hat{s}.
(c) B is a simple cable algebra over k if $B=k[\hat{s}]$ for some D-cable \hat{s}, where $D \in \operatorname{LND}(B)$ is nonzero. A simple cable algebra B is of terminal type if \hat{s} can be chosen to be a terminal D-cable.

We remark that if there exists nonzero $D \in \operatorname{LND}(B)$ for which B is finitely generated as an algebra over $\operatorname{ker} D$, then B is a cable algebra.

EXAMPLE 3.14

Let B be a commutative k-domain, let $D \in \operatorname{LND}(B)$, and let $A=\operatorname{ker} D$. If

$$
S \subset B \backslash(A \cup D B) \quad \text { and } \quad|S|=n \geq 1
$$

then there exist terminal D-cables $\hat{s}_{1}, \ldots, \hat{s}_{n}$ such that $A[S, D]=A\left[\hat{s}_{1}, \ldots, \hat{s}_{n}\right]$. Let D^{\prime} be the restriction of D to $A[S, D]$. Then $D^{\prime} \neq 0, A[S, D]$ is a cable algebra, and $\left(A[S, D], D^{\prime}\right)$ is a cable pair.

EXAMPLE 3.15
Given $n \geq 1$, let $B_{n}=k\left[x_{0}, \ldots, x_{n}\right]=k^{[n+1]}$, and let D_{n} be the restriction of the down operator to B_{n}. The classical covariant rings $A_{n}=\operatorname{ker} D_{n}$ are known to be finitely generated over k, but have been calculated only for $n \leq 8$ (see [6]). Since $\partial / \partial x_{n}$ commutes with $D_{n}, \partial / \partial x_{n}$ restricts to A_{n}. If we denote this restriction by δ_{n}, then $\operatorname{ker} \delta_{n}=A_{n-1}$. Therefore, each A_{n} is a cable algebra. In particular, $A_{1}=k\left[x_{0}\right]=k^{[1]}$ (see Lemma 3.16(a)); $A_{2}=A_{1}[\hat{s}]$, where \hat{s} is the δ_{2}-cable of length 1 with terminal vertex $s_{1}=2 x_{0} x_{2}-x_{1}^{2} ; A_{3}=A_{2}[\hat{t}]$, where \hat{t} is the $\delta_{3^{-}}$ cable of length 2 with terminal vertex

$$
t_{2}=9 x_{0}^{2} x_{3}^{2}-18 x_{0} x_{1} x_{2} x_{3}+6 x_{1}^{3} x_{3}+8 x_{0} x_{2}^{3}-3 x_{1}^{2} x_{2}^{2} ;
$$

and $A_{4}=A_{3}[\hat{u}, \hat{v}]$, where \hat{u}, \hat{v} are the δ_{4}-cables of length 1 with terminal vertices

$$
u_{1}=2 x_{0} x_{4}-2 x_{1} x_{3}+x_{2}^{2}
$$

and

$$
v_{1}=12 x_{0} x_{2} x_{4}-6 x_{1}^{2} x_{4}-9 x_{0} x_{3}^{2}+6 x_{1} x_{2} x_{3}-2 x_{2}^{3} .
$$

The rings A_{2}, A_{3}, A_{4} are calculated in [5, Section 8.6]. The rings A_{5}, \ldots, A_{8} are considerably more complicated, and it would be of interest to analyze their cable structures.

3.4. Simple cable algebras

A natural goal is to classify the simple cable algebras of finite transcendence degree over k according to transcendence degree. We start with the following observation.

LEMMA 3.16 (a) $k^{[1]}$ is a simple cable algebra over k of nonterminal type.
(b) For each $n \geq 2, k^{[n]}$ is a simple cable algebra over k of terminal type.

Proof
Let $B=k[t]=k^{[1]}$, and let $d / d t$ denote the usual derivative. Define the sequence $t_{n}=\frac{1}{n!} t^{n}$. Then $\hat{t}=\left(t_{n}\right)$ is an infinite $d / d t$-cable and $B=k[\hat{t}]$. Therefore, $B=k^{[1]}$ is a simple cable algebra. In addition, any nonzero $D \in \operatorname{LND}(B)$ has a slice, so $\operatorname{Tr}(B, D)$ has no terminal vertices. Therefore, B is of nonterminal type. This proves part (a).

For part (b), let $B=k\left[x_{1}, \ldots, x_{n}\right]=k^{[n]}$, and define D by $D x_{i+1}=x_{i}$ for $i \geq 2$ and $D x_{1}=0$. Note that $x_{n} \notin(D B)=\left(x_{1}, \ldots, x_{n-1}\right)$. Therefore, $\hat{x}=\left(x_{i}\right)$ is a terminal D-cable and $B=k[\hat{x}]$.

Suppose that B is a cable algebra with $\operatorname{tr} \cdot \operatorname{deg}_{k} B=1$. Then $B=L^{[1]}$, where L is an algebraic extension field of k (see [5, Corollary 1.24]). Therefore, when k is algebraically closed, B is simple (over k) if and only if $B=k^{[1]}$. When k is not algebraically closed, there are simple cable algebras over k other than $k^{[1]}$. For example, consider the usual derivative $D=d / d x$ on the ring $B=\mathbb{Q}[\sqrt{2}, x]=$ $\mathbb{Q}[\sqrt{2}]^{[1]}$. We have that $\hat{s}=\left(\sqrt{2} x^{n} / n!\right)$ is a D-cable and $B=\mathbb{Q}[\hat{s}]$, but $B \neq \mathbb{Q}^{[1]}$.

For simple cable algebras of transcendence degree 2, we give several illustrative examples.

EXAMPLE 3.17
Let $B=k[x, v]=k^{[2]}$, and let $D=\partial / \partial v$. If $s_{n}=\frac{1}{n!} v^{n}$ for $n \geq 0$, then $\hat{s}=\left(s_{n}\right)$ is a D-cable rooted at 1 . Let $\hat{t}=\hat{s}+{ }_{2} x \hat{s}$ be given by $\hat{t}=\left(t_{n}\right)$. Then $B=k[\hat{t}]$, since $k[\hat{t}]$ contains $t_{1}=v$ and $t_{2}=x+\frac{1}{2} v^{2}$. This shows that a simple cable algebra of terminal type can also be generated by an infinite D-cable for some D.

EXAMPLE 3.18
Continuing the notation of the preceding example, we see that the subring $k[x \hat{s}]$ of $k[x, v]$ is a simple cable algebra which is not finitely generated as a k-algebra and therefore not of terminal type. More generally, let $D=\partial / \partial v$, and let $p_{n}(v)$ be any infinite sequence of polynomials in $k[x, v]$ with $D p_{n}(v)=p_{n-1}(v)$ for $n \geq 1$ and $p_{0}(v) \in k[x] \backslash k$. Then $\hat{p}:=\left(p_{n}(v)\right)$ is a D-cable and $k[\hat{p}]$ is a simple cable algebra of transcendence degree 2 over k.

EXAMPLE 3.19
Let $B=k\left[y_{0}, y_{1}, y_{2}\right]$ where $2 y_{0} y_{2}=y_{1}^{2}$. Define $D \in \operatorname{LND}(B)$ by $y_{2} \rightarrow y_{1} \rightarrow y_{0} \rightarrow 0$.

It is easy to see that $y_{2} \notin D B$. Therefore, $\hat{y}:=\left(y_{n}\right)$ is a terminal D-cable and $B=k[\hat{y}]$.

EXAMPLE 3.20

The ring $B=k\left[z_{0}, z_{1}, z_{2}\right]$ where $2 z_{0}^{2} z_{2}=z_{1}^{2}$ is not a simple cable algebra. To see this, let $D \in \operatorname{LND}(B)$, and let a D-cable $\hat{s}=\left(s_{n}\right)$ be given. Define $E \in \operatorname{LND}(B)$ by $z_{2} \rightarrow z_{1} \rightarrow z_{0}^{2} \rightarrow 0$. It is known that $\operatorname{LND}(B)=k\left[z_{0}\right] \cdot E$ (see [10]). Therefore, $D B \subset J=\left(z_{0}^{2}, z_{1}\right)$. Assume that $k[\hat{s}]=B$. If $s_{n} \in D B$ for every $n \geq 0$, then $B / J=k$. However, if $\pi: B \rightarrow B / J$ is the canonical surjection, then $\pi\left(z_{2}\right)$ is transcendental over k, so this case cannot occur. Therefore, $s_{n} \notin D B$ for some $n \geq 0$, meaning that s_{n} is a terminal vertex and $s_{0}, \ldots, s_{n-1} \in J$. It follows that $B / J=k\left[\pi\left(s_{n}\right)\right] \cong k^{[1]} /(p)$ for some $p \in k^{[1]} \backslash k^{*}$. If $p=0$, then B / J is an integral domain, a contradiction. If $p \neq 0$, then every element of B / J is algebraic over k, a contradiction. Therefore, $k[\hat{s}] \neq B$.

3.5. Cable relations for S

Define the simple cable algebra $S \subset k[x, v]=k^{[2]}$ by $S=k[x \hat{s}]$, where $\hat{s}=\left(\frac{1}{n!} v^{n}\right)$.

THEOREM 3.21
We have $S \cong_{k} \Omega / \mathcal{Q}_{2}$. Consequently, \mathcal{Q}_{2} is a prime ideal of Ω.

Proof

The surjections $\phi_{\hat{s}}: \Omega \rightarrow k[v]$ and $\phi_{x \hat{s}}: \Omega \rightarrow S$ are given by

$$
\phi_{\hat{s}}\left(x_{i}\right)=s_{i} \quad \text { and } \quad \phi_{x \hat{s}}\left(x_{i}\right)=x s_{i} \quad(i \geq 0) .
$$

Let $g \in \operatorname{ker} \Delta$ be given, and let $\left\{\hat{\theta}_{n}\right\}$ be a Δ-basis for Ω_{2}. If $d / d v$ denotes the standard derivative on $k[v]$, then we have

$$
\begin{equation*}
0=\phi_{\hat{s}} \Delta g=\frac{d}{d v} \phi_{\hat{s}} g \quad \Rightarrow \quad \phi_{\hat{s}} g \in \operatorname{ker} \frac{d}{d v}=k \quad \Rightarrow \quad g \in k+\operatorname{ker} \phi_{\hat{s}} . \tag{3}
\end{equation*}
$$

If $n \geq 2$ is even, then $\phi_{\hat{s}} \theta_{n}^{(0)}=\lambda v^{n}$ for some $\lambda \in k$. Therefore, $\theta_{n}^{(0)} \in \operatorname{ker} \phi_{\hat{s}}$ for each even $n \geq 2$.

Given an even integer $n \geq 2$, assume that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{s}}$ for some $j \geq 0$. We have

$$
0=\phi_{\hat{s}} \theta_{n}^{(j)}=\phi_{\hat{s}} \Delta \theta_{n}^{(j+1)}=\frac{d}{d v} \phi_{\hat{s}} \theta_{n}^{(j+1)} \quad \Rightarrow \quad \phi_{\hat{s}} \theta_{n}^{(j+1)} \in \operatorname{ker} \frac{d}{d v}=k
$$

As before, since $n \geq 2$, we must have $\phi_{\hat{s}} \theta_{n}^{(j+1)}=0$. It follows by induction that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{s}}$ for every even $n \geq 2$ and every $j \geq 0$. Therefore, $\mathcal{Q}_{2} \subset \operatorname{ker} \phi_{\hat{s}}$.

Given $r \geq 2$ and $P \in \Omega_{r}$, note that $\phi_{x \hat{s}} P=x^{r} \phi_{\hat{s}} P$. Therefore, if $P \in \Omega$ is homogeneous, then $P \in \operatorname{ker} \phi_{x \hat{s}}$ if and only if $P \in \operatorname{ker} \phi_{\hat{s}}$. In particular, this implies $\mathcal{Q}_{2} \subset \operatorname{ker} \phi_{x \hat{s}}$.

Suppose that $P \in \Omega_{r} \cap \operatorname{ker} \phi_{x \hat{s}}$. By Lemma 3.12(c), we see that $P \in\left(x_{0}\right)^{r-1}+$ \mathcal{Q}_{2}. Write $P=x_{0}^{r-1} L+Q$ for $L \in \Omega$ and $Q \in \mathcal{Q}_{2}$. Since the element P and the ideals $\left(x_{0}\right)^{r-1}$ and \mathcal{Q}_{2} are homogeneous, we may assume that L and Q are
homogeneous. By degree considerations, $L \in \Omega_{1}$. We have that $x_{0}^{r-1} L \in \operatorname{ker} \phi_{x \hat{s}}$. If $L \neq 0$, then since $\operatorname{ker} \phi_{x \hat{s}}$ is a prime ideal, either $x_{0} \in \operatorname{ker} \phi_{x \hat{s}}$ or $L \in \operatorname{ker} \phi_{x \hat{s}}$, a contradiction. Therefore, $L=0$ and $P \in \mathcal{Q}_{2}$.

We have thus shown $\Omega_{r} \cap \operatorname{ker} \phi_{x \hat{s}} \subset \mathcal{Q}_{2}$ for all $r \geq 2$. This suffices to prove $\operatorname{ker} \phi_{x \hat{s}}=\mathcal{Q}_{2}$.

