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Abstract We consider probability measures on R∞ and study optimal transportation

mappings for the case of infinite Kantorovich distance. Our examples include (1) quasi-

product measures and (2) measures with certain symmetric properties, in particular,

exchangeable and stationary measures. We show in the latter case that the existence

problem for optimal transportation is closely related to the ergodicity of the targetmea-

sure. In particular, we prove the existence of the symmetric optimal transportation for

a certain class of stationary Gibbs measures.

1. Introduction

Let us consider two Borel probability measures μ, ν on R
d. The central result

(Brenier’s theorem) of the finite-dimensional optimal transportation theory estab-

lishes under fairly general assumptions the existence of the corresponding optimal

transportation mapping T , which can be characterized by the following proper-

ties:

(1) T =∇ϕ, where ϕ is a convex function,

(2) ν is the image of μ under T : ν = μ ◦ T−1.

The mapping T exists, in particular, when both measures are absolutely con-

tinuous and have finite second moments. The second assumption can be replaced

by the weaker assumption of the finiteness of the corresponding Kantorovich dis-

tance W2(μ, ν) but it does not make much difference for the finite-dimensional

problems. However, this difference becomes essential in the infinite-dimensional

case.
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It is well known that the optimal transportation mapping T solves the so-

called Monge problem, meaning that T minimizes the functional∫
Rd

∥∥r(x)− x
∥∥2 dμ(x)

among the mappings r : Rd �→ R
d pushing forward μ onto ν. Here ‖ · ‖ is the

standard Euclidean norm. The corresponding minimal value coincides with the

squared Kantorovich distance W 2
2 (μ, ν).

Now let us consider a couple of measures on an infinite-dimensional linear

space X . To avoid unessential technicalities, we will assume everywhere that

X =R
∞. We deal throughout with the standard Hilbert norm

‖x‖2 := ‖x‖2l2 =
∞∑
i=1

x2
i ,

which takes infinite value almost everywhere with respect to most of the measures

we are interested in.

What is a natural analogue of the Brenier theorem in this setting? To under-

stand the situation better, let us consider the Gaussian model.

EXAMPLE 1.1

Let γ =
∏∞

i=1 γi =
∏∞

i=1
1√
2π

e−
x2
i
2 dxi be the standard Gaussian product mea-

sure on R
∞, and let H = l2 be the corresponding Cameron–Martin space. More

generally, one can consider any abstract Wiener space.

The optimal transportation problem is well understood for the case of mea-

sures μ and ν which are absolutely continuous with respect to γ. The most general

results were obtained in [12]. (Another approach has been developed in [15].) In

particular, for a broad class of probability measures f · γ absolutely continu-

ous with respect to γ, there exists a transportation mapping T (x) = x+∇ϕ(x)

minimizing the cost ∫ ∥∥T (x)− x
∥∥2
l2
dγ

and pushing forward γ onto f · γ. Analogously, there exists a transportation

mapping pushing forward f · γ onto γ. The gradient operator ∇ is understood

with respect to the 〈·, ·〉l2 -scalar product.
It is known (this follows from the so-called Talagrand transportation inequal-

ity) that under the assumption that
∫
f log f dγ <∞ the Kantorovich distance

between γ and f · γ is finite:

W 2
2 (γ, f · γ) =

∫ ∥∥T (x)− x
∥∥2
l2
dγ <∞.

In particular, ∇ϕ(x) ∈ l2 for γ-almost all x. For more on optimal transporta-

tion on the Wiener space, the corresponding Monge–Ampére equation, regularity

issues, and transportation on other infinite-dimensional spaces, see [4], [6], [8],

[11], and [10].
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In this article we study situations in which the Kantorovich distance between

measures is a priori infinite. This makes it generally impossible to understand

T as a solution to a certain minimization problem. Nevertheless, we have many

good candidates that may be called “optimal transportation” in many particular

cases. The following example motivates our study.

EXAMPLE 1.2

(1) Let μ =
∏∞

i=1 μi(dxi), ν =
∏∞

i=1 νi(dxi) be product probability measures.

Assume that all μi’s have densities. Then there exists a mass transportation

mapping T pushing forward μ onto ν which has the form

T (x) =
(
T1(x1), . . . , Ti(xi), . . .

)
,

where Ti(xi) is the 1-dimensional optimal transportation pushing forward μi onto

νi.

(2) Let us consider the Gaussian measure μ which is a pushforward image

of the standard Gaussian measure γ under a linear mapping T (x) = Ax with

A symmetric and positive. It is well known (and can be obtained from the law

of large numbers) that γ and μ are mutually singular even in the simplest case

A= 2 · Id. Because it is linear and given by a positive symmetric operator, T is

“optimal.” Heuristically,

T (x) =
1

2
∇〈Ax,x〉.

It is clear that in both cases T cannot be obtained as a minimizer of a functional

of the type
∫
‖T (x)− x‖2l2 dμ.

We state now the central problem of this article.

PROBLEM 1.3

Let μ and ν be two probability measures on R
∞. When does there exist a trans-

portation mapping T pushing forward μ onto ν which is “optimal” for the cost

function c(x, y) = ‖x− y‖2l2?

In this article we deal with two model situations.

Quasiproduct measures
We assume that both measures have densities with respect to product probability

measures (see [5], [7], [8], [11], [10], and [18])

μ = f · μ0, ν = g · ν0,

μ0 =

∞∏
i=1

μi(dxi), ν0 =

∞∏
i=1

νi(dxi).

Then the corresponding “optimal transportation” is a small perturbation of the

diagonal mapping considered in Example 1.2.
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Symmetric measures
It is possible to give a meaning to the Monge–Kantorovich optimization problem

if we restrict ourselves to a certain class of symmetric measures. In this article we

consider two types of symmetry: exchangeable measures (invariant with respect

to finite permutations of coordinates) and stationary measures on R
∞ (invariant

with respect to shifts of coordinates). Note that ‖x − y‖2l2 is symmetric with

respect to both types of symmetry. More generally, let G be a group of linear

operators which acts on X = Y = R
∞ and X × Y : x → gx, (x, y) → (gx, gy),

g ∈G, and preserves the cost function c(x, y). We assume that every basic vector

ej can be obtained from any other ei by the action of this group: there exists

g ∈G such that ei = gej . Note that under these assumptions all the coordinates

are identically distributed. This leads us to the following definition: given G-

invariant marginals μ and ν, we call π an optimal (symmetric, invariant) solution

to the Monge–Kantorovich problem if π solves the Monge–Kantorovich problem∫
(x1 − y1)

2 dπ→min

among all of the measures which are invariant with respect to G. If there exists

a mapping T such that its graph Γ = {x,T (x)} satisfies m(Γ) = 1, we say that T

is an optimal transportation mapping pushing forward μ onto ν.

The following counterexample, however, demonstrates that the optimal trans-

portation may fail to exist for a quite simple reason.

EXAMPLE 1.4

Let μ= γ be the standard Gaussian measure on R
∞, and let

ν =
1

2
(γ + γ2)

be the average of γ and its homothetic image γ2 = γ ◦ S−1, where S(x) = 2x.

There is no mass transportation T of μ to ν which commutes with any cylindrical

rotation. Indeed, any such mapping must have the form T (x) = g(x)(x1, x2, . . . ) =

g(x) · x, where g is invariant with respect to any “rotation,” in particular, with

respect to any coordinate permutation. But any function g of this type is constant

γ-almost everywhere. This is a corollary of the Hewitt–Savage zero-one law. It

is clear that there is no mass transportation of this type for the given target

measure.

There is a general principle behind this simple example. Recall that a measure μ

is called ergodic with respect to a group action G if for every G-invariant set A

one has either μ(A) = 1 or μ(A) = 0. It follows directly from the definition that

there does not exist a bijective mass transportation T pushing forward μ onto ν

such that T ◦ g = g ◦ T for every g ∈G, provided μ is G-ergodic but ν is not.

This observation leads to the following problem.

PROBLEM 1.5

Let G be a group of linear operators acting on R
∞ and preserving l2-distance
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(model example: group of shifts). Let μ, ν be ergodic G-invariant measures. When

does there exist a transportation T : R∞ �→R
∞ pushing forward μ onto ν, which

commutes with G and minimizes the Monge functional T �→
∫
R∞(T1(x)−x1)

2 dμ?

Trivially, the ergodicity by itself is not sufficient for an affirmative answer to this

problem. In addition to it, we need to have certain infinite-dimensional analogues

of “absolute continuity” for the source measure μ.

