Cable algebras and rings of GG,-invariants

Gene Freudenburg and Shigeru Kuroda

Abstract For afield &, the ring of invariants of an action of the unipotent k-group G4 on
an affine k-variety is quasiaffine, but not generally affine. Cable algebras are introduced
as a framework for studying these invariant rings. It is shown that the ring of invariants
for the G4-action on A? constructed by Daigle and Freudenburg is a monogenetic cable
algebra. A generating cable is constructed for this ring, and a complete set of relations
is given as a prime ideal in the infinite polynomial ring over k. In addition, it is shown
that the ring of invariants for the well-known G4-action on AZ due to Roberts is a cable
algebra.

1. Introduction

We introduce cable algebras to describe the structure of rings of invariants for
algebraic actions of the unipotent group G, on affine varieties over a ground
field k. Winkelmann [14] has shown that such rings are always quasiaffine over k,
but they are not generally affine. Roberts [12] gave the first example of a nonaffine
invariant ring for a G,-action on an affine space. Specifically, Roberts’s example
involved an action of G, on the affine space AT, where k is of characteristic
zero. Subsequent examples of G,-actions of nonfinite type were constructed by
Freudenburg [4] and by Daigle and Freudenburg [2], for A% and A?, respectively.
These examples are counterexamples to Hilbert’s fourteenth problem.

Kuroda [8] used subalgebra analogue to Groebner bases for ideals (SAGBI)
basis techniques to show that an infinite system of invariants constructed by
Roberts for the action on Al generates the invariant ring as a k-algebra. Tani-
moto [13] used the same techniques to identify generating sets for the actions on
A¢% and A?. Our results show that Tanimoto’s generating sets are not minimal
(see Section 9.1). From the point of view of classical invariant theory, a structural
description of a ring of invariants involves the determination of a minimal set of
generators of the ring as a k-algebra, together with a minimal set of generators
for the ideal of their relations. However, for an infinite set of generators, or even
a large finite set of generators, such a description can be complicated, and the
choice of generating set can seem arbitrary.
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When k is of characteristic zero, G,-actions on an affine k-variety X are
equivalent to locally nilpotent derivations of the coordinate ring k[X], and the
invariant ring k[X]® equals the kernel of the derivation. In many cases, k[X]%a
admits a nonzero locally nilpotent derivation, and this gives additional structure
to exploit.

For a commutative k-domain B, a locally nilpotent derivation D of B induces
a directed tree structure on B. A D-cable is any complete linear subtree rooted
in the kernel of D. The condition for B to be a cable algebra is a finiteness
condition: B is a cable algebra if (for some D) D #0 and B is generated by a
finite number of D-cables over the kernel of D. Then B is a simple cable algebra
if it is generated by one D-cable over k. Elements in the ideal of relations in the
infinite polynomial ring for the generating cables are cable relations.

To illustrate this, consider a nilpotent linear operator N on a finite-
dimensional k-vector space V. Choose a basis {z;; |1 <i<m,1<j<n;} of
V so that the effect of N for fixed i is

Tin, — Tjp,—1 > Ti2 — Ti1 — 0.

This defines the Jordan form of N, which in turn gives a cable structure on the
symmetric algebra S(V). In particular, N induces a locally nilpotent deriva-
tion D on S(V), and each sequence xz;; for fixed ¢ is a D-cable &;, where
S(V) =k[&1,...,Zm]. In this sense, the cable algebra structure induced by a
locally nilpotent derivation can be viewed as a generalization of Jordan block
form for a nilpotent linear operator.

For rings of nonfinite type over k, the ring S = k[x, xv, 2v?,...] is a prototype,
where k[z, v] is the polynomial ring in two variables over k. The partial derivative
0/0v restricts to a locally nilpotent derivation D of S, and the infinite sequence
Lav™ defines a D-cable § for which S =k[5]. So S is a simple cable algebra.
Although S is not quasiaffine, it plays an important role in our investigation. For
example, one of our main objects of interest is the ring A of invariants for the
Gq-action on A® constructed by Daigle and Freudenburg, and we show that A
admits a mapping onto S.

1.1. Description of main results
We assume throughout that k is a field of characteristic zero. On the polynomial
ring B =kla,v,x,y,z] = k5!, define the locally nilpotent derivation D of B by
0 5 0
DZ&B%—an—y—Fya—F& %
For the corresponding G,-action on X = AZ, the ring of invariants k[X]% is not
finitely generated over k (see [2]).

If A=ker D, the kernel of D, then the partial derivative % restricts to A,
and O denotes the restriction of % to A. We give a complete description of
the ring A as a cable algebra relative to 0, including its relations as a cable
ideal in the infinite polynomial ring Q = k[zg,z1, 22, ...]. Moreover, we construct

a specific J-cable 6 = (0,,) from these relations, wherein 0,11 is expressed as
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an explicit rational function in oy,...,0,. Our proofs do not use SAGBI bases,
relying instead on properties of the down operator A on 2, a k-derivation defined
by

Az;=xzi—1; (i>1) and Axg=0.

Let Q[t] = QM and extend A to A on Q[t] by At=0.

Generators. Theorem 5.1: There exists an infinite homogeneous 0-cable §
rooted at a, and for any such d-cable we have A = k[h, §] for h € ker . Moreover,
this is a minimal generating set for A over k.

Relations. Theorem 7.1: There exists an ideal Z = (O4, 04,05, ...) in Q[t]
generated by quadratic homogeneous A-cables ©,, such that A2 Qt]/Z.

Constructs. Theorem 7.6: Let A, be the localization of A at a, and define a

sequence o, € A, by 0o =a and

1
01 =av —x, o9 = §(av2 — 220 + 2a%y),
1
o3 = E(av3 — 320 4 6a’yv — 6a’2).

Given n >4, let e > 1 be such that —2 <n — 6e <3. If 0¢,...,0n_1 € A, are
known, define o,, € A, implicitly as follows.

(i) Ifn=6e—2orn=06e+2,then Y " (—1)'c;0,_; =0.
(ii) Ifn=6e—1orn==6e+3, then Y i (—1)%io;0,_; =0.

(iii) If n = 6e, then Z?joz(—l)i(?)i_(i — 1) —n(n+2))0iona_i =0.

(iv) If n=6e+1, then 3" (—1)"+1((i — 1) (i — 2) —n(n+2))icionis3_i = 0.

Then o, € A for each n >0 and 6 = (0,,) is a 0-cable rooted at a.

As seen in these results, quadratic relations in € are especially important.
A basis for the vector space of quadratic forms in ker A is given by {97(10) | n € 2N},
where

n
00 =31
=0
If {0,} is any system of quadratic A-cables with 6, rooted at 0", then the
vertices of these cables form a basis for 25, the space of quadratic forms in
(see Lemma 3.8). Moreover, the quadratic ideals

Qn:(énaén+2aén+47~--)7 nEZN,

are independent of the system of cables chosen (see Theorem 3.12). These ideals,
called fundamental @Q-ideals, are intrinsically important to the theory at hand.
Compare this to the linear case. The only linear form in ker A is xg, up to a
constant, and if L = (Ly) is any homogeneous A-cable rooted at xg, then the
linear forms L,,, n > 0, form a basis of the space of linear forms €2; and we have
equality of Q-ideals:

(L) = (Lo,Ll,Lg, .. ) = (.1‘073,‘1,11}2, .. )
Therefore, Q/(ﬁ) =k and (i}) is a maximal ideal of Q.
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We show the following. We have that Qs is a prime ideal of Q and Q/Qy =
S, where S C k[z,v] = k¥ is the simple cable algebra of nonfinite type and of
transcendence degree 2 over k defined by S = k[z, zv,zv?,...] (see Theorem 3.21).
We have that Q4 is a prime ideal of Q and Q/Q4 =, A/hA, which is a simple cable
algebra of nonfinite type and of transcendence degree 3 over k (see Theorem 6.1).

Finally, we show that the ring of invariants for the Roberts action in dimen-
sion 7 is a cable algebra. On the polynomial ring k[X,Y, Z, S, T,U, V], define the
locally nilpotent derivation

0 0 0 0
_y3 9 3.9 3.9 2 9
Dy=X aSJrY 8T+Z 8U+(XYZ) 57

where Dy commutes with the 3-cycle a defined by o(X,Y,Z,S,T,U,V) = (Z, X,
Y,U,S,T,V). The partial derivative 9/0V restricts to the kernel Ay of Dy, and
0o denotes the restricted derivation. There exists a do-cable P in Ay rooted at
X, and for any such ds-cable,

As = k[Hg,aHg,a2H2,]3,aP,a2p],

where Hj € ker dy (see Theorem 8.2).

1.2. Additional background

Let K be any field. For n < 3, the ring of invariants of a G,-action on A} is
of finite type, due to a fundamental theorem of Zariski. It is not known if the
ring of invariants of a G,-action on A%}, is always of finite type (see Section 9.4).
According to the classical Mauer—Weitzenbock theorem, if the characteristic of
K is zero, then K[A%]% is of finite type when G, acts on A% by linear trans-
formations. However, it is not known if this is true for all fields. To date, there
is no known example of a field K of positive characteristic and a G,-action on
A7 for which K[A%]% is of nonfinite type.

2. Locally nilpotent derivations

Let k be a field of characteristic zero, and let B be a commutative k-domain.
A locally nilpotent derivation of B is a derivation D : B — B such that, for each
b € B, there exists n € N (depending on b) such that D™b=0. Let ker D denote
the kernel of D. The set of locally nilpotent derivations of B is denoted by
LND(B). Note that k C ker D for any D € LND(B) (cf. [5, Principle 1]).

It is well known that the study of Gg,-actions on an affine k-variety X is
equivalent to the study of locally nilpotent derivations on the corresponding
coordinate ring k[X]. In particular, the action induced by D € LND(B) is given
by the exponential map exp(tD), t € G,, and k[X]% =ker D.

In this section, we give some of the basic properties for rings with locally
nilpotent derivations. The reader is referred to [5] for further details on the
subject.
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2.1. Basic definitions and properties
Given D € LND(B), if A=ker D, then A is filtered by the image ideals

I,;=AND"B (n>0) and I:=()I.
n>0
Note that Iy = A and I, C I, for n > 0. We call I the plinth ideal for D, and
we call I, the core ideal for D.

A slice for D is any s € B such that Ds=1. Note that D has a slice if and
only if D: B — B is surjective.

A local slice for D is any s € B such that D?s =0 but Ds # 0. For a local
slice s € B of D, let Bps and Ap, denote the localizations of B and A at Ds,
respectively. Then Bps = Aps[s|, where s is transcendental over Aps. Given
be B, degp b is the degree of b as a polynomial in s, which is independent of the
choice of local slice s. The corresponding Dizmier map 7s: Bps — Aps is the
algebra map defined by

7s(f) :Z (7,1)1Dif- (%)Z for all f € Bps.

