Higher homotopy associativity of power maps on finite *H*-spaces

Yusuke Kawamoto

Abstract Let p be an odd prime, and let $\lambda \in \mathbb{Z}$. Consider the loop space $Y_t = S_{(p)}^{2t-1}$ for $t \ge 1$ with t | (p-1). Then we first determine the condition for the power map Φ_{λ} on Y_t to be an A_p -map. We next assume that X is a simply connected \mathbb{F}_p -finite A_p -space and that λ is a primitive (p-1)st root of unity mod p. Our results show that if the reduced power operations $\{\mathscr{P}^i\}_{i\ge 1}$ act trivially on the indecomposable module $QH^*(X;\mathbb{F}_p)$ and the power map Φ_{λ} on X is an A_n -map with n > (p-1)/2, then X is \mathbb{F}_p -acyclic.

1. Introduction

A grouplike space is a homotopy associative *H*-space with a homotopy inverse. Let *X* be a grouplike space. We denote the multiplication and the homotopy inverse of *X* by $\mu: X^2 \to X$ and $\iota: X \to X$, respectively. Consider the power maps $\{\Phi_{\lambda}: X \to X\}_{\lambda \in \mathbb{Z}}$ on *X* given as follows. If $\lambda \geq 0$, then Φ_{λ} is inductively defined by $\Phi_0(x) = e$ and

(1.1)
$$\Phi_{\lambda}(x) = \mu(\Phi_{\lambda-1}(x), x) \quad \text{for } \lambda > 0,$$

where $e \in X$ is the base point of X. In the case of $\lambda < 0$, we can define Φ_{λ} by $\Phi_{\lambda}(x) = \iota(\Phi_{-\lambda}(x))$ with (1.1). From the definition, the multiplication of X is homotopy commutative if and only if all the power maps $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ on X are H-maps. On the other hand, if X is a double loop space, then we see that $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ are loop maps.

Consider the *p*-localization $S_{(p)}^{2t-1}$ of the (2t-1)-dimensional sphere for an odd prime *p* and $t \ge 1$. Then $S_{(p)}^{2t-1}$ is a loop space if and only if t|(p-1) by Sullivan [31, pp. 103–105] (see also [14, p. 172, Theorem A]). We denote the loop space $S_{(p)}^{2t-1}$ by Y_t . The loop multiplication of Y_t is assumed to be strictly associative (cf. [14, p. 45]).

From the result of Arkowitz, Ewing, and Schiffman [2, Theorem 2.4], we have the following (see also [20, Theorem 2(d)]).

Kyoto Journal of Mathematics, Vol. 56, No. 4 (2016), 847-872

DOI 10.1215/21562261-3664941, © 2016 by Kyoto University

Received July 23, 2015. Revised November 16, 2015. Accepted November 16, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 55P45, 55P48; Secondary 55S10, 55S25.

Author's work supported in part by Grant-in-Aid for Scientific Research (No. 15K04886), Japan Society for the Promotion of Science.

THEOREM 1.1 ([2])

Let p be an odd prime. Then the power map Φ_{λ} on Y_{p-1} is an H-map if and only if $\lambda(\lambda - 1) \equiv 0 \mod p$.

When $t \neq p-1$, all the power maps $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ on Y_t are *H*-maps since the multiplication of Y_t is homotopy commutative by [2, Theorem 0.1(1)]. Although *p*-completed spheres are considered in [2], their results are also valid for *p*-localized spheres (see [2, p. 296]). We note that Theorem 1.1 is generalized to the case of several *p*-localized finite loop spaces by McGibbon [20, Section 4] and Theriault [32, p. 85].

On the other hand, the condition for the power map Φ_{λ} on Y_t to be a loop map is determined by Lin [18, Theorem 1.3].

THEOREM 1.2 ([18])

Let p be an odd prime, and let $t \ge 1$ with t|(p-1). Then the power map Φ_{λ} on Y_t is a loop map if and only if $\lambda = \alpha^t$ for some p-adic integer $\alpha \in \mathbb{Z}_p^{\wedge}$.

REMARK 1.3

When $\lambda \neq 0 \mod p$, the above result was proved by Arkowitz, Ewing, and Schiffman [2, Theorem 4.4 and Corollary 4.5] (see also Rector [24, Section 3]). As is noted in [18, p. 740], Theorem 1.2 can also be derived from the result of Wojtkowiak [35, Theorem 1] or Møller [23, Theorem 1.2].

Using some results from number theory, Theorem 1.2 implies the following corollary (cf. [2, Lemma 4.3]).

COROLLARY 1.4

Let p and t be as in Theorem 1.2. Put m = (p-1)/t. Assume that $\lambda \neq 0$, and write $\lambda = p^a b$ with $a \geq 0$ and $b \not\equiv 0 \mod p$. Then the power map Φ_{λ} on Y_t is a loop map if and only if t|a and $b^m \equiv 1 \mod p$.

According to Sugawara [30, Section 2], we have a condition for an H-map between topological monoids (strictly associative H-spaces) to be homotopic to a loop map. His condition is called *strongly homotopy-multiplicativity*. Generalizing the condition, Stasheff [27, II, Definition 4.4] introduced the concept of A_n -maps between topological monoids.

From the definition, an A_2 -map is just an H-map. On the other hand, a map $f: X \to Y$ is an A_{∞} -map if and only if we have the induced map $Bf: BX \to BY$ with $f \simeq \Omega(Bf)$ by Stasheff [27, II, Theorem 4.5], where BX and BY denote the classifying spaces of X and Y, respectively. Hence, A_n -maps can be regarded as intermediate stages between an H-map and a loop map.

McGibbon [21] considered a condition for the power map on a topological monoid to be an A_3 -map. Applying the main result [21, Theorem 9] to the case of $Y_{(p-1)/2}$, he proved the following result.

THEOREM 1.5 ([21, THEOREM 10(III)])

Let p > 3. Then the power map Φ_{λ} on $Y_{(p-1)/2}$ is an A_3 -map if and only if $\lambda(\lambda^2 - 1) \equiv 0 \mod p$.

We first generalize Theorems 1.1 and 1.5 as follows.

THEOREM A

Let p be an odd prime, and let $t \ge 1$ with t|(p-1). Put m = (p-1)/t. Then the power maps $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ on Y_t satisfy the following.

- (1) Φ_{λ} is an A_m -map for any $\lambda \in \mathbb{Z}$.
- (2) Φ_{λ} is an A_{m+1} -map if and only if $\lambda(\lambda^m 1) \equiv 0 \mod p$.

When $\lambda \not\equiv 0 \mod p$, the power map Φ_{λ} on Y_t is an A_{m+1} -map if and only if it is a loop map by Theorem A(2) and Corollary 1.4.

In the case of $\lambda \equiv 0 \mod p$, we have the following.

THEOREM B

Let p, t, and m be as in Theorem A. Assume that $\lambda \equiv 0 \mod p$ and $2 \leq j \leq t$. Then the power maps $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ on Y_t satisfy the following.

- (1) If Φ_{λ} is an $A_{(j-1)m+1}$ -map, then it is also an A_{jm} -map.
- (2) Φ_{λ} is an A_{jm+1} -map if and only if $\lambda \equiv 0 \mod p^j$.

From Theorems A(2) and B(2) and Corollary 1.4, we have the following corollary.

COROLLARY 1.6

Let p, t, and m be as in Theorem A. Then the power map Φ_{λ} on Y_t is an A_p -map if and only if $\lambda \equiv 0 \mod p^t$ or $\lambda^m \equiv 1 \mod p$.

Sugawara [29, Theorem 1.1] also gave a criterion for an *H*-space to be of the homotopy type of a topological monoid. His criterion is higher homotopy associativity for multiplication. Later Stasheff [27, I, Section 2] expanded the criterion into the concept of A_n -spaces (see Section 2).

From the definition, an A_n -space is an H-space whose multiplication is homotopy associative of the *n*th order. In particular, an A_2 -space and an A_3 -space are an H-space and a homotopy associative H-space, respectively. Moreover, a space is an A_∞ -space if and only if it is of the homotopy type of a topological monoid by Stasheff [28, I, Theorem 5] (see Remark 2.1).

According to Iwase and Mimura [11, Section 3], Stasheff's definition of A_n maps between topological monoids is also generalized to the case of maps between A_n -spaces (see Section 2).

In this article, all spaces are assumed to be pointed, connected, and of the homotopy type of CW-complexes. Hence, any A_n -space can be regarded as a grouplike space for $n \geq 3$. A space X is called \mathbb{F}_p -finite if the mod p cohomology

 $H^*(X; \mathbb{F}_p)$ is finite-dimensional as a vector space over \mathbb{F}_p , and is called \mathbb{F}_p -acyclic if the reduced mod p cohomology $\widetilde{H}^*(X; \mathbb{F}_p) = 0$.

Our result is as follows.

THEOREM C

Let p be an odd prime. Assume that X is a simply connected \mathbb{F}_p -finite A_p -space and that λ is a primitive (p-1)st root of unity mod p. If the reduced power operations $\{\mathscr{P}^i\}_{i\geq 1}$ act trivially on the indecomposable module $QH^*(X;\mathbb{F}_p)$ and the power map Φ_{λ} on X is an A_n -map with n > (p-1)/2, then X is \mathbb{F}_p -acyclic.

REMARK 1.7

(1) In Theorem C, the assumption that X is an " A_p -space" cannot be relaxed. In fact, the power maps $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ on the A_{p-1} -space Z_t in Example 2.2 are A_{p-1} -maps for any p > 3 and $t \ge 1$.

(2) If λ is not a primitive (p-1)st root of unity mod p, then Theorem C does not hold from the following facts.

(i) When $\lambda \equiv 0 \mod p$, the power map Φ_{λ} on Y_2 is an $A_{(p+1)/2}$ -map by Theorem A(2).

(ii) Assume that $\lambda^k \equiv 1 \mod p$ for some k with $1 \le k < p-1$ and $k \mid (p-1)$. Put t = (p-1)/k > 1. Then the power map Φ_{λ} on Y_t is a loop map by Corollary 1.4.

(3) Since the power maps $\{\Phi_{\lambda}\}_{\lambda \in \mathbb{Z}}$ on Y_2 are $A_{(p-1)/2}$ -maps by Theorem A(1), the assumption "n > (p-1)/2" is necessary.

This article is organized as follows. In Section 2, we outline the higher homotopy associativity of *H*-spaces and *H*-maps introduced by Stasheff [27, Section 2] and Iwase and Mimura [11, Section 3], respectively. In Section 3, Theorems A and B are proved by using the Brown–Peterson operations. Section 4 is devoted to the proof of Theorem C. We first recall the modified projective space $R_p(X)$ of an A_p space X constructed by Hemmi [7, Section 2]. Based on the mod p cohomology of $R_p(X)$, we have an unstable \mathscr{A}_p -algebra T(p) (see Theorem 4.2(2)). We next recall the concept of \mathscr{D}_n -algebras in Hemmi and Kawamoto [8, Section 2], and we show that if the power map Φ_{λ} on X is an A_n -map, then T(p) is a \mathscr{D}_n -algebra (see Theorem 4.3). Theorem C is proved by using Theorem 4.3 and some results on \mathscr{D}_n -algebras from [8, Section 3].