We believe that the symmetric transportation problem must have a deep and

very interesting relation to ergodic theory. The second author [25] studied the

interplay between ergodic decompositions and transportation theory. Another

interesting connection has been established in [3]. It was shown that the Birkhoff

ergodic theorem implies equivalence between optimality and the so-called cycli-

cal monotonicity property. The related problems on optimal transportation in

symmetric settings have been considered in [22] (stationary processes), in [23]

(symmetric measures on graphs), and in [19], [20], and [9] (ergodic theory). Trans-

portation problems with symmetries have been studied in [13] and [21]. Further

development of the duality theory for transportation problem with linear restric-

tion has been obtained in [26].

The article is organized as follows. In Section 2 we give preliminaries in

transportation theory and ergodic theory, and we recall some important results

on log-concave measures. In Section 3 we establish sufficient conditions for the

existence of optimal transportation mappings which are obtained as almost every-

where limits of finite-dimensional approximations. The applications of this result

are obtained in Section 4. Here we prove the existence of optimal transporta-

tion for a couple of measures having densities with respect to product measures.

In Section 5 we discuss the invariant optimal transportation problem, consider

examples, and prove some basic facts. In Section 6 we briefly discuss Kantorovich

duality for a problem which is invariant with respect to the action of a group. In

Section 7 we construct a nontrivial example of a symmetric optimal transporta-

tion T . Namely, we establish sufficient conditions for the existence of T pushing

forward a stationary measure into the standard Gaussian measure. Finally, we

apply this result to a certain class of Gibbs measures.

2. Preliminaries

2.1. Optimal transportation problem
PROBLEM 2.1 (KANTOROVICH PROBLEM)

Given two probability measures μ and ν on the spaces X and Y , respectively,

and a cost function c :X × Y �→ R ∪ {+∞}, we are looking for the minimum of

the functional

W 2
2 (μ, ν) = inf

{∫
‖x− y‖2 dm : m ∈ P (μ, ν)

}

on the space P (μ, ν) of probability measures with fixed projections: PrXm= μ,

PrY m= ν.



298 Alexander V. Kolesnikov and Danila A. Zaev

In the classical setup X = Y = R
n, c= |x− y|2, the solution m is supported on

the graph of a mapping T :Rn �→R
n (see [2], [5], [24]):

m(Γ) = 1, where Γ =
{(

x,T (x)
)
, x ∈R

d
}
.

The functional W2(μ, ν) is a distance in the space of probability measures. In

what follows we call it the Kantorovich distance. The mapping T is called the

optimal transportation of μ onto ν.

Another well-known fact which will be used throughout the article is the

following relation, called the Kantorovich duality :

W2(μ, ν) =−1

2
J(ϕ,ψ),

where

J(ϕ,ψ) = inf
ϕ,ψ

{∫ (
ϕ(x)− |x|2

2

)
dμ+

∫ (
ψ(y)− |y|2

2

)
dν,ϕ(x) +ψ(y)≥ 〈x, y〉

}
,

and where the infimum is taken over couples of integrable Borel functions ϕ(x), ψ(y).

The function ϕ in the dual problem coincides with the potential generating the

transportation mapping

T =∇ϕ.

2.2. Ergodic decomposition
Given a Borel transformation S :X �→X of the space X we call a Borel prob-

ability measure μ ergodic if any S-invariant measurable set A has the property

μ(A) = 1 or μ(A) = 0. A similar terminology is used if instead of a single mapping

S we deal with a family G of transformations.

The ergodic G-invariant measures are extreme points of the set of all G-

invariant measures; hence, any G-invariant measure can be represented as the

average of G-invariant ergodic measures. The famous de Finetti theorem estab-

lishes decomposition of this type for a class of exchangeable measures, that is,

measures invariant with respect to a permutation of a finite number of coordi-

nates.

THEOREM 2.2

Let P be the space of Borel probability measures on R equipped with the weak

topology. Then for every Borel exchangeable μ on R
∞ there exists a Borel prob-

ability measure Π on P such that

μ(B) =

∫
m∞(B)Π(dm),

for every Borel B ⊂R
∞.

Yet another example of the ergodic decomposition where a precise description is

possible is given by rotationally invariant measures (see Example 5.9).
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2.3. Log-concave measures and functional inequalities
We recall that a probability measure μ on R

n is called log-concave if it has

the form e−V · Hk|L, where Hk is the k-dimensional Hausdorff measure, k ∈
{0,1, . . . , n}, L is an affine subspace, and V is a convex function.

In what follows we consider uniformly log-concave measures. Roughly speak-

ing, these are the measures with potential V satisfying

V (x)− V (y)−
〈
∇V (y), x− y

〉
≥ K

2
|x− y|2,

which is equivalent to D2V ≥K · Id in the smooth (finite-dimensional) case. Here

K is a positive constant.

More precisely, we say that a probability measure μ is K-uniformly log-

concave (K > 0) if for any ε > 0 the measure μ̂ = 1
Z e

K−ε
2 |x|2 · μ is log-concave

for a suitable renormalization factor Z. It is well known (see Borell [8]) that the

projections of log-concave measures are log-concave. (This is in fact a corollary

of the Brunn–Minkowski theorem.) It can be easily checked that the uniform

log-concavity is preserved by projections as well. We can extend this notion

to the infinite-dimensional case. Namely, we call a probability measure μ on a

locally convex space X log-concave (K-uniformly log-concave with K > 0) if its

images μ ◦ l−1, l ∈ X∗, under linear continuous functionals are all log-concave

(K-uniformly log-concave with K > 0).

Throughout the article we apply the following estimate (see [15], [17]), which

generalizes the famous Talagrand transportation inequality.

THEOREM 2.3 (GENERALIZED TALAGRAND INEQUALITY)

Let m be a K-uniformly log-concave probability measure with some K > 0. Then

for any couple of probability measures μ = e−V dx, ν = e−W dx and the corre-

sponding optimal mappings ∇ϕμ, ∇ϕν , pushing forward μ, ν onto m, respec-

tively, one has the estimate

Entν

(μ
ν

)
=

∫
log

dμ

dν
dμ=

∫
(W − V )dμ≥ K

2

∫
|∇ϕμ −∇ϕν |2 dμ.

Another result used in the article is Caffarelli’s contraction theorem. Here is the

version from [17, Theorem 7.4] (see also [16]).

THEOREM 2.4 (CAFFARELLI CONTRACTION THEOREM)

Let ∇Φ be the optimal transportation of the probability measure μ= e−V dx into

ν = e−W dx. Assume that for some positive c,C one has D2V ≤ C · Id, D2W ≥
c · Id. Then ∇Φ is Lipschitz with ‖∇Φ‖Lip ≤

√
C
c .

The quantity Entν(
μ
ν ) is called the relative entropy or the Kullback–Leibler dis-

tance between μ and ν.
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3. Sufficient condition for existence of limits of finite-dimensional
optimal mappings

3.1. Preliminary finite-dimensional estimates
Let μ and ν be probability measures on R

d, and let T (x) =∇ϕ(x) be the optimal

transportation mapping pushing forward μ onto ν. Let us denote by μv the images

of μ under the shifts x �→ x+ v, v ∈R
d. It will be assumed throughout that the

μv ’s have densities with respect to μ:

dμv

dμ
= eβv .

LEMMA 3.1

For every p, q ≥ 1 with 1
p + 1

q = 1, ε≥ 0, and e ∈R
d

∫ ∣∣ϕ(x+ te)−ϕ(x)
∣∣1+ε

dμ ≤ t1+ε
∥∥∣∣〈x, e〉∣∣1+ε∥∥

Lp(ν)
· sup
0≤s≤t

‖eβse‖Lq(μ),

∫ (
ϕ(x+ te)−ϕ(x)− t∂eϕ(x)

)
dμ ≤ t

∥∥〈x, e〉∥∥
Lp(ν)

· sup
0≤s≤t

‖eβse − 1‖Lq(μ).

Proof

One has ϕ(x+ te)−ϕ(x) =
∫ t

0
∂eϕ(x+ se)ds. Hence,∫ ∣∣ϕ(x+ te)−ϕ(x)

∣∣1+ε
dμ

≤ tε
∫ ∫ t

0

|∂eϕ|1+ε(x+ se)dsdμ

= tε
∫ t

0

[∫
|∂eϕ|1+εeβse dμ

]
ds≤ t1+ε

∥∥|∂eϕ|1+ε
∥∥
Lp(μ)

· sup
0≤s≤t

‖eβse‖Lq(μ)

= t1+ε
∥∥∣∣〈x, e〉∣∣1+ε∥∥

Lp(ν)
· sup
0≤s≤t

‖eβse‖Lq(μ).

Applying the same arguments one gets∫ (
ϕ(x+ te)−ϕ(x)− t∂eϕ(x)

)
dμ =

∫ ∫ t

0

(
∂eϕ(x+ se)− ∂eϕ(x)

)
dsdμ

=

∫ [∫ t

0

(eβse − 1)ds
]
∂eϕ(x)dμ

≤ t
1
p ‖∂eϕ‖Lp(μ)

[∫ ∫ t

0

|eβse − 1|q dsdμ
] 1

q

.