1!
i>0

If F is any k-derivation of B which commutes with D, then it is immediate from
this definition that
(1) Eny(f)=ns(Ef) —7ms(Df)E(s/Ds) for all f € Bps.
Let S C B be a nonempty subset, and let £ C R C A be a subring. Define the
subring
R[S,D] = R[D's|s€ S,i>0].

Note that D restricts to R[S, D], and note that R[S, D] is the smallest subring
of B containing R and S to which D restricts.

2.2, The down operator
Let Q = k[zg,x1,22,...] be the infinite polynomial ring, and let Q4 be the ideal

of  defined by
Qp=> 2,-Q
n>0

Let A € LND(Q) denote the down operator on
Az, =x,1 (n>1) and Axg=0.

Then A : Q4 — Q is surjective (see [6, Theorem 3.1]).

The ring Q has a Z2?-grading defined by degx; = (1,i), where each z; is
homogeneous (i > 0). For this grading, A is homogeneous and deg A = (0,—1).
Given 7,5 >0, let €, ;) denote the vector space of homogeneous elements of
of degree (r,s), and let Q. =37 Q¢ o). Then A: Q. o — Q. 51y is surjective
for each r,s > 1.
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2.3. Tree structure induced by an LND
Let B be a commutative k-domain. To any D € LND(B) we associate the rooted
tree Tr(B, D) whose vertex set is B and whose (directed) edge set consists of
pairs (f,Df), where f # 0. Equivalently, Tr(B, D) is the tree defined by the
partial order on B defined by a <b if and only if D"b=a for some n > 0.

Let A=kerD.

(i) Given a,b€ B with b#0, b is a predecessor of a if and only if a is a
successor of b if and only if a < b. Similarly, b is an immediate predecessor of a
if and only if a is an immediate successor of b if and only if Db =a.

(ii) The terminal vertices of Tr(B, D) are those without predecessors, that
is, elements of B\ DB. If D has a slice, that is, DB = B, then Tr(B, D) has no
terminal vertices.

(iii) Every subtree X of Tr(B, D) has a unique root, denoted rt(X).

(iv) A subtree X of Tr(B, D) is complete if every vertex of X which is not
terminal in Tr(B, D) has at least one predecessor in X.

(v) A subtree X of Tr(B, D) is linear if every vertex of X has at most one
immediate predecessor in X.

(vi) If B is graded by an abelian group, then any homogeneous b € B is a
homogeneous vertex of Tr(B, D). A subtree X of Tr(B, D) is homogeneous if every
b € vert(X) is homogeneous. If D is homogeneous, then the full homogeneous
subtree is the subtree of Tr(B, D) spanned by the homogeneous vertices.

3. Cables and cable algebras

3.1. D-cables

DEFINITION 3.1

Let B be a commutative k-domain, and let D € LND(B). A D-cable is a complete
linear subtree § of Tr(B, D) rooted at a nonzero element of ker D. Then § is a
terminal D-cable if it contains a terminal vertex, and § is an infinite D-cable if
it is not terminal.

We make several remarks and further definitions, assuming that B is a commu-
tative k-domain, D € LND(B), I, =ker DND"B (n>0), and Iec =(,50 In-

(i)  If §is a D-cable, then § is terminal if and only if its vertex set is finite,
and $§ is infinite if and only if § C DB.

(i) A D-cable is denoted by 5= (s;), where s; € B for j >0 and Ds; =
sj—1 for j > 1. It is rooted at sg € ker D, which is nonzero. For multiple D-cables
81,...,8,, we will write §; = (sgj)) for 1<i<mnand j>0.

(iii) The length of a D-cable § is the number of its edges (possibly infi-
nite), denoted length($). If § = (s,,) and N =length(8), then so € In, and if § is
terminal, then sy is its terminal vertex.

(iv) Every bekerD\ DB is a terminal vertex of Tr(B, D) and defines a
terminal D-cable of length zero.
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(v) If B is graded by an abelian group, then a D-cable is homogeneous if
it is a homogeneous subtree of Tr(B, D).

(vi) Every nonzero vertex b € B belongs to a D-cable. If two D-cables
5=(s,) and £ = (t,) have s,, =t, for some m,n >0, then m =n and s; =t; for
all  <m. If § and ¢ share an infinite number of vertices, then § = ¢.

(vii) Suppose that B’ C B is a subset with DB’ C B’. If § C B is a D-cable
such that either §N B’ is infinite, or § is terminal of length N and sy € B’, then
scB.

(viii) If P € Q is a polynomial in zg,...,z, and § is a D-cable of length at
least n, then P(8) means P(sg,...,Sn).

(ix) Given D-cables $y,...,8, for n >0, the notation k[$1,...,8,] (resp.,
(51,...,8,)) indicates the k-subalgebra of B (resp., ideal of B) generated by the
vertices of §; for 1 <i¢<n.

(x) Let §=(sy,) be a D-cable of length N. If § is terminal, define the map
¢z : KNt — B by ¢s(2;) =s; for 0 <i < N. If 3 is infinite, define ¢;: Q — B
by ¢s(x;) =s; for all i > 0. Elements of ker ¢5 are the cable relations associated
to §. Note that D¢s; = ¢sA where A is the down operator on Q or its restriction
to KN+,

(xi) Extend D to a derivation D* on B[t] = B! by D*t = 0. If 5(t) = (s, (t))
is a D*-cable and « € ker D is such that so(«) # 0, then §(a) = (sp()) is a D-
cable rooted at sg(c).

EXAMPLE 3.2
Let Q = k[zg,x1,22,...] be the infinite polynomial ring, and let A € LND(Q)
be the down operator. Then & = (z;),;>0 is an infinite A-cable, xy € I, and
Q) = k[Z]. Relabel the variables z; by yy(lj) so that 2 = k[mo,y,(f) In>1,1<j<n)].
Define A € LND(Q) so that, for n > 1,

Ay oy oy DO — g 0.
Then g, := (yﬁﬁ)ogm is a terminal A-cable rooted at zo of length n for each
n>1.If I, is the core ideal for A7 then zo € I, but there is no infinite A-cable
rooted at zg, since otherwise there would exist a homogeneous infinite A-cable
rooted at xg. It is easy to check that this is not the case.

Note that an infinite D-cable § has § C DB and DB is an A-module, where
A =ker D. Therefore, addition and A-multiplication of infinite D-cables can be
defined in certain situations, as described in the next result, which follows imme-
diately from the definitions.

LEMMA 3.3
Let B be a commutative k-domain, let D € LND(B), and let A=kerD.

(a) If $=(sp) is an infinite D-cable and a € A is nonzero, then as = (as;,)
is an infinite D-cable.



332 Gene Freudenburg and Shigeru Kuroda

(b) If 5= (s,) and t = (t,) are infinite D-cables and so+to #0, then §+1 :=
(sn +tyn) is an infinite D-cable.

(¢) If3=(sn) andt = (t,) are infinite D-cables and m € Z has m > 1, define
the sequence u, € B by up, = s, if n <m and uy, =Sy + tp_m if n>m. Then
4 := (uy,) 18 an infinite D-cable.

DEFINITION 3.4
The D-cable 4 in Lemma 3.3(c) is called the m-shifted sum of § and #, and is
denoted by @ = § 4, t.

DEFINITION 3.5

Let I C N be either N\ {0} or {1,2,...,t} for some integer ¢ > 1. Suppose that a
sequence §={8; }ier of infinite D-cables is given, together with a strictly increas-
ing sequence m = {m;};cs of positive integers and a sequence ¢ = {¢;};c; with
¢; € ker D\ {0} for all ¢ € I. Define a sequence of D-cables ; rooted at sgo)

inductively by

U1 = §1 and U1 = Us +m, CiSit1 foriel.
Note that if 4; = (ul(‘j))7 then given j > 0, there exist u/) € B and an integer N;
such that ugj) =l for all i € I with i > N;. The D-cable @ := (u(?)) so obtained

is rooted at Sgo) and is denoted by

@ =lim(s,m, ).
Note that, in this definition, we have 4 = @; when I ={1,2,...,¢}.

EXAMPLE 3.6
Let B be a commutative k-domain, and let D € LND(B). Given nonzero f €

ker D, let exp(fD): B — B be the corresponding exponential automorphism of
B. If §=(s,) is a D-cable, then

Dexp(fD)(sy) =exp(fD)(sp—1) forn>1.

Note that exp(fD)(so) = so, and note that s; € DB if and only if exp(fD)(s;) €
DB. Therefore, exp(fD)(8) := (exp(fD)(s,)) defines a D-cable rooted at sq. If
§ is infinite, then it is given by

exp(fD)(8) = lim(s,m, ),
1,1
where 5= (3,3,5,...),m = (1,2,3,...) and &= (f,§f2,§f3,...).
3.2. Quadratic A-cables

Note that we can view the vector space {2; as being generated by the vertices of
the A-cable & = (x,). Similarly, 25 admits a basis of homogeneous A-cables.
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3.2.1. Monomial basis
Given n > 0, the monomial basis for §3 ;) is

{zoxn, T12THn-1,. .. ,x%} (n even)

or

{xoxn,xlxn,l,...,m%—lx%ﬂ} (n odd).

Therefore, dim (5 ,,) equals (n+2)/2 if n is even or (n+1)/2 if n is odd.

3.2.2. A-basis
Given n € 2N, define 0( € Q2,n) Nker A by

9;10) = Z (—1)11‘1“%”,1‘.

0<i<n

Note that, since n is even, s ;é 0. Since A : Q(g s+1) — (2,5) 1s surjective for all
5 >0, there exists a homogeneous A-cable 6, (9; )) rooted at 6. Note that
0,, is necessarily infinite. By definition, we have Gn € Q(2,n4j) for each j > 0. By
Section 3.2.1, ker AN Q5 4 equals {0} if s is odd, and it equals k - 920) if s is
even (cf. [6, Corollary 3.3]). Therefore, A: Q3 11y = Q2,5 is an isomorphism.
It follows that if én = (053 )) is any homogeneous A-cable rooted at 07(10), then 0%1)
is uniquely determined. It is given by

n+1
00 = (1) iz .
i=1

DEFINITION 3.7
A A-basis for Q is any set {6, | n € 2N} of homogeneous A-cables such that,
given n € 2N, én is rooted at é&o)

LEMMA 3.8
Let {0, | n € 2N} be a A-basis for Qs.

(a) Given j >0, theAset {9%722’) |0<i<j/2} is a basis for Qs ;.
(b) The vertices of 0,, (n € 2N) form a basis for s.

Proof
To prove part (a), we proceed by induction on j > 0. We have that

Qa0 = () = (05
So the statement of part (a) holds if j = 0.
Assume that, for j > 1, the set {955—1—27:) |0<i<(j—1)/2} forms a basis
for Qa j_1). If j is odd, then A: Qe ;) — Q2 ;1) is an isomorphism, and the
set {Qg_gi) |0 <i<j/2} is a basis for Qs ;). If j is even, then the kernel of
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X2

A Qo ) = Q1) is k- 9§0), and again we conclude that {9;172i) |0<i<j/2}
is a basis for Q(, ;). This proves part (a).
Part (b) is an immediate consequence of part (a). O

3.2.8. Balanced A-basis _
We define a particular A-basis for €25 by using binomial coefficients (;) Given

ne€2N and j €N, define 5 € Q04 j) by

n+j .
. (1
B = (-1 J+Z(.)l‘i$n j—i-
> (-1) ; +5

i=j

Note that 67(10) = 97(10).