2. Higher homotopy associativity

We first recall associahedra and multiplihedra constructed by Stasheff [27] and Iwase and Mimura [11], respectively.

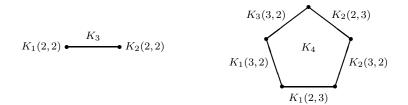


Figure 1. The associahedra K_3 and K_4 .

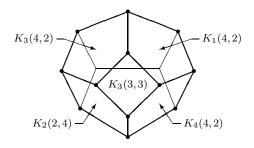


Figure 2. The associahedron K_5 .

Stasheff [27, I, Section 6] constructed the associahedra $\{K_n\}_{n\geq 1}$ in order to define A_n -spaces. From the construction, the associahedron K_n is an (n-2)-dimensional polytope whose boundary ∂K_n is given by

$$\partial K_n = \bigcup_{(r,s,k) \in \mathbb{K}_n} K_k(r,s) \text{ for } n \ge 2,$$

where (see Figures 1 and 2)

$$\mathbb{K}_n = \left\{ (r, s, k) \in \mathbb{N}^3 \mid r, s \ge 2 \text{ with } r + s = n + 1 \text{ and } k \le r \right\}$$

The facet (codimension 1 face) $K_k(r,s)$ is isomorphic (affinely homeomorphic) to the product $K_r \times K_s$ via a face operator

$$\partial_k(r,s) \colon K_r \times K_s \to K_k(r,s) \quad \text{for } (r,s,k) \in \mathbb{K}_n,$$

and there is a family $\{\sigma_j \colon K_n \to K_{n-1}\}_{1 \leq j \leq n}$ of degeneracy operators (see [27, I, Section 2]). For convenience, we also put $K_1 = \{*\}$. Note that the associahedra $\{K_n\}_{n\geq 1}$ are also used to define A_n -maps from A_n -spaces to topological monoids by Stasheff [28, Definition 11.9].

Iwase and Mimura [11, Section 2] introduced another family $\{J_n\}_{n\geq 1}$ of special complexes when defining A_n -maps between A_n -spaces. Later Forcey [3, Theorem 3] reconstructed J_n as the convex hull of a finite set of points in \mathbb{R}^n (see also [10, Appendix E]). The polytopes $\{J_n\}_{n\geq 1}$ are called multiplihedra. Yusuke Kawamoto

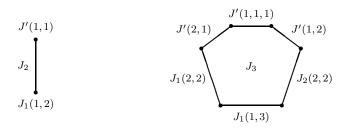


Figure 3. The multiplihedra J_2 and J_3 .

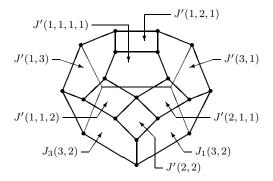


Figure 4. The multiplihedron J_4 .

From their constructions, the multiplihedron J_n is an (n-1)-dimensional polytope whose boundary ∂J_n is given by

$$\partial J_n = \bigcup_{(r,s,k) \in \mathbb{J}_n} J_k(r,s) \cup \bigcup_{(t_1,\dots,t_m) \in \mathbb{J}'_n} J'(t_1,\dots,t_m) \quad \text{for } n \ge 1,$$

where (see Figures 3 and 4)

$$\mathbb{J}_n = \left\{ (r, s, k) \in \mathbb{N}^3 \mid s \ge 2 \text{ with } r + s = n + 1 \text{ and } k \le r \right\}$$

and

$$\mathbb{J}'_n = \{(t_1, \dots, t_m) \in \mathbb{N}^m \mid m \ge 2 \text{ and } t_1 + \dots + t_m = n\}.$$

Moreover, we have face operators

$$\left\{\delta_k(r,s)\colon J_r\times K_s\to J_k(r,s)\right\}_{(r,s,k)\in\mathbb{J}_r}$$

and

$$\left\{\delta'(t_1,\ldots,t_m)\colon K_m\times J_{t_1}\times\cdots\times J_{t_m}\to J'(t_1,\ldots,t_m)\right\}_{(t_1,\ldots,t_m)\in\mathbb{J}'_n}$$

and degeneracy operators $\{\zeta_j : J_n \to J_{n-1}\}_{1 \leq j \leq n}$. As in the case of associahedra, the facets $J_k(r,s) \cong J_r \times K_s$ and $J'(t_1, \ldots, t_m) \cong K_m \times J_{t_1} \times \cdots \times J_{t_m}$ via $\delta_k(r,s)$ and $\delta'(t_1, \ldots, t_m)$, respectively.

We next outline the higher homotopy associativity of H-spaces and H-maps.

$$(xy)z \stackrel{\mu_{3}(t, x, y, z)}{\bullet} x(yz) \qquad (xy)(zw) \qquad (x(yz)w) \qquad (x(yz)w) \qquad ((xy)z)w \qquad (x(yz))w \qquad (x(y$$

Figure 5. The A_n -forms on X for n = 3 and 4.

According to Stasheff [27, I, Section 2], an A_n -form on a space X is a family $\{\mu_i : K_i \times X^i \to X\}_{1 \le i \le n}$ of maps with the following relations:

(2.1)
$$\mu_{1}(*, x) = x,$$

$$\mu_{i}(\partial_{k}(r, s)(a, b), x_{1}, \dots, x_{i})$$
(2.2)
$$= \mu_{r}(a, x_{1}, \dots, x_{k-1}, \mu_{s}(b, x_{k}, \dots, x_{k+s-1}), x_{k+s}, \dots, x_{i})$$
for $(r, s, k) \in \mathbb{K}_{i},$

$$\mu_{i}(a, x_{1}, \dots, x_{j-1}, e, x_{j+1}, \dots, x_{i})$$
(2.3)

 $= \mu_{i-1}(\sigma_j(a), x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_i) \quad \text{for } 1 \le j \le i.$ A space with an A_n -form is called an A_n -space for $n \ge 1$ (see Figure 5). If

A space with an A_n -torm is called an A_n -space for $n \geq 1$ (see Figure 5). If there is a family $\{\mu_i\}_{i\geq 1}$ of maps such that $\{\mu_i\}_{1\leq i\leq n}$ is an A_n -form on X for any $n\geq 1$, then X is called an A_∞ -space.

REMARK 2.1

(1) An A_1 -space is just a space. Since $\mu_2(*, x, e) = \mu_2(*, e, x) = x$,

$$\mu_3(\partial_1(2,2)(*,*), x, y, z) = (xy)z, \quad \text{and} \quad \mu_3(\partial_2(2,2)(*,*), x, y, z) = x(yz),$$

an A_2 -space and an A_3 -space are an H-space and a homotopy associative H-space, respectively.

(2) From the result of Stasheff [27, I, Theorem 5], a space is an A_{∞} -space if and only if it is of the homotopy type of a topological monoid (see also [28, Theorem 11.4] and [14, Sections 5 and 6]).

The concept of higher homotopy associativity for maps was first introduced by Sugawara [30, Section 2] and Stasheff [27, II, Definition 4.4] in the case of maps between topological monoids. Later Stasheff [28, Definition 11.9] also considered A_n -maps from A_n -spaces to topological monoids by using the associahedra $\{K_i\}_{i\geq 1}$.

The full generalization was described by Iwase and Mimura [11, Section 3]. They defined A_n -maps between A_n -spaces by using the multiplihedra $\{J_i\}_{i\geq 1}$.

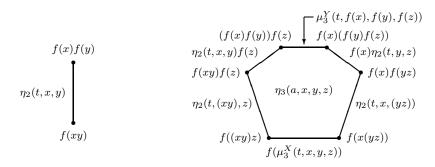


Figure 6. The A_n -forms on f for n = 2 and 3.

Let X and Y be A_n -spaces with A_n -forms $\{\mu_i^X\}_{1 \le i \le n}$ and $\{\mu_i^Y\}_{1 \le i \le n}$, respectively. An A_n -form on a map $f: X \to Y$ is a family $\{\eta_i: J_i \times X^i \to Y\}_{1 \le i \le n}$ of maps with the following relations:

$$(2.4) \qquad \eta_{1}(*, x) = f(x), \\ \eta_{i}(\delta_{k}(r, s)(a, b), x_{1}, \dots, x_{i}) \\ = \eta_{r}(a, x_{1}, \dots, x_{k-1}, \mu_{s}^{X}(b, x_{k}, \dots, x_{k+s-1}), x_{k+s}, \dots, x_{i}) \\ \text{for } (r, s, k) \in \mathbb{J}_{i}, \\ \eta_{i}(\delta'(t_{1}, \dots, t_{m})(a, b_{1}, \dots, b_{m}), x_{1}, \dots, x_{i}) \\ = \mu_{m}^{Y}(a, \eta_{t_{1}}(b_{1}, x_{1}, \dots, x_{t_{1}}), \dots, \eta_{t_{m}}(b_{m}, x_{t_{1}+\dots+t_{m-1}+1}, \dots, x_{i})) \\ \text{for } (t_{1}, \dots, t_{m}) \in \mathbb{J}'_{i}, \\ (2.7) \qquad \qquad = \eta_{i-1}(\zeta_{j}(a), x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{i}) \\ = \eta_{i-1}(\zeta_{j}(a), x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{i}) \\ \text{for } 1 \leq j \leq i. \end{cases}$$

A map between A_n -spaces admitting an A_n -form is called an A_n -map for $n \ge 1$ (see Figure 6). From the definition, an A_1 -map is just a map. Since

$$\eta_2(\delta_1(1,2)(*,*),x,y) = f(xy)$$
 and $\eta_2(\delta'(1,1)(*,*),x,y) = f(x)f(y),$

an A_2 -map is the same as an H-map. In general, an A_n -map is an H-map between A_n -spaces preserving homotopically their A_n -forms for $n \ge 2$.

If there is a family $\{\eta_i\}_{i\geq 1}$ of maps such that $\{\eta_i\}_{1\leq i\leq n}$ is an A_n -form on f for any $n\geq 1$, then f is called an A_∞ -map. From the result of Iwase and Mimura [11, Theorem 3.1], $f: X \to Y$ is an A_∞ -map if and only if we have the induced map $Bf: BX \to BY$ with $f \simeq \Omega(Bf)$, where BX and BY denote the classifying spaces of X and Y, respectively (see also [14, p. 55]).