4. The derivation D in dimension 5

4.1. Definitions

Define the polynomial ring $B=k[a, x, y, z, v]=k^{[5]}$. We define the locally nilpotent derivation D of B by its action on a set of generators

$$
z \rightarrow y \rightarrow x \rightarrow a^{3}, \quad v \rightarrow a^{2}, \quad a \rightarrow 0
$$

Define $A=\operatorname{ker} D$ and $R=k[a, x, y, z]$, noting that D restricts to R. In fact, D restricts to a linear derivation of the subring $k\left[a^{3}, x, y, z\right]$, and this kernel is well known. Let $k[t, x, y, z]=k^{[4]}$, and define the linear derivation \tilde{D} on this ring by $z \rightarrow y \rightarrow x \rightarrow t \rightarrow 0$. Then $\operatorname{ker} \tilde{D}=k[t, \tilde{F}, \tilde{G}, \tilde{h}]$, where (see [5, Example 8.9])

$$
\tilde{F}=2 t y-x^{2}, \quad \tilde{G}=3 t^{2} z-3 t x y+x^{3}, \quad \text { and } \quad t^{2} \tilde{h}=\tilde{F}^{3}+\tilde{G}^{2} .
$$

Note that the restriction of D to R is equal to the $k[a]$-derivation $\operatorname{id}_{k[a]} \otimes \tilde{D}$ on $k[a] \otimes_{k[t]} k[t, x, y, z]=R$, and its kernel $R \cap A$ is equal to $\operatorname{ker}\left(\mathrm{id}_{k[a]} \otimes \tilde{D}\right)=$ $k[a] \otimes_{k[t]} \operatorname{ker} \tilde{D}$. Therefore, if $F=\left.\tilde{F}\right|_{t=a^{3}}, G=\left.\tilde{G}\right|_{t=a^{3}}$, and $h=\left.\tilde{h}\right|_{t=a^{3}}$, then

$$
R \cap A=k[a, F, G, h], \quad \text { where } a^{6} h=F^{3}+G^{2} .
$$

Specifically,

$$
\begin{aligned}
F & =2 a^{3} y-x^{2}, \quad G=3 a^{6} z-3 a^{3} x y+x^{3} \\
h & =9 a^{6} z^{2}-18 a^{3} x y z+8 a^{3} y^{3}+6 x^{3} z-3 x^{2} y^{2} .
\end{aligned}
$$

Define a \mathbb{Z}^{2}-grading of B by declaring that a, x, y, z, v are homogeneous and

$$
\operatorname{deg}(a, x, y, z, v)=((1,0),(3,1),(3,2),(3,3),(2,1)) .
$$

Then D is a homogeneous derivation of degree $(0,-1)$ and A is a graded subring of B. Given integers $r, s \geq 0$, let $B_{(r, s)}$ be the vector space of homogeneous polynomials in B of degree (r, s), and define

$$
A_{(r, s)}=A \cap B_{(r, s)} .
$$

Then we have

$$
F \in A_{(6,2)}, \quad G \in A_{(9,3)}, \quad h \in A_{(12,6)} .
$$

Since $k[a, F, G, h]=R \cap A=\left.\operatorname{ker} D\right|_{R}$ is factorially closed in R, we see that F, G, and h are irreducible by degree considerations. Note that $[D, \partial / \partial v]=0$, that is, D commutes with the partial derivative $\partial / \partial v$ on B. Therefore, $\partial / \partial v$ restricts to A. If ∂ denotes the restriction of $\partial / \partial v$ to A, then $\partial \in \operatorname{LND}(A)$ and ∂ is homogeneous of degree $(-2,-1)$.

The following result is needed below.

LEMMA 4.1

Given $n \geq 0$, write $n=6 e+\ell$ for $e \geq 0$ and $0 \leq \ell \leq 5$.
(a)

$$
R \cap A_{(2 n+1, n)}= \begin{cases}\left\langle a h^{e}\right\rangle & \ell=0 \\ \{0\} & \ell \neq 0\end{cases}
$$

(b)

$$
R \cap A_{(2 n+2, n)}= \begin{cases}\left\langle a^{2} h^{e}\right\rangle & \ell=0, \\ \left\langle F h^{e}\right\rangle & \ell=2, \\ \{0\} & \ell=1,3,4,5\end{cases}
$$

Proof
Since $R \cap A=k[a, F, G, h]$ with a, F, G, and h homogeneous, each k-vector space $R \cap A_{(r, s)}$ is spanned by monomials in a, F, G, and h. If the monomial $a^{e_{1}} F^{e_{2}} G^{e_{3}} h^{e_{4}} \in R\left(e_{i} \in \mathbb{N}\right)$ has degree $(2 n+1, n)$, then

$$
\left\{\begin{array}{l}
e_{1}+6 e_{2}+9 e_{3}+12 e_{4}=2 n+1 \\
2 e_{2}+3 e_{3}+6 e_{4}=n
\end{array}\right.
$$

The solutions to this system are $e_{1}=1, e_{2}=e_{3}=0$, and $6 e_{4}=n$. This proves part (a).

Similarly, if $\operatorname{deg}\left(a^{e_{1}} F^{e_{2}} G^{e_{3}} h^{e_{4}}\right)=(2 n+2, n)$, then

$$
\left\{\begin{array}{l}
e_{1}+6 e_{2}+9 e_{3}+12 e_{4}=2 n+2 \\
2 e_{2}+3 e_{3}+6 e_{4}=n
\end{array}\right.
$$

The solutions to this system are

$$
\left\{e_{1}=2, e_{2}=e_{3}=0, n=6 e_{4}\right\} \quad \text { and } \quad\left\{e_{1}=e_{3}=0, e_{2}=1, n=6 e_{4}+2\right\} .
$$

This proves part (b).

4.2. Homogeneous ∂-cables

Let \mathcal{S}_{a} denote the set of infinite homogeneous ∂-cables rooted at a.

THEOREM 4.2

We have $\mathcal{S}_{a} \neq \emptyset$.
Proof
We show that there exists a sequence $s_{n} \in A, n \geq 0$, such that
(a) $s_{0}=a$,
(b) $s_{n} \in A_{(2 n+1, n)}$ for each $n \geq 0$,
(c) $\partial s_{n}=s_{n-1}$ for each $n \geq 1$.

Let d denote the restriction of D to the subring $Q \subset B$ defined by $Q=k[t, x$, $y, z] \cong k^{[4]}$, where $t=a^{3}$. Then d is a linear derivation defined by

$$
z \rightarrow y \rightarrow x \rightarrow t \rightarrow 0
$$

In addition, d is homogeneous of degree $(0,-1)$ for the \mathbb{Z}^{2}-grading of Q for which

$$
\operatorname{deg}(t, x, y, z)=((1,0),(1,1),(1,2),(1,3))
$$

Let $Q_{(r, s)}$ denote the vector space of homogeneous polynomials in Q of degree (r, s). Then according to [6, Proposition 4.1], the mapping

$$
d: Q_{(r, s+1)} \rightarrow Q_{(r, s)}
$$

is surjective if $2 s<3 r$. Thus, given $m \geq 1$, each mapping in the following sequences of maps is surjective:

$$
t \cdot Q_{(2 m, 3 m)} \subset Q_{(2 m+1,3 m)} \stackrel{d}{\leftarrow} Q_{(2 m+1,3 m+1)} \stackrel{d}{\leftarrow} Q_{(2 m+1,3 m+2)}
$$

and

$$
t \cdot Q_{(2 m-1,3 m-1)} \subset Q_{(2 m, 3 m-1)} \stackrel{d}{\leftarrow} Q_{(2 m, 3 m)} .
$$

Consequently, there exists a sequence $w_{n} \in Q, n \geq 0$, such that $w_{0}=1$, and for all $m \geq 0$,

$$
w_{3 m} \in Q_{(2 m, 3 m)}, \quad w_{3 m+1} \in Q_{(2 m+1,3 m+1)}, \quad w_{3 m+2} \in Q_{(2 m+1,3 m+2)},
$$

where

$$
d w_{3 m+3}=t \cdot w_{3 m+2}, \quad d w_{3 m+2}=w_{3 m+1}, \quad d w_{3 m+1}=t \cdot w_{3 m} .
$$

With the sequence w_{n} so constructed, it follows that, for $m \geq 1$,

$$
D^{3 i} w_{3 m}=d^{3 i} w_{3 m}=t^{2 i} w_{3(m-i)}=a^{6 i} w_{3(m-i)}=(D v)^{3 i} w_{3(m-i)} \quad(0 \leq i \leq m)
$$

Therefore, for $0 \leq i \leq m$, we have
(i) $D^{3 i}\left(a w_{3 m}\right)=a(D v)^{3 i} w_{3(m-i)}$,
(ii) $D^{3 i+1}\left(a w_{3 m}\right)=d\left(a(D v)^{3 i} w_{3(m-i)}\right)=a(D v)^{3 i} t w_{3(m-i)-1}=$ $a^{2}(D v)^{3 i+1} w_{3(m-i)-1}$,
(iii) $D^{3 i+2}\left(a w_{3 m}\right)=d\left(a^{2}(D v)^{3 i+1} w_{3(m-i)-1}\right)=a^{2}(D v)^{3 i+1} w_{3(m-i)-2}=$ $(D v)^{3 i+2} w_{3(m-i)-2}$.

We see that

$$
\begin{equation*}
(D v)^{j} \text { divides } D^{j}\left(a w_{3 m}\right) \text { for each } j(0 \leq j \leq 3 m) \tag{4}
\end{equation*}
$$

Therefore, if we define $s_{3 m}=(-1)^{3 m} \pi_{v}\left(a w_{3 m}\right)$ for $m \geq 0$, then $s_{3 m} \in A$ for each $m \geq 0$. Using (1) in Section 2.1, it follows that for $m \geq 1$

$$
\begin{aligned}
\frac{\partial^{3}}{\partial v^{3}} s_{3 m} & =\frac{\partial^{2}}{\partial v^{2}}(-1)^{3 m-1} \pi_{v}\left(a D w_{3 m}\right) \frac{\partial}{\partial v} \frac{v}{a^{2}} \\
& =\frac{\partial}{\partial v}(-1)^{3 m-2} \pi_{v}\left(a D^{2} w_{3 m}\right) \frac{1}{a^{2}} \frac{\partial}{\partial v} \frac{v}{a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{3 m-3} \pi_{v}\left(a D^{3} w_{3 m}\right) \frac{1}{a^{4}} \frac{\partial}{\partial v} \frac{v}{a^{2}} \\
& =(-1)^{3 m-3} \pi_{v}\left(a\left(a^{2}\right)^{3} w_{3(m-1)}\right) \frac{1}{a^{6}} \\
& =(-1)^{3(m-1)} \pi_{v}\left(a w_{3(m-1)}\right) \\
& =s_{3(m-1)}
\end{aligned}
$$

Define

$$
s_{3 m-1}=\frac{\partial}{\partial v} s_{3 m} \quad \text { and } \quad s_{3 m-2}=\frac{\partial}{\partial v} s_{3 m-1} \quad(m \geq 1)
$$

Then $\hat{s}:=\left(s_{n}\right)$ is a ∂-cable rooted at a with $s_{n} \in A_{(2 n+1, n)}$ for each $n \geq 0$.

REMARK 4.3

Let $\hat{s}=\left(s_{n}\right) \in \mathcal{S}_{a}$ be given. Since $\operatorname{dim} A_{(2 n+1, n)}=1$ for $n=0, \ldots, 5$, the elements s_{0}, \ldots, s_{5} are uniquely determined (see Corollary $5.5(\mathrm{a})$). They are given by

$$
\begin{aligned}
0!s_{0}= & a \\
1!s_{1}= & a v-x \\
2!s_{2}= & a v^{2}-2 x v+2 a^{2} y \\
3!s_{3}= & a v^{3}-3 x v^{2}+6 a^{2} y v-6 a^{4} z \\
4!s_{4}= & a v^{4}-4 x v^{3}+12 a^{2} y v^{2}-24 a^{4} z v+24 a^{3} x z-12 a^{3} y^{2} \\
5!s_{5}= & a v^{5}-5 x v^{4}+20 a^{2} y v^{3}-60 a^{4} z v^{2}+120 a^{3} x z v-60 a^{3} y^{2} v-72 x^{2} a^{2} z \\
& +36 x a^{2} y^{2}+24 a^{5} y z
\end{aligned}
$$

Note the identities

$$
\begin{align*}
F & =2 s_{0} s_{2}-s_{1}^{2}, \quad-G=3 s_{0}^{2} s_{3}-3 s_{0} s_{1} s_{2}+s_{1}^{3} \\
2 s_{0} s_{4} & =2 s_{1} s_{3}-s_{2}^{2}, \quad 5 s_{0} s_{5}=3 s_{1} s_{4}-s_{2} s_{3} \tag{5}
\end{align*}
$$

5. Generators of \bar{A} and A

The main result of this section is the following.

THEOREM 5.1

Let $\hat{s}=\left(s_{n}\right) \in \mathcal{S}_{a}$ be given .
(a) $A=k[h, \hat{s}]$.
(b) A is not finitely generated as a k-algebra.
(c) The generating set $\left\{h, s_{n}\right\}_{n \geq 0}$ is minimal in the sense that no proper subset generates A.

5.1. Generators of \bar{A}

Let $\pi: B \rightarrow B / h B$ be the canonical surjection. Given $b \in B$, let \bar{b} denote $\pi(b)$, and for a subalgebra $M \subset B$, let $\bar{M}=\pi(M)$. Since h is homogeneous, π induces a \mathbb{Z}^{2}-grading on \bar{B}, and \bar{A} is a graded subring with

$$
\bar{A}_{(r, s)}=\pi\left(A_{(r, s)}\right) .
$$

Note that, since h is irreducible, $h B$ is a prime ideal of B. Hence, $B / h B$ and its subring \bar{A} are integral domains. Since $D(h)=0$, we have $h B \cap A=h A$. Indeed, if $P \in B$ is such that $h P \in A$, then $h D P=D(h P)=0$, and hence $D P=0$. Thus, $\bar{A} \cong A / h A$ and so $h A$ is a prime ideal of A. Since $h \in \operatorname{ker} \partial$, we can define $\delta \in$ $\operatorname{LND}(\bar{A})$ by $\delta \pi(g)=\pi \partial(g)$. Then δ is a homogeneous locally nilpotent derivation of \bar{A} of degree $(-2,-1)$. Recall that $\operatorname{ker} \partial=R \cap A=k[a, F, G, h]$.

LEMMA 5.2
We have $\operatorname{ker} \delta=\pi(\operatorname{ker} \partial)=k[\bar{a}, \bar{F}, \bar{G}]$.
Proof
It must be shown that $\partial^{-1}(h A)=R \cap A+h A$. The inclusion $R \cap A+h A \subset$ $\partial^{-1}(h A)$ is clear. For the converse, we first show that if $H=R \cap A+h B$, then $H \cap a B=a H$.