The desired estimate follows from the change of variables formula and trivial

uniform bounds. �

In addition, we will apply the following elementary lemma.
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LEMMA 3.2

Assume that a sequence {Tn} of measurable mappings Tn : R
∞ →R

∞ converges

to a mapping T in the following sense: for every ei, limn〈Tn, ei〉= 〈T, ei〉 in mea-

sure with respect to μ. Then the measures {μ ◦T−1
n } converge weakly to μ ◦ T−1.

3.2. Existence theorem
We consider a couple of Borel probability measures μ and ν on R

∞, where R
∞

is the space of all real sequences: R
∞ =

∏∞
i=1Ri. We deal with the standard

coordinate system x = (x1, x2, . . . , xn, . . . ) and the standard basis vectors ei =

(δij). The projection on the first n coordinates will be denoted by Pn: Pn(x) =

(x1, . . . , xn). We use notation ‖x‖, 〈x, y〉 for the Hilbert space norm and inner

product, respectively: ‖x‖=
∑∞

i=1 x
2
i , 〈x, y〉=

∑∞
i=1 xiyi. We use the notation E

n
μ

for the conditional expectation with respect to μ and the σ-algebra generated

by x1, . . . , xn. For any product measure P =
∏∞

i=1 pi(xi)dxi its projection Pn =

P ◦P−1
n has the form

∏n
i=1 pi(xi)dxi, and the projection (f · P ) ◦ P−1

n = fn · Pn

of the measure f · P satisfies fn = E
n
P f . Everywhere below we agree that every

cylindrical function f = f(x1, . . . , xn) can be extended to R
∞ by the formula

x→ fn(Pnx).

It will be assumed throughout the article that the shifts of μ along any vector

v = tei are absolutely continuous with respect to μ:

dμv

dμ
= eβv .

In Section 3, moreover, the following assumption holds.

ASSUMPTION A

For every basic vector e= ei there exist p≥ 1, q ≥ 1, satisfying 1
p + 1

q = 1, and

ε > 0 such that ∫ ∣∣〈x, e〉∣∣(1+ε)p
dν <∞

and

p(t) = sup
0≤s≤t

∫
|eβse − 1|q dμ

satisfies limt→0 p(t) = 0.

Let μn = μ◦P−1
n (x), νn = ν ◦P−1

n (y) be the projections of μ, ν. For every v = tei
let us set

d(μn)v
dμn

= eβ
(n)
v .

It is easy to check that the projections of μ, ν satisfy Assumption A.
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LEMMA 3.3

For every n ∈N and every e= ei one has∫ ∣∣〈Pn(x), e
〉∣∣p dνn ≤

∫ ∣∣〈x, e〉∣∣p dν,
∫

|eβ(n)
e − 1|q dμn ≤

∫
|eβe − 1|q dμ.

Proof

The first estimate is trivial. To prove the second one, let us note that eβ
(n)
v =

E
n
μe

βv . The claim follows from the Jensen inequality and convexity of the function

t→ |t− 1|q . �

We denote by πn the optimal transportation plan for the couple (μn, νn). Let

ϕn(x) and ψn(y) solve the dual Kantorovich problem. Let us recall that ∇ϕn

(∇ψn) is the optimal transportation mapping sending μn to νn (νn to μn). One

has

ϕn(x) +ψn(y)≥ 〈Pnx,Pny〉

for every x, y. The equality is attained on the support of πn. In particular,

ϕn(x) +ψn

(
∇ϕn(x)

)
=
〈
Pnx,∇ϕn(x)

〉
.

It is easy to check that {πn} is a tight sequence. By the Prokhorov theorem,

one can extract a weakly convergent subsequence πnk
→ π. Note that πn is not

the projection of π.

The main result of the section is the following theorem.

THEOREM 3.4

Assume that Assumption A is fulfilled and, in addition, that

Fn(x, y,0,0) = ϕn(x) +ψn(y)− 〈Pnx,Pny〉 → 0

in measure with respect to π. Then there exists a mapping T : R∞ �→ R
∞ such

that

T (x) = y

for π-almost all (x, y).

In what follows we will pass several times to subsequences and use for the new

subsequences the same index n again, with the agreement that n takes values in

another infinite set N
′ ⊂ N. Let us fix unit vectors ei, ej for some i, j ∈ N, and

consider the sequence of nonnegative functions

Fn(x, y, t, s) = ϕn(x+ tei) +ψn(y+ sej)−
〈
Pn(x+ tei), Pn(y+ sej)

〉
with n > i, n > j.

LEMMA 3.5

There exists an L1+ε(π)-weakly convergent subsequence

ϕnk
(x+ tei)− ϕnk

(x)→ U(x).
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The following relation holds for the limiting function U(x):
∣∣∣
∫

U(x)dμ− t

∫
〈y, ei〉dν

∣∣∣≤Ctp(t).

Proof

Taking into account that
∫
Fn(x, y,0,0)dπn = 0, one obtains∫

Fn(x, y, t,0)dπn =

∫
Fn(x, y, t,0)dπn −

∫
Fn(x, y,0,0)dπn ≥ 0.

Note that the right-hand side equals∫ (
Fn(x, y, t,0)− Fn(x, y,0,0)

)
dπn =

∫ [
ϕn(x+ tei)−ϕn(x)− t〈y, ei〉

]
dπn.

Taking into account that the projection of πn onto X coincides with μn and ϕn

depends on the first n coordinates, one finally obtains that for n > i the latter is

equal to ∫ [
ϕn(x+ tei)−ϕn(x)

]
dμ− t

∫
〈y, ei〉dν

=

∫ [
ϕn(x+ tei)−ϕn(x)− t∂eiϕn(x)

]
dμ.

It follows from Lemmas 3.1 and 3.3 and Assumption A that

(1)
∣∣∣
∫

Fn(x, y, t,0)dπn

∣∣∣≤Ctp(t).

Since ϕn depends on a finite number of coordinates (at most n), one has∫ ∣∣ϕn(x+ tei)−ϕn(x)
∣∣1+ε

dμ=

∫ ∣∣ϕn(x+ tei)−ϕn(x)
∣∣1+ε

dμn.

Hence, by Lemma 3.1

Un(x) = ϕn(x+ tei)−ϕn(x) ∈ L1+ε(μ)

and, moreover, supn ‖Un‖L1+ε(μ) <∞. Thus, there exists a function U ∈ L1+ε(μ)

such that for some subsequence nk

ϕnk
(x+ tei)−ϕnk

(x)→ U(x)

weakly in L1+ε(μ). Passing to the limit we obtain from (1) that
∣∣∣
∫

U(x)dμ− t

∫
〈y, ei〉dν

∣∣∣≤Ctp(t). �

LEMMA 3.6

Assume that Fn(x, y,0,0)→ 0 in measure with respect to π. Then

U(x)− t〈y, ei〉 ≥ 0

for π-almost all (x, y).
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Proof

Note that [
ϕn(x+ tei)−ϕn(x)− t〈y, ei〉

]
+ Fn(x, y,0,0)

= ϕn(x+ tei) +ψn(y)−
〈
Pny,Pn(x+ tei)

〉
is a nonnegative function for every n. Since Fn(x, y,0,0)→ 0 in measure, there

exists a subsequence (denoted again by Fn) which converges to zero π-almost

everywhere. Since fn = ϕn(x + tei) − ϕn(x) − t〈y, ei〉 converges to f = U(x) −
t〈y, ei〉 weakly in L1+ε(π), one can assume (passing again to a subsequence) that
1
N

∑N
n=1 fn → f π-almost everywhere. Since fn +Fn ≥ 0, this implies that f ≥ 0

π-almost everywhere. �

PROPOSITION 3.7

Assume that there exists a sequence of continuous functions

fn(x1, . . . , xn), gn(y1, . . . , yn) ∈ L1(πn)

such that Gn = fn(x) + gn(y)−
∑n

i=1 xiyi has the following properties:

(1) Gn ≥ 0,

(2) Gn ≤Gm,∀n≤m,x, y ∈R
m,

(3) supn
∫
Gn dπn <∞.

Then Fn(x, y,0,0)→ 0 in L1(π).

Proof

We start with the identity
∫
Fn(x, y,0,0)dπn = 0 and rewrite it as

(2) 0 =

∫
(ϕn − fn)dμ+

∫
(ψn − gn)dν +

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi

)
dπn.

Since ϕn, ψn are defined up to a constant, one can assume that
∫
(ψn−gn)dν = 0.