Assume that X and Y are A_n -spaces with A_n -forms $\{\mu_i^X\}_{1 \le i \le n}$ and $\{\mu_i^Y\}_{1 \le i \le n}$, respectively. According to Stasheff [27, II, Definition 4.1], a map $f: X \to Y$ is called an A_n -homomorphism if $f\mu_i^X = \mu_i^Y(1_{K_i} \times f^i)$ for $1 \le i \le n$. From the definition, an A_n -homomorphism is an A_n -map.

Let p be an odd prime, and let $t \ge 1$. The double suspension $\Sigma_2 \colon S_{(p)}^{2t-1} \to S_{(p)}^{2t-1}$ $\Omega^2 S^{2t+1}_{(p)}$ is defined as the double adjoint of the identity $1_{S^{2t+1}_{(p)}}$ on $S^{2t+1}_{(p)} \simeq$ $\Sigma^2 S_{(p)}^{2t-1}$. Then $S_{(p)}^{2t-1}$ is an A_{p-1} -space so that Σ_2 is an A_{p-1} -homomorphism by Stasheff [27, I, Theorem 17]. We denote $S_{(p)}^{2t-1}$ with this A_{p-1} -structure by Z_t .

EXAMPLE 2.2

Let p > 3 and $t \ge 1$. Then the power map Φ_{λ} on the A_{p-1} -space Z_t is an A_{p-1} map for any $\lambda \in \mathbb{Z}$.

Proof

For simplicity, we write $\Omega_t = \Omega^2 S_{(p)}^{2t+1}$. Since Ω_t is a double loop space, the power map $\widehat{\Phi}_{\lambda}$ on Ω_t is an A_{∞} -map for any $\lambda \in \mathbb{Z}$. We denote the A_{∞} -form on $\widehat{\Phi}_{\lambda}$ by $\{\widehat{\eta}_i\}_{i\geq 1}$. Let $\omega_i \colon J_i \times (Z_t)^i \to \Omega_t$ be defined by $\omega_i = \widehat{\eta}_i (1_{J_i} \times (\Sigma_2)^i)$ for $i \geq 1$.

By induction on i, we construct an A_{p-1} -form $\{\eta_i\}_{1\leq i\leq p-1}$ on Φ_{λ} with $\Sigma_2 \eta_i = \omega_i$ for $1 \leq i \leq p-1$. Put $\eta_1(*, x) = x$ for $x \in Z_t$. Assume inductively that $\{\eta_i\}_{1 \le j \le i}$ is constructed for some i with $2 \le i \le p-1$. Let $\Gamma_i(X) = \partial J_i \times I_i(X)$ $X^i \cup J_i \times X^{[i]}$ for a space X, and let $i \ge 1$, where $X^{[i]}$ denotes the *i*-fold fat wedge of X defined as

$$X^{[i]} = \left\{ (x_1, \dots, x_i) \in X^i \mid x_j = e \text{ for some } j \text{ with } 1 \le j \le i \right\}.$$

Then $(J_i \times (Z_t)^i) / \Gamma_i(Z_t) \simeq S_{(p)}^{2ti-1}$. Now we define $\nu_i \colon \Gamma_i(Z_t) \to Z_t$ by (2.5)–(2.7). By inductive hypothesis, $\Sigma_2 \nu_i = \omega_i |_{\Gamma_i(Z_t)}$. The obstructions to obtain $\eta_i \colon J_i \times (Z_t)^i \to Z_t$ with $\eta_i |_{\Gamma_i(Z_t)} =$ ν_i and $\Sigma_2 \eta_i = \omega_i$ appear in the following cohomology groups (cf. [1, Proposition 9.2.3]):

(2.8)
$$H^{k+1}\left(J_i \times (Z_t)^i, \Gamma_i(Z_t); \pi_k(F_t)\right) \cong \widetilde{H}^k\left(S_{(p)}^{2ti-2}; \pi_k(F_t)\right) \quad \text{for } k \ge 1,$$

where F_t denotes the homotopy fiber of Σ_2 . Then (2.8) is nontrivial only if $k = 2ti - 2 \le 2tp - 2t - 2 \le 2tp - 4.$

On the other hand, $\pi_k(F_t) = 0$ for $k \leq 2tp - 4$ by Toda [34, Corollary 13.2]. Hence, (2.8) is trivial for any k, and we have a map η_i . This completes the induction, and we have an A_{p-1} -form $\{\eta_i\}_{1 \le i \le p-1}$ on Φ_{λ} .

REMARK 2.3

When p = 3 and t > 1, Z_t is not a grouplike space from the following facts.

(1) If $S_{(3)}^{2t-1}$ is an A_3 -space, then t = 1 or 2 by [4, Theorem 1.2].

(2) Z_2 for p = 3 is a homotopy commutative *H*-space (cf. [15, Example 4.8 and Remark 4.5(1)). Then it is not an A_3 -space by [2, Proposition 3.1 and Theorem 3.3].

The following propositions are used to prove Theorems A and B in Section 3.

PROPOSITION 2.4

Assume that p, t, and m are as in Theorem A. Let $\lambda \in \mathbb{Z}$ and $1 \leq j \leq p$. If the power map Φ_{λ} on Y_t is an $A_{(j-1)m+1}$ -map, then it is also an A_{jm} -map.

PROPOSITION 2.5

Let p, t, and m be as in Theorem A. If the power map Φ_{λ} on Y_t is an A_{m+1} -map, then $\lambda(\lambda^m - 1) \equiv 0 \mod p$.

In a similar way to the proof of Example 2.2, we can show Proposition 2.4 as follows.

Proof of Proposition 2.4

By induction on i, we construct an A_{jm} -form $\{\eta_i\}_{1 \leq i \leq jm}$ on Φ_{λ} . From the assumption, we have an $A_{(j-1)m+1}$ -form $\{\eta_i\}_{1 \leq i \leq (j-1)m+1}$ on Φ_{λ} . Assume inductively that $\{\eta_j\}_{1 \leq j < i}$ is constructed for some i with

(2.9)
$$(j-1)m + 2 \le i \le jm.$$

Define $\tilde{\eta}_i: \Gamma_i(Y_t) \to Y_t$ by (2.5)–(2.7). Then the obstructions to obtain $\eta_i: J_i \times (Y_t)^i \to Y_t$ with $\eta_i|_{\Gamma_i(Y_t)} = \tilde{\eta}_i$ appear in the cohomology groups (cf. [1, Proposition 9.3.3])

(2.10)
$$H^{k+1}(J_i \times (Y_t)^i, \Gamma_i(Y_t); \pi_k(Y_t)) \cong \widetilde{H}^k(S^{2ti-2}_{(p)}; \pi_k(Y_t)) \text{ for } k \ge 1.$$

The above is nontrivial only if k is an even integer with

$$(2.11) 2t + 2(j-1)(p-1) - 2 < k < 2t + 2j(p-1) - 2$$

since $(j-1)(p-1) + 2t \le ti \le j(p-1)$ by (2.9).

On the other hand, $\pi_k(Y_t) = 0$ for any even integer k with (2.11) by [34, Theorem 13.4]. Hence, (2.10) is trivial for any k, and we have a map η_i . This completes the induction, and we have an A_{jm} -form $\{\eta_i\}_{1 \le i \le jm}$ on Φ_{λ} .

Let X be an A_n -space. Stasheff [27, I, Theorem 5] constructed the projective spaces $\{P_i(X)\}_{0 \le i \le n}$ associated to the A_n -form on X. From the construction, $P_0(X) = \{*\}, P_1(X) = \Sigma X$, and we have a fibration

$$(2.12) X \longrightarrow \Sigma^{i-1} X^{\wedge i} \xrightarrow{\gamma_{i-1}} P_{i-1}(X)$$

and a long cofibration sequence

where $X^{\wedge i}$ denotes the *i*-fold smash product of X. When X is an A_{∞} -space, we have $P_{\infty}(X) = BX$.

Proof of Proposition 2.5 It is known that (cf. [14, Sections 7 and 24])

$$H^*(P_{m+1}(Y_t); \mathbb{F}_p) \cong \mathbb{F}_p[x]/(x^{m+2}) \quad \text{with } \deg x = 2t$$

and

(2.13)
$$\mathscr{P}^1(x) = \xi x^{m+1} \quad \text{with } \xi \not\equiv 0 \mod p.$$

Since Φ_{λ} is an A_{m+1} -map, we have the induced map

$$P_{m+1}(\Phi_{\lambda}): P_{m+1}(Y_t) \to P_{m+1}(Y_t) \quad \text{with } P_{m+1}(\Phi_{\lambda})\varepsilon_m \simeq \varepsilon_m(\Sigma \Phi_{\lambda})$$

by [28, Theorem 8.4], where $\varepsilon_i = \iota_i \cdots \iota_1 \colon \Sigma Y_t = P_1(Y_t) \to P_{i+1}(Y_t)$ for $i \ge 1$. Then $P_{m+1}(\Phi_{\lambda})^*(x) = \lambda x$, and so we have that

$$\mathscr{P}^1 P_{m+1}(\Phi_{\lambda})^*(x) = \xi \lambda x^{m+1} \quad \text{and} \quad P_{m+1}(\Phi_{\lambda})^* \mathscr{P}^1(x) = \xi \lambda^{m+1} x^{m+1}.$$

ence, $\lambda(\lambda^m - 1) \equiv 0 \mod p.$

He $\lambda(\lambda^{m}-1)\equiv 0 \mod$ ιp

3. Brown-Peterson cohomology

Let X be a connected space with the homotopy type of a CW-complex of finite type. The Brown–Peterson cohomology $BP^*(X)$ of X is a module over

$$BP^* = \mathbb{Z}_{(p)}[v_1, v_2, \dots]$$
 with $\deg v_i = -2(p^i - 1)$ for $i \ge 1$,

where $\mathbb{Z}_{(p)}$ denotes the *p*-localized integers. When $H^*(X;\mathbb{Z}_{(p)})$ is torsion-free, $BP^*(X)$ is a free BP^* -module and the Thom maps

$$\widetilde{\mathscr{T}} \colon BP^*(X) \to H^*(X; \mathbb{Z}_{(p)}) \quad \text{and} \quad \mathscr{T} \colon BP^*(X) \to H^*(X; \mathbb{F}_p)$$

are epimorphisms with ker $\widetilde{\mathscr{T}} = (v_1, v_2, \dots)$ and ker $\mathscr{T} = (p, v_1, v_2, \dots)$, respectively.

As in the case of the reduced power operations $\{\mathscr{P}^i\}_{i\geq 1}$ on $H^*(X;\mathbb{F}_p)$, there are operations $\{r_i\}_{i\geq 1}$ on $BP^*(X)$ with the following commutative diagram:

$$\begin{array}{cccc} BP^*(X) & \stackrel{r_i}{\longrightarrow} & BP^{*+2i(p-1)}(X) \\ & & \swarrow & & \downarrow \mathscr{T} \\ & & & \downarrow \mathscr{T} \\ H^*(X;\mathbb{F}_p) & \xrightarrow{\chi(\mathscr{P}^i)} & H^{*+2i(p-1)}(X;\mathbb{F}_p) \end{array}$$

where χ denotes the canonical antiautomorphism on \mathscr{A}_p . In particular, we have

$$(3.1) \qquad \qquad \mathscr{T}r_1 = -\mathscr{P}^1\mathscr{T}$$

since $\chi(\mathscr{P}^1) = -\mathscr{P}^1$ by [22, p. 167].