LEMMA 3.9
Ifne?2N and j > 1, then AR =Y.

Proof
If n>1 and cy,...,c, €k, then
n n—1
(2) A Z Cililp—i = Z(Ci+1 + Ci)xil'nflfi.
=0 =0

Given ¢ € N with 0 <14 < j, we extend the definition of binomial coefficient by
setting (%) =0. Then for all 4,j € N we have

J
)+ = ).
J J—1 J
In addition, we can write

n+j .
. Lt
B = (—1)7F (j>$i33n+j—i~

i=0
By (2) we have

A i1 e
N Gy IR W

=0

S (5 () s

n+j5—1 i
= > -y <j— 1)I¢$n+j—1—i

=0

=pUY, O

We thus see that £, = ( G )) defines a homogeneous A-cable rooted at 0{” and
that {8, } is a A-basis for 22, which we call the balanced A-basis.
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Note that each ﬁy(Lj ) involves at most 7 + 1 monomials. Moreover, the mono-
mials ;24— (j <@ <n+j) are distinct if j > n, meaning that 57(3) involves
exactly n + 1 monomials when j > n.

3.2.4. Small A-basis
Given n € 2N and j € N, let

W(J) (TOTptj, T1Tppje1,-- ,x%$%+j>,

noting that Wy 0 Q2,nyj) and dim W) = n/2+ 1 for all j > 0. Then A:

Wt 5w s an isomorphism, since 0 lﬁl ¢ Wty if j is odd. Since 0" e

W,g , we conclude that there exists a unique A-cable 7, = (1 7(3 )) rooted at Hn

such that 77( D e W for each j >0. We call {#,,} the small A-basis for Q5. Note
that each 77(] ) involves at most 5 + 1 monomials.
It is easy to check that the first three cables in this basis are given by
) = zo;, 0 = (j + 2)wowas; — 112145,
G)_ U+DG+4)

e = - 9
In particular, 7, will be used to give certain 3-term recursion relations (see
Remark 6.6).

oTat; — (J +2)x12345 + ToZoy ;.

3.2.5. Q-ideals
DEFINITION 3.10

Let {0,} be a A-basis for Q.

(1) A Q-ideal is an ideal of Q generated by {6, | n € S}, where S C 2N is
any nonempty subset.
(2) Given n € 2N, the corresponding fundamental Q-ideal is

Q, = (énvén+2,én+4, . )

LEMMA 3.11
For any Q-ideal I, AI =1.

Proof

Since Af, = 0,, for each n € 2N, we see that AT C I. To verify AI D I, it'sufﬁces
to show that, for each n with 0, C I, each i >0, and f € 2, we have f@gf) e Al
Choose m such that A™f =0, and define g € I by

3

9= > (~1 A (PR,

<.
Il
=)

Then, Al contains

,_.

(H‘J) + AJ+1(f)9£li+j+1)) — fgg).

J=0
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LEMMA 3.12
The following properties hold.

(a) Q02 Q2D QsD---.
(b) Given n € 2N, Q,, is independent of the choice of A-basis.
(c) Q. C(xo,...,x2_1)" "'+ Qp for each integer r > 1 and n € 2N.

Proof
Part (a) is clear from the definition.

For part (b), let {f,,} be the given A-basis, and let {/i,,} be any other
A-basis for Q5. For each n € 2N, define @-ideals

Qn:(énaén+27én+4wn) and Qn:(ﬂnaﬂn+2»ﬂn+4w-')~
By part (a), it suffices to check ugj) € Q, for each integer j > 0. By
Lemma 3.8(a), there exist ¢; € k, 0 <i < (n+5)/2, such that
i n+j—2i
M'ELJ) = Z Cleéz +i )
0<i<(n+j)/2

Since dega ug) =j, dega =n+j — 2i, and the integers n + j — 2¢ are
distinct for distinct i, it follows that ¢; =0 when n 4 j — 2i > j, that is, when
n > 2i. Thus, we obtain

W- Y gt ea,
n/2<i<(n+j)/2

aé?"rj—%)

This proves part (b).

We prove part (¢) by induction on r, where the case r =1 is clear. Fix n € 2N
and the integer r > 2, and let £ € ), be given. Observe that £ may be written
as a sum of elements of Q(,_z) - 2. Since the vertices of the small A-basis {7, }
form a k-basis for Qo by Lemma 3.8(b), we may write

. n/2—1 . .
£= ZZL(%J)U%) = Z ZL(%J)U%) + Z ZL(Qi,j)ngi)7
i>0 j>0 i=0 j>0 i>n/25>0

where Lg; j) € Qr 2. If 0 <4 <n/2, then ng) € WQ(Z) Cmwo+ -+ Nwa_g.
Also, by part (b) we have

Qn - (ﬁnaﬁn+27ﬁn+47 .. )

Together, these imply & = &oxo + -+ + {1221 + ¢ for some &,...,{n 1 €
Q,_1 and & € Q,,. By the induction hypothesis, we have &, ... §z1 € (zo,- ..,
x%,l)T'_Q + 9,,. Therefore, £ belongs to (xo, ... ,x%,l)T'_l + Q.. O

3.3. Cable algebras
DEFINITION 3.13
Let B be a commutative k-domain.
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(a) B is a cable algebra if there exist nonzero D € LND(B) and a finite
number of D-cables §,...,38, such that B = A[51,...,8§,], where A=kerD. In
this case, we say that the pair (B, D) is a cable pair.

(b) B is a monogenetic cable algebra if B = A[§] for some cable pair (B, D)
with A =ker D and some D-cable $.

(c) B is a simple cable algebra over k if B = k[§] for some D-cable §, where
D € LND(B) is nonzero. A simple cable algebra B is of terminal type if § can be
chosen to be a terminal D-cable.

We remark that if there exists nonzero D € LND(B) for which B is finitely
generated as an algebra over ker D, then B is a cable algebra.

EXAMPLE 3.14
Let B be a commutative k-domain, let D € LND(B), and let A=ker D. If

SCB\(AUDB) and |S|=n>1,

then there exist terminal D-cables §1,...,8, such that A[S, D] = A[$1,...,8,].
Let D’ be the restriction of D to A[S, D]. Then D’ 0, A[S, D] is a cable algebra,
and (A[S, D], D’) is a cable pair.

EXAMPLE 3.15

Given n>1, let B, = k[zo,...,z,] = k"1 and let D, be the restriction of the
down operator to B,,. The classical covariant rings A,, = ker D,, are known to be
finitely generated over k, but have been calculated only for n <8 (see [6]). Since
0/0x,, commutes with D,, d/0z, restricts to A,. If we denote this restriction
by d,, then kerd, = A, _1. Therefore, each A,, is a cable algebra. In particular,
Ay = k[zo] = kM (see Lemma 3.16(a)); Ay = A;[3], where 5 is the do-cable of
length 1 with terminal vertex s, = 2xoxy — x7; Az = Ay[t], where £ is the d3-
cable of length 2 with terminal vertex

ty = 9223 — 18xow 1073 + 62513 + 8202 — 3wiX3;
and Ay = As[a, 0], where 4,0 are the d4-cables of length 1 with terminal vertices

Uy = 2x9xy — 20123 + :c%

and

v = 12x¢x004 — 6x§x4 — 9x0$§ + 6x12013 — 239‘;’.

The rings As, A3, A4 are calculated in [5, Section 8.6]. The rings As, ..., Ag are
considerably more complicated, and it would be of interest to analyze their cable
structures.
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3.4. Simple cable algebras

A natural goal is to classify the simple cable algebras of finite transcendence
degree over k according to transcendence degree. We start with the following
observation.

LEMMA 3.16 (a) kM is a simple cable algebra over k of nonterminal type.
(b) For each n>2, k™ is a simple cable algebra over k of terminal type.

Proof
Let B = k[t] = k[, and let d/dt denote the usual derivative. Define the sequence
t, = " Then ¢ = (t,) is an infinite d/dt-cable and B = k[t]. Therefore, B = k!
is a simple cable algebra. In addition, any nonzero D € LND(B) has a slice, so
Tr(B,D) has no terminal vertices. Therefore, B is of nonterminal type. This
proves part (a).

For part (b), let B = k[zy,...,z,] = k™, and define D by Dx;y; = x; for
i>2 and Dz; =0. Note that x,, ¢ (DB) = (x1,...,2n—1). Therefore, & = (x;) is
a terminal D-cable and B = k[z]. O

Suppose that B is a cable algebra with tr.deg, B = 1. Then B = LM where L
is an algebraic extension field of k (see [5, Corollary 1.24]). Therefore, when k
is algebraically closed, B is simple (over k) if and only if B = kM. When k is
not algebraically closed, there are simple cable algebras over k other than k.
For example, consider the usual derivative D = d/dx on the ring B = Q[v/2,z] =
Q[v2]M. We have that § = (v/22"/n!) is a D-cable and B = Q[3], but B # QI.

For simple cable algebras of transcendence degree 2, we give several illustra-
tive examples.

EXAMPLE 3.17

Let B = k[z,v] = k¥, and let D =0/0v. If s, = Lo™ for n >0, then § = (s,) is
a D-cable rooted at 1. Let = § +5 x5 be given by # = (t,,). Then B = k[{], since
k[t] contains t; = v and to = 2 + $v2. This shows that a simple cable algebra of
terminal type can also be generated by an infinite D-cable for some D.

EXAMPLE 3.18

Continuing the notation of the preceding example, we see that the subring k[z3]
of k[z,v] is a simple cable algebra which is not finitely generated as a k-algebra
and therefore not of terminal type. More generally, let D = 9/dv, and let p,(v)
be any infinite sequence of polynomials in k[z, v] with Dp,, (v) = p,—1(v) forn > 1
and po(v) € k[z] \ k. Then p:= (p,(v)) is a D-cable and k[p] is a simple cable
algebra of transcendence degree 2 over k.

EXAMPLE 3.19
Let B = k[yo,y1,y2] where 2ygys = y3. Define D € LND(B) by y2 — 41 — 9o — 0.
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It is easy to see that yo ¢ DB. Therefore, §:= (y,) is a terminal D-cable and
B =k

EXAMPLE 3.20

The ring B = k[z0, 21, 22] where 22225 = 27 is not a simple cable algebra. To see
this, let D € LND(B), and let a D-cable § = (s,,) be given. Define E € LND(B)
by 22 — 21 — 22 — 0. It is known that LND(B) = k[zo] - E (see [10]). Therefore,
DB C J = (28,71). Assume that k[3] = B. If s, € DB for every n >0, then
B/J = k. However, if m: B — B/J is the canonical surjection, then m(z2) is
transcendental over k, so this case cannot occur. Therefore, s, ¢ DB for some
n > 0, meaning that s, is a terminal vertex and sg,...,s,—1 € J. It follows that
B/J = k[n(s,)] = kM /(p) for some p € KN\ k*. If p =0, then B/J is an integral
domain, a contradiction. If p # 0, then every element of B/J is algebraic over k,
a contradiction. Therefore, k[$] # B.