Thus, −
∫
(ϕn − fn)dμ =

∫
(fn(x) + gn(y) −

∑n
i=1 xiyi)dπn. It follows from (1)

and (3) that the right-hand side is a bounded sequence of nonnegative numbers.

Passing to a subsequence we may assume that the right-hand side has a limit.

It follows from the weak convergence πn → π and the monotonicity property (2)

that for every k

limn

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi

)
dπn ≥ limn

∫ (
fk(x) + gk(y)−

k∑
i=1

xiyi

)
dπn

=

∫ (
fk(x) + gk(y)−

k∑
i=1

xiyi

)
dπ.

Hence,

limn

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi

)
dπn ≥ lim

k

∫ (
fk(x) + gk(y)−

k∑
i=1

xiyi

)
dπ,
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where the limit on the right-hand side exists, because the sequence is monotone.

Hence, we get from (2)

0≥ lim
n

∫
(ϕn − fn)dμ+ lim

n

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi

)
dπ.

Taking into account that
∫
gn dπ =

∫
gn dν =

∫
ψn dν =

∫
ψn dπ, we obtain

0 ≥ lim
n

∫
(ϕn − fn)(x)dμ+ lim

n

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi

)
dπ

= lim
n

(∫ (
ϕn(x) +ψn(y)−

n∑
i=1

xiyi

)
dπ

)
≥ 0.

The proof is complete. �

Finally, we obtain a sufficient condition for the existence of an optimal mapping

in the infinite-dimensional case.

Proof of Theorem 3.4

Let us fix ei, and choose a sequence of numbers tn → 0. We get from Lem-

mas 3.5 and 3.6 that there exist π-almost everywhere nonnegative functions

Utn(x)−tn〈y, ei〉 with
∫
(Utn(x)−tn〈y, ei〉)dπ = o(tn). Hence, limtn→0

∫
(
Utn (x)

tn
−

〈y, ei〉)dπ = 0. Taking into account that
Utn (x)

tn
− 〈y, ei〉 ≥ 0 for π-almost all

(x, y), we conclude that
Utn (x)

tn
converges μ-almost everywhere and in L1(μ) to a

function ui(x) satisfying ui(x)− 〈y, ei〉 ≥ 0 π-almost everywhere and
∫
(ui(x)−

〈y, ei〉)dπ = 0. Clearly, u(x) = 〈y, ei〉 for π-almost all (x, y). Repeating these argu-

ments for every i ∈N, we get the claim. �

4. Application: Quasiproduct case

The main result of this section is a generalization of the optimal transport exis-

tence theorem for Gaussian measures. Recall that by results from [12] and [15]

for the standard Gaussian measure γ =
∏∞

i=1 γi(dxi), γi ∼N (0,1), the existence

of the optimal transportation mapping pushing forward f · γ onto g · γ is estab-

lished, for instance, under the assumption that
∫
f log f dγ <∞,

∫
g log g dγ <∞.

We give in this section a generalization of this result for a wide class of quasiprod-

uct measures.

Let us consider two product reference measures

P =

∞∏
i=1

pi(xi)dxi, Q=

∞∏
i=1

qi(xi)dxi,

and fix the diagonal infinite transportation mapping

T (x) =
(
T1(x1), . . . , Tn(xn), . . .

)
,
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where Ti(xi) pushes forward pi(xi)dxi onto qi(xi)dxi. Clearly, T takes P onto Q.

The inverse mapping S = T−1 has the same diagonal structure:

S(x) =
(
S1(x1), . . . , Sn(xn), . . .

)
.

THEOREM 4.1

Let μ = f · P and ν = g ·Q be probability measures satisfying Assumption A of

the previous section. Assume, in addition, that

(1) there exists K > 0 such that every qi is K-uniformly log-concave;

(2) there exists M > 0 such that

S′
i(xi)≤M

for all i, xi;

(3) assume that either (a) or (b) holds for some constants C > c > 0:

(a) g log2 g ∈ L1(Q), 1
f ∈ L1(P ), f ≤C,

(b) f log f ∈ L1(P ), c≤ g ≤C.

Then there exists a transportation mapping T pushing forward μ onto ν which

is a μ-almost everywhere limit of finite-dimensional optimal transportation map-

pings Tn.

REMARK 4.2

It follows from Caffarelli’s contraction theorem (see Section 2) that assumption

(2) is satisfied if (− log pi(xi))
′′ ≥ C0, (− log qi(xi))

′′ ≤ C1 for some C0,C1 > 0

and every i. Of course, there exist many other examples where this assumption

is satisfied.

Proof

Consider the finite-dimensional projections μn = fn · Pn, νn = gn · Qn, where

Pn =
∏n

i=1 pi(xi)dxi, Qn =
∏n

i=1 qi(xi)dxi. Here fn and gn are the conditional

expectations of f, g with respect to P,Q and the σ-algebra Fn, generated by the

first n coordinates. Recall that ∇ϕn is the optimal transportation of μn to νn.

Let

ui(xi), vi(yi) = u∗
i

be the one-dimensional convex potentials associated to the mappings Ti, Si,

respectively:

Ti = u′
i, Si = v′i.

Note that T̃n = (T1, . . . , Tn) pushes forward Pn onto Qn and ∇ϕn pushes forward
fn

gn(∇ϕn)
· Pn onto Qn.

According to Proposition 2.3 one has the following estimate:

(3)
K

2

∫
|T̃n −∇ϕn|2 dPn ≤

∫
log

(gn(∇ϕn)

fn

)
dPn.
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To see that the right-hand side is finite, let us estimate∫
log

(gn(∇ϕn)

fn

)
dPn ≤

∫
log

1

fn
dPn +

1

2

∫
log2 gn(∇ϕn)fn dPn +

1

2

∫
dPn

fn

=

∫
log

1

fn
dPn +

1

2

∫
gn log

2 gn dQn +
1

2

∫
dPn

fn
.

Applying assumption (3.a) of the theorem and the Jensen inequality, one can

easily get that the right-hand side is uniformly bounded.

We complete the proof by applying Theorem 3.4 and Proposition 3.7. For

the application of Proposition 3.7 set

fn =

n∑
i=1

ui(xi), gn =

n∑
i=1

vi(yi).

We need to estimate
∑n

i=1

∫
(ui(xi)+vi(yi)−xiyi)dπn. Taking into account that

πn is supported on the graph of∇ϕn and the relation ui(xi)+vi(Ti(x)) = xiTi(x),

we obtain that the latter equals∫ (
ui(xi) + vi(∂xiϕn)− xi∂xiϕn(x)

)
dμn

=

∫ [
vi
(
∂xiϕn(x)

)
− vi

(
Ti(x)

)
− xi

(
∂xiϕn(x)− Ti(x)

)]
dμn

=

∫ [
vi
(
∂xiϕn(x)

)
− vi

(
Ti(x)

)
− v′i

(
Ti(x)

)(
∂xiϕn(x)− Ti(x)

)]
dμn

≤M

∫ (
∂xiϕn(x)− Ti

)2
dμn.

Here we use the uniform bound v′′i = S′
i ≤M . Finally, using the uniform bound

f ≤C and the Jensen inequality we obtain that

n∑
i=1

∫ (
ui(xi) + vi(yi)− xiyi

)
dπn ≤MC

∫
|∇ϕn − T̃n|2 dPn.

We have already shown that the right-hand side is bounded. The result now

follows from Proposition 3.7.

The proof follows along the same lines under assumption (3.b), but we use

another corollary of Proposition 2.3:

K

2

∫
|T̃n −∇ϕn|2

fn
gn(∇ϕn)

dPn ≤
∫

log
( fn
gn(∇ϕn)

) fn
gn(∇ϕn)

dPn.

The details are left to the reader. �

5. Symmetric transportation problem and ergodic decomposition of optimal
transportation plans

5.1. Symmetric transportation problem
In this section we discuss the mass transportation of symmetric (mainly exchange-

able) measures, where the word “symmetric” means “invariant under the action
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of a group Γ.” Recall that a probability measure is exchangeable if it is invariant

with respect to any permutation of a finite number of coordinates. Before we

consider R∞, let us make some remarks on the finite-dimensional case.

Consider the group Sd of all permutations of {1, . . . , d} acting on R
d as

follows:

Lσ(x) = (xσ(1), xσ(2), . . . , xσ(d)), σ ∈ Sd.

Let Γ ⊂ Sd be any subgroup with the property that for every couple i, j there

exists σ ∈ Γ such that σ(i) = j.

Assume that the source and target measures are both invariant with respect

to Γ. Under the additional assumption that the cost function c is Γ-invariant

(e.g., c= |x− y|2), one can easily check that the Kantorovich potential ϕ is Γ-

invariant as well: ϕ = ϕ ◦ Lσ for any σ ∈ Γ (see [21], [26]). Consequently, the

optimal transportation T =∇ϕ has the following commutation property:

T = L∗
σ(T ◦Lσ) = L−1

σ ◦ T ◦Lσ.