According to Kane [13, Sections 1 and 2], the Brown–Peterson operations $\{r_i\}_{i\geq 1}$ have many useful properties similar to those of $\{\mathscr{P}^i\}_{i\geq 1}$ (see also [14, Appendix C]).

In order to prove Theorems A and B, we first show the following propositions.

PROPOSITION 3.1

Assume that p, t, and m are as in Theorem A. If $0 \le j \le p-1$ and $\lambda \equiv 0 \mod p^j$, then the power map Φ_{λ} on Y_t is an A_{jm+1} -map.

PROPOSITION 3.2

Let p, t, and m be as in Theorem A. Assume that $1 \leq j \leq t$ and $\lambda \equiv 0 \mod p$. If the power map Φ_{λ} on Y_t is an A_{jm+1} -map, then $\lambda \equiv 0 \mod p^j$.

From the result of Toda [34, Theorem 13.4], we have

(3.2)
$$\pi_{2t+2j(p-1)-2}(Y_t) \cong \mathbb{Z}/p\{\alpha_j\} \text{ for } 1 \le j \le p-1.$$

Put $\varphi_j = \Sigma \alpha_j \colon S_{(p)}^{2t+2j(p-1)-1} \to \Sigma Y_t$ for $1 \leq j \leq p-1$. Let $C(\varphi_j)$ be the cofiber of φ_j . Then

$$H^*(C(\varphi_j); \mathbb{Z}_{(p)}) = \mathbb{Z}_{(p)}\{z, w\} \text{ as a } \mathbb{Z}_{(p)}\text{-algebra}$$

with deg $z = 2t$ and deg $w = 2t + 2j(p-1)$.

Take $\boldsymbol{z} \in BP^{2t}(C(\varphi_j))$ and $\boldsymbol{w} \in BP^{2t+2j(p-1)}(C(\varphi_j))$ with $\widetilde{\mathscr{T}}(\boldsymbol{z}) = z$ and $\widetilde{\mathscr{T}}(\boldsymbol{w}) = w$, respectively. For dimensional reasons, we can write that

(3.3) $r_1(\boldsymbol{z}) = \zeta v_1^{j-1} \boldsymbol{w} \quad \text{for some } \zeta \in \mathbb{Z}_{(p)}.$

In the proof of Proposition 3.1, we need the following lemma.

LEMMA 3.3

We have $\zeta \not\equiv 0 \mod p$ in (3.3).

Proof

Put $\varphi'_j = \Sigma^k \varphi_j$: $S^{2t+2j(p-1)+k-1}_{(p)} \to \Sigma^{k+1} Y_t$, where k is an integer with 2t + k > 2j(p-1). Then $\varphi'_j \in \pi^S_{2j(p-1)-1}$. Since $C(\varphi'_j) = \Sigma^k C(\varphi_j)$, we have that $\sigma^k \colon BP^*(C(\varphi_j)) \to BP^{*+k}(C(\varphi'_j))$ is an isomorphism, where σ denotes the suspension isomorphism.

Put $\boldsymbol{z}' = \sigma^k(\boldsymbol{z}) \in BP^{2t+k}(C(\varphi'_j))$ and $\boldsymbol{w}' = \sigma^k(\boldsymbol{w}) \in BP^{2t+2j(p-1)+k}(C(\varphi'_j))$, respectively. Then by (3.3),

(3.4)
$$r_1(\boldsymbol{z}') = \zeta v_1^{j-1} \boldsymbol{w}'.$$

Applying r_{j-1} to (3.4), we have $r_{j-1}r_1(\mathbf{z}') = \zeta p^{j-1}\mathbf{w}'$ by [13, p. 458, (2.2)]. On the other hand, $r_{j-1}r_1(\mathbf{z}') \equiv jr_j(\mathbf{z}') \mod \ker \widetilde{\mathscr{T}}$ by [13, p. 455, (1.2)] and [22, p. 164]. Now $r_j(\mathbf{z}') = \gamma \mathbf{w}'$ with $\gamma \not\equiv 0 \mod p^j$ by [26, Proposition 1.1 and Theorem 2.1]. Hence, $\zeta \not\equiv 0 \mod p$.

Since $\varphi_j = \Sigma \alpha_j$ is a suspension map, we have a self-map $\Lambda_j : C(\varphi_j) \to C(\varphi_j)$ with the following commutative diagram:

$$(3.5) \qquad \begin{array}{ccc} S_{(p)}^{2t+2j(p-1)-1} & \xrightarrow{\varphi_j} & \Sigma Y_t & \longrightarrow & C(\varphi_j) \\ & & & & & \downarrow \lambda \end{bmatrix} & & & \downarrow \Sigma \Phi_\lambda & & \downarrow \Lambda_j \\ S_{(p)}^{2t+2j(p-1)-1} & \xrightarrow{\varphi_j} & \Sigma Y_t & \longrightarrow & C(\varphi_j) \end{array}$$

where $[\lambda]$ denotes the self-map of degree λ .

Proof of Proposition 3.1

We work by induction on j. The result is clear for j = 0. Assume inductively that the result is proved for j-1 with $1 \leq j \leq p-1$. Now $\lambda \equiv 0 \mod p^j$. By inductive hypothesis, Φ_{λ} is an $A_{(j-1)m+1}$ -map, and so Proposition 2.4 implies that it is also an A_{jm} -map. Then we have the induced map

 $P_{jm}(\Phi_{\lambda}) \colon P_{jm}(Y_t) \to P_{jm}(Y_t) \quad \text{with } P_{jm}(\Phi_{\lambda})\varepsilon_{jm-1} \simeq \varepsilon_{jm-1}(\varSigma \Phi_{\lambda})$

by [28, Theorem 8.4].

Let $\widetilde{\varphi}_j = \varepsilon_{jm-1} \varphi_j \colon S_{(p)}^{2t+2j(p-1)-1} \to P_{jm}(Y_t)$. Since there is a fibration

$$Y_t \longrightarrow S^{2t+2j(p-1)-1}_{(p)} \xrightarrow{\gamma_{jm}} P_{jm}(Y_t)$$

by (2.12), we have

$$\pi_{2t+2j(p-1)-1}(P_{jm}(Y_t)) \cong \mathbb{Z}_{(p)}\{\gamma_{jm}\} \oplus \mathbb{Z}/p\{\widetilde{\varphi}_j\}.$$

Let $\widehat{\varphi}_j = \iota_{jm} \widetilde{\varphi}_j = \varepsilon_{jm} \varphi_j$: $S_{(p)}^{2t+2j(p-1)-1} \to P_{jm+1}(Y_t)$. Put $X_j = C(\widehat{\varphi}_j)$. Then $C(\varphi_j) \subset X_j$ and we see that $\pi_{2t+2j(p-1)-1}(X_j) = 0$ by using the Blakers–Massey theorem (cf. [1, Theorem 5.6.4]). Since $P_{jm+1}(Y_t) = C(\gamma_{jm})$, there is a map $\widetilde{\Psi}_j$: $P_{jm+1}(Y_t) \to X_j$ with the following commutative diagram:

$$S_{(p)}^{2t} = \Sigma Y_{t} \xrightarrow{\varepsilon_{jm-1}} P_{jm}(Y_{t}) \xrightarrow{\iota_{jm}} P_{jm+1}(Y_{t})$$

$$[\lambda] \downarrow \qquad \Sigma \Phi_{\lambda} \downarrow \qquad \qquad \downarrow P_{jm}(\Phi_{\lambda}) \qquad \qquad \downarrow \tilde{\psi}_{j}$$

$$S_{(p)}^{2t} = \Sigma Y_{t} \xrightarrow{\varepsilon_{jm-1}} P_{jm}(Y_{t}) \xrightarrow{\widetilde{\iota}_{jm}} X_{j}$$

where $\tilde{\iota}_{jm}$ denotes the composition of ι_{jm} and the inclusion $P_{jm+1}(Y_t) \subset X_j$.

Consider the self-map $\Psi_j: X_j \to X_j$ defined by $\Psi_j|_{P_{jm+1}(Y_t)} = \widetilde{\Psi}_j$ and $\Psi_j|_{C(\varphi_j)} = \Lambda_j$ in (3.5). From the definition of X_j , we have that

$$H^*(X_j; \mathbb{Z}_{(p)}) = \mathbb{Z}_{(p)}[x]/(x^{jm+2}) \oplus \mathbb{Z}_{(p)}\{y\} \text{ as a } \mathbb{Z}_{(p)}\text{-algebra}$$
with deg $x = 2t$ and deg $y = 2t + 2j(p-1)$.

Since $\Psi_j|_{C(\varphi_j)} = \Lambda_j$, the induced homomorphism

$$\Psi_j^* \colon H^*(X_j; \mathbb{Z}_{(p)}) \to H^*(X_j; \mathbb{Z}_{(p)})$$

is given by $\Psi_j^*(x) = \lambda x$ and $\Psi_j^*(y) = \lambda y + \eta x^{jm+1}$ for some $\eta \in \mathbb{Z}_{(p)}$.