3.5. Cable relations for S

Define the simple cable algebra S C k[z,v] = k2 by S = k[z3], where § = (4v").
THEOREM 3.21

We have S 22, 2/ Qy. Consequently, Qs is a prime ideal of Q.

Proof
The surjections ¢z : Q — k[v] and ¢,s: Q2 — S are given by

ds(xy) =84 and Opz(xy) =x8; (1 >0).

Let g € ker A be given, and let {0,} be a A-basis for Q. If d/dv denotes the
standard derivative on k[v], then we have

d d
(3) 0=0¢sAg=—¢sg = ¢sg€ker— =k = g€ek+keros.
dv dv

If n > 2 is even, then ¢§0£L0) = X" for some A\ € k. Therefore, 9%0) € ker ¢; for
each even n > 2.
Given an even integer n > 2, assume that 953) € ker ¢ for some j > 0. We
have
0= ¢§9(j) — ¢AA9(J'+1) — i(bAg(j-H) = ¢A9(j+1) < ker i =k
" ST dv’ 5" son dv
As before, since n > 2, we must have ¢>§9£Lj D — 0. Tt follows by induction that
955 ) € ker ¢s for every even n > 2 and every j > 0. Therefore, Qs C ker ¢;.

Given r > 2 and P € §,., note that ¢,;P = x2"¢;P. Therefore, if P € Q is
homogeneous, then P € ker ¢, if and only if P € ker ¢5. In particular, this implies
Q> C ker G-

Suppose that P € Q, Nker ¢,3. By Lemma 3.12(c), we see that P € (zo)" ! +
Qs. Write P = nglL +Q for L€ and Q € Qs. Since the element P and
the ideals (z)"~! and Qo are homogeneous, we may assume that L and @ are
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homogeneous. By degree considerations, L € 2;. We have that acS*lL € ker ¢5.
If L #0, then since ker ¢,; is a prime ideal, either zg € ker ¢,5 or L € ker ¢35,
a contradiction. Therefore, L =0 and P € Q5.

We have thus shown €2, Nker ¢,3 C Qs for all » > 2. This suffices to prove
ker ¢,5 = Qs. O

4. The derivation D in dimension 5

4.1. Definitions
Define the polynomial ring B = k[a, z,y, z,v] = kl’l. We define the locally nilpo-
tent derivation D of B by its action on a set of generators

z—)y—>x—>a3, v—>a2, a— 0.

Define A =ker D and R = kla,x,y, 2], noting that D restricts to R. In fact,
D restricts to a linear derivation of the subring k[a®,,y, 2|, and this kernel is
well known. Let kt,z,y, z] = k%, and define the linear derivation D on this ring
by z =y —x —t— 0. Then ker D = k[t, F', G, h], where (see [5, Example 8.9])
F =2ty — a2, G =3t%z — 3tay + 2°, and t?h=F3 + G2
Note that the restriction of D to R is equal to the kla]-derivation idy, ®D
on kla] @y k[t, 2, y,2] = R, and its kernel RN A is equal to ker(idg[, ®D) =
k[a] ®ppy ker D. Therefore, if F = ﬁ'|t:a3, G= é|t:a3, and h = ﬁ|t:a3, then
RNA=k[a,F,G,h], where a®h=F>3+4 G2
Specifically,
F =2a3%y — a2, G =3a%z — 3a®zy + 23,
h = 9a°2? — 18a3xyz + 8a3y® + 6232 — 3229
Define a Z2-grading of B by declaring that a,z,y, z,v are homogeneous and

deg(a,z,y,2,v) = ((1,0),(3,1),(3,2),(3,3),(2,1)).

Then D is a homogeneous derivation of degree (0,—1) and A is a graded sub-
ring of B. Given integers r,s > 0, let B, ) be the vector space of homogeneous
polynomials in B of degree (r, s), and define

A(r,s) =AnN B(r,s)~
Then we have
Fe A(ﬁ,g), Ge A(9,3), he A(lg,ﬁ).

Since k[a, F,G,h] = RN A =Xker D|p is factorially closed in R, we see that F', G,
and h are irreducible by degree considerations. Note that [D,0/dv] = 0, that is, D
commutes with the partial derivative 0/9v on B. Therefore, 0/Jv restricts to A.
If O denotes the restriction of 9/0v to A, then 0 € LND(A) and 0 is homogeneous
of degree (—2,—1).

The following result is needed below.
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LEMMA 4.1
Given n >0, write n=06e+ £ fore>0 and 0 < <5.
(a)
he)y €=0
{0} £#£0.
(b)
(a?h®) £=0,
RO Agnion) =4 (Fh) (=2,
{0} £=1,3,4,5.
Proof

Since RN A = k[a,F,G,h] with a, F, G, and h homogeneous, each k-vector
space RN A, is spanned by monomials in a, F', G, and h. If the monomial
a®* F2G%h € R (e; € N) has degree (2n + 1,n), then

e1 + 6es +9e3 + 12e4 =2n + 1,
2eq + 3e3 + 6e4 =n.

The solutions to this system are e; =1, e = e3 =0, and 6e4 = n. This proves

part (a).
Similarly, if deg(a®* Fe2G®h®) = (2n + 2,n), then

e1 + 6es +9e3 + 12e4 = 2n + 2,
{262 + 3e3 + 6eq4 =n.
The solutions to this system are
{e1=2,e0=e3=0,n=0e4} and {e1 =e3=0,e0=1,n="06e4 + 2}.
This proves part (b). O

4.2. Homogeneous J-cables
Let S, denote the set of infinite homogeneous J-cables rooted at a.

THEOREM 4.2
We have S, # 0.

Proof
We show that there exists a sequence s, € A, n >0, such that

(a) so=a,
(b) sy € A(2p41,n) for each n >0,
(¢) Osyp = 8p—1 for each n > 1.
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Let d denote the restriction of D to the subring @ C B defined by Q = k[t, z,
y, 2] = k[, where t = a®. Then d is a linear derivation defined by

z—=y—x—>t—0.
In addition, d is homogeneous of degree (0, —1) for the Z?-grading of @ for which
deg(t, 2,y,2) = ((1,0),(1,1),(1,2),(1,3)).

Let Q) denote the vector space of homogeneous polynomials in @ of degree
(r,s). Then according to [6, Proposition 4.1], the mapping

d: Q(r,s+1) — Q(r,s)

is surjective if 2s < 3r. Thus, given m > 1, each mapping in the following
sequences of maps is surjective:

d d
L Qem3m) C Qemt1,3m) < Q@m+1,3m+1) & Q@m+1,3m+2)
and
d
t- Q(27rL—1,3m—1) C Q(27n,37n—1) — Q(2m73m)'

Consequently, there exists a sequence w, € ), n > 0, such that wy =1, and for
all m >0,

W3m € Q(2m,3m)> W3m+1 € Q2m+1,3m+1)> W3m+2 € Q2m41,3m+2)5
where
dwsm4+3 =1 - W42, dWsm+2 = Wam+1, dwsm41 =1 - W3
With the sequence w,, so constructed, it follows that, for m > 1,
D3 ws,, = d*wsy, = t%’lUg(m_i) = aGiwg(m_i) = (Dv)giwg(m_i) (0<i<m).
Therefore, for 0 <i <m, we have

(l) DBi(aw?)m) = a(Dv)giw?)(m—i),

(ii) ‘D3i+1(aw3m) = d(a(Dv)*wzm—sp) = a(Dv)¥twgpm_p-_1 =
az(Dv)31+1w3(7rL—i)—1a ‘ ‘
(iii) D32 (awsy,) = d(a®(Dv)* M wsm_i-1) = a*(Dv)*Mws(,_y—2 =

(Dv)3i+2w3(m—i)—2~
We see that
(4) (Dv)? divides D’ (aws,) for each j (0 < j < 3m).

Therefore, if we define s3,, = (—1)>™, (aws,,) for m >0, then s3,, € A for each
m > 0. Using (1) in Section 2.1, it follows that for m > 1

3 2 9 v
gotom = gt mlabusm) g o
_ 0 3m—2 9 1 0w
=gt el wsn) 55
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1
= (71)3m*37rv(aD3w3m)—4 —

2 v
a* Ov a?
= (=1)*"my (a(a®)’w3(m-1)) %
= (-1)*" V', (aws(m_1y)
= S3(m—1)-

Define
0 0

$3m—1= - S3m and $3m-2 = 5 53m-1 (m>1).

Then 5 := (s,,) is a d-cable rooted at a with s, € A(2541,) for each n>0. O

REMARK 4.3

Let 8 = (sn) € Sa be given. Since dim A (9,41, =1 for n=0,...,5, the elements

80, - -, 85 are uniquely determined (see Corollary 5.5(a)). They are given by
0!50 =a,

sy = av —z,

2lsy = av? — 2zv + 24y,

3lsg = av® — 3zv? 4 6ayv — 6az,

Alsy = avt — dzv® + 12ayv® — 24a’ 20 + 24a3xz — 124392,

5lss = av® — baxvt 4+ 20a’yv® — 60a* 20?4+ 120a3z2v — 60a’y*v — 722262

+ 36za’y® + 24a°yz.
Note the identities
F = 2559 75%, fG:35353 73505152+s?,
()
258084 = 28183 — 53, 5S0S5 = 35184 — S2S53.

5. Generators of A and A

The main result of this section is the following.

THEOREM 5.1
Let §=(sp) €S, be given.
(a) A=klh,3].

(b) A is not finitely generated as a k-algebra.
(c) The generating set {h,sp}tn>0 is minimal in the sense that no proper
subset generates A.
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5.1. Generators of A

Let m: B — B/hB be the canonical surjection. Given b € B, let b denote 7(b),
and for a subalgebra M C B, let M = n(M). Since h is homogeneous, 7 induces
a Z2-grading on B, and A is a graded subring with

A(r,s) = 7T(‘A(r,s))'

Note that, since h is irreducible, hB is a prime ideal of B. Hence, B/hB and its
subring A are integral domains. Since D(h) =0, we have hB N A = hA. Indeed,
if P € B is such that hP € A, then hDP = D(hP) =0, and hence DP = 0. Thus,
A= A/hA and so hA is a prime ideal of A. Since h € kerd, we can define § €

LND(A) by én(g) =79(g). Then 6 is a homogeneous locally nilpotent derivation
of A of degree (—2,—1). Recall that kerd = RN A = k[a, F,G, h)].

LEMMA 5.2
We have ker § = r(ker 9) = k[a, ', G].

Proof
It must be shown that 971(hA) = RN A + hA. The inclusion RN A+ hA C
071(hA) is clear. For the converse, we first show that if H = RN A+ hB, then
HnNaB=aH.