Equivalently,

Lσ ◦ T = T ◦Lσ.

The optimal transportation plan π(dx, dy) is also Γ-invariant under the following

extension of the action of Γ to R
d ×R

d:

Lσ(x, y) = (Lσx,Lσy).

Now let σ(i) = j. One has∫
xiyi dπ =

∫
〈ei, x〉〈ei, y〉dπ =

∫
〈Lσei,Lσx〉〈Lσei,Lσy〉dπ

=

∫
〈ej ,Lσx〉〈ej ,Lσy〉dπ =

∫
xjyj dπ.

Consequently,

(4) W 2
2 (μ, ν) =

∫
‖x− y‖2 dπ =

d∑
i=1

∫
(xi − yi)

2 dπ = d

∫
(xi − yi)

2 dπ, ∀i.

LEMMA 5.1

The standard quadratic Kantorovich problem on R
d with Γ-invariant marginals is

equivalent to the transportation problem for the cost |x1−y1|2 with the additional

constraint that the solution is a Γ-invariant probability measure.

Proof

Let π be the solution to the quadratic Kantorovich problem for the marginals

μ, ν, and let π̃ be a measure minimizing the functionalm �→
∫
|x1−y1|2 dm among

the Γ-invariant measures with the same marginals. By the optimality of π∫
‖x− y‖2 dπ ≤

∫
‖x− y‖2 dπ̃.
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Since π and π̃ are both Γ-invariant, (4) implies that
∫
|x1 − y1|2 dπ ≤

∫
|x1 −

y1|2 dπ̃. By the optimality of π̃ one gets
∫
|x1 − y1|2 dπ =

∫
|x1 − y1|2 dπ̃, and

finally,
∫
‖x − y‖2 dπ =

∫
‖x − y‖2 dπ̃. This means that π̃ solves the quadratic

Kantorovich problem as well, and vice versa, π solves the Kantorovich problem

with symmetric constraints. �

The conclusion made above helps us to give a variational meaning to the trans-

portation problem in the infinite-dimensional case.

DEFINITION 5.2 (SYMMETRIC KANTOROVICH PROBLEM)

Let Γ be a group of linear operators acting on R
∞, and let μ, ν be Γ-invariant

probability measures. Assume in addition that the following statements hold.

• For every i, j ∈N there exists g ∈ Γ such that

g(ei) = ej .

• The space of probability measures ΠΓ(μ, ν) on R
∞×R

∞ that are invariant

with respect to the action (x, y) �→ (g(x), g(y)), g ∈ Γ, of Γ and have marginals

μ, ν is nonempty and closed in the weak topology.

We say that a measure π ∈ΠΓ(μ, ν) is a solution to the Γ-symmetric (quadratic)

Kantorovich problem if it minimizes the functional

(5) ΠΓ(μ, ν) �m �→
∫
(x1 − y1)

2 dm.

DEFINITION 5.3 (SYMMETRIC OPTIMAL TRANSPORTATION)

Let m be a solution to the symmetric Kantorovich problem. A measurable map-

ping T : R∞ �→ R
∞ is called the optimal transportation mapping of μ onto ν

if

m
({(

x,T (x)
)})

= 1.

The standard compactness arguments imply that a solution to the Kantorovich

problem (5) exists provided
∫
x2
1 dμ <∞,

∫
y21 dν <∞. If, in addition, there exists

an optimal transportation mapping T , then it commutes with any g ∈ Γ. This

means that for μ-almost all x and every g ∈ Γ

(6) (T ◦ g)(x) = (g ◦ T )(x).

EXAMPLE 5.4 (EXCHANGEABLE MEASURES)

We denote by S∞ the group of permutations of N which change only a finite

number of coordinates. We consider its natural action on R
∞ defined by

σ(x) = (xσ(i)), x= (xi) ∈R
∞, σ ∈ S∞.

Consider measures μ and ν which are invariant with respect to any σ ∈ S∞:

μ= μ ◦ σ−1, ν = ν ◦ σ−1.



310 Alexander V. Kolesnikov and Danila A. Zaev

The measures of this type are called exchangeable. The basic example is given

by the countable power m∞ of some Borel measure m on R. The structure of

mappings satisfying (6) in the case μ =m∞ is very easy to describe. Consider

the function T1(x) = 〈T (x), e1〉, and fix the first coordinate x1. Then the function

F : (x2, x3, . . . )→ T1(x) is invariant with respect to S∞ (acting on (x2, x3, . . . )).

Hence, F is constant according by the Hewitt–Savage zero–one law applied to

the measure μ. Thus, T1(x) = T1(x1) depends on x1 only (up to a set of measure

zero). The same arguments applied to other coordinates imply that T is diagonal:

(T1(x1), T2(x2), . . . ). Moreover, Ti(x) = T1(x) because T commutes with every

permutation of coordinates.

EXAMPLE 5.5 (OPTIMAL TRANSPORTATION DOES NOT ALWAYS EXIST)

Let μ1, μ2 be countable powers of two different one-dimensional measures. By

the Kakutani dichotomy theorem they are mutually singular. There is no mass

transportation T of μ= μ1 onto ν = 1
2 (μ1 +μ2) satisfying (6). Indeed, according

to Example 5.4 any T satisfying (6) must be diagonal; hence, the measure μ◦T−1

must be a product measure.

Thus, we see that the optimal transportation does not always exist. This example

can be easily generalized to many other linear groups Γ and Γ-invariant measures.

It can be easily understood that T does not exist provided the source measure is

ergodic, but the target measure is not.

5.2. Ergodic decomposition of optimal transportation plans
The connection between the Kantorovich problem and ergodic decomposition

has been established under fairly general assumptions by the second author [25].

A particular case of this result is given in the following theorem.

Let Γ be an amenable group acting by continuous one-to-one mappings on a

Polish space X . Let ΠΓ be the set of all Borel probability Γ-invariant measures,

and let μ, ν ∈ΠΓ. The set of Γ-invariant transportation plans with marginals μ, ν

will be denoted by ΠΓ(μ, ν). Assume that the cost function c is lower semicon-

tinuous and that ΠΓ(μ, ν) is nonempty and closed in the weak topology.

Let us fix a solution π to the Γ-invariant Kantorovich problem with marginals

μ, ν. Denote by Δ(X) the set of all Γ-invariant ergodic measures on X . Assume

that we are given ergodic decompositions

(7) μ=

∫
Δ(X)

μx dσμ, ν =

∫
Δ(Y )

νy dσν

of μ, ν, where X = Y and σμ, σν are probability measures on Δ(X),Δ(Y ). Simi-

larly, assume that we are given the ergodic decomposition of π

(8) π =

∫
Δ(X×Y )

πx,y dδ.

(Recall that the Γ-invariance for π means the invariance with respect to the

action (x, y) �→ (g(x), g(y)).) We stress that in (7) the integrals are taken not
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with respect to variables x, y, but with respect to variables μx, νy . (Here, x, y

indicate the spaces where the measures are defined.) The same holds for (8). It

is straightforward that δ-almost all πx,y ’s have ergodic marginals, and taking

the projections of both sides of (8), we obtain decompositions (7). Moreover, the

following statement holds.

THEOREM 5.6

Under δ almost every measure πx,y solves the Γ-symmetric Kantorovich problem

with marginals μx, νy:

KΓ
c (μ

x, νy) = inf
m∈ΠΓ(μx,νy)

∫
cdm=

∫
cdπx,y,

and the following representation formula holds:

inf
π∈ΠΓ(μ,ν)

∫
cdπ = inf

δ∈Π(σμ,σν)

∫
KΓ

c (μ
x, νy)dδ.

REMARK 5.7

In the situation of Theorem 5.6 one can decompose the optimal transporta-

tion plan for ergodic marginals μ, ν: π =
∫
Δ(X×Y )

πx,y dδ. The ergodicity of the

marginals implies immediately that δ-almost all πx,y ’s have the same marginals

μ and ν. The optimality of πx,y for the cost c follows from Theorem 5.6. Thus,

we get that any solvable symmetric Kantorovich problem with ergodic marginals

admits, in particular, an ergodic solution.

Thus, the symmetric transportation problem can be reduced to the following

steps.

(Q1) Construct a solution to the symmetric Kantorovich problem for ergodic

measures.

(Q2) Given two nonergodic measures μ, ν and the corresponding ergodic

decompositions (7), construct a solution to the Kantorovich problem for measures

σμ, σν on Δ(X) with cost function KΓ
c .

Consider the application of Theorem 5.6 to several classical groups.