Since $R \cap A=k[a, F, G, h]$ and $F^{3}+G^{2} \in h R$, we have

$$
H=k[a, F]+k[a, F] G+h B .
$$

In addition, H is a graded subring of B, and if $g \in H_{(r, s)}$, then $g \in k[a, F]+h B$ for s even and $g \in k[a, F] G+h B$ for s odd. Write $g=p(a, F) G^{\epsilon}+h \rho$, where $p \in k^{[2]}, \rho \in B$, and $\epsilon \in\{0,1\}$. If $g \in a B$, then setting $a=0$ yields the following equation in $k[x, y, z, v]$:

$$
\left.(h \rho)\right|_{a=0}=\left.3 x^{2}\left(2 x z-y^{2}\right) \rho\right|_{a=0}=-p\left(0,-x^{2}\right) x^{3 \epsilon} \in k[x] .
$$

This means $\rho \in a B$, since $2 x z-y^{2}$ is transcendental over $k[x]$. Therefore, $p(a, F) \in$ $a B$, and since $R \cap A$ is factorially closed in B it follows that $p(a, F) \in a(R \cap A)$. So $g \in a H$. This shows that $H \cap a B=a H$.

Suppose that $f \in A$ and $\partial f \in h A$. Let $L \in R^{[1]}$ be such that $f=L(v)=$ $\sum_{i} \frac{1}{i!} L^{(i)}(0) v^{i}$. We have

$$
\partial^{i} f=L^{(i)}(v) \in h A \quad \forall i \geq 1 \quad \Rightarrow \quad L^{(i)}(0) \in h R \quad \forall i \geq 1 .
$$

Therefore, $f=h q+r$ for $q \in B$ and $r=L(0) \in R$. It follows that $0=D f=$ $h D q+D r$, which implies $D r \in R \cap h B=h R$.

The restriction of D to R has kernel $R \cap A$ and local slice x. So there exist $n \geq 0$ and $P \in(R \cap A)^{[1]}$ with $a^{n} r=P(x)=\sum_{i} \frac{1}{i!} P^{(i)}(0) x^{i}$. We thus have

$$
\begin{aligned}
a^{n} D^{i} r=P^{(i)}(x) a^{3 i} \in h R \quad \forall i \geq 1 & \Rightarrow \quad P^{(i)}(x) \in h R \quad \forall i \geq 1 \\
& \Rightarrow \quad P^{(i)}(0) \in h(R \cap A) \quad \forall i \geq 1 .
\end{aligned}
$$

Therefore, $a^{n} r \in(R \cap A)+h(R \cap A)[x] \subset H$.

By repeated application of the identity $H \cap a B=a H$, we have that $H \cap$ $a^{n} B=a^{n} H$. It follows that $a^{n} r \in H \cap a^{n} B=a^{n} H$. Therefore, $r \in H$ and $f=$ $h q+r \in h B+H=H$. Since A is factorially closed in B, we conclude that $f \in$ $R \cap A+h A$.

Given $\hat{s}=\left(s_{n}\right) \in \mathcal{S}_{a}$, we have $s_{0}=a \notin h B$, and so $\bar{s}_{0} \neq 0$. Since $\delta \pi=\pi \partial$, we see that $\pi \hat{s}:=\left(\bar{s}_{n}\right)$ is a δ-cable. If $\phi_{\pi \hat{s}}: \Omega \rightarrow \bar{A}$ is the associated mapping, then $\phi_{\pi \hat{s}} \Delta=\delta \phi_{\pi \hat{s}}$ (cf. Section 3.1(x)). We also note that $\operatorname{ker} \phi_{\pi \hat{s}}$ is a homogeneous ideal of Ω, since $\phi_{\pi \hat{s}}\left(\Omega_{(r, s)}\right) \subset \bar{A}_{(2 s+r, s)}$ for each $r, s \geq 0$.

THEOREM 5.3

We have that $\phi_{\pi \hat{s}}$ is surjective.
Proof
Define

$$
A^{\prime}=\phi_{\pi \hat{s}}(\Omega)=k[\pi \hat{s}], \quad A_{+}^{\prime}=\phi_{\pi \hat{s}}\left(\Omega_{+}\right), \quad \text { and } \quad A_{(r, s)}^{\prime}=A^{\prime} \cap \bar{A}_{(r, s)} .
$$

Since $\Delta: \Omega_{+} \rightarrow \Omega_{+}$is surjective and $\phi_{\pi \hat{s}} \Delta=\delta \phi_{\pi \hat{s}}$, it follows that the mapping $\delta: A_{+}^{\prime} \rightarrow A_{+}^{\prime}$ is surjective. In addition, define

$$
C=\operatorname{ker} \delta \quad \text { and } \quad C_{(r, s)}=C \cap \bar{A}_{(r, s)} .
$$

Then from Lemma 5.2 and (5) we see that

$$
\begin{equation*}
C=k[\bar{a}, \bar{F}, \bar{G}], \quad \bar{F}=2 \bar{s}_{0} \bar{s}_{2}-\bar{s}_{1}^{2}, \quad-\bar{G}=3 \bar{s}_{0}^{2} \bar{s}_{3}-3 \bar{s}_{0} \bar{s}_{1} \bar{s}_{2}+\bar{s}_{1}^{3} . \tag{6}
\end{equation*}
$$

Therefore, $C \subset A^{\prime}$ and $\left.\operatorname{ker} \delta\right|_{A^{\prime}}=C$.
Fix $\ell \in \mathbb{Z}$. We show by induction on n that, for each integer $n \geq 0$,

$$
\begin{equation*}
A_{(2 n+\ell, n)}^{\prime}=\bar{A}_{(2 n+\ell, n)} . \tag{7}
\end{equation*}
$$

For $n=0$, it is easy to see that $\bar{A}_{(\ell, 0)}=\{0\}$ if $\ell<0$. If $\ell \geq 0$, then $\bar{A}_{(\ell, 0)}=$ $\left\langle a^{\ell}\right\rangle=\left\langle\bar{s}_{0}^{\ell}\right\rangle$, since $B_{(\ell, 0)}=\left\langle a^{\ell}\right\rangle$. So (7) holds for $n=0$. Since $B_{(2,1)}=\langle v\rangle$, we have $A_{(2,1)}^{\prime}=\bar{A}_{(2,1)}=\{0\}$. Hence, (7) also holds for $n=1$ and $\ell=0$.

Given $n \geq 1$, assume that

$$
(n, \ell) \neq(1,0) \quad \text { and } \quad A_{(2(n-1)+\ell, n-1)}^{\prime}=\bar{A}_{(2(n-1)+\ell, n-1)} .
$$

Since $\delta: A_{+}^{\prime} \rightarrow A_{+}^{\prime}$ is surjective and $A_{+}^{\prime}=\bigoplus_{(r, s) \neq(0,0)} A_{(r, s)}^{\prime}$, it follows that

$$
\delta A_{(2 n+\ell, n)}^{\prime}=A_{(2(n-1)+\ell, n-1)}^{\prime}=\bar{A}_{(2(n-1)+\ell, n-1)} .
$$

Since $A_{(2 n+\ell, n)}^{\prime} \subset \bar{A}_{(2 n+\ell, n)}$, we have

$$
\bar{A}_{(2(n-1)+\ell, n-1)}=\delta A_{(2 n+\ell, n)}^{\prime} \subset \delta \bar{A}_{(2 n+\ell, n)} \subset \bar{A}_{(2(n-1)+\ell, n-1)},
$$

which implies $\delta A_{(2 n+\ell, n)}^{\prime}=\delta \bar{A}_{(2 n+\ell, n)}$. Therefore,

$$
\begin{aligned}
\operatorname{dim} \bar{A}_{(2 n+\ell, n)} & =\operatorname{dim} C_{(2 n+\ell, n)}+\operatorname{dim} \delta \bar{A}_{(2 n+\ell, n)} \\
& =\operatorname{dim} C_{(2 n+\ell, n)}+\operatorname{dim} \delta A_{(2 n+\ell, n)}^{\prime}=\operatorname{dim} A_{(2 n+\ell, n)}^{\prime} .
\end{aligned}
$$

It follows that $A_{(2 n+\ell, n)}^{\prime}=\bar{A}_{(2 n+\ell, n)}$. By induction, we conclude that (7) holds for all $n \geq 0$.

COROLLARY 5.4
Let $\hat{s}=\left(s_{n}\right) \in \mathcal{S}_{a}$ be given.
(a) $\bar{A}=k[\pi \hat{s}]$.
(b) \bar{A} is not finitely generated as a k-algebra.
(c) The generating set $\left\{\bar{s}_{n}\right\}_{n \geq 0}$ is minimal in the sense that no proper subset generates \bar{A}.

Proof
Part (a) is implied by Theorem 5.3. For part (b), let $\Sigma \subset \mathbb{N}^{2}$ be the degree semigroup of A. Then part (a) implies that

$$
\Sigma=\langle(2 n+1, n) \mid n \geq 0\rangle
$$

It will suffice to show that Σ is not finitely generated as a semigroup. However, this is obvious, since the element $(2 n+1, n)$ does not belong to the subsemigroup generated by $(2 i+1, i)$ for $i<n$. This proves part (b). In fact, $(2 n+1, n)$ does not even belong to the larger subsemigroup generated by $(2 i+1, i)$ for $i \neq n$, and this implies part (c).

5.2. Proof of Theorem 5.1

Set $\Gamma=k[\hat{s}]$. Then Γ is a graded subring of A, where $\Gamma_{(r, s)}=\Gamma \cap A_{(r, s)}$. By Corollary 5.4(a), each $g \in A$ has the form $g=\gamma+h \cdot \alpha$, where $\gamma \in \Gamma$ and $\alpha \in B$. Since $g, \gamma, h \in A$, it follows that $\alpha \in A$. Write

$$
\gamma=\sum \gamma_{(r, s)} \quad \text { and } \quad \alpha=\sum \alpha_{(r, s)}
$$

where $\gamma_{(r, s)} \in \Gamma_{(r, s)}$ and $\alpha_{(r, s)} \in A_{(r, s)}$ for each $r, s \in \mathbb{Z}$. Then the homogeneous decomposition of g is

$$
g=\sum_{(r, s)}\left(\gamma_{(r, s)}+h \cdot \alpha_{(r-12, s-6)}\right) .
$$

When g is homogeneous, there exists (r, s) such that $g=\gamma_{(r, s)}+h \cdot \alpha_{(r-12, s-6)}$.
For each fixed $r \geq 0$, we show by induction on s that $A_{(r, s)} \subset \Gamma[h]$. We have $A_{(r, 0)}=k \cdot a^{r} \subset \Gamma$, which gives the basis for induction. Given $s \geq 1$, suppose that $A_{(r, i)} \subset \Gamma[h]$ for $0 \leq i \leq s-1$. Given $g \in A_{(r, s)}$, write $g=\gamma_{(r, s)}+h \cdot \alpha_{(r-12, s-6)}$ as above. By the induction hypothesis, we have that $\alpha_{(r-12, s-6)} \in \Gamma[h]$. Therefore, $g \in \Gamma[h]$. We conclude that $A_{(r, s)} \subset \Gamma[h]$ for all (r, s) with $r, s \geq 0$, and therefore, $A \subset \Gamma[h]$. This proves part (a).

Part (b) is immediately implied by Corollary 5.4(b) and the fact that \bar{A} is the image of A under a k-algebra homomorphism.

For part (c), note that Corollary 5.4(c) implies that any generating subset of $\left\{h, s_{n}\right\}_{n \geq 0}$ must include each s_{n}. We also cannot exclude h, since $(12,6)$ does not
belong to the degree semigroup generated by $\{(2 n+1, n) \mid n \geq 0\}$. This proves part (c) and completes the proof of Theorem 5.1.

For the next result, the reader is reminded that $A_{(r, s)}=\{0\}$ if $r<0$ or $s<0$.

COROLLARY 5.5

Let $\hat{s}=\left(s_{n}\right) \in \mathcal{S}_{a}$. Given $n \geq 0$, let $e \geq 0$ be such that $0 \leq n-6 e \leq 5$.
(a) $A_{(2 n+1, n)}=k \cdot s_{n} \oplus h \cdot A_{(2(n-6)+1, n-6)}$.
(b) $\operatorname{dim} A_{(2 n+1, n)}=e+1$.
(c) A basis for $A_{(2 n+1, n)}$ is given by $\left\{s_{n}, s_{n-6} h, s_{n-12} h^{2}, \ldots, s_{n-6 e} h^{e}\right\}$.

Proof
Part (a) is implicit in the first paragraph of the proof of Theorem 5.1 with $(r, s)=$ $(2 n+1, n)$, since $\Gamma_{(2 n+1, n)}=k \cdot s_{n}$ and $s_{n} \notin h B$. It follows that $A_{(2 n+1, n)}=k \cdot s_{n}$ for $n=0, \ldots, 5$. Therefore, using part (a), we get parts (b) and (c) by induction on n.

REMARK 5.6
Consider the field $k(h)=k^{(1)}$ and the $k(h)$-algebra $k(h) \otimes_{k[h]} A=k(h)[\hat{s}]$. Since $\partial h=0, \partial$ extends to a locally nilpotent derivation $\tilde{\partial}$ of $k(h)[\hat{s}], \hat{s}$ is a $\tilde{\partial}$-cable, and $k(h)[\hat{s}]$ is a simple cable algebra over $k(h)$ which is of transcendence degree 3 over $k(h)$.

5.3. The ∂-cable $\hat{\sigma}$

THEOREM 5.7

There exists a unique $\hat{\sigma}=\left(\sigma_{n}\right) \in \mathcal{S}_{a}$ such that $n!\sigma_{n} \equiv-n x v^{n-1}(\bmod a B)$ for each $n \geq 1$. In addition, $\hat{\sigma}$ satisfies the following.
(a) If $n, e \geq 0$ with $n \neq 1$, then $\sigma_{0} \sigma_{1} h^{e} \notin\left\langle\sigma_{i} \sigma_{n-i} \mid 0 \leq i \leq n / 2, i \neq 1\right\rangle$.
(b) If $n, e \geq 0$ with $n \neq 2$, then $F h^{e} \notin\left\langle\sigma_{i} \sigma_{n-i} \mid 0 \leq i \leq n / 2\right\rangle$.