Since RN A= k[a, F,G,h] and F? + G? € hR, we have

H = kla, F] + kla, FG + hB.

In addition, H is a graded subring of B, and if g € H, ), then g € k[a, F| 4+ hB
for s even and g € kla, F]G + hB for s odd. Write g = p(a, F)G® + hp, where
pe kB, p€ B, and € € {0,1}. If g € aB, then setting a = 0 yields the following
equation in k[z,y, z,v]:

(hp)la=o = 3% (222 — y*)pla=o = —p(0, —2®)2’ € k[z].

This means p € aB, since 22z —y? is transcendental over k[x]. Therefore, p(a, F') €
aB, and since RN A is factorially closed in B it follows that p(a, F) € a(RN A).
So g € aH. This shows that H NaB =aH.

Suppose that f € A and df € hA. Let L € R be such that f = L(v) =
> FLD(0)v'. We have

Df=LWDw)ehAd Vi>1 = LOD0)ehR Vi>1.

Therefore, f =hg+r for ¢ € B and r = L(0) € R. Tt follows that 0 =Df =
hDgq + Dr, which implies Dr € RNhB = hR.

The restriction of D to R has kernel RN A and local slice z. So there exist
n>0and Pe(RNA)M with a"r = P(z) =Y, 2PV (0)z’. We thus have

a"Dir=P9(z)a* ehR Vi>1 = PY(x)ehR Vi>1
= PY0O)eh(RNA) Vix>1.
Therefore, a™r € (RN A)+h(RNA)[z] C H.
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By repeated application of the identity H NaB = aH, we have that H N
a"B =a"H. It follows that a"r € HNa"B =a"H. Therefore, r € H and f =
hq+r € hB+ H = H. Since A is factorially closed in B, we conclude that f €
RNA+hA. O

Given § = (s,) € S,, we have sp =a ¢ hB, and so 3y # 0. Since ém = 70, we
see that 75 := (5,) is a d-cable. If ¢,5:Q — A is the associated mapping, then
OrsA = 0¢rs (cf. Section 3.1(x)). We also note that ker ¢,z is a homogeneous
ideal of Q, since ¢r3(2(r,s)) C A(gsﬂ)s) for each r,s > 0.

THEOREM 5.3
We have that ¢rz is surjective.

Proof
Define
A/:¢W§(Q) :k[ﬂ'§], AI_,'_ :¢ﬂ-§(Q+), and /(r,s) :Alﬂ/_l(r’s).

Since A: Q4 — Q4 is surjective and ¢ 3A = d¢rg, it follows that the mapping
d: Al — A, is surjective. In addition, define

C =kerd and C(r,s) =CnN A(r,s)-
Then from Lemma 5.2 and (5) we see that
(6) C=kla,F,G), F =25055 — 53, —G = 35253 — 3505152 + 55.

Therefore, C' C A’ and kerd| 4 =C.
Fix ¢ € Z. We show by induction on n that, for each integer n > 0,

(7) A/(2n+f,n) = A(QnJrf,n)'

For n =0, it is easy to see that Ao = {0} if £ < 0. If £>0, then Ay =
(a'y = (5§), since B0y = (a’). So (7) holds for n = 0. Since B 1) = (v), we have

Aly 1) =A(2,1) ={0}. Hence, (7) also holds for n=1 and {=0.
Given n > 1, assume that
(n,0) #(1,0)  and - +en-1) = A@n-1)+em-1)-
Since ¢ : A — Al is surjective and A, =B, 40,0 A’(r,s)7 it follows that
5Al(2n+e,n) = A/(Q(n—l)—i-l,n—l) = A(Z(n—l)-‘ré,n—l)'
Since Al(2n+l,n) C A(2n+37n), we have
Aam-1)+tn-1) = 0A(an10m) C 0A@nten) C A@n-1)+6m-1),

which implies 6A/(2n+€,n) = 0A(2n+0,n)- Therefore,

dim A(Qn_l'_[,n) = dim C(2n+£,n) + dim 51‘1(2”4_5,”)

=dim C(2n+l,n) + dim 5A22n+[,n) = dim A/(2n+f,n) .
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It follows that A22n+€ n) = A(2n+¢,n). By induction, we conclude that (7) holds
for all n > 0. O

COROLLARY 5.4
Let § = (sp,) € S, be given.

(a) A=k[n3].

(b) A is not finitely generated as a k-algebra.

(c) The generating set {5, n>0 s minimal in the sense that no proper subset
generates A.

Proof
Part (a) is implied by Theorem 5.3. For part (b), let ¥ C N? be the degree
semigroup of A. Then part (a) implies that

Y={((2n+1,n)|n>0).

It will suffice to show that X is not finitely generated as a semigroup. However,
this is obvious, since the element (2n+1,n) does not belong to the subsemigroup
generated by (2i+ 1,7) for ¢ <n. This proves part (b). In fact, (2n 4+ 1,n) does
not even belong to the larger subsemigroup generated by (2¢ + 1,%) for i # n, and
this implies part (c). |

5.2. Proof of Theorem 5.1

Set I' = k[3]. Then I' is a graded subring of A, where I'(, ,y =T N A, . By
Corollary 5.4(a), each g € A has the form g =+ + h-«a, where vy € I" and o € B.
Since g,v,h € A, it follows that oo € A. Write

Y= Z’Y(r,s) and o= Z A(r.s)s

where (.. 5) € I(.5) and a5 € A(, ) for each 7,5 € Z. Then the homogeneous
decomposition of g is

g= Z (’Y(T',S) +h- a(r—12,5—6))'
(r,s)

When g is homogeneous, there exists (r,s) such that g =y o) +h-p_12,5-6)-

For each fixed 7 > 0, we show by induction on s that A, ;) C I'[h]. We have
A(r0)=k-a” CT, which gives the basis for induction. Given s > 1, suppose that
Ay CT[h] for 0 <i<s—1. Given g € A(, 4, Write g =y o) +h-Q(r_12,5—¢) as
above. By the induction hypothesis, we have that o(,_12 5_¢) € I'[h]. Therefore,
g € T'[h]. We conclude that A, ;) C I'[h] for all (r,s) with 7,5 >0, and therefore,
A CT'[h]. This proves part (a).

Part (b) is immediately implied by Corollary 5.4(b) and the fact that A is
the image of A under a k-algebra homomorphism.

For part (c), note that Corollary 5.4(c) implies that any generating subset of
{h, $n}n>0 must include each s,,. We also cannot exclude h, since (12,6) does not
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belong to the degree semigroup generated by {(2n + 1,n) | n > 0}. This proves
part (¢) and completes the proof of Theorem 5.1.
For the next result, the reader is reminded that A, sy = {0} if r <0 or s <0.

COROLLARY 5.5
Let §=(sp) € Sy. Givenn >0, let e >0 be such that 0 <n — 6e <5.

(a) A(2n+1,n) =k s, ®h- A(2(n—6)+1,n—6) .
(b) dim A(2n+1,n) =e+1.
(c) A basis for Ani1,n) 15 given by {81, 5n—6h, 8n_12h>, ..., 8n_cch®}.

Proof

Part (a) is implicit in the first paragraph of the proof of Theorem 5.1 with (r,s) =
(2n+1,n), since I'(gp41,) = k-5, and s, ¢ hB. It follows that A(g,i1,0) =k - sp
for n=0,...,5. Therefore, using part (a), we get parts (b) and (c) by induction
on n. (]

REMARK 5.6
Consider the field k(h) = k) and the k(h)-algebra k(h) @ A = k(h)[$]. Since
Oh =0, d extends to a locally nilpotent derivation d of k(h)[3], 4 is a O-cable,

and k(h)[8] is a simple cable algebra over k(h) which is of transcendence degree
3 over k(h).

5.3. The O-cable ¢

THEOREM 5.7

There exists a unique 6 = (0y,) € S, such that nlo, = —nzv"~! (mod aB) for
each n > 1. In addition, & satisfies the following.

(a) Ifn,e>0 with n#1, then cgo1h® ¢ (0;0n—i | 0 <i<n/2,i#1).
(b) If n,e>0 with n#2, then Fhe ¢ (o;0,_; |0<i<n/2).

Proof

Given P € B, let P(0) denote evaluation at v =0. An explicit sequence w, €
k[t,x,y, z] of the type used in the proof of Theorem 4.2 is constructed in [5, Sec-
tion 7.2.1], and in this example, w,, has the property that ¢ divides w,, whenever
n>4and n=1 (mod 3). Let 6 = (0,,) € S, be the d-cable constructed from this
sequence. Given m > 1, it follows from the definition of the functions s, = o,
given in the proof of Theorem 4.2 that

, , v 1 ' v
o3m = (—=1)*"awsz,, — D((—1)*"aws, ) 5+ §D2((—1)3maw3m) e
Since 003, /OV' = 03,,_; for 0 < i < 3m, this implies that
U37TL(0) = (_1)3maw3m’ U3m—1(0) - (_1)3m_1a2w3'm—1a

03m—2(0) = (=1)*" w3, _».
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Since t = a® divides w3, o for m > 2 and 0¢(0) = 0¢ = a, it follows that a divides
0, (0) for all n >0 with n # 1. We now show by induction on n that

(8) a divides P, (v):= (n — 1)lo, + zv"" 1 (n>1).

First, observe that Corollary 5.5(b) implies that the functions oy, ..., o5 are
uniquely determined. In particular, we have o1 = av —x (see Remark 4.3). Hence,
property (8) holds for n=1.

Given n > 2, assume that a divides P;(v) for 1 <i<n — 1. We have

P (w)y=n—-1o, 1+ n—1zv" 2= (n—-1)P,_1(v).

The inductive hypothesis implies that P, (v) € aB, which means P, (v) — P,(0) €
aB. Since P, (0) = (n—1)!0,(0) € aB, we conclude that P,(v) € aB for all n > 1.
This proves the existence of & = (0,,) € S, such that nlo,, = —nzv" ™! (mod aB).

For uniqueness, let § = (s,,) € S, be such that nls, = —nazv"~! (mod aB)
for n > 1. Choose N > 1 such that 6 does not divide N, and let e > 0 be such
that 1 <N —6e < 5. By Corollary 5.5(c), a basis for Aiany1,n) is given by

/ / / 2 / e o
SNy Sn_ghs Sny_12h°, ..., SnN_gch®, where s, :=nls,.

Therefore, there exist ¢; € k with Nloy = cosy +c18y_gh+- -+ cesy_g.h¢. The
substitution a + 0 yields

~NzoV =t = —¢gNavV =t — ¢ (N = 6) 20N ~"h — - — co(N — 6e)axv™ =1 (n')°,

where h' = 322 (222 — y?). This implies that ¢ =1 and ¢; = --- = ¢, = 0, meaning
that o = sn. Therefore, 6 and § agree on an infinite number of vertices, which
implies that 6 = § (see Section 3.1(vi)). This proves the uniqueness assertion.