EXAMPLE 5.8 (EXCHANGEABLE MEASURES REVISITED)

Consider the invariant transportation problem for exchangeable measures and c=

(x1− y1)
2. The answer to (Q1) is trivial, because ergodic measures are countable

powers and the structure of the corresponding solution is trivial. As for (Q2), by

the de Finetti theorem the space of ergodic measures is isomorphic to the space

P(R) of probability measures on R. Thus, to resolve an optimal transportation

problem for exchangeable measures, we need to study the optimal transportation

problem for a couple of measures μ0, ν0 on P(R) arising from the de Finetti

decomposition. It is clear that the cost function c on P(R) satisfies

c(p1, p2) =W 2
2 (p1, p2),

where W2 is the standard Kantorovich distance on R.
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EXAMPLE 5.9 (ROTATIONALLY INVARIANT MEASURES)

Consider the invariant transportation problem for measures invariant with respect

to operators of the type U × Id, where U is a rotation of Rn = Prn(R
∞) and

Id is the identical operator on the orthogonal complement to R
n. As usual,

c = (x1 − y1)
2. This is an example where the optimal transportation problem

admits a precise solution. By a well-known result (see [14]), every rotationally

invariant measure μ on R
∞ admits a representation

μ=

∫
γt dpμ(t),

where γt is the distribution of the Gaussian independent and identically dis-

tributed with zero mean and variance t and pμ is a measure on R+. The opti-

mal transportation problem is obviously reduced to the one-dimensional optimal

transportation between pμ and pν .

EXAMPLE 5.10 (STATIONARY MEASURES)

These are the measures which are invariant with respect to the shift

T : x= (x1, x2, . . . ) �→ (x2, x3, . . . ).

Note that the powers of T generate the semigroup {0} ∪ N but not the group.

However, it makes no difference for our analysis, since we are still able to consider

the corresponding ergodic decompositions. In this case the description of ergodic

measures is nontrivial, and we do not know any general sufficient conditions for

existence even in the case in which both measures are ergodic. Some sufficient

conditions are given in Section 7.

We conclude this section by remarking that the existence of a transportation

mapping for a (not necessary optimal) symmetric plan π with ergodicX-marginal

implies the ergodicity of π.

PROPOSITION 5.11

Let X = Y be a Polish space, and let Γ be a group of Borel one-to-one trans-

formations acting on X. Assume that π and μ are Γ-invariant Borel probability

measures on X × Y and X, respectively. Assume, in addition, that PrXπ = μ,

μ is ergodic and that π({x,T (x)}) = 1 for some Borel mapping T . Then π is

ergodic.

Proof

Assuming the contrary, we represent π as a convex combination of two Γ-invariant

measures

π = λπ1 + (1− λ)π2,

π1 �= π2, 0< λ < 1. Clearly, this implies a similar decomposition for the projec-

tions μ = λPrXπ1 + (1− λ)PrXπ2. If we show that μ1, μ2 are Γ-invariant and

distinct, we will get a contradiction. The Γ-invariance of both measures follows
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immediately from the Γ-invariance of πi. Let us show that μ1 �= μ2. Assume the

contrary, and take a Borel set B ⊂X×Y . We get that πi(B) equals μi(A), where

A=PrX(B ∩Graph(T )). (Note that A is universally measurable as a projection

of a Borel set.) Then it follows that the πi’s coincide because the μi’s do. �

6. Kantorovich duality

In this section we start to study measures which are invariant under actions of

some group. The results of this section will not be used in this article, but they

are of independent interest.

Let X , Y be Polish spaces, and let Γ be a locally compact amenable group

with continuous actions LX
Γ , LY

Γ on X , Y , respectively. The action LΓ on the

product space X × Y is defined as

Lg(x, y) =
(
Lg(x),Lg(y)

)
,

where Lg is an element of LΓ corresponding to g ∈ Γ.

Let us define the space WΓ ⊂Cb(X × Y ) as the closure of the linear span of

the set {
f − f ◦Lg : f ∈Cb(X × Y ), g ∈ Γ

}
.

It can be checked that the property

(9)

∫
ω dπ = 0, ∀ω ∈WΓ,

of a probability measure π ∈ P(X×Y ) is equivalent to its invariance with respect

to LΓ.

Let μ ∈ P(X), ν ∈ P(Y ) be invariant under the actions LX
Γ , LY

Γ , respectively.

Then a transport plan π ∈Π(μ, ν) is invariant if and only if the property (9) is

satisfied. We denote the set of all invariant transport plans by ΠΓ(μ, ν).

The following theorem is a refinement of the duality result, which was proved

in [26, Theorem 2.5]. That result only considered Cb(X × Y ) cost functions.

(We warn the reader that the classical duality statement from our Section 2

is formulated in a slightly different but equivalent way: in the notation of this

section Φ = x2

2 −ϕ,Ψ= y2

2 −ψ.)

THEOREM 6.1

Let c ∈ C(X × Y ) be a nonnegative function such that there exist f ∈ L1(X,μ),

g ∈ L1(Y, ν), and

c(x, y)≤ f(x) + g(y), ∀(x, y) ∈X × Y.

Then, in the setting described above,

inf
π∈ΠΓ

∫
cdπ = sup

Φ+Ψ+ω≤c

∫
X

Φ(x)dμ+

∫
Y

Ψ(y)dν,

where Φ ∈ L1(X), Ψ ∈ L1(Y ), ω ∈WΓ.



314 Alexander V. Kolesnikov and Danila A. Zaev

Proof

The inequality

inf
π∈ΠΓ

∫
cdπ ≥ sup

Φ+Ψ+ω≤c

∫
Φdμ+

∫
Ψdν

can be easily obtained:

inf
π∈ΠΓ

∫
cdπ ≥ inf

π∈ΠΓ

(
sup

Φ+Ψ+ω≤c

∫
(Φ+Ψ+ ω)dπ

)

= inf
π∈ΠΓ

(
sup

Φ+Ψ+ω≤c

∫
Φdμ+

∫
Ψdν

)
= sup

Φ+Ψ+ω≤c

∫
Φdμ+

∫
Ψdν.

To obtain the opposite inequality we use the following statement from [26, The-

orem 2.5]:

inf
π∈ΠΓ

∫
cb dπ = sup

Φ+Ψ+ω≤cb

∫
X

Φ(x)dμ+

∫
Y

Ψ(y)dν,

for cb ∈Cb(X × Y ), Φ ∈Cb(X), Ψ ∈Cb(Y ), ω ∈WΓ. Let cn(x, y) := min{c(x, y),
n} for each n ∈N . The inequality

sup
Φ+Ψ+ω≤cn

∫
X

Φ(x)dμ+

∫
Y

Ψ(y)dν ≤ sup
Φ+Ψ+ω≤c

∫
X

Φ(x)dμ+

∫
Y

Ψ(y)dν

is obvious for any natural n. Thus, it remains to prove that

lim
n→∞

inf
π∈ΠΓ

∫
cn dπ = inf

π∈ΠΓ

∫
cdπ.

Recall that the functional π→
∫
cb dπ is weakly continuous for every cb ∈Cb(X×

Y ). It follows, from the characterization (9) of invariant measures, that ΠΓ(μ, ν)

is a closed subset of Π(μ, ν), which is known to be compact. Thus, ΠΓ(μ, ν) is

compact in the topology of weak convergence. If πn is the solution for

inf
π∈ΠΓ

∫
cn dπ,

then the sequence (πn) has to have a subsequence converging to some element

π∗ ∈ΠΓ. Since for any fixed m ∈N the inequality limn→∞
∫
cn dπ

∗ ≥
∫
cm dπ∗ is

satisfied and, by the monotone convergence theorem, limm→∞
∫
cm dπ∗ =∫

cdπ∗ ≤
∫
(f(x) + g(y))dπ∗ <∞, we obtain

lim
n→∞

∫
cn dπn ≥ lim

m→∞

∫
cm dπ∗ =

∫
cdπ∗ ≥ inf

π∈ΠΓ

∫
cdπ.

This fact concludes the proof of the theorem. �

As one can see, the form of the duality theorem is similar to the well-known

classic result, but the difference is substantial: dual functionals are related to

each other in a more complicated way. Moreover, there is no existence result for

the dual problem without any additional assumptions.
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It was shown in [26, Theorem 5.7] that, in the case of compact group Γ and

under the assumptions of Theorem 6.1,

inf
π∈ΠΓ

∫
cdπ = sup

Φ+Ψ≤c̄

∫
X

Φ(x)dμ+

∫
Y

Ψ(y)dν,

where c̄ :=
∫
Γ
(c ◦ g)dχ(g) and χ(g) is the probability Haar measure. It is clear

that if the cost function is Γ-invariant, then the invariant dual problem coincides

with the usual one. Moameni [21] proved that, for Γ = Z and an invariant cost

function c, the corresponding invariant dual problem coincides with the usual

one, and moreover, both prime and dual Kantorovich problems have an invariant

solution.