Proof
Given $P \in B$, let $P(0)$ denote evaluation at $v=0$. An explicit sequence $w_{n} \in$ $k[t, x, y, z]$ of the type used in the proof of Theorem 4.2 is constructed in [5, Section 7.2.1], and in this example, w_{n} has the property that t divides w_{n} whenever $n \geq 4$ and $n \equiv 1(\bmod 3)$. Let $\hat{\sigma}=\left(\sigma_{n}\right) \in \mathcal{S}_{a}$ be the ∂-cable constructed from this sequence. Given $m \geq 1$, it follows from the definition of the functions $s_{n}=\sigma_{n}$ given in the proof of Theorem 4.2 that

$$
\sigma_{3 m}=(-1)^{3 m} a w_{3 m}-D\left((-1)^{3 m} a w_{3 m}\right) \frac{v}{a^{2}}+\frac{1}{2} D^{2}\left((-1)^{3 m} a w_{3 m}\right) \frac{v^{2}}{a^{4}}+\cdots
$$

Since $\partial^{i} \sigma_{3 m} / \partial v^{i}=\sigma_{3 m-i}$ for $0 \leq i \leq 3 m$, this implies that

$$
\begin{aligned}
\sigma_{3 m}(0) & =(-1)^{3 m} a w_{3 m}, \quad \sigma_{3 m-1}(0)=(-1)^{3 m-1} a^{2} w_{3 m-1}, \\
\sigma_{3 m-2}(0) & =(-1)^{3 m-2} w_{3 m-2} .
\end{aligned}
$$

Since $t=a^{3}$ divides $w_{3 m-2}$ for $m \geq 2$ and $\sigma_{0}(0)=\sigma_{0}=a$, it follows that a divides $\sigma_{n}(0)$ for all $n \geq 0$ with $n \neq 1$. We now show by induction on n that

$$
\begin{equation*}
a \text { divides } P_{n}(v):=(n-1)!\sigma_{n}+x v^{n-1} \quad(n \geq 1) . \tag{8}
\end{equation*}
$$

First, observe that Corollary $5.5(\mathrm{~b})$ implies that the functions $\sigma_{0}, \ldots, \sigma_{5}$ are uniquely determined. In particular, we have $\sigma_{1}=a v-x$ (see Remark 4.3). Hence, property (8) holds for $n=1$.

Given $n \geq 2$, assume that a divides $P_{i}(v)$ for $1 \leq i \leq n-1$. We have

$$
P_{n}^{\prime}(v)=(n-1)!\sigma_{n-1}+(n-1) x v^{n-2}=(n-1) P_{n-1}(v) .
$$

The inductive hypothesis implies that $P_{n}^{\prime}(v) \in a B$, which means $P_{n}(v)-P_{n}(0) \in$ $a B$. Since $P_{n}(0)=(n-1)!\sigma_{n}(0) \in a B$, we conclude that $P_{n}(v) \in a B$ for all $n \geq 1$. This proves the existence of $\hat{\sigma}=\left(\sigma_{n}\right) \in \mathcal{S}_{a}$ such that $n!\sigma_{n} \equiv-n x v^{n-1}(\bmod a B)$.

For uniqueness, let $\hat{s}=\left(s_{n}\right) \in \mathcal{S}_{a}$ be such that $n!s_{n} \equiv-n x v^{n-1}(\bmod a B)$ for $n \geq 1$. Choose $N \geq 1$ such that 6 does not divide N, and let $e \geq 0$ be such that $1 \leq N-6 e \leq 5$. By Corollary 5.5(c), a basis for $A_{(2 N+1, N)}$ is given by

$$
s_{N}^{\prime}, s_{N-6}^{\prime} h, s_{N-12}^{\prime} h^{2}, \ldots, s_{N-6 e}^{\prime} h^{e}, \quad \text { where } s_{n}^{\prime}:=n!s_{n}
$$

Therefore, there exist $c_{i} \in k$ with $N!\sigma_{N}=c_{0} s_{N}^{\prime}+c_{1} s_{N-6}^{\prime} h+\cdots+c_{e} s_{N-6 e}^{\prime} h^{e}$. The substitution $a \mapsto 0$ yields
$-N x v^{N-1}=-c_{0} N x v^{N-1}-c_{1}(N-6) x v^{N-7} h^{\prime}-\cdots-c_{e}(N-6 e) x v^{N-6 e-1}\left(h^{\prime}\right)^{e}$, where $h^{\prime}=3 x^{2}\left(2 x z-y^{2}\right)$. This implies that $c_{0}=1$ and $c_{1}=\cdots=c_{e}=0$, meaning that $\sigma_{N}=s_{N}$. Therefore, $\hat{\sigma}$ and \hat{s} agree on an infinite number of vertices, which implies that $\hat{\sigma}=\hat{s}$ (see Section 3.1(vi)). This proves the uniqueness assertion.

To prove properties (a) and (b), recall that $\sigma_{i}(0) \in a B$ for all $i \geq 0$ with $i \neq 1$. Hence, $\sigma_{i}(0) \sigma_{n-i}(0) \in a^{2} B(0 \leq i \leq n / 2, i \neq 1)$ if $n \neq 1$, and $\sigma_{i}(0) \sigma_{n-i}(0) \in a B$ $(0 \leq i \leq n / 2)$ if $n \neq 2$. To show (a), suppose that $\sigma_{0} \sigma_{1} h^{e} \in\left\langle\sigma_{i} \sigma_{n-i}\right| 0 \leq i \leq$ $n / 2, i \neq 1\rangle$. Then, we have

$$
-a x h^{e}=\left.\left(\sigma_{0} \sigma_{1} h^{e}\right)\right|_{v=0} \in\left\langle\sigma_{i}(0) \sigma_{n-i}(0) \mid 0 \leq i \leq n / 2, i \neq 1\right\rangle \subset a^{2} B,
$$

and so $x h^{e} \in a B$, a contradiction. Since $F h^{e} \in R \backslash a B$, property (b) is proved similarly.

We remark that Theorem 5.7(b), together with Lemma 4.1(b), implies $R \cap$ $A_{(2 n+2, n)} \cap \phi_{\hat{\sigma}}\left(\Omega_{(2, n)}\right)=\{0\}$ if $n \equiv 2(\bmod 6)$ and $n \neq 2$.

COROLLARY 5.8
Let $S \subset k[x, v]=k^{[2]}$ be the subalgebra $S=k\left[x, x v, x v^{2}, \ldots\right]$. Given $\lambda \in k$, put $J_{\lambda}=a A+(h-\lambda) A$. Then A / J_{λ} is isomorphic to S. In particular, J_{λ} is a prime ideal of A for each $\lambda \in k$.

Proof

Let $\hat{\sigma} \in \mathcal{S}_{a}$ be as in Theorem 5.7. By Theorem 5.1, we have $A=k[h, \hat{\sigma}]$.

Given $f \in B$, let $f(0)$ denote the evaluation of f at $a=0$. Since $D(a)=0$, we have $a B \cap A=a A$. Indeed, if $b \in B$ is such that $a b \in A$, then $a D(b)=D(a b)=0$, and so $D(b)=0$. Hence, the kernel of the map $A \rightarrow B$ defined by $f \rightarrow f(0)$ equals $a A$. Therefore,

$$
\begin{aligned}
\mathfrak{A} & :=A / a A \cong k\left[h(0), \sigma_{0}(0), \sigma_{1}(0), \sigma_{2}(0), \ldots\right]=k\left[h(0), x, x v, x v^{2}, \ldots\right] \\
& =S[h(0)]=S^{[1]} .
\end{aligned}
$$

The last equality holds because $h(0)=6 x^{3} z-3 x^{2} y^{2}$ is transcendental over $k[x, v]$. We conclude that

$$
A / J_{\lambda} \cong \mathfrak{A} /(h(0)-\lambda) \mathfrak{A} \cong S
$$

6. Relations in \bar{A}

We continue the notation of the preceding section. The main goal of this section is to show the following.

THEOREM 6.1

For every $\hat{s} \in \mathcal{S}_{a}$, we have $\operatorname{ker} \phi_{\pi \hat{s}}=\mathcal{Q}_{4}$. Consequently, $\bar{A} \cong{ }_{k} \Omega / \mathcal{Q}_{4}$ and \mathcal{Q}_{4} is a homogeneous prime ideal of Ω.

6.1. Quadratic relations

Let $\hat{s} \in \mathcal{S}_{a}$ be given, and let $\left\{\hat{\theta}_{n}\right\}$ be a Δ-basis for Ω_{2}, where $\hat{\theta}_{n}=\left(\theta_{n}^{(j)}\right)$ for given n.

LEMMA 6.2 (a) If $n \geq 4$ is even, then $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\pi \hat{s}}$ holds for any $j \geq 0$.
(b) $\left\langle\theta_{0}^{(j)}, \theta_{2}^{(j-2)}\right\rangle \cap \operatorname{ker} \phi_{\pi \hat{s}}=\{0\}$ holds for every $j \geq 0$, where $\theta_{2}^{(j-2)}=0$ if $j=0,1$.

Proof

(a) Fixing $n \geq 4$, we proceed by induction on j to show that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\pi \hat{s}}$ for each $j \geq 0$. We have

$$
\delta \phi_{\pi \hat{s}}\left(\theta_{n}^{(0)}\right)=\phi_{\pi \hat{s}} \Delta\left(\theta_{n}^{(0)}\right)=0 \quad \Rightarrow \quad \phi_{\pi \hat{s}}\left(\theta_{n}^{(0)}\right) \in \operatorname{ker} \delta=k[\bar{a}, \bar{F}, \bar{G}] .
$$

From line (5) in Remark 4.3, we have that $\bar{F}=\phi_{\pi \hat{s}}\left(2 x_{0} x_{2}-x_{1}^{2}\right)$ and $-\bar{G}=$ $\phi_{\pi \hat{s}}\left(3 x_{0}^{2} x_{3}-3 x_{0} x_{1} x_{2}+x_{1}^{3}\right)$. Therefore, there exists $P \in \operatorname{ker} \phi_{\pi \hat{s}} \cap \Omega_{(2, n)}$ such that

$$
\begin{aligned}
\theta_{n}^{(0)}-P & \in k\left[x_{0}, 2 x_{0} x_{2}-x_{1}^{2}, 3 x_{0}^{2} x_{3}-3 x_{0} x_{1} x_{2}+x_{1}^{3}\right] \cap \Omega_{2} \\
& =k \cdot x_{0}^{2}+k \cdot\left(2 x_{0} x_{2}-x_{1}^{2}\right) \subset \Omega_{(2,0)}+\Omega_{(2,2)} .
\end{aligned}
$$

Since $\theta_{n}^{(0)}, P \in \Omega_{(2, n)}$ and $n \geq 4$, we conclude that $\theta_{n}^{(0)}=P \in \operatorname{ker} \phi_{\pi \hat{s}}$. This gives the basis for induction.

Assume that $\theta_{n}^{(j-1)} \in \operatorname{ker} \phi_{\pi \hat{s}}$ for $j \geq 1$. Then

$$
0=\phi_{\pi \hat{s}}\left(\theta_{n}^{(j-1)}\right)=\phi_{\pi \hat{s}} \Delta\left(\theta_{n}^{(j)}\right)=\delta \phi_{\pi \hat{s}}\left(\theta_{n}^{(j)}\right) \quad \Rightarrow \quad \phi_{\pi \hat{s}}\left(\theta_{n}^{(j)}\right) \in \operatorname{ker} \delta .
$$

Since $\theta_{n}^{(j)} \in \Omega_{(2, n+j)}$, we conclude as above that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\pi \hat{s}}$. This proves part (a).
(b) Since $\theta_{0}^{(j)}=x_{0} x_{j} \notin \operatorname{ker} \phi_{\pi \hat{s}}$ for $j=0,1$, the assertion holds for $j=0,1$. By Lemma 3.8(a), we have

$$
\left\langle\phi_{\hat{s}}\left(\theta_{0}^{(2)}\right), \phi_{\hat{s}}\left(\theta_{2}^{(0)}\right)\right\rangle=\phi_{\hat{s}}\left(\Omega_{(2,2)}\right)=\phi_{\hat{s}}\left(\left\langle\beta_{0}^{(2)}, \beta_{2}^{(0)}\right\rangle\right)=\left\langle a s_{2}, s_{1}^{2}\right\rangle .
$$

Since $\operatorname{dim}\left\langle a s_{2}, s_{1}^{2}\right\rangle=2$ and $\left\langle a s_{2}, s_{1}^{2}\right\rangle \cap h B \subset B_{(6,2)} \cap h B=\{0\}$, the assertion also holds for $j=2$. We prove the case $j \geq 3$ by contradiction. Let $j \geq 3$ be the smallest integer for which there exists $(0,0) \neq(\alpha, \beta) \in k^{2}$ such that $f:=\alpha \theta_{0}^{(j)}+\beta \theta_{2}^{(j-2)} \in$ $\operatorname{ker} \phi_{\pi \hat{s}}$. Then

$$
0=\phi_{\pi \hat{s}}(f) \Rightarrow 0=\delta \phi_{\pi \hat{s}}(f)=\phi_{\pi \hat{s}} \Delta(f)=\phi_{\pi \hat{s}}\left(\alpha \theta_{0}^{(j-1)}+\beta \theta_{2}^{(j-3)}\right)
$$

and so $\alpha \theta_{0}^{(j-1)}+\beta \theta_{2}^{(j-3)} \in \operatorname{ker} \phi_{\pi \hat{s}}$. This contradicts the minimality of j, proving part (b).

Combining Lemmas 3.8 and 6.2, we obtain the following result.
LEMMA 6.3 (a) Given $j \geq 4$, the set $\left\{\theta_{2 i}^{(j-2 i)} \mid 2 \leq i \leq j / 2\right\}$ is a basis for $\Omega_{(2, j)} \cap$ $\operatorname{ker} \phi_{\pi \hat{s}}$.
(b) The vertices of $\hat{\theta}_{n}(n \in 2 \mathbb{N}, n \geq 4)$ form a basis for $\Omega_{2} \cap \operatorname{ker} \phi_{\pi \hat{s}}$.

6.2. Proof of Theorem 6.1

Note that, by Corollary 5.5(a), if $\hat{t} \in \mathcal{S}_{a}$, then $\pi \hat{t}=\pi \hat{s}$. So there is no loss in generality in assuming that $\hat{s}=\hat{\sigma}$, where $\hat{\sigma}$ is the ∂-cable specified in Theorem 5.7.