To prove properties (a) and (b), recall that ¢;(0) € aB for all ¢ > 0 with i # 1.
Hence, 0;(0)o,_;(0) €a?B (0<i<n/2,i#1)if n#1, and 0;(0)0,,_;(0) € aB
(0 <i<n/2)if n+#2. To show (a), suppose that ogo1h® € (0;0,—; | 0 <@ <
n/2,i#1). Then, we have

—azh® = (0901h®)|v=0 € (0i(0)0,—:(0) | 0< i <n/2,i# 1) Ca’B,

and so xzh® € aB, a contradiction. Since Fh® € R\ aB, property (b) is proved
similarly. O

We remark that Theorem 5.7(b), together with Lemma 4.1(b), implies RN
Aanta,n) Nos(Qany) ={0} if n=2 (mod 6) and n # 2.

COROLLARY 5.8

Let S C k[z,v] = kP be the subalgebra S = k[z,zv,2v?,...]. Given X\ € k, put
Jy=aA+ (h—X)A. Then A/Jy is isomorphic to S. In particular, Jy is a prime
ideal of A for each A € k.

Proof
Let 6 € S, be as in Theorem 5.7. By Theorem 5.1, we have A = k[h, 6].
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Given f € B, let f(0) denote the evaluation of f at a = 0. Since D(a) =0, we
have aBN A =aA. Indeed, if b € B is such that ab € A, then aD(b) = D(ab) =
and so D(b) = 0. Hence, the kernel of the map A — B defined by f — f(0) equals
aA. Therefore,

A= A/aA > k[h(0),00(0),01(0),02(0),...] = k[h(0),z,zv,20%,.. ]
= S[h(0)] = s,

The last equality holds because h(0) = 62°2z — 322y is transcendental over k[z,v].
We conclude that

A/ Ty = A/ (h(0) = M)A S, O

6. Relationsin A

We continue the notation of the preceding section. The main goal of this section
is to show the following.

THEOREM 6.1
For every § €S,, we have ker ¢,3 = Q4. Consequently, A=, Q/Q4 and Q4 is a
homogeneous prime ideal of €.

6.1. Quadratic relations ‘
Let § € S, be given, and let {0,} be a A-basis for 3, where 0,, = (953)) for
given n.

LEMMA 6.2 (a) If n>4 is even, then 0% € ker ¢rs holds for any j > 0.
(b) <9(()]),0§J72)> Nker ¢,z = {0} holds for every j >0, where 95]72) =0 if
j=0,1.

Proof
(a) Fixing n > 4, we proceed by induction on j to show that 053 ) € ker ¢35 for
each 7 > 0. We have

5ra(0) = o AOD) =0 = $:(0) € kerd = k[a, F, G).

From line (5) in Remark 4.3, we have that F = ¢s(2v9z2 — 2?) and —G =
brs(31323 — 3T0m1 72 + 23). Therefore, there exists P € ker ¢,z N (2,n) such that

9510) — P € k[xo, 2zoms — 23, 32523 — 3wox120 + 23] Ny
=k-ag+k- (2010 — 27) C Q20) + Q2.2)-

Since 97(10),P IS Q(Qyn) and n >4, we conclude that 97(?) = P € ker ¢.;. This gives
the basis for induction.
Assume that 9(]71) € ker ¢, for j > 1. Then

0=0ms(07 1) = s A(0Y)) = 65 (0)) = ¢rs(05)) € kerd.
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Since 97(«3‘) € Q2,n+tj), we conclude as above that 97(«3‘) € ker ¢r3. This proves
part (a).

(b) Since Héj) =xoz; ¢ ker ¢z for j =0,1, the assertion holds for j =0,1.
By Lemma 3.8(a), we have

(65(057), 05(05)) = 65(Q2.2)) = 85 (857, B)) = (asa, 53).

Since dim(asz,s) =2 and (asa, s7) NhB C B(g2) N hB = {0}, the assertion also
holds for j = 2. We prove the case j > 3 by contradiction. Let j > 3 be the smallest
integer for which there exists (0,0) # («, 3) € k? such that f:= a9(()j) + ﬁ9§j72) €
ker ¢5. Then

0=0rs(f) = 0=06ns(f)=bnsA(f) = bms(ab ™V + I~

and so ae(()j 4 ﬂ@éj =) € ker ¢rs. This contradicts the minimality of j, proving
part (b). O

Combining Lemmas 3.8 and 6.2, we obtain the following result.

LEMMA 6.3 (a) Given j >4, the set {95]1-._21-) |2 <i<j/2} is a basis for Q3 ;)N
ker ¢s.
(b) The vertices of 0,, (n € 2N, n>4) form a basis for Qo Nker ¢rs.

6.2. Proof of Theorem 6.1

Note that, by Corollary 5.5(a), if € S,, then 7t = 74. So there is no loss in

generality in assuming that § = &, where 6 is the 0-cable specified in Theorem 5.7.
By Lemma 6.3(b), the ideal generated by Qs Nker ¢s equals Q4. Since ¢4

is a homogeneous ideal of §2, it suffices to show that

Qo) Nkergrs CQu (r,5>0).

Let nonzero ¢ € Q(, 5) Nker g5 be given (r,s >0). Then r > 2. We prove ¢ € Qq
by induction on r, where the case r =2 holds as mentioned. Assume that r > 3.
By Theorem 3.12(c) we have

Q. C (zg,21)" ' + Q4.

So it suffices to assume that ¢ € (zg,71)"~!. By degree considerations, we see
that ( is a linear combination of the monomials

J;S_l_lx’lxs_,» such that r —i—1,4,s — 7 > 0.

Suppose that zy does not divide . Then s —r+ 1> 1, and there exist (p € 2,1
and nonzero ¢ € k with { = x¢(y + qu_lxs_rﬂ. Since (¢ € ker ¢r5, we see that
¢5(¢) € hA, which implies that, for some ¢ € A,

9) coy  os_ri1 = hg — ads (o).
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By Theorem 5.7, we have that nlo, = —nzv" !(mod aB) for each n > 1. From
(9), it follows that
c
(s —7)!
Since ¢ # 0, this is a contradiction. Therefore, x divides (. If { = zq(y for (o €
2, then (o € Qp_1,5) Nkergrs. We conclude by induction on r that (o € Qy.
Therefore, ¢ € Q4. This completes the proof of Theorem 6.1. O

(—2)"v* ™" =32*(222 — y*) - qla=o-

EXAMPLE 6.4
Consider the well-known cubic A-invariant given by

&= 2:r§’ + 9x0x§ — 6x12073 — 12202204 + 6x%m4.

Let 6, be a A-cable rooted at 94(10) such that

9
94(12) =5r1T5 — 8ToTy + 53:%, 9511) =dxgT5 — 3T1T4 + To2T3,

04(10) = 2xr9x4 — 20123 + a:g
We have
1
56 = I00§2) — Ilail) +I20i0) € Q4.

Notice that, to express £ € k[xg, 21,22, x3,24] by using quadratics in Qy, it was
necessary to use .

EXAMPLE 6.5
Since the transcendence degree of A over k is 3, 5,51, 52,53 are algebraically
dependent in A. Their minimal algebraic relation is quartic and can be obtained
as follows.

Let & be as in the preceding example. The x4-coefficient of £ is —6(950)7 and
the z4-coefficient of 94(10) is 2xg. Thus, to eliminate x4, we take

X = 30&0)9510) + 20& = 923 — 3wind 4 8xoxd — 18xgw  wows + 623 w3,

We see that x € k[zg, 21,22, 23] Nker AN Q4. Since x is irreducible, x is a minimal
algebraic relation among 5S¢, 51, 52, and §3.

REMARK 6.6
Let 74 be the A-cable belonging to the small A-basis for 5. According to
Lemma 6.2, 74 C ker ¢r5 for every § € S,. Recall that
@ _U+DHE+4)
T4

= fzomﬂv — (j + 2)£L'11’3+j + T2X24 5.

Since we know 35, 51, 52, S3 (see Remark 4.3), we can easily determine the d-cable
74 by using these 3-term recursion relations in A.
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7. Relationsin A

Let Q[t] = QI and extend the Z?-grading on Q to Q[t] by setting degt = (0,6).
Note that Q[t], = Q,[t] for each r > 0. In addition,

Q[ﬂ(r,n) = Q(ﬂ") Dt Q(r,n—G) G-ttt Q(r,n—ﬁe) where 0 <n — 6e < 5.

Extend A to A on Q[f] by setting A(t) = 0. Then A is homogeneous and deg A =
(0,—1). Since A: Qg — Q. s—1) is surjective for each r,s > 1, we see that

A Q[t](rmy = Qt](rn—1) is surjective for each r,n > 1. Given n > 0, define the
vector space

V= Q[t](z,n) Nker A = Q[t](gm) N (ker A)[t].

Since ker A N Q54 equals {0} if s is odd and equals k - 0" if s is even as
mentioned in Section 3.2.2, the reader can easily check that V;, = {0} if n is odd
and that for n even

(10) V= <9£0),t9;07)67 o ,t697(107)6e) where n — 6e € {0,2,4}.

7.1. The mapping ¢;
Let § € S,. By Theorem 5.1(a), ¢z : Q2 — A extends to the surjection

Note that <I>§A = 0P, since ¢p;A =g, <I>§At =0, and 9P;t = 0.

THEOREM 7.1
There exists a set {94,(:)6,(:)8,...} of homogeneous A-cables such that @n 18
rooted in V, for each n and

kertbg = ((:)4»(:)6»@87 .o )

Proof
The proof proceeds in three steps.

Step 1. This step constructs a set {O4,Og, Os, ... } of homogeneous A-cables
such that ©,, is rooted in V,, for each n and (04, 0s,0s,...) C ker &;. For the
integer n >4, write n==06e+ ¢ (¢ > 0,0 </¢<5). Given P € V,,, we have

0=3;A(P)=0D;(P) = ®4(V,) Ckerd=RNA.
Since ®4(V,,) C ®5(Qt](2,n)) C A(2n+2,n), it follows that

(a®h¢) =0,
(11) Q5(V) CRN Agngon) =4 (Fh®) (=2,
{0} otherwise,
by Lemma 4.1(b). Now assume that n is even. In view of (10), there exists ¢, € k

such that @g(@%o)) = qu)g(teaéo)). Note that we may take ¢, =0 when ¢ =4.
Then, we have

(12) 0 =60 — ¢,1°0” € ker ®; — {0},
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since e > 1 except when n =4. Suppose that, for some j > 0, we have constructed
@EP), .. .,G)sf) € ker @5, which satisfy @ﬁf) € Qt](2,n44) and A@ﬁf) = @sffl), 1<
1 < j. Since the mapping

A Qltlnrje1) = Ut ns)
is surjective, we may choose P € Q[t](2,5,4;+1) With AP =0%. We have
0=2:00) = D;A(P)=09s(P) = ®3(P)€ RN Apa(ntjt1)ramtjil):

We again apply the equality in (11). In fact, if £ € {0,2}, then 07(107)66 = 920) ¢
ker ¢ by Lemma 6.2(b), and so @g(teﬂgolﬁe) = heqbg(@?(g)%) # 0. Thus, as above,
there exist k € k and ¢,l € N with

@7(7:7-"_1) =P — /iteal(o) € ker (I)g N Q[t}(27n+j+1),

where k = 0if n+j+1 is odd, since V,,4 11 = {0}. Then, we have A@%jﬂ) = @%j),
since A(f@l(o)) = 0. Therefore, for each even n > 4, there exists a homogeneous
A-cable ©,, rooted in V,, and contained in ker &5 N Q[t]2. Note that @L(Lj ) = Hflj )
for 5 =0,1 by construction.