In order to complete the proof, we need to show that

(3.6)
$$\eta \equiv 0 \mod p.$$

Take $\boldsymbol{x} \in BP^{2t}(X_j)$ and $\boldsymbol{y} \in BP^{2t+2j(p-1)}(X_j)$ with $\widetilde{\mathscr{T}}(\boldsymbol{x}) = x$ and $\widetilde{\mathscr{T}}(\boldsymbol{y}) = y$, respectively. Then we can assume that $\boldsymbol{z} = \tau_j^*(\boldsymbol{x})$ and $\boldsymbol{w} = \tau_j^*(\boldsymbol{y})$ are as in (3.3), where $\tau_j : C(\varphi_j) \to X_j$ denotes the inclusion. For dimensional reasons, we can write that

$$\Psi_j^*(\boldsymbol{x}) = \lambda \boldsymbol{x} + \sum_{k=1}^{j} \theta_k v_1^k \boldsymbol{x}^{km+1} + \delta v_1^j \boldsymbol{y} \quad \text{with } \theta_k, \delta \in \mathbb{Z}_{(p)} \text{ for } 1 \le k \le j,$$

$$r_1(\boldsymbol{x}) = \sum_{\ell=1}^{j} \xi_{\ell} v_1^{\ell-1} \boldsymbol{x}^{\ell m+1} + \zeta v_1^{j-1} \boldsymbol{y} \quad \text{with } \xi_{\ell} \in \mathbb{Z}_{(p)} \text{ for } 1 \le \ell \le j,$$

$$\Psi_j^*(\boldsymbol{y}) = \lambda \boldsymbol{y} + \eta \boldsymbol{x}^{jm+1}, \quad \text{and} \quad r_1(\boldsymbol{y}) = 0.$$

Then

(3.7)
$$r_{1}(\Psi_{j}^{*}(\boldsymbol{x})) = \sum_{k=1}^{j} (pk\theta_{k} + \lambda\xi_{k})v_{1}^{k-1}\boldsymbol{x}^{km+1} + \sum_{\substack{k,\ell \geq 1\\k+\ell \leq j}} (km+1)\theta_{k}\xi_{\ell}v_{1}^{k+\ell-1}\boldsymbol{x}^{(k+\ell)m+1} + (pj\delta + \lambda\zeta)v_{1}^{j-1}\boldsymbol{y}.$$

On the other hand,

(3.8)
$$\Psi_{j}^{*}(r_{1}(\boldsymbol{x})) = \sum_{\ell=1}^{j} \xi_{\ell} v_{1}^{\ell-1} \left(\lambda \boldsymbol{x} + \sum_{k=1}^{j} \theta_{k} v_{1}^{k} \boldsymbol{x}^{km+1}\right)^{\ell m+1} + \zeta \eta v_{1}^{j-1} \boldsymbol{x}^{jm+1} + \lambda \zeta v_{1}^{j-1} \boldsymbol{y}.$$

To show (3.6), we first prove that if $\lambda \equiv 0 \mod p^j$, then

(3.9)
$$\theta_k \equiv 0 \mod p^{j-k} \quad \text{for } 1 \le k \le j.$$

We work by induction on k. When k = 1, we compare the coefficients mod p^j of \boldsymbol{x}^{m+1} in (3.7) and (3.8). From the assumption, we have $p\theta_1 \equiv 0 \mod p^j$. Hence, $\theta_1 \equiv 0 \mod p^{j-1}$.

Assume inductively that $\theta_i \equiv 0 \mod p^{j-i}$ for $1 \leq i \leq k-1$ with $2 \leq k \leq j$. Compare the coefficients mod p^{j-k+1} of \boldsymbol{x}^{km+1} in (3.7) and (3.8). By inductive hypothesis, we have $pk\theta_k \equiv 0 \mod p^{j-k+1}$. Then $\theta_k \equiv 0 \mod p^{j-k}$ since $k \leq j \leq p-1$. This completes the induction, and we have (3.9).

We next compare the coefficients mod p of \boldsymbol{x}^{jm+1} in (3.7) and (3.8). Then $\zeta \eta \equiv 0 \mod p$ by (3.9). Now $\zeta \not\equiv 0 \mod p$ by Lemma 3.3, and so we have (3.6).

Let $a, b \in H_{2t+2j(p-1)}(X_j; \mathbb{Z}_{(p)})$ denote the Kronecker duals of

$$x^{jm+1}, y \in H^{2t+2j(p-1)}(X_j; \mathbb{Z}_{(p)}),$$

respectively. Using the duality, we can show that

 $(\Psi_j)_*(\boldsymbol{a}) = \lambda^{jm+1}\boldsymbol{a} + \eta \boldsymbol{b}$ and $(\Psi_j)_*(\boldsymbol{b}) = \lambda \boldsymbol{b}.$

Consider the homomorphism

$$\mathscr{E}_j: H_{2t+2j(p-1)}(X_j; \mathbb{Z}_{(p)}) \to \pi_{2t+2j(p-1)-1}(P_{jm}(Y_t))$$

defined by the following composition:

$$\begin{aligned} H_{2t+2j(p-1)}(X_j; \mathbb{Z}_{(p)}) & \longrightarrow H_{2t+2j(p-1)}(X_j, P_{jm}(Y_t); \mathbb{Z}_{(p)}) \\ & \xrightarrow{\mathscr{H}^{-1}} \xrightarrow{\mathfrak{A}_{2t+2j(p-1)}} (X_j, P_{jm}(Y_t)) \xrightarrow{\partial} \pi_{2t+2j(p-1)-1}(P_{jm}(Y_t)), \end{aligned}$$

where \mathscr{H} denotes the Hurewicz isomorphism. Then $P_{jm}(\Phi_{\lambda})_{\#}\mathscr{E}_{j} = \mathscr{E}_{j}(\Psi_{j})_{*}$. Since $\mathscr{E}_{j}(\boldsymbol{a}) = \gamma_{jm}$ and $\mathscr{E}_{j}(\boldsymbol{b}) = \widetilde{\varphi}_{j}$, we have that

$$P_{jm}(\Phi_{\lambda})_{\#}(\gamma_{jm}) = \lambda^{jm+1}\gamma_{jm} + \eta\widetilde{\varphi}_j = \lambda^{jm+1}\gamma_{jm}$$

by (3.6). Hence, $\iota_{jm}P_{jm}(\Phi_{\lambda})\gamma_{jm}$ is null-homotopic, and so there is a self-map

$$\psi_j \colon P_{jm+1}(Y_t) \to P_{jm+1}(Y_t) \quad \text{with } \psi_j \iota_{jm} \simeq \iota_{jm} P_{jm}(\Phi_\lambda).$$

Then Φ_{λ} is an A_{jm+1} -map by [28, Theorem 8.4]. This completes the proof of Proposition 3.1.

Proof of Proposition 3.2

We work by induction on j. From the assumption, the result is clear for j = 1. Assume inductively that the result is proved for j - 1 with $2 \le j \le t$. Now Φ_{λ} is an A_{jm+1} -map. Then we have the induced map

$$P_{jm+1}(\Phi_{\lambda}): P_{jm+1}(Y_t) \to P_{jm+1}(Y_t) \quad \text{with } P_{jm+1}(\Phi_{\lambda})\varepsilon_{jm} \simeq \varepsilon_{jm}(\Sigma \Phi_{\lambda})$$

by [28, Theorem 8.4]. By inductive hypothesis, we have

$$(3.10) \qquad \qquad \lambda \equiv 0 \bmod p^{j-1}$$

since Φ_{λ} is also an $A_{(j-1)m+1}$ -map.

It is known that

$$H^*(P_{jm+1}(Y_t);\mathbb{Z}_{(p)}) = \mathbb{Z}_{(p)}[x]/(x^{jm+2})$$
 as a $\mathbb{Z}_{(p)}$ -algebra with deg $x = 2t$.
Take $\mathbf{x} \in BP^{2t}(P_{im+1}(Y_t))$ with $\widetilde{\mathscr{T}}(\mathbf{x}) = x$. For dimensional reasons, we can write

Take $\boldsymbol{x} \in BP^{2t}(P_{jm+1}(Y_t))$ with $\mathscr{T}(\boldsymbol{x}) = x$. For dimensional reasons, we can write that

$$P_{jm+1}(\Phi_{\lambda})^{*}(\boldsymbol{x}) = \lambda \boldsymbol{x} + \sum_{k=1}^{j} \theta_{k} v_{1}^{k} \boldsymbol{x}^{km+1} \quad \text{with } \theta_{k} \in \mathbb{Z}_{(p)} \text{ for } 1 \leq k \leq j$$

and

$$r_1(\boldsymbol{x}) = \sum_{\ell=1}^j \xi_\ell v_1^{\ell-1} \boldsymbol{x}^{\ell m+1} \quad \text{with } \xi_\ell \in \mathbb{Z}_{(p)} \text{ for } 1 \le \ell \le j.$$

Then

(3.11)
$$r_1(P_{jm+1}(\Phi_{\lambda})^*(\boldsymbol{x})) = \sum_{k=1}^{j} (pk\theta_k + \lambda\xi_k) v_1^{k-1} \boldsymbol{x}^{km+1} + \sum_{\substack{k,\ell \ge 1\\k+\ell \le j}} (km+1)\theta_k\xi_\ell v_1^{k+\ell-1} \boldsymbol{x}^{(k+\ell)m+1}.$$

On the other hand,

(3.12)
$$P_{jm+1}(\Phi_{\lambda})^{*}(r_{1}(\boldsymbol{x})) = \sum_{\ell=1}^{j} \xi_{\ell} v_{1}^{\ell-1} \left(\lambda \boldsymbol{x} + \sum_{k=1}^{j} \theta_{k} v_{1}^{k} \boldsymbol{x}^{km+1}\right)^{\ell m+1}.$$

To complete the proof, we first show that

(3.13)
$$\theta_k \equiv 0 \mod p^{j-k} \quad \text{for } 1 \le k \le j.$$

We work by downward induction on k. The result is clear for k = j. Assume inductively that the result is proved for k + 1 with $1 \le k \le j - 1$. Then

(3.14)
$$\theta_{k+1} \equiv 0 \mod p^{j-k-1}$$

Using the same way as in the proof of (3.9), we have that $\theta_i \equiv 0 \mod p^{j-i-1}$ for $1 \leq i \leq j-1$ by (3.10). Hence,

(3.15)
$$\theta_i \equiv 0 \mod p^{j-k} \quad \text{for } 1 \le i \le k-1.$$

Compare the coefficients mod p^{j-k} of $\boldsymbol{x}^{(k+1)m+1}$ in (3.11) and (3.12). Then $(km+1)\theta_k\xi_1 \equiv 0 \mod p^{j-k}$ by (3.10), (3.14), and (3.15). Now we note that $\xi_1 \not\equiv 0 \mod p$ by (2.13) and (3.1). Then $\theta_k \equiv 0 \mod p^{j-k}$ since $k \leq j-1 \leq t-1$. This completes the induction, and so we have (3.13).

We next compare the coefficients mod p^j of \boldsymbol{x}^{m+1} in (3.11) and (3.12). Then $p\theta_1 + \lambda\xi_1 \equiv 0 \mod p^j$. Since $\xi_1 \not\equiv 0 \mod p$ and $\theta_1 \equiv 0 \mod p^{j-1}$ by (3.13), we have $\lambda \equiv 0 \mod p^j$. This completes the proof of Proposition 3.2.

We are now in position to prove Theorems A and B.

Proof of Theorem A

We see that (1) follows from Proposition 2.4 in the case of j = 1. We have (2) by Propositions 2.5 and 3.1 for j = 1 and Corollary 1.4.