By Lemma 6.3(b), the ideal generated by $\Omega_{2} \cap \operatorname{ker} \phi_{\pi \hat{\sigma}}$ equals \mathcal{Q}_{4}. Since $\phi_{\pi \hat{\sigma}}$ is a homogeneous ideal of Ω, it suffices to show that

$$
\Omega_{(r, s)} \cap \operatorname{ker} \phi_{\pi \hat{\sigma}} \subset \mathcal{Q}_{4} \quad(r, s \geq 0)
$$

Let nonzero $\zeta \in \Omega_{(r, s)} \cap \operatorname{ker} \phi_{\pi \hat{\sigma}}$ be given $(r, s \geq 0)$. Then $r \geq 2$. We prove $\zeta \in \mathcal{Q}_{4}$ by induction on r, where the case $r=2$ holds as mentioned. Assume that $r \geq 3$. By Theorem 3.12(c) we have

$$
\Omega_{r} \subset\left(x_{0}, x_{1}\right)^{r-1}+\mathcal{Q}_{4}
$$

So it suffices to assume that $\zeta \in\left(x_{0}, x_{1}\right)^{r-1}$. By degree considerations, we see that ζ is a linear combination of the monomials

$$
x_{0}^{r-i-1} x_{1}^{i} x_{s-i} \quad \text { such that } r-i-1, i, s-i \geq 0 .
$$

Suppose that x_{0} does not divide ζ. Then $s-r+1 \geq 1$, and there exist $\zeta_{0} \in \Omega_{r-1}$ and nonzero $c \in k$ with $\zeta=x_{0} \zeta_{0}+c x_{1}^{r-1} x_{s-r+1}$. Since $\zeta \in \operatorname{ker} \phi_{\pi \hat{\sigma}}$, we see that $\phi_{\hat{\sigma}}(\zeta) \in h A$, which implies that, for some $q \in A$,

$$
\begin{equation*}
c \sigma_{1}^{r-1} \sigma_{s-r+1}=h q-a \phi_{\hat{\sigma}}\left(\zeta_{0}\right) . \tag{9}
\end{equation*}
$$

By Theorem 5.7, we have that $n!\sigma_{n} \equiv-n x v^{n-1}(\bmod a B)$ for each $n \geq 1$. From (9), it follows that

$$
\frac{c}{(s-r)!}(-x)^{r} v^{s-r}=\left.3 x^{2}\left(2 x z-y^{2}\right) \cdot q\right|_{a=0} .
$$

Since $c \neq 0$, this is a contradiction. Therefore, x_{0} divides ζ. If $\zeta=x_{0} \zeta_{0}$ for $\zeta_{0} \in$ Ω, then $\zeta_{0} \in \Omega_{(r-1, s)} \cap \operatorname{ker} \phi_{\pi \hat{\sigma}}$. We conclude by induction on r that $\zeta_{0} \in \mathcal{Q}_{4}$. Therefore, $\zeta \in \mathcal{Q}_{4}$. This completes the proof of Theorem 6.1.

EXAMPLE 6.4

Consider the well-known cubic Δ-invariant given by

$$
\xi=2 x_{2}^{3}+9 x_{0} x_{3}^{2}-6 x_{1} x_{2} x_{3}-12 x_{0} x_{2} x_{4}+6 x_{1}^{2} x_{4} .
$$

Let $\hat{\theta}_{4}$ be a Δ-cable rooted at $\theta_{4}^{(0)}$ such that

$$
\begin{aligned}
& \theta_{4}^{(2)}=5 x_{1} x_{5}-8 x_{2} x_{4}+\frac{9}{2} x_{3}^{2}, \quad \theta_{4}^{(1)}=5 x_{0} x_{5}-3 x_{1} x_{4}+x_{2} x_{3}, \\
& \theta_{4}^{(0)}=2 x_{0} x_{4}-2 x_{1} x_{3}+x_{2}^{2} .
\end{aligned}
$$

We have

$$
\frac{1}{2} \xi=x_{0} \theta_{4}^{(2)}-x_{1} \theta_{4}^{(1)}+x_{2} \theta_{4}^{(0)} \in \mathcal{Q}_{4} .
$$

Notice that, to express $\xi \in k\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]$ by using quadratics in \mathcal{Q}_{4}, it was necessary to use x_{5}.

EXAMPLE 6.5

Since the transcendence degree of \bar{A} over k is $3, \bar{s}_{0}, \bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3}$ are algebraically dependent in \bar{A}. Their minimal algebraic relation is quartic and can be obtained as follows.

Let ξ be as in the preceding example. The x_{4}-coefficient of ξ is $-6 \theta_{2}^{(0)}$, and the x_{4}-coefficient of $\theta_{4}^{(0)}$ is $2 x_{0}$. Thus, to eliminate x_{4}, we take

$$
\chi:=3 \theta_{2}^{(0)} \theta_{4}^{(0)}+x_{0} \xi=9 x_{0}^{2} x_{3}^{2}-3 x_{1}^{2} x_{2}^{2}+8 x_{0} x_{2}^{3}-18 x_{0} x_{1} x_{2} x_{3}+6 x_{1}^{3} x_{3}
$$

We see that $\chi \in k\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \cap \operatorname{ker} \Delta \cap \mathcal{Q}_{4}$. Since χ is irreducible, χ is a minimal algebraic relation among $\bar{s}_{0}, \bar{s}_{1}, \bar{s}_{2}$, and \bar{s}_{3}.

REMARK 6.6

Let $\hat{\eta}_{4}$ be the Δ-cable belonging to the small Δ-basis for Ω_{2}. According to Lemma 6.2, $\hat{\eta}_{4} \subset \operatorname{ker} \phi_{\pi \hat{s}}$ for every $\hat{s} \in \mathcal{S}_{a}$. Recall that

$$
\eta_{4}^{(j)}=\frac{(j+1)(j+4)}{2} x_{0} x_{4+j}-(j+2) x_{1} x_{3+j}+x_{2} x_{2+j} .
$$

Since we know $\bar{s}_{0}, \bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3}$ (see Remark 4.3), we can easily determine the δ-cable $\pi \hat{s}$ by using these 3 -term recursion relations in \bar{A}.

7. Relations in A

Let $\Omega[t]=\Omega^{[1]}$, and extend the \mathbb{Z}^{2}-grading on Ω to $\Omega[t]$ by setting $\operatorname{deg} t=(0,6)$.
Note that $\Omega[t]_{r}=\Omega_{r}[t]$ for each $r \geq 0$. In addition,

$$
\Omega[t]_{(r, n)}=\Omega_{(r, n)} \oplus t \cdot \Omega_{(r, n-6)} \oplus \cdots \oplus t^{e} \cdot \Omega_{(r, n-6 e)} \quad \text { where } 0 \leq n-6 e \leq 5
$$

Extend Δ to $\tilde{\Delta}$ on $\Omega[t]$ by setting $\tilde{\Delta}(t)=0$. Then $\tilde{\Delta}$ is homogeneous and $\operatorname{deg} \tilde{\Delta}=$ $(0,-1)$. Since $\Delta: \Omega_{(r, s)} \rightarrow \Omega_{(r, s-1)}$ is surjective for each $r, s \geq 1$, we see that $\tilde{\Delta}: \Omega[t]_{(r, n)} \rightarrow \Omega[t]_{(r, n-1)}$ is surjective for each $r, n \geq 1$. Given $n \geq 0$, define the vector space

$$
V_{n}=\Omega[t]_{(2, n)} \cap \operatorname{ker} \tilde{\Delta}=\Omega[t]_{(2, n)} \cap(\operatorname{ker} \Delta)[t] .
$$

Since $\operatorname{ker} \Delta \cap \Omega_{(2, s)}$ equals $\{0\}$ if s is odd and equals $k \cdot \theta_{s}^{(0)}$ if s is even as mentioned in Section 3.2.2, the reader can easily check that $V_{n}=\{0\}$ if n is odd and that for n even

$$
\begin{equation*}
V_{n}=\left\langle\theta_{n}^{(0)}, t \theta_{n-6}^{(0)}, \ldots, t^{e} \theta_{n-6 e}^{(0)}\right\rangle \quad \text { where } n-6 e \in\{0,2,4\} . \tag{10}
\end{equation*}
$$

7.1. The mapping $\Phi_{\hat{s}}$

Let $\hat{s} \in \mathcal{S}_{a}$. By Theorem 5.1(a), $\phi_{\hat{s}}: \Omega \rightarrow A$ extends to the surjection

$$
\Phi_{\hat{s}}: \Omega[t] \rightarrow A, \quad \Phi_{\hat{s}}(t)=h .
$$

Note that $\Phi_{\hat{s}} \hat{\Delta}=\partial \Phi_{\hat{s}}$, since $\phi_{\hat{s}} \Delta=\partial \phi_{\hat{s}}, \Phi_{\hat{s}} \hat{\Delta} t=0$, and $\partial \Phi_{\hat{s}} t=0$.

THEOREM 7.1

There exists a set $\left\{\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right\}$ of homogeneous $\tilde{\Delta}$-cables such that $\hat{\Theta}_{n}$ is rooted in V_{n} for each n and

$$
\operatorname{ker} \Phi_{\hat{s}}=\left(\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right)
$$

Proof
The proof proceeds in three steps.
Step 1 . This step constructs a set $\left\{\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right\}$ of homogeneous $\tilde{\Delta}$-cables such that $\hat{\Theta}_{n}$ is rooted in V_{n} for each n and $\left(\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right) \subset \operatorname{ker} \Phi_{\hat{s}}$. For the integer $n \geq 4$, write $n=6 e+\ell(e \geq 0,0 \leq \ell \leq 5)$. Given $P \in V_{n}$, we have

$$
0=\Phi_{\hat{s}} \tilde{\Delta}(P)=\partial \Phi_{\hat{s}}(P) \quad \Rightarrow \quad \Phi_{\hat{s}}\left(V_{n}\right) \subset \operatorname{ker} \partial=R \cap A .
$$

Since $\Phi_{\hat{s}}\left(V_{n}\right) \subset \Phi_{\hat{s}}\left(\Omega[t]_{(2, n)}\right) \subset A_{(2 n+2, n)}$, it follows that

$$
\Phi_{\hat{s}}\left(V_{n}\right) \subset R \cap A_{(2 n+2, n)}= \begin{cases}\left\langle a^{2} h^{e}\right\rangle & \ell=0, \tag{11}\\ \left\langle F h^{e}\right\rangle & \ell=2, \\ \{0\} & \text { otherwise },\end{cases}
$$

by Lemma 4.1(b). Now assume that n is even. In view of (10), there exists $c_{n} \in k$ such that $\Phi_{\hat{s}}\left(\theta_{n}^{(0)}\right)=c_{n} \Phi_{\hat{s}}\left(t^{e} \theta_{\ell}^{(0)}\right)$. Note that we may take $c_{n}=0$ when $\ell=4$. Then, we have

$$
\begin{equation*}
\Theta_{n}^{(0)}:=\theta_{n}^{(0)}-c_{n} t^{e} \theta_{\ell}^{(0)} \in \operatorname{ker} \Phi_{\hat{s}}-\{0\}, \tag{12}
\end{equation*}
$$

since $e \geq 1$ except when $n=4$. Suppose that, for some $j \geq 0$, we have constructed $\Theta_{n}^{(0)}, \ldots, \Theta_{n}^{(j)} \in \operatorname{ker} \Phi_{\hat{s}}$, which satisfy $\Theta_{n}^{(i)} \in \Omega[t]_{(2, n+i)}$ and $\tilde{\Delta} \Theta_{n}^{(i)}=\Theta_{n}^{(i-1)}, 1 \leq$ $i \leq j$. Since the mapping

$$
\tilde{\Delta}: \Omega[t]_{(2, n+j+1)} \rightarrow \Omega[t]_{(2, n+j)}
$$

is surjective, we may choose $P \in \Omega[t]_{(2, n+j+1)}$ with $\tilde{\Delta} P=\Theta_{n}^{(j)}$. We have

$$
0=\Phi_{\hat{s}} \Theta_{n}^{(j)}=\Phi_{\hat{s}} \tilde{\Delta}(P)=\partial \Phi_{\hat{s}}(P) \quad \Rightarrow \quad \Phi_{\hat{s}}(P) \in R \cap A_{(2(n+j+1)+2, n+j+1)} .
$$

We again apply the equality in (11). In fact, if $\ell \in\{0,2\}$, then $\theta_{n-6 e}^{(0)}=\theta_{\ell}^{(0)} \notin$ $\operatorname{ker} \phi_{\pi \hat{s}}$ by Lemma 6.2(b), and so $\Phi_{\hat{s}}\left(t^{e} \theta_{n-6 e}^{(0)}\right)=h^{e} \phi_{\hat{s}}\left(\theta_{n-6 e}^{(0)}\right) \neq 0$. Thus, as above, there exist $\kappa \in k$ and $\epsilon, l \in \mathbb{N}$ with

$$
\Theta_{n}^{(j+1)}:=P-\kappa t^{\epsilon} \theta_{l}^{(0)} \in \operatorname{ker} \Phi_{\widehat{s}} \cap \Omega[t]_{(2, n+j+1)},
$$

where $\kappa=0$ if $n+j+1$ is odd, since $V_{n+j+1}=\{0\}$. Then, we have $\tilde{\Delta} \Theta_{n}^{(j+1)}=\Theta_{n}^{(j)}$, since $\tilde{\Delta}\left(t^{\epsilon} \theta_{l}^{(0)}\right)=0$. Therefore, for each even $n \geq 4$, there exists a homogeneous $\tilde{\Delta}$-cable $\hat{\Theta}_{n}$ rooted in V_{n} and contained in $\operatorname{ker} \Phi_{\hat{s}} \cap \Omega[t]_{2}$. Note that $\Theta_{4}^{(j)}=\theta_{4}^{(j)}$ for $j=0,1$ by construction.