Step 2. By construction, the ideal J := (@4, Og, Os, .. .) of Q[t] is contained in
ker ®;. This step shows that ker ®; C J + (¢). Define polynomials oy e Q2,n+5)
(ne2N, n>4, j>0) by HY =0%|,_o. Note that, by (12), we have H\ =
o # 0. Therefore, by Section 3.1(xi), for each even n >4, H, := (H,(Lj)) is a
homogeneous A-cable rooted at 0. By Definition 3.10(2) and Lemma 3.12(b),
we get

Qu+ (t) = (Hy, Hg, Hs,...) + (t) = (04,05,0s,...) + (t) = J + (1)
Consider the map 7®; : Q[t] HBAS A/hA. Since 7®@;|q = ¢prs, we see from The-
orem 6.1 that

ker ®; C kern®; = Q4 + (t) = J + (¥).
Step 3. This step shows that J = ker ®;. Since ®;(Q[t](s)) C A2s4r,s) for

each r,s > 0, we see that ker @; is a homogeneous ideal of Q[t]. So, given integers
r, N >0, we show by induction on N that
(13) kerégﬁQ[t](r,N) cJ.
If r <1, then ker &5 N Q[t](, xy = {0}, so assume that r > 2.
Consider first the case in which 0 <N <5. In this case, Q[t] n) = Qi n) =
k[zo,...,2N](r Ny, since degt = (0,6). Let
Pecker®; N Q[t](r,N) =ker ¢z N k[.’bo, S 7xN](r,N)

be given. If N <3, then P =0, since sg, s1, S2,s3 are algebraically independent
over k (see Remark 4.3).
Suppose that N = 4. The only monomial in k[zo,...,4](4) in which x4

appears is x6_1m4. Therefore, noting that 94(10) =2(zor4 — z173) + 23, We have

k[xo, ... ,I4](r’4) =k- $6711}4 ©® k[l‘o, .. .,JIg](TA) =k- 1}67294(10) (&) k[.’L‘o, ... ,.1‘3](7“74).
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So there exists A € k£ such that P — Am6_294(10) € k[zog,...,x3). Since 94(10) € ker ¢
by Lemma 7.2(a) below, we get P — )\:cg_Qé)flo) € ker ¢; Nk[zo,...,x3] = {0}. Since
9510) = @510) € J, P € J in this case.

Suppose that N = 5. The only monomial in k[zo,...,25] 5 in which x5

appears is mgflxs. Therefore, noting that 921) =5x0x5 — 3Tr1x4 + T2T3, We have
Elzo,...,25](n5 =k - m671x5 © klxo,...,14](r5) = k- x6729§11) ® k[zo,. .., 24](r5)-
Since 04(11) € ker ¢; by Lemma 7.2(a) below, there exists A € k such that

P =y 20 € ker g Nk[wo, ..., 4 ()

as above. Similarly, the only monomial in k[xo, ..., %4](41,5) in which x4 appears
is x671x1x4. Therefore,
k[l’m ... ,1’4](r+175) =k- x6*1m1x4 (&) k[:vg, ceey (Eg}(r+1,5)
- 0
=k- ZS Qxlai ) © k‘[(ﬂo, .. .,.%3](,«_’_1,5).

So there exists p € k such that
xoP — )\xg_lﬁfll) - ua:g—%cleff) € ker ¢ N k[xog, ..., xz3] ={0}.
If r =2, then pxlﬁio) € o€} implies =0 and P = )\xS_QHS). If r > 3, then
P= )\%729‘(11) + uxg*%leff’).

In either case, P € J, since 94(11) = (91(11) € J. Therefore, the inclusion (13) holds
when 0 < N <5, which gives the basis for induction.

Suppose that Ny is an integer such that Ny > 5 and (13) holds for all integers
0 <N < Np. Let P € ker®; N Qt](, ) be given, where No < M < Ny + 6. We
show that P is of the form

(14) P=P;+1tQ where P;€JN Q[ﬂ(r,M) and Q € Q[t](T’M,g).

Since ker ®; C J + (t) by Step 2, we may write P=FE + C for E€ J and C €
t-Q[t]. Since J and ¢ - Q[t] are homogeneous ideals, each homogeneous summand
of E belongs to J, and each homogeneous summand of C' belongs to ¢ - Qt]. Since
P is homogeneous, statement (14) holds.

In addition, since Py € J C ker ®;, we have

tQ=P—Pjckerd; = Qeker¢§ﬂQ[t](r7M_6).

By the inductive hypothesis, @ € J, which implies P € J. Therefore, statement
(13) holds for all N > 0. This proves J = ker @;. O

7.2. Thecables
Let 6 € S, be the d-cable defined in Theorem 5.7. The goal of this section is to
give an explicit recursive definition of & (see Theorem 7.6).

LEMMA 7.2
Letn€2N, n>4, and § € S, be given.
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(a) If n=4 (mod 6), then 9&0), 5V € ker @5 for every § € S,.
(b) If n=2 (mod 6), then 63,65 € ker ¢5.

Proof
For both (a) and (b), it suffices to show that 0 € ker ¢3, since
0=0s(0))) = ¢sA(61)) = 905 (65)) =
¢§(97(’Ll)) € kera|A(2n+4,n+1) =RN A(2n+4,n+1) = {O}
by Lemma 4.1(b) with £=5,3. If n =4 (mod 6), then inclusion (11) shows that
0" € ker ¢5. This proves part (a). For part (b), write n = 6e + 2 for some e > 1.
Inclusion (11) shows that
$s(0)=cFhe (cek).
By Theorem 5.7(b), it follows that d)g,(&(lo)) = 0. This proves part (b). O

For n € 2N, let J,, be the set of integers j > 3 such that n+j =1 (mod 6). In
particular, each j € J, is odd.

Let {9 } be a A-basis for Q. Given n € 2N and j € N (and j > 1 if n=0),
let 5( ) € k be the coefficient of z12,4;—1 in 0% . Note that 5(9(7)) =0 if and

only if 97(1]) € klxo,2,23,...,Tntj], since %) e Q(z n+j)- Define
u(& mln{j € Jn |§ 7&0}
where it is understood that p(6,) = oo if 5(9,(3)) =0 for all j € J,.

LEMMA 7.3
If ,u(én) = 00, then the following are equivalent.

(i) 0()€ker¢g for some j > 0.
(ii) 9(0) e kergs.
(iii) @ ) € ker ¢s for all 7> 0.

Proof
It is clear that (i) < (ii) < (iii). We also have (i) = (ii), since
05 (05)) = 65(AI0) = 65 (05))) = 0.

We show (ii) = (iii). Suppose that 0!") € ker ¢s, noting that n > 4, since %(950))
and ¢5 (950)) cannot be zero by Lemma 6.2(b). We prove by induction on j that
0% € ker g5 for all j > 0. ' _

Assume that 91(5) € ker ¢5 for some j > 0. Then, 0¢s (9$3+1)) = ¢5 (AHSIJH)) —
O (97(3)) = 0. Hence, we get

i1
$s(051) € ker Ol A st jinyr2msirn = BOVARM++1) +2,n+5+1)-
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Now, suppose that ng +1) ¢ ker ¢5. Then, by Lemma 4.1(b) and the remark after
Theorem 5.7, we have n+j +1=0 (mod 6) and ¢5(0¢ ™) = \a2he for some
A€ k* and e > 0. Note that

91 Aa(n+j+2)+2m+i+2) = A@(n+i+1)+2,n+5+1)
is an injection by Lemma 4. l(b), since n + j + 2 =1 (mod 6). Because
065 (0972 = ¢5(A0FT?) = ¢5(09™) and dogo1he = a2he, it follows that
b5 (953“)) = Aogo1h®. By assumption, the monomial z1x,;4+1 does not appear
in 953'*2). Hence, 9;]'+2) is a k-linear combination of x;x,1;412—; for 0 <4 <
(n+j+2)/2 with ¢ # 1. This contradicts Theorem 5.7(a). Therefore, we must
have 053' T ¢ ker ¢s. It follows by induction that G;j ) € ker ¢s for all 7 > 0. This
completes the proof. O

Combining Lemmas 7.2 and 7.3 gives the following result.

LEMMA 7.4
Suppose that {0,} is a A-basis such that p(0,) = co for each n=6e+2, e >1.
Define the Q-ideal J by J = (0, | n=06e+2,¢>1). Then J C ker ¢5.

We next describe a procedure to modify a given A-basis {én} to obtain a A-basis
{¢n} for which u(1,,) = oo for each n.
Given n € 2N, if u(0,,) = oo, set ¥, = 0,,. If u(0,,) < oo, then define constants

(6

= (0, —j—1 d =
w(On),  m=j—1,  an PR

noting that j >3 is odd and {(GSL 1)=—(n+j—2)#0. It follows that

.U(en) < U(en +m Cén-&-m)-

If u(én +m cén+m) = 00, set 1/3n =0, +m cén+m. If ,u(én +m cén+m) < 00, the
process can be repeated. Continuing in this way, we construct a strictly increasing
sequence m = {m; };cs of positive integers, together with sequences &= {¢;}ier
for ¢; € k* and §= {01, Yics such that if ¢, = lim(, 1, @), then () = oo

Note that, with this algorithm, {&n} is uniquely determined by {én} The
resulting A-basis {¢,,} is the reduction of {0, }.

To illustrate, let {1, } be the reduction of the balanced A-basis {f,}. Assume
that n=4 (mod 6). Then &( T(LS)) = —(”;2), and if

(") nn+2
n+3—-2 6

then the first eight terms of @[AJn equal those of Bn +9 cBn+2. In particular, we have

n+2

57(332 -1 Z(*l)i(?’i(i —1)—n(n+ 2))5171:$n+2—7:

=0

(15) v =g - 02
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and
3) _ g3 _ Mn+2) @
(16) e 6 Pn
13 ,
=5 Z(_1)z+1 ((i = 1)(i — 2) — n(n +2))iz;vnr3—i-
=1

Note that, by Lemma 7.4, wf) and 1/),@ above both belong to ker ¢5.

REMARK 7.5

The results of this section show that a A-basis of the type described in Lemma 7.4
exists, and therefore, J C ker ¢s for the associated Q-ideal [J. But we do not
know if J =ker ¢s.

Next, let {{,} be the reduction of the balanced A-basis {3, }. The A-cables 1,
for n=6e+2 (e >1) give us a way to implicitly calculate the 9-cable 6. Recall
that o0g,...,05 are uniquely determined and are given in Remark 4.3.