Proof of Theorem B

Proposition 2.4 implies (1). We have (2) by Propositions 3.1 and 3.2. \Box

4. Modified projective spaces

Let p be an odd prime. Assume that X is a simply connected A_p -space whose mod p cohomology $H^*(X; \mathbb{F}_p)$ is an exterior algebra given as

(4.1)
$$H^*(X; \mathbb{F}_p) = \Lambda_{\mathbb{F}_p}(x_1, \dots, x_\ell) \quad \text{with } \deg x_i = 2t_i - 1 \text{ for } 1 \le i \le \ell.$$

Iwase [9] gave a structure theorem for the K-cohomology of the projective spaces $\{P_n(X)\}_{1 \le n \le p}$. Later Hemmi [5, Section 3] used his method to determine the mod p cohomology of them. Consider the homomorphisms

$$\mathscr{F}_n \colon \widetilde{H}^*(X; \mathbb{F}_p)^{\otimes n} \to \widetilde{H}^*(P_n(X); \mathbb{F}_p) \quad \text{for } 1 \le n \le p$$

and

$$\mathscr{G}_n : \widetilde{H}^* (P_n(X); \mathbb{F}_p) \to \widetilde{H}^* (X; \mathbb{F}_p)^{\otimes n+1} \quad \text{for } 0 \le n \le p-1$$

defined by the following compositions:

$$\widetilde{H}^*(X;\mathbb{F}_p)^{\otimes n} \cong \widetilde{H}^*(X^{\wedge n};\mathbb{F}_p) \xrightarrow{\sigma^n} \widetilde{H}^*(\Sigma^n X^{\wedge n};\mathbb{F}_p) \xrightarrow{\rho_n^*} \widetilde{H}^*(P_n(X);\mathbb{F}_p)$$

and

$$\begin{split} \widetilde{H}^* \big(P_n(X); \mathbb{F}_p \big) & \xrightarrow{\gamma_n^*} & \widetilde{H}^* (\Sigma^n X^{\wedge n+1}; \mathbb{F}_p) \\ & \xrightarrow{(\sigma^{-1})^n} & \widetilde{H}^* (X^{\wedge n+1}; \mathbb{F}_p) \cong \widetilde{H}^* (X; \mathbb{F}_p)^{\otimes n+1}, \end{split}$$

respectively. Here $M^{\otimes j}$ is the *j*-fold tensor product of an \mathbb{F}_p -module M, and σ denotes the suspension isomorphism. From the definition, deg $\mathscr{F}_n = -\deg \mathscr{G}_n = n$ and $\mathscr{F}_1 = \sigma$.

Consider the reduced coproduct $\widetilde{\Delta} \colon \widetilde{H}^*(X; \mathbb{F}_p) \to \widetilde{H}^*(X; \mathbb{F}_p)^{\otimes 2}$ on $\widetilde{H}^*(X; \mathbb{F}_p)$. Then by [5, p. 100],

(4.2)
$$\mathscr{G}_n \mathscr{F}_n = \sum_{j=1}^n (-1)^j 1^{\otimes (j-1)} \otimes \widetilde{\Delta} \otimes 1^{\otimes (n-j)} \text{ for } 1 \le n \le p-1$$

Put $S(n) = \mathscr{F}_n(D(n)) \subset \widetilde{H}^*(P_n(X); \mathbb{F}_p)$, where

$$D(n) = \sum_{j=1}^{n} \widetilde{H}^{*}(X; \mathbb{F}_{p})^{\otimes (j-1)} \otimes DH^{*}(X; \mathbb{F}_{p}) \otimes \widetilde{H}^{*}(X; \mathbb{F}_{p})^{\otimes (n-j)}$$

and DA denotes the decomposable module of an \mathbb{F}_p -algebra A. Then S(n) is an ideal of $H^*(P_n(X);\mathbb{F}_p)$ closed under the action of \mathscr{A}_p with (see [5, Theorem 3.5(1)])

$$\iota_{n-1}^*(S(n)) = 0$$
 and $S(n) \cdot \tilde{H}^*(P_n(X); \mathbb{F}_p) = 0.$

Let $\mathbb{F}_p[z_1, \ldots, z_\ell]$ be a polynomial algebra over \mathbb{F}_p with generators $\{z_i\}_{1 \le i \le \ell}$. Then the truncated polynomial algebra $T_{\mathbb{F}_p}^{[k]}[z_1, \ldots, z_\ell]$ at height k is defined by

$$T_{\mathbb{F}_p}^{[k]}[z_1,\ldots,z_\ell] = \mathbb{F}_p[z_1,\ldots,z_\ell]/D^k \mathbb{F}_p[z_1,\ldots,z_\ell],$$

where $D^k A$ denotes the k-fold decomposable module of an \mathbb{F}_p -algebra A for $k \geq 2$ with $D^2 A = DA$.

Iwase [9] and Hemmi [5] proved the following result.

THEOREM 4.1 ([9, THEOREM A] AND [5, THEOREM 3.5])

Let p be an odd prime, and let $1 \le n \le p-1$. Assume that X is a simply connected A_p -space whose mod p cohomology $H^*(X; \mathbb{F}_p)$ is as in (4.1). Then there are classes

$$y_i \in \widetilde{H}^{2t_i}(P_n(X); \mathbb{F}_p) \quad \text{with } \iota_1^* \cdots \iota_{n-1}^*(y_i) = \sigma(x_i) \text{ for } 1 \le i \le \ell$$

such that

$$H^*(P_n(X); \mathbb{F}_p) \cong T(n) \oplus S(n)$$
 as an \mathbb{F}_p -algebra.

where $T(n) = T_{\mathbb{F}_p}^{[n+1]}[y_1, ..., y_\ell].$

We remark that they also proved Theorem 4.1 in the case of n = p under an additional assumption that the generators $\{x_i\}_{1 \le i \le \ell}$ are A_p -primitive, where a class $x \in \widetilde{H}^*(X; \mathbb{F}_p)$ is called A_n -primitive if there is a class

$$y \in \widetilde{H}^{*+1}(P_n(X); \mathbb{F}_p)$$
 with $\iota_1^* \cdots \iota_{n-1}^*(y) = \sigma(x).$

Since $\gamma_1^* = \sigma \widetilde{\Delta} \sigma^{-1}$, we see that a class is A_2 -primitive if and only if it is primitive. From Theorem 4.1, if X is a simply connected A_p -space whose mod p cohomology $H^*(X; \mathbb{F}_p)$ is as in (4.1), then $\{x_i\}_{1 \leq i \leq \ell}$ are A_{p-1} -primitive. Hemmi [7, Section 2] modified the construction of $P_p(X)$ to obtain the truncated polynomial algebra T(p) without the assumption that $\{x_i\}_{1 \leq i \leq \ell}$ are A_p primitive. He proved the following result.

THEOREM 4.2 ([7, THEOREM 1.1])

Let p and X be as in Theorem 4.1. Then we have a space $R_p(X)$ and a map $\varepsilon \colon \Sigma X \to R_p(X)$ with the following properties.

(1) There is a subalgebra $A^* \subset H^*(R_p(X); \mathbb{F}_p)$ with

$$A^* \cong T^{[p+1]}_{\mathbb{F}_p}[y_1, \dots, y_\ell] \oplus M$$
 as an \mathbb{F}_p -algebra,

where

$$y_i \in \widetilde{H}^{2t_i}(R_p(X); \mathbb{F}_p) \quad with \ \varepsilon^*(y_i) = \sigma(x_i) \ for \ 1 \le i \le \ell$$

and M is an ideal of $H^*(R_p(X); \mathbb{F}_p)$ with

$$\varepsilon^*(M) = 0$$
 and $M \cdot H^*(R_p(X); \mathbb{F}_p) = 0.$

(2) A^* and M are closed under the action of \mathscr{A}_p . Hence,

(4.3)
$$T(p) = T_{\mathbb{F}_p}^{[p+1]}[y_1, \dots, y_\ell] \cong A^*/M$$

is an unstable \mathscr{A}_p -algebra.

(3) We have that $\sigma^{-1}\varepsilon^*|_{A^*}: A^* \to H^{*-1}(X; \mathbb{F}_p)$ induces an isomorphism

$$\mathscr{Q} \colon QT(p) \to QH^{*-1}(X; \mathbb{F}_p) \quad of \mathscr{A}_p\text{-modules}.$$

Let p be a prime, and let $n \geq 1$. According to Hemmi and Kawamoto [8, Definition 2.4], an unstable \mathscr{A}_p -algebra A is called a \mathscr{D}_n -algebra if the following condition is satisfied: for any $z_j \in A$ and $\mathscr{O}_j \in \mathscr{A}_p$ for $1 \leq j \leq m$ with

(4.4)
$$\sum_{j=1}^{m} \mathscr{O}_j(z_j) \in DA,$$

there are decomposable classes $d_j \in DA$ for $1 \leq j \leq m$ with

(4.5)
$$\sum_{j=1}^{m} \mathscr{O}_{j}(z_{j} - d_{j}) \in D^{n+1}A.$$

From the definition, any unstable \mathscr{A}_p -algebra is a \mathscr{D}_1 -algebra. On the other hand, if X is a simply connected A_p -space whose mod p cohomology $H^*(X; \mathbb{F}_p)$ is as in (4.1) with $\ell \geq 1$, then T(p) in (4.3) cannot be a \mathscr{D}_p -algebra by [8, Remark 2.5].

In order to prove Theorem C, we need the following result.

THEOREM 4.3

Let p and λ be as in Theorem C, and let $1 \le n \le p-1$. If X is a simply connected A_p -space whose mod p cohomology $H^*(X; \mathbb{F}_p)$ is as in (4.1) and the power map Φ_{λ} on X is an A_n -map, then T(p) in (4.3) is a \mathscr{D}_n -algebra.

The proof of Theorem 4.3 is similar to that of [8, Theorem 2.6]. In the proof, we use the following lemma instead of [8, Lemma 2.7].

LEMMA 4.4

Let $p, \lambda, n, and X$ be as in Theorem 4.3. If $z_j \in H^*(P_n(X); \mathbb{F}_p)$ and $\mathcal{O}_j \in \mathscr{A}_p$ for $1 \leq j \leq m$ satisfy

(4.6)
$$\sum_{j=1}^{m} \mathscr{O}_j(z_j) = w + u \quad \text{with } w \in DT(n) \text{ and } u \in S(n),$$

then there are decomposable classes $d_j \in DT(n)$ for $1 \le j \le m$ with

$$\sum_{j=1}^{m} \mathscr{O}_j(z_j - d_j) = u.$$

Proof

We first prove the case of $z_j \in T(n) \setminus DT(n)$ for $1 \le j \le m$. We work by induction on n. Since DT(1) = 0, the result is clear for n = 1. Assume that the result is proved for n - 1 with $2 \le n \le p - 1$.