Step 2. By construction, the ideal $J:=\left(\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right)$ of $\Omega[t]$ is contained in $\operatorname{ker} \Phi_{\hat{s}}$. This step shows that $\operatorname{ker} \Phi_{\hat{s}} \subset J+(t)$. Define polynomials $H_{n}^{(j)} \in \Omega_{(2, n+j)}$ $(n \in 2 \mathbb{N}, n \geq 4, j \geq 0)$ by $H_{n}^{(j)}=\left.\Theta_{n}^{(j)}\right|_{t=0}$. Note that, by (12), we have $H_{n}^{(0)}=$ $\theta_{n}^{(0)} \neq 0$. Therefore, by Section 3.1(xi), for each even $n \geq 4, \hat{H}_{n}:=\left(H_{n}^{(j)}\right)$ is a homogeneous Δ-cable rooted at $\theta_{n}^{(0)}$. By Definition 3.10(2) and Lemma 3.12(b), we get

$$
\mathcal{Q}_{4}+(t)=\left(\hat{H}_{4}, \hat{H}_{6}, \hat{H}_{8}, \ldots\right)+(t)=\left(\hat{\Theta}_{4}, \hat{\Theta}_{6}, \hat{\Theta}_{8}, \ldots\right)+(t)=J+(t)
$$

Consider the map $\pi \Phi_{\hat{s}}: \Omega[t] \xrightarrow{\Phi_{\hat{s}}} A \xrightarrow{\pi} A / h A$. Since $\left.\pi \Phi_{\hat{s}}\right|_{\Omega}=\phi_{\pi \hat{s}}$, we see from Theorem 6.1 that

$$
\operatorname{ker} \Phi_{\hat{s}} \subset \operatorname{ker} \pi \Phi_{\hat{s}}=\mathcal{Q}_{4}+(t)=J+(t)
$$

Step 3. This step shows that $J=\operatorname{ker} \Phi_{\hat{s}}$. Since $\Phi_{\hat{s}}\left(\Omega[t]_{(r, s)}\right) \subset A_{(2 s+r, s)}$ for each $r, s \geq 0$, we see that $\operatorname{ker} \Phi_{\hat{s}}$ is a homogeneous ideal of $\Omega[t]$. So, given integers $r, N \geq 0$, we show by induction on N that

$$
\begin{equation*}
\operatorname{ker} \Phi_{\widehat{s}} \cap \Omega[t]_{(r, N)} \subset J \tag{13}
\end{equation*}
$$

If $r \leq 1$, then $\operatorname{ker} \Phi_{\hat{s}} \cap \Omega[t]_{(r, N)}=\{0\}$, so assume that $r \geq 2$.
Consider first the case in which $0 \leq N \leq 5$. In this case, $\Omega[t]_{(r, N)}=\Omega_{(r, N)}=$ $k\left[x_{0}, \ldots, x_{N}\right]_{(r, N)}$, since $\operatorname{deg} t=(0,6)$. Let

$$
P \in \operatorname{ker} \Phi_{\hat{s}} \cap \Omega[t]_{(r, N)}=\operatorname{ker} \phi_{\hat{s}} \cap k\left[x_{0}, \ldots, x_{N}\right]_{(r, N)}
$$

be given. If $N \leq 3$, then $P=0$, since $s_{0}, s_{1}, s_{2}, s_{3}$ are algebraically independent over k (see Remark 4.3).

Suppose that $N=4$. The only monomial in $k\left[x_{0}, \ldots, x_{4}\right]_{(r, 4)}$ in which x_{4} appears is $x_{0}^{r-1} x_{4}$. Therefore, noting that $\theta_{4}^{(0)}=2\left(x_{0} x_{4}-x_{1} x_{3}\right)+x_{2}^{2}$, we have $k\left[x_{0}, \ldots, x_{4}\right]_{(r, 4)}=k \cdot x_{0}^{r-1} x_{4} \oplus k\left[x_{0}, \ldots, x_{3}\right]_{(r, 4)}=k \cdot x_{0}^{r-2} \theta_{4}^{(0)} \oplus k\left[x_{0}, \ldots, x_{3}\right]_{(r, 4)}$.

So there exists $\lambda \in k$ such that $P-\lambda x_{0}^{r-2} \theta_{4}^{(0)} \in k\left[x_{0}, \ldots, x_{3}\right]$. Since $\theta_{4}^{(0)} \in \operatorname{ker} \phi_{\hat{s}}$ by Lemma 7.2(a) below, we get $P-\lambda x_{0}^{r-2} \theta_{4}^{(0)} \in \operatorname{ker} \phi_{\hat{s}} \cap k\left[x_{0}, \ldots, x_{3}\right]=\{0\}$. Since $\theta_{4}^{(0)}=\Theta_{4}^{(0)} \in J, P \in J$ in this case.

Suppose that $N=5$. The only monomial in $k\left[x_{0}, \ldots, x_{5}\right]_{(r, 5)}$ in which x_{5} appears is $x_{0}^{r-1} x_{5}$. Therefore, noting that $\theta_{4}^{(1)}=5 x_{0} x_{5}-3 x_{1} x_{4}+x_{2} x_{3}$, we have $k\left[x_{0}, \ldots, x_{5}\right]_{(r, 5)}=k \cdot x_{0}^{r-1} x_{5} \oplus k\left[x_{0}, \ldots, x_{4}\right]_{(r, 5)}=k \cdot x_{0}^{r-2} \theta_{4}^{(1)} \oplus k\left[x_{0}, \ldots, x_{4}\right]_{(r, 5)}$.
Since $\theta_{4}^{(1)} \in \operatorname{ker} \phi_{\hat{s}}$ by Lemma 7.2(a) below, there exists $\lambda \in k$ such that

$$
P-\lambda x_{0}^{r-2} \theta_{4}^{(1)} \in \operatorname{ker} \phi_{\hat{s}} \cap k\left[x_{0}, \ldots, x_{4}\right]_{(r, 5)}
$$

as above. Similarly, the only monomial in $k\left[x_{0}, \ldots, x_{4}\right]_{(r+1,5)}$ in which x_{4} appears is $x_{0}^{r-1} x_{1} x_{4}$. Therefore,

$$
\begin{aligned}
k\left[x_{0}, \ldots, x_{4}\right]_{(r+1,5)} & =k \cdot x_{0}^{r-1} x_{1} x_{4} \oplus k\left[x_{0}, \ldots, x_{3}\right]_{(r+1,5)} \\
& =k \cdot x_{0}^{r-2} x_{1} \theta_{4}^{(0)} \oplus k\left[x_{0}, \ldots, x_{3}\right]_{(r+1,5)} .
\end{aligned}
$$

So there exists $\mu \in k$ such that

$$
x_{0} P-\lambda x_{0}^{r-1} \theta_{4}^{(1)}-\mu x_{0}^{r-2} x_{1} \theta_{4}^{(0)} \in \operatorname{ker} \phi_{\widehat{s}} \cap k\left[x_{0}, \ldots, x_{3}\right]=\{0\} .
$$

If $r=2$, then $\mu x_{1} \theta_{4}^{(0)} \in x_{0} \Omega$ implies $\mu=0$ and $P=\lambda x_{0}^{r-2} \theta_{4}^{(1)}$. If $r \geq 3$, then

$$
P=\lambda x_{0}^{r-2} \theta_{4}^{(1)}+\mu x_{0}^{r-3} x_{1} \theta_{4}^{(0)} .
$$

In either case, $P \in J$, since $\theta_{4}^{(1)}=\Theta_{4}^{(1)} \in J$. Therefore, the inclusion (13) holds when $0 \leq N \leq 5$, which gives the basis for induction.

Suppose that N_{0} is an integer such that $N_{0} \geq 5$ and (13) holds for all integers $0 \leq N \leq N_{0}$. Let $P \in \operatorname{ker} \Phi_{\hat{s}} \cap \Omega[t]_{(r, M)}$ be given, where $N_{0}<M \leq N_{0}+6$. We show that P is of the form

$$
\begin{equation*}
P=P_{J}+t Q \quad \text { where } P_{J} \in J \cap \Omega[t]_{(r, M)} \text { and } Q \in \Omega[t]_{(r, M-6)} \text {. } \tag{14}
\end{equation*}
$$

Since $\operatorname{ker} \Phi_{\hat{s}} \subset J+(t)$ by Step 2, we may write $P=E+C$ for $E \in J$ and $C \in$ $t \cdot \Omega[t]$. Since J and $t \cdot \Omega[t]$ are homogeneous ideals, each homogeneous summand of E belongs to J, and each homogeneous summand of C belongs to $t \cdot \Omega[t]$. Since P is homogeneous, statement (14) holds.

In addition, since $P_{J} \in J \subset \operatorname{ker} \Phi_{\hat{s}}$, we have

$$
t Q=P-P_{J} \in \operatorname{ker} \Phi_{\hat{s}} \quad \Rightarrow \quad Q \in \operatorname{ker} \Phi_{\hat{s}} \cap \Omega[t]_{(r, M-6)} .
$$

By the inductive hypothesis, $Q \in J$, which implies $P \in J$. Therefore, statement (13) holds for all $N \geq 0$. This proves $J=\operatorname{ker} \Phi_{\hat{s}}$.

7.2. The cable $\hat{\sigma}$

Let $\hat{\sigma} \in \mathcal{S}_{a}$ be the ∂-cable defined in Theorem 5.7. The goal of this section is to give an explicit recursive definition of $\hat{\sigma}$ (see Theorem 7.6).

LEMMA 7.2
Let $n \in 2 \mathbb{N}, n \geq 4$, and $\hat{s} \in \mathcal{S}_{a}$ be given.
(a) If $n \equiv 4(\bmod 6)$, then $\theta_{n}^{(0)}, \theta_{n}^{(1)} \in \operatorname{ker} \phi_{\hat{s}}$ for every $\hat{s} \in \mathcal{S}_{a}$.
(b) If $n \equiv 2(\bmod 6)$, then $\theta_{n}^{(0)}, \theta_{n}^{(1)} \in \operatorname{ker} \phi_{\hat{\sigma}}$.

Proof

For both (a) and (b), it suffices to show that $\theta_{n}^{(0)} \in \operatorname{ker} \phi_{\hat{s}}$, since

$$
\begin{aligned}
0 & =\phi_{\hat{s}}\left(\theta_{n}^{(0)}\right)=\phi_{\hat{s}} \Delta\left(\theta_{n}^{(1)}\right)=\partial \phi_{\hat{s}}\left(\theta_{n}^{(1)}\right) \Rightarrow \\
\phi_{\hat{s}}\left(\theta_{n}^{(1)}\right) & \left.\in \operatorname{ker} \partial\right|_{A_{(2 n+4, n+1)}}=R \cap A_{(2 n+4, n+1)}=\{0\}
\end{aligned}
$$

by Lemma 4.1 (b) with $\ell=5,3$. If $n \equiv 4(\bmod 6)$, then inclusion (11) shows that $\theta_{n}^{(0)} \in \operatorname{ker} \phi_{\hat{s}}$. This proves part (a). For part (b), write $n=6 e+2$ for some $e \geq 1$. Inclusion (11) shows that

$$
\phi_{\hat{\sigma}}\left(\theta_{n}^{(0)}\right)=c F h^{e} \quad(c \in k) .
$$

By Theorem 5.7(b), it follows that $\phi_{\hat{\sigma}}\left(\theta_{n}^{(0)}\right)=0$. This proves part (b).
For $n \in 2 \mathbb{N}$, let J_{n} be the set of integers $j \geq 3$ such that $n+j \equiv 1(\bmod 6)$. In particular, each $j \in J_{n}$ is odd.

Let $\left\{\hat{\theta}_{n}\right\}$ be a Δ-basis for Ω_{2}. Given $n \in 2 \mathbb{N}$ and $j \in \mathbb{N}$ (and $j \geq 1$ if $n=0$), let $\xi\left(\theta_{n}^{(j)}\right) \in k$ be the coefficient of $x_{1} x_{n+j-1}$ in $\theta_{n}^{(j)}$. Note that $\xi\left(\theta_{n}^{(j)}\right)=0$ if and only if $\theta_{n}^{(j)} \in k\left[x_{0}, x_{2}, x_{3}, \ldots, x_{n+j}\right]$, since $\theta_{n}^{(j)} \in \Omega_{(2, n+j)}$. Define

$$
\mu\left(\hat{\theta}_{n}\right)=\min \left\{j \in J_{n} \mid \xi\left(\theta_{n}^{(j)}\right) \neq 0\right\},
$$

where it is understood that $\mu\left(\hat{\theta}_{n}\right)=\infty$ if $\xi\left(\theta_{n}^{(j)}\right)=0$ for all $j \in J_{n}$.

LEMMA 7.3

If $\mu\left(\hat{\theta}_{n}\right)=\infty$, then the following are equivalent.
(i) $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{\sigma}}$ for some $j \geq 0$.
(ii) $\theta_{n}^{(0)} \in \operatorname{ker} \phi_{\hat{\sigma}}$.
(iii) $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{o}}$ for all $j \geq 0$.

Proof

It is clear that $(\mathrm{i}) \Leftarrow(\mathrm{ii}) \Leftarrow$ (iii). We also have $(\mathrm{i}) \Rightarrow$ (ii), since

$$
\phi_{\hat{\sigma}}\left(\theta_{n}^{(0)}\right)=\phi_{\hat{\sigma}}\left(\Delta^{j} \theta_{n}^{(j)}\right)=\partial^{j} \phi_{\hat{\sigma}}\left(\theta_{n}^{(j)}\right)=0 .
$$

We show (ii) \Rightarrow (iii). Suppose that $\theta_{n}^{(0)} \in \operatorname{ker} \phi_{\hat{\sigma}}$, noting that $n \geq 4$, since $\phi_{\hat{\sigma}}\left(\theta_{0}^{(0)}\right)$ and $\phi_{\hat{\sigma}}\left(\theta_{2}^{(0)}\right)$ cannot be zero by Lemma 6.2(b). We prove by induction on j that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{\sigma}}$ for all $j \geq 0$.