THEOREM 7.6
For n > 2, we have

n—1
1 .
Onp = 2— (*1)Z+10i0—n—i an = 274 (mOd 6)7
a
i=1

n—1
1 .
n= —1)'io;00—; 4 =3,5 d67
o na;( Voo if n (mod 6)

|
—

n

On = m _ (=) (3i(i — 1) = n(n —2))oi0n,—; ifn=0 (mod 6),

I
-

3
-

! WG—=1)i—2) = (n—1(n—23))ic.on_.
7= T 2"V (- DE=2) = (2= D = 3))iion—

Il
-

ifn=1 (mod 6).

Proof

The first two equalities are equivalent to qb&((%(,o)) =0 and ¢&(07(117)1) =0, respec-
tively, which follow from Lemma 7.2. The last two equalities follow from
Lemma 7.4 together with (15) and (16). O

To illustrate, the following relations can be used to construct os, ..., o19:
4(12) — 4(12) _ 45é0) = Txoxe — 271 X5 — Toly + T3,
W =B — 48D = Tegwr — 2wws + w324,

1!1;0) = éo) = 2xoxg — 20127 + 2x9xg — 20375 + xi,
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ws(;l) = 55(;1) =9z9z9 — 72178 + ST227 — 3T3T6 + T4T5,

©) ﬁgg) = 220210 — 2019 + 2T0x8 — 2037 + 2146 — xg,

10 —
g(l)) = S)) = 1lxgx11 — 921210 + TX229 — D328 + 32427 — T5X6,
§%) = 53) - 20ﬁ§(2)) = 26$0.’£12 - 151’1%11 + 6%21}10 + X329 — 6£E4$8

+ 9x5x7 — 5x§,

%?)) = Big) — 206§§) = 26l‘0.1313 - 15.132.7511 + 21.13333‘10 — 201‘41‘9 + 14335378 — 5l‘6$7,

0 0
%4) = 54) = 2%0%14 — 2$1$13 + 2$2.’E12 — 2.’E3£C11 + 2$4.’E10

2
—2x539 + 22678 — X7,

&) = &) = 15xpx15 — 1301214 + 1120213 — 9232710 + TT4211

— 5$5$10 + 3$6$9 — X7xs,

(0) _ 5(0) _
16 = Big = 2x0T16 — 221215 + 222T14 — 223713 + 24T 12 — 2T5T11

2
+ 2x6x10 — 22779 + X3,

gé) = &1«)) = 17xox17 — 1521216 + 1322215 — 11x3T14 + 924213

— 7$5$12 + 5JC6$11 - 3.’1371‘10 + Ir8xg,
ié) = iz) — 48ﬁ£g) =5Txox18 — 4021217 + 2529216 — 1223215 + T4 14
+ 8x5x13 — 25612 + 20272011 — 2328710 + 12.133,
52) = BS}) — 48,3;? =5Txgr19 — 4029217 + 653116 — T7X4T15 + T8x5%14

- 705061'13 + 551’71‘12 - 351’81‘11 + 121’9$10.

REMARK 7.7

The reader can compare these relations with relations for the sequence w,, given
in [5]. In particular, wo, ..., w3 are given in [5, pp. 162, 165]. The construction
used there is as follows. Given n = 6e — 4 (e > 2), suppose that wo, ..., we.—5 are
known. Then wege—4, ..., Wse+1 are defined by solving certain systems of linear
(0) (5)
n -

ey Wn .

equations, but in the language of cables this amounts to finding
Our current approach uses the simpler relations

O T 1o PRT sy PO 1o

Note that if ng) =37, cgl)i)ximn,i, then the coefficient c) ) is a polynomial of

(n,3
degree j in i. Thus, using smaller j-values has a big advantage computationally.
However, the reader should note that both methods produce the same sequence

—

o, by the uniqueness established in Theorem 5.7
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8. Roberts’s derivations in dimension 7

Roberts [12] constructed a family of counterexamples to Hilbert’s fourteenth
problem in the form of subrings A,, C k[7) for integers m > 2. Although Roberts
does not use the language of derivations, the maps he defines are triangular
derivations. In this section, we give a description of the ring As as a cable algebra.

Let B=k[X,Y,Z,S,T,U, V] =kl For m > 2, the subring A,, is the kernel
of the derivation D,,, of B defined by

S—XxmH Tyt Uz,
V= (XYZ)",  X,Y,Z—0.

Define H,, € A,, by H,, = Y™ t1§ — X™+1T Define an action of the cyclic group
Z3 = (o) on B by
(XY, 2,8, T,UV)=(Z,X,Y,US,T,V).

Then «, D,,, and the partial derivative 9/0V commute pairwise with each other.
Therefore, o and 9/9V restrict to A,,. We denote the restriction of 9/9V to A,,
by O -

Let m > 2 be given. In [12, Lemma 3], Roberts showed the existence of
a sequence in A, of the form XV’ + (terms of lower degree in V), i > 0. By
combining this with homogeneity conditions, he concluded that A,, is not finitely
generated over k. Note that, by applying «, we also obtain sequences in A,,, of the
form YV + (terms of lower degree in V) and ZV*+ (terms of lower degree in V')
for 4 > 0. The second author showed the following.

THEOREM 8.1 ([8, THEOREM 3.3])
Given m > 2, let Iy, x ), Lom,v,i), Lom,z,i) € Am (i >0) be sequences of the form

I XV + (terms of lower degree in V),
Iinys) = YV + (terms of lower degree in V),
Iim,z0) = ZV' 4 (terms of lower degree in V).
Then
A =k[{Hm,o0Hp, 0®Hy } U {Inw |1 >0,W € {X,Y,Z}}].

We use this to show the following result.

THEOREM 8.2
There exists an infinite d2-cable P in Ay rooted at X, and for any such P we
have

As = k[Hy, aHa, 0> Ho, P, aI:’,aQI:’].

To construct P we first study the restriction of Dy to a subring B’ of B, where
B’ = lol,
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8.1. The derivation E in dimension 6
Let R = k[z,y,5,t,u,v] =kl and define the triangular derivation E of R by

(17) v —x%y?, u— >t t—1°s, s— a3, z— 0, y— 0.
Then E commutes with % and we let 7 denote the restriction of % to ker .
THEOREM 8.3

There exists an infinite T-cable & Tooted at x.

Proof

Let 7, : R — (ker ), be the Dixmier map for E associated to the local slice v.
According to [4, (6) and Lemma 2], there exists a sequence w,, € k[z,y, z, s, t,u],
n > 0, with the following properties.

(i) E*wsm = (23y®)* w3(m_s) (m>1,0<i<m).
(iii) (=1)*mm, (zwsm) €R (m >0).

Given m > 0, define k3, € R by kgm = (—1)3"71,(zws,,). By using (1) in
Section 2.1, we see that for m > 1

o3 o

G (—1)3m (2 Bwsp) 0 v

Bu3 3™ T B2 v 222
0 1 0 v
= Lm0 (2B, ) —— —
av( ) mo(@Bws )m2y2 Ov x2y?
1 0 w

_ 3m—3 3

1
3m—3 3,312

=(-1) T (33(33 y°) w?’(m*l))xﬁ—yﬁ

= (-1 D, (zwzm_1))

= H3(m71)~
Define

0 0
Ram—1 = 7 Kam and Kgm—2 = 5 R3m-1 (m>1).

Then & := (k) is a 7-cable rooted x. O

8.2. Proof of Theorem 8.2
Given f1,..., fn € B, recall that the Wronskian of f1,..., f,, relative to Ds is (see
[5, Section 2.6])

WDQ(fl,...,fn)zdet(Défj) where 0<i<n—1,1<j<n.

Define F17F2,F3 eB by

1 1
=S K= 5Vt/7;2(5*, TU), F3= EX*’WDQ (S,TU,STU).
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Then Ds restricts to the subring B’ = k[X,Y Z, Fy, Fy, F3,V] = k6, where
DyFs=(YZ)F,, DyFy=(YZ)PF, DFi=X3 — D, V=X*YZ)>~

Therefore, setting x =X, y=YZ, s=F;,t=Fy, u= F3, and v =V, we see that
the restriction of Dy to B’ equals E, as defined in (17) above. By Theorem 8.3
there exists a dy-cable P rooted at X such that P C B'. In particular, P = (P;)
has the form P; = % XV* + (terms of lower degree in V).

Consequently, aP is a §y-cable P rooted at Y, and a?P is a §y-cable P rooted
at Z. The proof is thus completed by applying Kuroda’s result (Theorem 8.1

above). O

REMARK 8.4
It seems likely that the structure of Ay given in Theorem 8.2 can be extended

from m = 2 to all m > 2. To do so by the method above requires a generalization
of Theorem 8.3.

9. Further comments and questions

9.1. Tanimoto’s generators

Tanimoto [13] gives a set of generators for the ring A by specifying a SAGBI
basis consisting of h together with homogeneous sequences A, u,, and v, whose
leading v-terms are av™, Fv™, and Gv™, respectively. From Corollary 5.5(a) we
see that A is generated as a k-algebra by h and the sequence \,,, meaning that p,,
and v, are redundant. Tanimoto also computed the Hilbert series for A, which
is rational even though A is not finitely generated.

9.2. Fundamental problem for cable algebras
If B is an affine k-domain and D € LND(B) is nonzero, then B is a cable algebra
and (B, D) is a cable pair. We ask the following.

QUESTION
Let B be an affine k-domain, and let D € LND(B). If I, # (0), does B have an
infinite D-cable? Equivalently, if every D-cable of B is terminal, does I, = (0)?

Note that if every D-cable of B is terminal, then since B is affine, there exist an
integer n > 1 and terminal D-cables #y,...,%, such that B = k[t1,...,,].

9.3. (Q-ideals
We would like to know which @-ideals are prime ideals of Q). For each even n > 2,
consider the following statements regarding the fundamental @Q-ideals.

(a) 9, is a prime ideal of Q.
(b) tr.deg,Q/Q, =75 +1.
(¢) ©Q/Q, is a simple cable algebra over k.
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It is shown above that these are true statements for n =2 and n = 4. Are these
statements true for n > 67

9.4. The dimension 4 case

Nagata [11] presented the first counterexamples to Hilbert’s fourteenth problem.
In one of these, the transcendence degree of the ring of invariants over the ground
field is 4, and Nagata asked whether this could be reduced to 3. The second author
[7] gave an affirmative answer to Nagata’s question in the form of the kernel of
a derivation of k[*, but this derivation is not locally nilpotent (see also [9]).

It remains an open question whether an algebraic G,-action on the polyno-
mial ring k¥ always has a finitely generated ring of invariants. In [3] it is shown
that this is the case for triangular actions, and this result was later generalized
in [1] to the case of actions having rank less than 4. The next natural case to
consider is the case in which T is a locally nilpotent derivation of k4 of rank 4
and T restricts to a coordinate subring B = kPP, If kl4) = B[v], then the partial
derivative d/0v restricts to ker T'. It is hoped that a good understanding of cable
structures of invariant rings might lead to a complete solution of the dimension
4 case.
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