7. Existence of invariant optimal mapping for stationary measures

Recall that the measures on R
∞ which are invariant with respect to the shift

σ(x1, x2, . . .) = (x2, x3, . . .)

are called stationary measures. Unlike exchangeable measures, the projections of

stationary measures are in general not invariant with respect to some reasonable

family of linear transformations.

As usual we assume that R
∞ is approximated by the sequence of finite-

dimensional spaces Rn in the following sense: we identify R
n with the subset

Pn(R
∞) =

{
x= (x1, x2, . . . , xn,0,0, . . . )

}
⊂R

∞.

On every finite-dimensional space R
n we will apply the following operator of

cyclical shift:

σn(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1).

Let us associate with every stationary measure μ the cyclical average of its pro-

jections:

μ̂n =
1

n

n∑
i=1

(μ ◦ P−1
n ) ◦ σ−(i−1)

n .

In addition, let us denote by Rm,n the orthogonal complement of Rm ⊂R
n:

R
n =R

m ×Rm,n, m < n.

The marginal measures are always assumed to satisfy the following property.

ASSUMPTION B

The measures μ, ν are stationary Borel probability measures such that their pro-

jections on every R
n

μ ◦Pr−1
n , ν ◦Pr−1

n

have Lebesgue densities and bounded second moments.
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We consider the symmetric Monge–Kantorovich problem

(10)

∫
(x1 − y1)

2 dπ→min,

where the infimum is taken among all stationary measures ΠΓ(μ, ν) with margin-

als μ, ν.

REMARK 7.1

Minimizing
∫
(x1 − y1)

2 dπ is equivalent to maximizing
∫
x1y1 dπ, because∫

x2
1 dπ =

∫
x2
1 dμ and

∫
y21 dπ =

∫
y21 dν are fixed.

THEOREM 7.2

Let μ be a stationary measure which satisfies the following assumptions.

(1) μ is a weak limit of a sequence of σn-invariant measures μn on R
n.

(2) For every m< n there exists a probability measure μm,n on Rm,n such

that the relative entropy (the Kullback–Leibler distance) between μm × μm,n and

μn is uniformly bounded in n:∫
log

( dμn

d(μm × μm,n)

)
dμn <Cm,

with Cm satisfying

lim
m

Cm

m
= 0.

(3) The cyclical average μ̂n of the n-dimensional projection μ◦P−1
n has finite

second moments and admits a density ρn with respect to μ satisfying

sup
n

∫
ρ−ε
n dμ <∞

for some ε > 0.

Then there exists a mapping T with the following properties.

• T pushes forward μ onto the standard Gaussian measure on R
∞:

ν = γ.

• T is a μ-almost everywhere limit of finite-dimensional mappings Tn :Rn �→
R

n such that every Tn is a solution to an optimal transportation problem on R
n.

Proof

We consider the sequence of n-dimensional optimal transportation mappings Tn

with cost function
∑n

i=1(xi − yi)
2 pushing forward μn onto γn. It follows from

the σn-invariance of μn and γn that the mapping Tn is cyclically invariant:

〈Tn ◦ σn, ei〉= 〈Tn, ei−1〉, μn-a.e.

Fix a couple of numbers m,n with n > m. Let Tm,n be the optimal trans-

portation mapping for the cost function
∑m

i=n+1(xi − yi)
2 pushing forward μm,n
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onto the standard Gaussian measure on Rm,n. We stress that Tm and Tm,n

depend on different collections of coordinates.

We extend Tm onto R
n in the following way:

Tm(x) = Tm(Pmx) + Tm,n(Pm,nx).

Clearly, Tm pushes forward μm × μm,n onto the standard Gaussian measure

on Rn. Applying Proposition 2.3 to the couple of mappings Tm, Tn, we get

(11)
1

2

∫
‖Tn − Tm‖2 dμn ≤

∫
log

( dμn

d(μm × μm,n)

)
dμn.

This implies that

(12)

m∑
i=1

∫
〈Tn − Tm, ei〉2 dμn ≤

∫
‖Tn − Tm‖2 dμn ≤ 2Cm

for every m,n, m<n.

Let us note that for every i one can extract a weakly convergent subsequence

from a sequence of (signed) measures {〈Tn, ei〉 · μn}. Indeed, for any compact

set K(∫
Kc

∣∣〈Tn, ei〉
∣∣dμn

)2

≤
∫ ∣∣〈Tn, ei〉

∣∣2 dμn · μn(K
c) =

∫
x2
i dγ · μn(K

c).

Using the tightness of {μn} we get that {|〈Tn, ei〉| · μn} is a tight sequence. In

addition, note that for every continuous f

lim
n

(∫
f
∣∣〈Tn, ei〉

∣∣dμn

)2

≤
∫

x2
i dγ ·

∫
f2 dμ.

This implies that any limiting point of {〈Tn, ei〉·μn} is absolutely continuous with

respect to μ. Applying the diagonal method and passing to a subsequence, one

can assume that convergence takes place for all i’s simultaneously. Consequently,

there exists a subsequence {nk} and a measurable mapping T with values in R
∞

such that

〈Tnk
, ei〉 · μnk

→ 〈T, ei〉 · μ

weakly in the sense of measures for every i. It is easy to check that the standard

property of L2-weak convergence holds also in this case:

(13)

∫
〈T, ei〉2 dμ≤ limk

∫
〈Tnk

, ei〉2 dμn =

∫
x2
i dγ = 1.

Finally, we pass to the limit in (12) and get

(14)

m∑
i=1

∫
〈T − Tm, ei〉2 dμ≤ 2Cm.

The claim follows from (13) and the fact that limn

∫
ϕdμn =

∫
ϕdμ for every

ϕ ∈ L2(μ). Indeed, if ϕ is bounded and continuous, this follows from the weak

convergence 〈Tn, ei〉 · μn → 〈T, ei〉 · μ. For arbitrary ϕ ∈ L2(μ) we find a con-

tinuous bounded cylindrical function ϕ̃ such that ‖ϕ − ϕ̃‖L2(μ) < ε. One has
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limn

∫
ϕdμn = limn

∫
(ϕ− ϕ̃)dμn +

∫
ϕ̃ dμ. The claim follows from the estimate

(∫
|ϕ− ϕ̃|dμn

)2

≤
∫

(ϕ− ϕ̃)2 dμ ·
∫

ρ2n dμ≤
(
sup
n

∫
ρ2n dμ

)
ε2.

Note that T commutes with the shift σ: 〈T ◦ σ, ei〉 = 〈T, ei−1〉. Indeed, for
every bounded cylindrical ϕ one has∫

ϕ〈Tn, ei−1〉dμn =

∫
ϕ
〈
Tn(σn), ei

〉
dμn =

∫
ϕ(σ−1

n )〈Tn, ei〉dμn

=

∫
ϕ(σ−1)〈Tn, ei〉dμn.

Here we use that ϕ(σ−1
n ) = ϕ(σ−1) for sufficiently large values of n and the

cyclical invariance of Tn. Passing to the limit in the nk-subsequence one gets∫
ϕ〈T, ei−1〉dμ=

∫
ϕ(σ−1)〈T, ei〉dμ=

∫
ϕ〈T ◦ σ, ei〉dμ.

Hence, T ◦ σ = σ ◦ T .
Hence, by the assumptions of the theorem and (14) we get

limsup
m

1

m

m∑
i=1

∫
〈T − Tm, ei〉2 dμ= 0.

To prove that T pushes forward μ onto γ it is sufficient to show that

〈Tm, ei〉 → 〈T, ei〉 in measure (see Lemma 3.2). To this end, let us approximate

T1 by a bounded function ξ1(x1, . . . , xk) depending on a finite number of coor-

dinates in L2(μ):
∫
‖T1 − ξ1‖2 dμ < ε, where ε is chosen sufficiently small. Set:

ξi = ξ ◦ σi−1. Clearly, we get by the shift invariance

1

m

∫ m∑
i=1

(Ti − ξi)
2 dμ=

∫
(T1 − ξ1)

2 dμ < ε.

Hence,

limsup
m

1

m

∫
‖Tm − ξ‖2 dμ≤ ε, ξ = (ξ1, ξ2, . . .).

Make the change of variables under the cyclical shift σn. One has

〈Tm, ei〉 ◦ σ−(i−1)
m = T1

for all 1≤ i≤m and

ξi ◦ σ−(i−1)
m = ξ1

as soon as i− 1 + k ≤m. Hence, for the latter values of i one has∫
〈ξ − T, ei〉2 dμ=

∫
〈ξ − T, e1〉2 dμ ◦ σi

n.