Assume that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{\sigma}}$ for some $j \geq 0$. Then, $\partial \phi_{\hat{\sigma}}\left(\theta_{n}^{(j+1)}\right)=\phi_{\hat{\sigma}}\left(\Delta \theta_{n}^{(j+1)}\right)=$ $\phi_{\hat{\sigma}}\left(\theta_{n}^{(j)}\right)=0$. Hence, we get

$$
\left.\phi_{\hat{\sigma}}\left(\theta_{n}^{(j+1)}\right) \in \operatorname{ker} \partial\right|_{A_{(2(n+j+1)+2, n+j+1)}}=R \cap A_{(2(n+j+1)+2, n+j+1)} .
$$

Now, suppose that $\theta_{n}^{(j+1)} \notin \operatorname{ker} \phi_{\hat{\sigma}}$. Then, by Lemma 4.1(b) and the remark after Theorem 5.7, we have $n+j+1 \equiv 0(\bmod 6)$ and $\phi_{\hat{\sigma}}\left(\theta_{n}^{(j+1)}\right)=\lambda a^{2} h^{e}$ for some $\lambda \in k^{*}$ and $e \geq 0$. Note that

$$
\partial: A_{(2(n+j+2)+2, n+j+2)} \rightarrow A_{(2(n+j+1)+2, n+j+1)}
$$

is an injection by Lemma 4.1 (b), since $n+j+2 \equiv 1(\bmod 6)$. Because $\partial \phi_{\hat{\sigma}}\left(\theta_{n}^{(j+2)}\right)=\phi_{\hat{\sigma}}\left(\Delta \theta_{n}^{(j+2)}\right)=\phi_{\hat{\sigma}}\left(\theta_{n}^{(j+1)}\right)$ and $\partial \sigma_{0} \sigma_{1} h^{e}=a^{2} h^{e}$, it follows that $\phi_{\hat{\sigma}}\left(\theta_{n}^{(j+2)}\right)=\lambda \sigma_{0} \sigma_{1} h^{e}$. By assumption, the monomial $x_{1} x_{n+j+1}$ does not appear in $\theta_{n}^{(j+2)}$. Hence, $\theta_{n}^{(j+2)}$ is a k-linear combination of $x_{i} x_{n+j+2-i}$ for $0 \leq i \leq$ $(n+j+2) / 2$ with $i \neq 1$. This contradicts Theorem 5.7(a). Therefore, we must have $\theta_{n}^{(j+1)} \in \operatorname{ker} \phi_{\hat{\sigma}}$. It follows by induction that $\theta_{n}^{(j)} \in \operatorname{ker} \phi_{\hat{\sigma}}$ for all $j \geq 0$. This completes the proof.

Combining Lemmas 7.2 and 7.3 gives the following result.

LEMMA 7.4
Suppose that $\left\{\hat{\theta}_{n}\right\}$ is a Δ-basis such that $\mu\left(\hat{\theta}_{n}\right)=\infty$ for each $n=6 e \pm 2$, $e \geq 1$. Define the Q-ideal \mathcal{J} by $\mathcal{J}=\left(\hat{\theta}_{n} \mid n=6 e \pm 2, e \geq 1\right)$. Then $\mathcal{J} \subset \operatorname{ker} \phi_{\hat{\sigma}}$.

We next describe a procedure to modify a given Δ-basis $\left\{\hat{\theta}_{n}\right\}$ to obtain a Δ-basis $\left\{\hat{\psi}_{n}\right\}$ for which $\mu\left(\hat{\psi}_{n}\right)=\infty$ for each n.

Given $n \in 2 \mathbb{N}$, if $\mu\left(\hat{\theta}_{n}\right)=\infty$, set $\hat{\psi}_{n}=\hat{\theta}_{n}$. If $\mu\left(\hat{\theta}_{n}\right)<\infty$, then define constants

$$
j=\mu\left(\hat{\theta}_{n}\right), \quad m=j-1, \quad \text { and } \quad c=\frac{\xi\left(\theta_{n}^{(j)}\right)}{n+j-2}
$$

noting that $j \geq 3$ is odd and $\xi\left(\theta_{n+j-1}^{(1)}\right)=-(n+j-2) \neq 0$. It follows that

$$
\mu\left(\hat{\theta}_{n}\right)<\mu\left(\hat{\theta}_{n}+_{m} c \hat{\theta}_{n+m}\right)
$$

If $\mu\left(\hat{\theta}_{n}+_{m} c \hat{\theta}_{n+m}\right)=\infty$, set $\hat{\psi}_{n}=\hat{\theta}_{n}+_{m} c \hat{\theta}_{n+m}$. If $\mu\left(\hat{\theta}_{n}+_{m} c \hat{\theta}_{n+m}\right)<\infty$, the process can be repeated. Continuing in this way, we construct a strictly increasing sequence $\vec{m}=\left\{m_{i}\right\}_{i \in I}$ of positive integers, together with sequences $\vec{c}=\left\{c_{i}\right\}_{i \in I}$ for $c_{i} \in k^{*}$ and $\vec{s}=\left\{\hat{\theta}_{n+m_{i}}\right\}_{i \in I}$ such that if $\hat{\psi}_{n}=\lim (\vec{s}, \vec{m}, \vec{c})$, then $\mu\left(\hat{\psi}_{n}\right)=\infty$.

Note that, with this algorithm, $\left\{\hat{\psi}_{n}\right\}$ is uniquely determined by $\left\{\hat{\theta}_{n}\right\}$. The resulting Δ-basis $\left\{\hat{\psi}_{n}\right\}$ is the reduction of $\left\{\hat{\theta}_{n}\right\}$.

To illustrate, let $\left\{\hat{\psi}_{n}\right\}$ be the reduction of the balanced Δ-basis $\left\{\hat{\beta}_{n}\right\}$. Assume that $n \equiv 4(\bmod 6)$. Then $\xi\left(\beta_{n}^{(3)}\right)=-\binom{n+2}{3}$, and if

$$
c=-\frac{\binom{n+2}{3}}{n+3-2}=-\frac{n(n+2)}{6}
$$

then the first eight terms of $\hat{\psi}_{n}$ equal those of $\hat{\beta}_{n}+2 c \hat{\beta}_{n+2}$. In particular, we have

$$
\begin{equation*}
\psi_{n}^{(2)}=\beta_{n}^{(2)}-\frac{n(n+2)}{6} \beta_{n+2}^{(0)}=\frac{1}{6} \sum_{i=0}^{n+2}(-1)^{i}(3 i(i-1)-n(n+2)) x_{i} x_{n+2-i} \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
\psi_{n}^{(3)} & =\beta_{n}^{(3)}-\frac{n(n+2)}{6} \beta_{n+2}^{(1)} \tag{16}\\
& =\frac{1}{6} \sum_{i=1}^{n+3}(-1)^{i+1}((i-1)(i-2)-n(n+2)) i x_{i} x_{n+3-i} .
\end{align*}
$$

Note that, by Lemma 7.4, $\psi_{n}^{(2)}$ and $\psi_{n}^{(3)}$ above both belong to $\operatorname{ker} \phi_{\hat{\sigma}}$.

REMARK 7.5

The results of this section show that a Δ-basis of the type described in Lemma 7.4 exists, and therefore, $\mathcal{J} \subset \operatorname{ker} \phi_{\hat{\sigma}}$ for the associated Q-ideal \mathcal{J}. But we do not know if $\mathcal{J}=\operatorname{ker} \phi_{\hat{\sigma}}$.

Next, let $\left\{\hat{\psi}_{n}\right\}$ be the reduction of the balanced Δ-basis $\left\{\hat{\beta}_{n}\right\}$. The Δ-cables $\hat{\psi}_{n}$ for $n=6 e \pm 2(e \geq 1)$ give us a way to implicitly calculate the ∂-cable $\hat{\sigma}$. Recall that $\sigma_{0}, \ldots, \sigma_{5}$ are uniquely determined and are given in Remark 4.3.

THEOREM 7.6

For $n \geq 2$, we have

$$
\begin{aligned}
\sigma_{n}= & \frac{1}{2 a} \sum_{i=1}^{n-1}(-1)^{i+1} \sigma_{i} \sigma_{n-i} \quad \text { if } n \equiv 2,4 \quad(\bmod 6), \\
\sigma_{n}= & \frac{1}{n a} \sum_{i=1}^{n-1}(-1)^{i} i \sigma_{i} \sigma_{n-i} \quad \text { if } n \equiv 3,5 \quad(\bmod 6), \\
\sigma_{n}= & \frac{1}{n(n+1) a} \sum_{i=1}^{n-1}(-1)^{i+1}(3 i(i-1)-n(n-2)) \sigma_{i} \sigma_{n-i} \quad \text { if } n \equiv 0 \quad(\bmod 6), \\
\sigma_{n}= & \frac{1}{n(n-1) a} \sum_{i=1}^{n-1}(-1)^{i}((i-1)(i-2)-(n-1)(n-3)) i \sigma_{i} \sigma_{n-i} \\
& \text { if } n \equiv 1 \quad(\bmod 6) .
\end{aligned}
$$

Proof

The first two equalities are equivalent to $\phi_{\hat{\sigma}}\left(\theta_{n}^{(0)}\right)=0$ and $\phi_{\hat{\sigma}}\left(\theta_{n-1}^{(1)}\right)=0$, respectively, which follow from Lemma 7.2. The last two equalities follow from Lemma 7.4 together with (15) and (16).

To illustrate, the following relations can be used to construct $\sigma_{6}, \ldots, \sigma_{19}$:

$$
\begin{aligned}
\psi_{4}^{(2)}= & \beta_{4}^{(2)}-4 \beta_{6}^{(0)}=7 x_{0} x_{6}-2 x_{1} x_{5}-x_{2} x_{4}+x_{3}^{2}, \\
\psi_{4}^{(3)}= & \beta_{4}^{(3)}-4 \beta_{6}^{(1)}=7 x_{0} x_{7}-2 x_{2} x_{5}+x_{3} x_{4}, \\
& \psi_{8}^{(0)}=\beta_{8}^{(0)}=2 x_{0} x_{8}-2 x_{1} x_{7}+2 x_{2} x_{6}-2 x_{3} x_{5}+x_{4}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{8}^{(1)}=\beta_{8}^{(1)}= 9 x_{0} x_{9}-7 x_{1} x_{8}+5 x_{2} x_{7}-3 x_{3} x_{6}+x_{4} x_{5}, \\
& \psi_{10}^{(0)}=\beta_{10}^{(0)}= 2 x_{0} x_{10}-2 x_{1} x_{9}+2 x_{2} x_{8}-2 x_{3} x_{7}+2 x_{4} x_{6}-x_{5}^{2}, \\
& \psi_{10}^{(1)}=\beta_{10}^{(1)}= 11 x_{0} x_{11}-9 x_{1} x_{10}+7 x_{2} x_{9}-5 x_{3} x_{8}+3 x_{4} x_{7}-x_{5} x_{6}, \\
& \psi_{10}^{(2)}=\beta_{10}^{(2)}-20 \beta_{12}^{(0)}= 26 x_{0} x_{12}-15 x_{1} x_{11}+6 x_{2} x_{10}+x_{3} x_{9}-6 x_{4} x_{8} \\
&+9 x_{5} x_{7}-5 x_{6}^{2}, \\
& \psi_{10}^{(3)}=\beta_{10}^{(3)}-20 \beta_{12}^{(1)}= 26 x_{0} x_{13}-15 x_{2} x_{11}+21 x_{3} x_{10}-20 x_{4} x_{9}+14 x_{5} x_{8}-5 x_{6} x_{7}, \\
& \psi_{14}^{(0)}=\beta_{14}^{(0)}= 2 x_{0} x_{14}-2 x_{1} x_{13}+2 x_{2} x_{12}-2 x_{3} x_{11}+2 x_{4} x_{10} \\
&-2 x_{5} x_{9}+2 x_{6} x_{8}-x_{7}^{2}, \\
& \psi_{14}^{(1)}=\beta_{14}^{(1)}=15 x_{0} x_{15}-13 x_{1} x_{14}+11 x_{2} x_{13}-9 x_{3} x_{12}+7 x_{4} x_{11} \\
&-5 x_{5} x_{10}+3 x_{6} x_{9}-x_{7} x_{8}, \\
& \psi_{16}^{(0)}=\beta_{16}^{(0)}= 2 x_{0} x_{16}-2 x_{1} x_{15}+2 x_{2} x_{14}-2 x_{3} x_{13}+2 x_{4} x_{12}-2 x_{5} x_{11} \\
&+2 x_{6} x_{10}-2 x_{7} x_{9}+x_{8}^{2}, \\
& \psi_{16}^{(1)}=\beta_{16}^{(1)}=17 x_{0} x_{17}-15 x_{1} x_{16}+13 x_{2} x_{15}-11 x_{3} x_{14}+9 x_{4} x_{13} \\
&-7 x_{5} x_{12}+5 x_{6} x_{11}-3 x_{7} x_{10}+x_{8} x_{9}, \\
& \psi_{16}^{(2)}=\beta_{16}^{(2)}-48 \beta_{12}^{(0)}= 57 x_{0} x_{18}-40 x_{1} x_{17}+25 x_{2} x_{16}-12 x_{3} x_{15}+x_{4} x_{14} \\
&+8 x_{5} x_{13}-25 x_{6} x_{12}+20 x_{7} x_{11}-23 x_{8} x_{10}+12 x_{9}^{2}, \\
& \psi_{16}^{(3)}=\beta_{16}^{(3)}-48 \beta_{12}^{(1)}= 57 x_{0} x_{19}-40 x_{2} x_{17}+65 x_{3} x_{16}-77 x_{4} x_{15}+78 x_{5} x_{14} \\
&-70 x_{6} x_{13}+55 x_{7} x_{12}-35 x_{8} x_{11}+12 x_{9} x_{10} .
\end{aligned}
$$

REMARK 7.7

The reader can compare these relations with relations for the sequence w_{n} given in [5]. In particular, w_{0}, \ldots, w_{13} are given in [5, pp. 162, 165]. The construction used there is as follows. Given $n=6 e-4(e \geq 2)$, suppose that $w_{0}, \ldots, w_{6 e-5}$ are known. Then $w_{6 e-4}, \ldots, w_{6 e+1}$ are defined by solving certain systems of linear equations, but in the language of cables this amounts to finding $\psi_{n}^{(0)}, \ldots, \psi_{n}^{(5)}$. Our current approach uses the simpler relations

$$
\psi_{n}^{(0)}, \quad \psi_{n}^{(1)}, \quad \psi_{n+2}^{(0)}, \quad \psi_{n+2}^{(1)}, \quad \psi_{n+2}^{(2)}, \quad \psi_{n+2}^{(3)}
$$

Note that if $\psi_{n}^{(j)}=\sum_{i=0}^{n} c_{(n, i)}^{(j)} x_{i} x_{n-i}$, then the coefficient $c_{(n, i)}^{(j)}$ is a polynomial of degree j in i. Thus, using smaller j-values has a big advantage computationally. However, the reader should note that both methods produce the same sequence σ_{n}, by the uniqueness established in Theorem 5.7.

8. Roberts's derivations in dimension 7

Roberts [12] constructed a family of counterexamples to Hilbert's fourteenth problem in the form of subrings $\mathcal{A}_{m} \subset k^{[7]}$ for integers $m \geq 2$. Although Roberts does not use the language of derivations, the maps he defines are triangular derivations. In this section, we give a description of the $\operatorname{ring} \mathcal{A}_{2}$ as a cable algebra.