Applying ι_{n-1}^* to (4.6), we have that $\iota_{n-1}^*(z_j) \in T(n-1) \setminus DT(n-1)$ and

$$\sum_{j=1}^{m} \mathcal{O}_j(\iota_{n-1}^*(z_j)) = \iota_{n-1}^* \left(\sum_{j=1}^{m} \mathcal{O}_j(z_j) \right) = \iota_{n-1}^*(w) \in DT(n-1).$$

By inductive hypothesis, we have $\widehat{d}_j \in DT(n-1)$ for $1 \leq j \leq m$ with

$$\sum_{j=1}^m \mathscr{O}_j \left(\iota_{n-1}^*(z_j) - \widehat{d}_j \right) = 0.$$

Take $\tilde{d}_j \in DT(n)$ with $\iota_{n-1}^*(\tilde{d}_j) = \hat{d}_j$, and put $\tilde{z}_j = z_j - \tilde{d}_j \in T(n) \setminus DT(n)$ for $1 \leq j \leq m$. Then

$$\iota_{n-1}^* \Big(\sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j) \Big) = \sum_{j=1}^m \mathscr{O}_j \big(\iota_{n-1}^*(z_j) - \widehat{d}_j \big) = 0,$$

and so

$$\sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j) = \widetilde{w} + u \quad \text{for some } \widetilde{w} \in D^n T(n).$$

From the definition of S(n), we have that $P_n(\Phi_\lambda)^*(S(n)) \subset S(n)$ and $\mathscr{O}_j(S(n)) \subset S(n)$ for $1 \leq j \leq m$. Then

$$P_n(\Phi_{\lambda})^* \left(\sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j) \right) \equiv P_n(\Phi_{\lambda})^*(\widetilde{w}) = \lambda^n \widetilde{w} \mod S(n)$$

On the other hand,

Yusuke Kawamoto

$$P_n(\Phi_{\lambda})^* \left(\sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j)\right) = \sum_{j=1}^m \mathscr{O}_j \left(P_n(\Phi_{\lambda})^*(\widetilde{z}_j)\right) \equiv \sum_{j=1}^m \mathscr{O}_j(\lambda \widetilde{z}_j + g_j)$$
$$= \lambda \sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j) + \sum_{j=1}^m \mathscr{O}_j(g_j) \equiv \lambda \widetilde{w} + \sum_{j=1}^m \mathscr{O}_j(g_j) \mod S(n)$$

since $P_n(\Phi_\lambda)^*(\tilde{z}_j) \equiv \lambda \tilde{z}_j + g_j \mod S(n)$ with $g_j \in DT(n)$ for $1 \le j \le m$. Then

(4.7)
$$\widetilde{w} \equiv \sum_{j=1}^{m} \mathscr{O}_j\left(\frac{g_j}{\lambda^n - \lambda}\right) \mod S(n).$$

Now we note that both sides of (4.7) are classes of DT(n). Hence,

$$\widetilde{w} = \sum_{j=1}^{m} \mathscr{O}_j \left(\frac{g_j}{\lambda^n - \lambda} \right).$$

Let $d_j \in DT(n)$ be defined by

$$d_j = \widetilde{d}_j + \frac{g_j}{\lambda^n - \lambda}$$
 for $1 \le j \le m$.

Then

$$\sum_{j=1}^m \mathscr{O}_j(z_j-d_j) = u,$$

and so we have the required conclusion.

We next consider the general case. Let $z_j \in H^*(P_n(X); \mathbb{F}_p) \cong T(n) \oplus S(n)$ and $\mathcal{O}_j \in \mathscr{A}_p$ for $1 \leq j \leq m$ with (4.6). Write $z_j = z'_j + z''_j$ with $z'_j \in T(n)$ and $z''_j \in S(n)$ for $1 \leq j \leq m$.

Now by permuting j suitably, we have an integer m' with $0 \le m' \le m$ such that $z'_j \in T(n) \setminus DT(n)$ for $1 \le j \le m'$ and $z'_j \in DT(n)$ for $m' + 1 \le j \le m$. Define $w' \in DT(n)$ and $u' \in S(n)$ by

$$w' = w - \sum_{j=m'+1}^m \mathscr{O}_j(z'_j) \qquad \text{and} \qquad u' = u - \sum_{j=1}^m \mathscr{O}_j(z''_j),$$

respectively. Then

$$\sum_{j=1}^{m'} \mathscr{O}_j(z'_j) = w' + u' \quad \text{with } w' \in DT(n) \text{ and } u' \in S(n)$$

From the above proof, we have $d'_j \in DT(n)$ for $1 \le j \le m'$ with

$$\sum_{j=1}^{m'} \mathscr{O}_j(z_j'-d_j') = u'$$

Put

$$d_j = \begin{cases} d'_j & \text{if } 1 \le j \le m', \\ z'_j & \text{if } m' + 1 \le j \le m. \end{cases}$$

Then $d_j \in DT(n)$ for $1 \le j \le m$ with

$$\sum_{j=1}^m \mathscr{O}_j(z_j - d_j) = u,$$

which implies the required conclusion. This completes the proof of Lemma 4.4. $\hfill \Box$

Proof of Theorem 4.3

From the construction of $R_p(X)$ in [7, Section 2], we have a space $R_{p-1}(X)$ with the following commutative diagram:

Since $e_p^*(M) = 0$ by [7, p. 593], we have that $e_p^*|_{A^*} \colon A^* \to H^*(R_{p-1}(X); \mathbb{F}_p)$ induces a homomorphism $\mathscr{E} \colon T(p) = A^*/M \to H^*(R_{p-1}(X); \mathbb{F}_p)$ of \mathscr{A}_p -algebras by Theorem 4.2(2).

We first prove the case of $1 \le n \le p-2$. Let $\mathscr{K}_n : T(p) \to H^*(P_n(X); \mathbb{F}_p)$ be defined by $\mathscr{K}_n = \iota_n^* \cdots \iota_{p-3}^* e_{p-1}^* \mathscr{E}$. Put $\mathscr{K}_n(z_j) = \widetilde{z}_j$ for $1 \le j \le m$. Applying \mathscr{K}_n to (4.4), we have

$$\sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j) \in DT(n).$$

Now we have $\widetilde{d}_j \in DT(n)$ for $1 \le j \le m$ with

(4.9)
$$\sum_{j=1}^{m} \mathcal{O}_j(\widetilde{z}_j - \widetilde{d}_j) = 0$$

by Lemma 4.4. Take $d_j \in DT(p)$ with $\mathscr{K}_n(d_j) = \widetilde{d}_j$ for $1 \leq j \leq m$. Then by (4.9),

$$\sum_{j=1}^{m} \mathscr{O}_j(z_j - d_j) \in D^{n+1}T(p),$$

and so we have the required conclusion.

We next consider the case of n = p - 1. Since

(4.10)
$$\mathscr{E}(T(p)) = f_{p-1}^*(T(p-1)) \subset H^*(R_{p-1}(X); \mathbb{F}_p)$$

by [7, Proposition 5.2], there are classes $\tilde{z}_j \in T(p-1)$ with $f_{p-1}^*(\tilde{z}_j) = \mathscr{E}(z_j)$ for $1 \leq j \leq m$. Moreover, we take $w \in DT(p-1)$ with

$$f_{p-1}^*(w) = \mathscr{E}\Big(\sum_{j=1}^m \mathscr{O}_j(z_j)\Big)$$

by (4.4) and (4.10). Hence,

$$\sum_{j=1}^m \mathscr{O}_j(\widetilde{z}_j) = w + u \quad \text{for some } u \in H^*\big(P_{p-1}(X); \mathbb{F}_p\big) \text{ with } f_{p-1}^*(u) = 0.$$

Now $u \in S(p-1)$ by [7, Lemma 5.1], and so we have $\widetilde{d}_j \in DT(p-1)$ for $1 \le j \le m$ with

$$\sum_{j=1}^{m} \mathscr{O}_j(\widetilde{z}_j - \widetilde{d}_j) = u$$

by Lemma 4.4. Taking $d_j \in DT(p)$ with $\mathscr{E}(d_j) = f_{p-1}^*(\widetilde{d}_j)$ for $1 \leq j \leq m$, we have

$$\sum_{j=1}^{m} \mathscr{O}_j(z_j - d_j) \in D^p T(p)$$

This completes the proof of Theorem 4.3.

From Theorems 4.2(3) and 4.3 and the result of Hemmi and Kawamoto [8, Proposition 3.2], we have the following proposition.

PROPOSITION 4.5

Let p and λ be as in Theorem C. If X is a simply connected A_p -space whose mod p cohomology $H^*(X; \mathbb{F}_p)$ is as in (4.1) and the power map Φ_{λ} on X is an A_n -map with n > (p-1)/2, then we have the following.

(1) If
$$a \ge 0$$
, $b > 0$, and $0 < c < p$, then
 $QH^{2p^{a}(pb+c)-1}(X; \mathbb{F}_{p}) = \mathscr{P}^{p^{a}k}QH^{2p^{a}(p(b-k)+c+k)-1}(X; \mathbb{F}_{p})$
for $1 \le k \le \min\{b, p-c\}$

and

$$\mathscr{P}^{p^ak}QH^{2p^a(pb+c)-1}(X;\mathbb{F}_p) = 0 \quad for \ c \le k < p.$$

(2) If
$$a \ge 0$$
 and $0 < c < p$, then
 $\mathscr{P}^{p^ak} : QH^{2p^ac-1}(X; \mathbb{F}_p) \to QH^{2p^a(kp+c-k)-1}(X; \mathbb{F}_p)$

is an isomorphism for $1 \leq k < c$.

REMARK 4.6

When p = 3 and X is a homotopy associative and homotopy commutative Hspace, Proposition 4.5(1) was first proved by Hemmi [6, Theorem 1.1]. Later Lin [17, Theorem B] also proved (1) of the above result for any odd prime p under the additional assumptions that Φ_{λ} is an A_{p-1} -map and $H^*(X; \mathbb{F}_p)$ is generated by A_p -primitive classes.

868

LEMMA 4.7

Assume that $p, \lambda, n, and X$ are as in Theorem C. Then the mod p cohomology $H^*(X; \mathbb{F}_p)$ is as in (4.1) such that $t_i = p^{a_i}$ with $a_i > 0$ for $1 \le i \le \ell$.

Proof

We first prove that there is no even-dimensional generator in $H^*(X; \mathbb{F}_p)$. Assume contrarily that $x \in QH^*(X; \mathbb{F}_p)$ is an even-dimensional generator. According to Lin [16, Theorem 4.3.1] (see also [14, Section 35]),

$$x = \beta \mathscr{P}^n(y)$$
 for some $y \in QH^{2n+1}(X; \mathbb{F}_p)$ with $n \ge 1$.

Then $\mathscr{P}^n Q H^{2n+1}(X; \mathbb{F}_p) \neq 0$. From the assumption, $\{\mathscr{P}^i\}_{i\geq 1}$ act trivially on $QH^*(X; \mathbb{F}_p)$, and so we have a contradiction. Hence, $H^*(X; \mathbb{F}_p)$ is as in (4.1).

Let $x \in QH^{2t-1}(X; \mathbb{F}_p)$ be one of the generators $\{x_i\}_{1 \leq i \leq \ell}$ in (4.1). Write

$$t = p^a(pb+c)$$
 with $a, b \ge 0$ and $0 < c < p$.