The number of indices which do not satisfy this property is limited by k. Clearly,

it does not affect the limit of averages. Finally, we obtain

ε≥ limsup
m

1

m

∫ n∑
i=1

〈ξ − Tm, ei〉2 dμ= limsup
m

∫
〈ξ − Tm, e1〉2 dμ̂m.
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Recall that
∫
(T1 − ξ1)

2 dμ≤ ε. Finally,

limsup
m

∫
〈T − Tm, e1〉2 dμ̂m ≤ 2 limsup

m

∫
〈ξ − Tm, e1〉2 dμ̂m

+ 2 limsup
m

∫
(T1 − ξ1)

2 dμ̂m ≤ 4ε.

Since ε > 0 is arbitrary, one gets
∫
〈T −Tm, e1〉2 dμ̂m → 0. By the Hölder inequal-

ity ∫
〈T − Tm, e1〉

2
p dμ≤

(∫
〈T − Tm, e1〉2 dμ̂m

) 1
p
(∫

ρ
− 1

p−1
m dμ

) 1
q

.

Taking p= 1+ 1
ε we get by the assumption of the theorem that the latter tends

to zero. The proof is complete. �

REMARK 7.3

In Theorem 7.2 the Gaussian measure γ can be replaced by any countable power

of an uniformly log-concave one-dimensional measure.

In the following proposition we prove that the transportation mapping T is indeed

optimal under additional assumptions.

PROPOSITION 7.4

Let the assumptions of Theorem 7.2 hold. Assume in addition that

lim
n→∞

1

n
W 2

2 (μ̂n, μn) = 0.

Then there exists a solution π of problem (10) in the class of stationary measures

such that π{(x,T (x)), x ∈R
∞}= 1.

Proof

We show that the measure π = μ ◦ (x,T (x))−1, which is the weak limit of mea-

sures πn, is optimal. Recall that πn minimizes m→
∫ ∑n

i=1(xi− yi)
2 dm and has

marginals μn, γn; hence, measure π has marginals μ,γ. Indeed,
∫
(x1 − y1)

2 dπ = lim
n

∫
(x1 − y1)

2 dπn = lim
n

1

n

∫ n∑
i=1

(xi − yi)
2 dπn.

If π is not optimal, then there exists a stationary measure π0 with projections

μ, ν such that

∫
(x1 − y1)

2 dπ0 + ε <
1

n

∫ N∑
i=1

(xi − yi)
2 dπn

for some ε > 0 and all sufficiently big values of n. Taking into account the sta-

tionarity of π0, we get
∫
xiyi dπ0 =

∫
xjyjπ0 for every i, j. Thus,

∫ n∑
i=1

(xi − yi)
2 dπ̂0 + nε=

∫ n∑
i=1

(xi − yi)
2 dπ0 + nε <

∫ n∑
i=1

(xi − yi)
2 dπn,
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where π̂0 =
1
n

∑n
i=1(π0 ◦Pr−1

n ) ◦ σ−(i−1)
n . The latter inequality implies that

W 2
2 (μ̂n, γn) + nε≤W 2

2 (μn, γn).

By the triangle inequality

W 2
2 (μ̂n, γn) + nε ≤

(
W2(μn, μ̃n) +W2(μ̂n, γn)

)2
≤W 2

2 (μn, μ̂n) + 2W2(μ̂n, γn)W2(μn, μ̂n) +W 2
2 (μ̂n, γn).

Hence,

(15) ε≤ 1

n

(
2W2(μ̂n, γn)W2(μn, μ̂n) +W 2

2 (μ̂n, μn)
)
.

The quantity W 2
2 (μ̂n, γn) can be trivially estimated by 2

∑n
i=1(

∫
x2
i dμ̂n +∫

y2i dγn)≤Cn. Then using the assumption of the theorem we get that the right-

hand side of (15) tends to zero, which contradicts the positivity of ε. �

We finish this section with a concrete application of Theorem 7.2. We study a

transportation of a Gibbs measure μ which can be formally written in the form

μ= e−H(x) dx,

where the potential H admits the following heuristic representation:

H(x) =

∞∑
i=1

V (xi) +

∞∑
i=1

W (xi, xi+1).

Here V and W are smooth functions and W (x, y) is symmetric: W (x, y) =

W (y,x). The existence of such measures was proved in [1].

Let us specify the assumptions about V and W . These are a particular case

of [1, Assumptions A1–A3].

(1)

W (x, y) =W (y,x).

(2) There exist numbers J > 0, L ≥ 1, N ≥ 2, σ > 0, and A,B,C > 0 such

that ∣∣W (x, y)
∣∣≤ J

(
1 + |x|+ |y|

)N−1
,

∣∣∂xW (x, y)
∣∣≤ J

(
1 + |x|+ |y|

)N−1
.

(3)
∣∣V (x)

∣∣≤C
(
1 + |x|

)L
,

∣∣V ′(x)
∣∣≤C

(
1 + |x|

)L−1
.

(4) (Coercivity assumption)

V ′(x) · x≥A|x|N+σ −B.

Let us define the following probability measure on En:

μn =
1

Zn
exp

(
−

n∑
i=1

(
V (xi) +W (xi, xi+1)

))
,

with the convention xn+1 := x1. Here Zn is the normalizing constant.
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PROPOSITION 7.5

The sequence μn admits a weakly convergent subsequence μnk
→ μ satisfying the

assumptions of Theorem 7.2.

Proof

It was proved in [1, Theorem 3.1] that any sequence of probability measures

μ̃n = cne
−Hn dx−n · · ·dxn,

where Hn is obtained from H by fixing a boundary condition x̃

Hn =

n∑
i=1

V (xi) +

n−1∑
i=1

W (xi, xi+1) +W (xn, x̃1),

which has a weakly convergent subsequence μ̃nk
→ μ̃. In addition (see [1]), μ

satisfies the following a priori estimate: for every λ > 0

sup
k∈N

∫
exp

(
λ|xk|N

)
dμ̃ <∞.

The same estimate holds for μ̃n uniformly in n.

Following the reasoning from [1] it is easy to show that the sequence {μn} is

tight and satisfies the same a priori estimate. Thus, we can pass to a subsequence

{μn′} which weakly converges to a measure μ. For the sake of simplicity this

subsequence will be denoted by {μn} again. The limiting measure μ satisfies

(16) sup
k∈N

∫
exp

(
λ|xk|N

)
dμ <∞;

moreover,

(17) sup
n

sup
k∈N

∫
exp

(
λ|xk|N

)
dμn <∞.

Let us estimate the relative entropy. We note that μn and μm (n >m) are

related in the following way:

eZμn∫
eZ dμn

= μm × νm,n,

where Z = −W (xm, x1) +W (xm, xm+1) +W (xn, x1) and νm,n is a probability

measure on Em,n. Set μm,n = νm,n. Then∫
log

( dμn

d(μm × μm,n)

)
dμn =

∫ (
Z − log

∫
eZ dμn

)
dμn.

The desired bound follows immediately from (17) and the assumptions about W .

To prove assumption (3) we note that

[eW (xn,xn+1)+W (x1,xn) · μ] ◦ P−1
n∫

eW (xn,x1)+W (x1,xn) dμ
=

eW (x1,xn) · μn∫
eW (x1,xn) dμn

.
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The normalizing constants can be easily estimated with the help of a priori

bounds for μ and μn. Applying assumptions on W one can easily get that

Ae−B(|xn|N−1+|xq|N−1) ≤ dμn

dμ ◦ P−1
n

≤AeB(|xn|N−1+|x1|N−1),

where A,B > 0 do not depend on n. Hence, assumption (3) follows immediately

from (17), the Jensen inequality, and convexity if the function is x−ε. �

REMARK 7.6

Finally, let us briefly discuss when the transportation mapping obtained in Propo-

sition 7.5 by Theorem 7.2 solves the corresponding optimal transportation prob-

lem. To this end we apply Proposition 7.4.

Following the estimates obtained in Proposition 7.5 and applying the Jensen

inequality, one can easily show that the sequence of the entropies∫
log

(dμ̂n

dμn

)
dμ̂n

is bounded. Then the assumption of Proposition 7.4 holds, for instance, if every

μn satisfies the Talagrand inequality

W 2
2 (μn, ρ · μn)≤C

∫
ρ logρdμn

with constant which does not depend on n. We do not investigate here sufficient

conditions for measures μn to satisfy this inequality; we just mention that this

clearly holds in many natural situations (e.g., under the assumption of uniform

log-concavity or finiteness of the log-Sobolev constant).

In addition, we emphasize that in many applications the measures do indeed

satisfy the Talagrand inequality, but Proposition 7.4 should actually work under

much milder assumptions.
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