Let $\mathcal{B}=k[X, Y, Z, S, T, U, V]=k^{[7]}$. For $m \geq 2$, the subring \mathcal{A}_{m} is the kernel of the derivation \mathcal{D}_{m} of \mathcal{B} defined by

$$
\begin{aligned}
& S \rightarrow X^{m+1}, \quad T \rightarrow Y^{m+1}, \quad U \rightarrow Z^{m+1} \\
& V \rightarrow(X Y Z)^{m}, \quad X, Y, Z \rightarrow 0 .
\end{aligned}
$$

Define $H_{m} \in \mathcal{A}_{m}$ by $H_{m}=Y^{m+1} S-X^{m+1} T$. Define an action of the cyclic group $\mathbb{Z}_{3}=\langle\alpha\rangle$ on \mathcal{B} by

$$
\alpha(X, Y, Z, S, T, U, V)=(Z, X, Y, U, S, T, V) .
$$

Then α, \mathcal{D}_{m}, and the partial derivative $\partial / \partial V$ commute pairwise with each other. Therefore, α and $\partial / \partial V$ restrict to \mathcal{A}_{m}. We denote the restriction of $\partial / \partial V$ to \mathcal{A}_{m} by δ_{m}.

Let $m \geq 2$ be given. In [12, Lemma 3], Roberts showed the existence of a sequence in \mathcal{A}_{m} of the form $X V^{i}+($ terms of lower degree in $V), i \geq 0$. By combining this with homogeneity conditions, he concluded that \mathcal{A}_{m} is not finitely generated over k. Note that, by applying α, we also obtain sequences in \mathcal{A}_{m} of the form $Y V^{i}+($ terms of lower degree in $V)$ and $Z V^{i}+($ terms of lower degree in V) for $i \geq 0$. The second author showed the following.

THEOREM 8.1 ([8, THEOREM 3.3])
Given $m \geq 2$, let $I_{(m, X, i)}, I_{(m, Y, i)}, I_{(m, Z, i)} \in \mathcal{A}_{m}(i \geq 0)$ be sequences of the form

$$
\begin{aligned}
I_{(m, X, i)} & =X V^{i}+(\text { terms of lower degree in } V), \\
I_{(m, Y, i)} & =Y V^{i}+(\text { terms of lower degree in } V), \\
I_{(m, Z, i)} & =Z V^{i}+(\text { terms of lower degree in } V) .
\end{aligned}
$$

Then

$$
\mathcal{A}_{m}=k\left[\left\{H_{m}, \alpha H_{m}, \alpha^{2} H_{m}\right\} \cup\left\{I_{(m, W, i)} \mid i \geq 0, W \in\{X, Y, Z\}\right\}\right] .
$$

We use this to show the following result.

THEOREM 8.2
There exists an infinite δ_{2}-cable \hat{P} in \mathcal{A}_{2} rooted at X, and for any such \hat{P} we have

$$
\mathcal{A}_{2}=k\left[H_{2}, \alpha H_{2}, \alpha^{2} H_{2}, \hat{P}, \alpha \hat{P}, \alpha^{2} \hat{P}\right] .
$$

To construct \hat{P} we first study the restriction of \mathcal{D}_{2} to a subring \mathcal{B}^{\prime} of \mathcal{B}, where $\mathcal{B}^{\prime} \cong k^{[6]}$.

8.1. The derivation E in dimension 6

Let $\mathcal{R}=k[x, y, s, t, u, v]=k^{[6]}$, and define the triangular derivation E of \mathcal{R} by
(17) $\quad v \rightarrow x^{2} y^{2}, \quad u \rightarrow y^{3} t, \quad t \rightarrow y^{3} s, \quad s \rightarrow x^{3}, \quad x \rightarrow 0, \quad y \rightarrow 0$.

Then E commutes with $\frac{\partial}{\partial v}$ and we let τ denote the restriction of $\frac{\partial}{\partial v}$ to ker E.

THEOREM 8.3

There exists an infinite τ-cable $\hat{\kappa}$ rooted at x.

Proof
Let $\pi_{v}: \mathcal{R} \rightarrow(\operatorname{ker} E)_{x y}$ be the Dixmier map for E associated to the local slice v. According to [4, (6) and Lemma 2], there exists a sequence $w_{n} \in k[x, y, z, s, t, u]$, $n \geq 0$, with the following properties.
(i) $w_{0}=1$.
(ii) $E^{3 i} w_{3 m}=\left(x^{3} y^{3}\right)^{2 i} w_{3(m-i)}(m \geq 1,0 \leq i \leq m)$.
(iii) $(-1)^{3 m} \pi_{v}\left(x w_{3 m}\right) \in \mathcal{R}(m \geq 0)$.

Given $m \geq 0$, define $\kappa_{3 m} \in \mathcal{R}$ by $\kappa_{3 m}=(-1)^{3 m} \pi_{v}\left(x w_{3 m}\right)$. By using (1) in Section 2.1, we see that for $m \geq 1$

$$
\begin{aligned}
\frac{\partial^{3}}{\partial v^{3}} \kappa_{3 m} & =\frac{\partial^{2}}{\partial v^{2}}(-1)^{3 m-1} \pi_{v}\left(x E w_{3 m}\right) \frac{\partial}{\partial v} \frac{v}{x^{2} y^{2}} \\
& =\frac{\partial}{\partial v}(-1)^{3 m-2} \pi_{v}\left(x E^{2} w_{3 m}\right) \frac{1}{x^{2} y^{2}} \frac{\partial}{\partial v} \frac{v}{x^{2} y^{2}} \\
& =(-1)^{3 m-3} \pi_{v}\left(x E^{3} w_{3 m}\right) \frac{1}{x^{4} y^{4}} \frac{\partial}{\partial v} \frac{v}{x^{2} y^{2}} \\
& =(-1)^{3 m-3} \pi_{v}\left(x\left(x^{3} y^{3}\right)^{2} w_{3(m-1)}\right) \frac{1}{x^{6} y^{6}} \\
& =(-1)^{3(m-1)} \pi_{v}\left(x w_{3(m-1)}\right) \\
& =\kappa_{3(m-1)} .
\end{aligned}
$$

Define

$$
\kappa_{3 m-1}=\frac{\partial}{\partial v} \kappa_{3 m} \quad \text { and } \quad \kappa_{3 m-2}=\frac{\partial}{\partial v} \kappa_{3 m-1} \quad(m \geq 1) .
$$

Then $\hat{\kappa}:=\left(\kappa_{n}\right)$ is a τ-cable rooted x.

8.2. Proof of Theorem 8.2

Given $f_{1}, \ldots, f_{n} \in \mathcal{B}$, recall that the Wronskian of f_{1}, \ldots, f_{n} relative to \mathcal{D}_{2} is (see [5, Section 2.6])

$$
W_{\mathcal{D}_{2}}\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(\mathcal{D}_{2}^{i} f_{j}\right) \quad \text { where } 0 \leq i \leq n-1,1 \leq j \leq n .
$$

Define $F_{1}, F_{2}, F_{3} \in \mathcal{B}$ by

$$
F_{1}=S, \quad F_{2}=\frac{1}{2} W_{\mathcal{D}_{2}}(S, T U), \quad F_{3}=\frac{1}{6} X^{-3} W_{\mathcal{D}_{2}}(S, T U, S T U) .
$$

Then \mathcal{D}_{2} restricts to the subring $\mathcal{B}^{\prime}=k\left[X, Y Z, F_{1}, F_{2}, F_{3}, V\right]=k^{[6]}$, where

$$
\mathcal{D}_{2} F_{3}=(Y Z)^{3} F_{2}, \quad \mathcal{D}_{2} F_{2}=(Y Z)^{3} F_{1}, \quad \mathcal{D}_{2} F_{1}=X^{3}, \quad \mathcal{D}_{2} V=X^{2}(Y Z)^{2}
$$

Therefore, setting $x=X, y=Y Z, s=F_{1}, t=F_{2}, u=F_{3}$, and $v=V$, we see that the restriction of \mathcal{D}_{2} to \mathcal{B}^{\prime} equals E, as defined in (17) above. By Theorem 8.3 there exists a δ_{2}-cable \hat{P} rooted at X such that $\hat{P} \subset \mathcal{B}^{\prime}$. In particular, $\hat{P}=\left(P_{i}\right)$ has the form $P_{i}=\frac{1}{i!} X V^{i}+($ terms of lower degree in $V)$.

Consequently, $\alpha \hat{P}$ is a δ_{2}-cable \hat{P} rooted at Y, and $\alpha^{2} \hat{P}$ is a δ_{2}-cable \hat{P} rooted at Z. The proof is thus completed by applying Kuroda's result (Theorem 8.1 above).

REMARK 8.4

It seems likely that the structure of \mathcal{A}_{2} given in Theorem 8.2 can be extended from $m=2$ to all $m \geq 2$. To do so by the method above requires a generalization of Theorem 8.3.

9. Further comments and questions

9.1. Tanimoto's generators

Tanimoto [13] gives a set of generators for the ring A by specifying a SAGBI basis consisting of h together with homogeneous sequences λ_{n}, μ_{n}, and ν_{n} whose leading v-terms are $a v^{n}, F v^{n}$, and $G v^{n}$, respectively. From Corollary 5.5(a) we see that A is generated as a k-algebra by h and the sequence λ_{n}, meaning that μ_{n} and ν_{n} are redundant. Tanimoto also computed the Hilbert series for A, which is rational even though A is not finitely generated.

9.2. Fundamental problem for cable algebras

If B is an affine k-domain and $D \in \operatorname{LND}(B)$ is nonzero, then B is a cable algebra and (B, D) is a cable pair. We ask the following.

QUESTION

Let B be an affine k-domain, and let $D \in \operatorname{LND}(B)$. If $I_{\infty} \neq(0)$, does B have an infinite D-cable? Equivalently, if every D-cable of B is terminal, does $I_{\infty}=(0)$?

Note that if every D-cable of B is terminal, then since B is affine, there exist an integer $n \geq 1$ and terminal D-cables $\hat{t}_{1}, \ldots, \hat{t}_{n}$ such that $B=k\left[\hat{t}_{1}, \ldots, \hat{t}_{n}\right]$.

9.3. Q-ideals

We would like to know which Q-ideals are prime ideals of Ω. For each even $n \geq 2$, consider the following statements regarding the fundamental Q-ideals.
(a) \mathcal{Q}_{n} is a prime ideal of Ω.
(b) $\operatorname{tr} \cdot \operatorname{deg}_{k} \Omega / \mathcal{Q}_{n}=\frac{n}{2}+1$.
(c) Ω / \mathcal{Q}_{n} is a simple cable algebra over k.

It is shown above that these are true statements for $n=2$ and $n=4$. Are these statements true for $n \geq 6$?

9.4. The dimension 4 case

Nagata [11] presented the first counterexamples to Hilbert's fourteenth problem. In one of these, the transcendence degree of the ring of invariants over the ground field is 4 , and Nagata asked whether this could be reduced to 3 . The second author [7] gave an affirmative answer to Nagata's question in the form of the kernel of a derivation of $k^{[4]}$, but this derivation is not locally nilpotent (see also [9]).

It remains an open question whether an algebraic \mathbb{G}_{a}-action on the polynomial ring $k^{[4]}$ always has a finitely generated ring of invariants. In [3] it is shown that this is the case for triangular actions, and this result was later generalized in [1] to the case of actions having rank less than 4 . The next natural case to consider is the case in which T is a locally nilpotent derivation of $k^{[4]}$ of rank 4 and T restricts to a coordinate subring $B=k^{[3]}$. If $k^{[4]}=B[v]$, then the partial derivative $\partial / \partial v$ restricts to $\operatorname{ker} T$. It is hoped that a good understanding of cable structures of invariant rings might lead to a complete solution of the dimension 4 case.

References

[1] S. M. Bhatwadekar and D. Daigle, On finite generation of kernels of locally nilpotent R-derivations of $R[X, Y, Z]$, J. Algebra 322 (2009), 2915-2926. MR 2567404. DOI 10.1016/j.jalgebra.2008.05.003.
[2] D. Daigle and G. Freudenburg, A counterexample to Hilbert's fourteenth problem in dimension 5, J. Algebra 221 (1999), 528-535. MR 1728394. DOI 10.1006/jabr.1999.7987.
[3] , Triangular derivations of $k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$, J. Algebra 241 (2001), 328-339. MR 1838855. DOI 10.1006/jabr.2001.8763.
[4] G. Freudenburg, A counterexample to Hilbert's fourteenth problem in dimension six, Transform. Groups 5 (2000), 61-71. MR 1745711.
DOI 10.1007/BF01237178.
[5] , Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia Math. Sci. 136, Springer, New York, 2006. MR 2259515.
[6] , Foundations of invariant theory for the down operator, J. Symbolic Comput. 57 (2013), 19-47. MR 3066449. DOI 10.1016/j.jsc.2013.05.003.
[7] S. Kuroda, A counterexample to the fourteenth problem of Hilbert in dimension four, J. Algebra 279 (2004), 126-134. MR 2078390.
DOI 10.1016/j.jalgebra.2004.05.002.
[8] _, A generalization of Roberts' counterexample to the fourteenth problem of Hilbert, Tohoku Math. J. (2) 56 (2004), 501-522. MR 2097158.
[9] , Fields defined by locally nilpotent derivations and monomials, J. Algebra 293 (2005), 395-406. MR 2172346.

DOI 10.1016/j.jalgebra.2005.06.011.
[10] L. Makar-Limanov, On the group of automorphisms of a surface $x^{n} y=P(z)$, Israel J. Math. 121 (2001), 113-123. MR 1818396. DOI 10.1007/BF02802499.
[11] M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959), 766-772. MR 0105409.
[12] P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461-473. MR 1061491. DOI 10.1016/0021-8693(90)90141-A.
[13] R. Tanimoto, On Freudenburg's counterexample to the fourteenth problem of Hilbert, Transform. Groups 11 (2006), 269-294. MR 2231188. DOI 10.1007/s00031-004-1112-z.
[14] J. Winkelmann, Invariant rings and quasiaffine quotients, Math. Z. 244 (2003), 163-174. MR 1981881. DOI 10.1007/s00209-002-0484-9.

Freudenburg: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008, USA; gene.freudenburg@wmich.edu

Kuroda: Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; kuroda@tmu.ac.jp