When b > 0, we have that

$$x \in \mathscr{P}^{p^a} Q H^{2(t-p^a(p-1))-1}(X; \mathbb{F}_p)$$

by Proposition 4.5(1). If b = 0 and 1 < c < p, then

$$\mathscr{P}^{p^a}(x) \neq 0$$
 in $QH^{2(t+p^a(p-1))-1}(X;\mathbb{F}_p)$

by Proposition 4.5(2). Now we note that $\{\mathscr{P}^i\}_{i\geq 1}$ act trivially on $QH^*(X; \mathbb{F}_p)$, and so b=0 and c=1. Since t>1, we have $t=p^a$ with a>0.

We are now in position to prove Theorem C.

Proof of Theorem C

We use a similar way to the proof of [5, Theorem 1.1]. From Theorem 4.1 and Lemma 4.7, there are classes

$$y_i \in \widetilde{H}^{2p^{a_i}}(P_{p-1}(X); \mathbb{F}_p)$$
 with $\iota_1^* \cdots \iota_{p-2}^*(y_i) = \sigma(x_i)$ for $1 \le i \le \ell$

such that

$$H^*(P_{p-1}(X);\mathbb{F}_p) \cong T(p-1) \oplus S(p-1)$$
 as an \mathbb{F}_p -algebra,

where $T(p-1) = T_{\mathbb{F}_p}^{[p]}[y_1, \dots, y_\ell].$

Assume contrarily that X is not \mathbb{F}_p -acyclic. Put $a = \min\{a_i\}_{1 \le i \le \ell}$. Take $x \in QH^{2p^a-1}(X;\mathbb{F}_p)$ and $y \in T(p-1)$ with $\iota_1^* \cdots \iota_{p-2}^*(y) = \sigma(x) \ne 0$. Then the composition

(4.11)
$$H^t(P_p(X);\mathbb{F}_p) \xrightarrow{\iota_{p-1}^*} H^t(P_{p-1}(X);\mathbb{F}_p) \longrightarrow T(p-1)$$

is an isomorphism for $t < 2p^{a+1}$ and an epimorphism for $t < 2(p^{a+1} + p^a - 1)$ (see [5, p. 106, (4.10)]). From Lemma 4.7 and (4.11), we have

$$H^t\big(P_p(X);\mathbb{F}_p\big)\cap(\operatorname{Im}\beta\cup\operatorname{Im}\mathscr{P}^1)=0\quad\text{for }t\leq 2p^{a+1}.$$

Then

(4.12)
$$H^t(P_p(X);\mathbb{F}_p) \cap \operatorname{Im} \mathscr{P}^{p^a} = 0 \quad \text{for } t \le 2p^{a+1}$$

by Shimada and Yamanoshita [25, Theorem 5.3] or Liulevicius [19, Theorem 1.2.1].

Taking
$$z \in H^{2p^{a}}(P_{p}(X); \mathbb{F}_{p})$$
 with $\iota_{p-1}^{*}(z) = y$ by (4.11), we have

$$\mathscr{F}_p(x^{\otimes p}) = z^p = \mathscr{P}^{p^a}(z) = 0$$

by (4.12) and [33, Theorem 2.4] (see also [9, Theorem 4.1]). Hence,

$$x^{\otimes p} = \mathscr{G}_{p-1}(u)$$
 for some $u \in H^{2p^{a+1}-1}(P_{p-1}(X); \mathbb{F}_p)$

For dimensional reasons, we have $u \in S(p-1)$, and so

$$u = \mathscr{F}_{p-1}(v)$$
 for some $v \in D(p-1)$.

Let $\boldsymbol{c} \in PH_{2p^a-1}(X; \mathbb{F}_p)$ be a primitive class with $\langle x, \boldsymbol{c} \rangle \neq 0$. Then $\langle x^{\otimes p}, \boldsymbol{c}^{\otimes p} \rangle \neq 0$ by [22, p. 152, (3)]. On the other hand,

$$\langle x^{\otimes p}, \boldsymbol{c}^{\otimes p} \rangle = \langle (\mathscr{G}_{p-1}\mathscr{F}_{p-1})(v), \boldsymbol{c}^{\otimes p} \rangle = 0$$

by (4.2) and [12, Lemma 2.5] (see also [14, p. 98, Corollary C(i)]). This is a contradiction, and so X is \mathbb{F}_p -acyclic.

Acknowledgments. An earlier version of the article was presented at the conference "Algebraic and Geometric Models for Spaces and Related Topics" held at Shinshu University in September 2014. I am grateful to the organizers for their kind invitation and hospitality. The author would like to thank Yutaka Hemmi, Kenshi Ishiguro, Daisuke Kishimoto, Sachiko Ohtani, and Mitsunobu Tsutaya for their helpful discussions. I also appreciate the referee for many useful comments.

References

- M. Arkowitz, *Introduction to Homotopy Theory*, Universitext, Springer, New York, 2011. MR 2814476 (2012f:55001). DOI 10.1007/978-1-4419-7329-0.
- M. Arkowitz, J. Ewing, and S. Schiffman, *H*-structures on localized and completed spheres, Quart. J. Math. Oxford Ser. (2) 26 (1975), 295–307.
 MR 0407836 (53:11606).
- S. Forcey, Convex hull realizations of the multiplihedra, Topology Appl. 156 (2008), 326–347. MR 2475119 (2010f:52022). DOI 10.1016/j.topol.2008.07.010.
- Y. Hemmi, Mod 3 homotopy associative H-spaces which are products of spheres, Hiroshima Math. J. 18 (1988), 227–243. MR 0955370 (89i:55005).
- [5] _____, Higher homotopy commutativity of H-spaces and the mod p torus theorem, Pacific J. Math. 149 (1991), 95–111. MR 1099785 (92a:55010).
- [6] _____, On mod 3 homotopy associative and homotopy commutative Hopf spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 12 (1991), 57–65.
 MR 1093546 (92i:55011).

- [7] _____, On exterior A_n -spaces and modified projective spaces, Hiroshima Math. J. **24** (1994), 583–605. MR 1309142 (95j:55022).
- Y. Hemmi and Y. Kawamoto, "Higher homotopy commutativity and cohomology of finite *H*-spaces" in *Proceedings of the Nishida Fest (Kinosaki* 2003), Geom. Topol. Monogr. 10, Geom. Topol. Publ., Coventry, 2007, 167–186. MR 2402783 (2009i:55010). DOI 10.2140/gtm.2007.10.167.
- N. Iwase, On the K-ring structure of X-projective n-space, Mem. Fac. Sci. Kyushu Univ. Ser. A 38 (1984), 285–297. MR 0760190 (86g:55023).
 DOI 10.2206/kyushumfs.38.285.
- [10] _____, Associahedra, multiplihedra and units in A_{∞} -form, preprint, arXiv:1211.5741v7 [math.AT].
- N. Iwase and M. Mimura, "Higher homotopy associativity" in Algebraic Topology (Arcata, CA, 1986), Lecture Notes in Math. 1370, Springer, Berlin, 1989, 193–220. MR 1000378 (90f:55017). DOI 10.1007/BFb0085229.
- [12] R. M. Kane, *Primitivity and finite H-spaces*, Quart. J. Math. Oxford Ser. (2)
 26 (1975), 309–313. MR 0388383 (52:9220).
- [13] _____, Brown-Peterson operations and Steenrod modules, Quart. J. Math. Oxford Ser. (2) **30** (1979), 455–467. MR 0559050 (81f:55021).
 DOI 10.1093/qmath/30.4.455.
- [14] _____, The Homology of Hopf Spaces, North-Holland Math. Libr. 40, North-Holland, Amsterdam, 1988. MR 0961257 (90f:55018).
- Y. Kawamoto, Higher homotopy commutativity of H-spaces and the cyclohedra, Publ. Res. Inst. Math. Sci. 49 (2013), 737–760. MR 3141722.
 DOI 10.4171/PRIMS/118.
- [16] J. P. Lin, Torsion in H-spaces, II, Ann. of Math. (2) 107 (1978), 41–88.
 MR 0488044 (58:7619).
- [17] _____, A_n-liftings into Postnikov towers, Kyushu J. Math. **51** (1997), 35–55.
 MR 1437307 (98e:55008). DOI 10.2206/kyushujm.51.35.
- [18] X. Lin, Self-maps of p-local infinite projective spaces, Sci. China Math. 55 (2012), 739–744. MR 2903459. DOI 10.1007/s11425-011-4335-1.
- [19] A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962), no. 42. MR 0182001 (31:6226).
- [20] C. A. McGibbon, *Multiplicative properties of power maps*, *I*, Quart. J. Math. Oxford Ser. (2) **31** (1980), 341–350. MR 0587096 (82c:55009).
 DOI 10.1093/qmath/31.3.341.
- [21] , Multiplicative properties of power maps, II, Trans. Amer. Math. Soc.
 274, no. 2 (1982), 479–508. MR 0675065 (84d:55008). DOI 10.2307/1999118.
- [22] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 0099653 (20:6092).
- J. M. Møller, Rational isomorphisms of p-compact groups, Topology 35 (1996), 201–225. MR 1367281 (97b:55019). DOI 10.1016/0040-9383(94)00005-0.

- [24] D. L. Rector, "Loop structures on the homotopy type of S³" in Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), Lecture Notes in Math. 249, Springer, Berlin, 1971, 99–105. MR 0339153 (49:3916).
- [25] N. Shimada and T. Yamanoshita, On triviality of the mod p Hopf invariant, Jpn. J. Math. **31** (1961), 1–25. MR 0148060 (26:5569).
- [26] L. Smith and R. Zahler, Detecting stable homotopy classes by primary BP cohomology operations, Math. Z. 129 (1972), 137–156. MR 0314044 (47:2596).
- [27] J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108, no. 2 (1963), 275–292; II, 293–312. MR 0158400 (28:1623).
- [28] _____, H-Spaces from a Homotopy Point of View, Lecture Notes in Math. 161, Springer, Berlin, 1970. MR 0270372 (42:5261).
- [29] M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123–149. MR 0097066 (20:3546).
- [30] _____, On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 257–269. MR 0120645 (22:11394).
- [31] D. P. Sullivan, Geometric Topology: Localization, Periodicity and Galois Symmetry, K-Monogr. Math. 8, Springer, Dordrecht, 2005. MR 2162361 (2006m:55002).
- [32] S. Theriault, *Power maps on p-regular Lie groups*, Homology Homotopy Appl. 15 (2013), 83–102. MR 3117388. DOI 10.4310/HHA.2013.v15.n2.a5.
- [33] E. Thomas, On functional cup-products and the transgression operator, Arch. Math. (Basel) 12 (1961), 435–444. MR 0149485 (26:6972).
- [34] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud. 49, Princeton Univ. Press, Princeton, 1962. MR 0143217 (26:777).
- [35] Z. Wojtkowiak, "Maps between p-completions of the Clark-Ewing spaces X(W, p, n)" in International Conference on Homotopy Theory (Marseille-Luminy, 1988), Astérisque 191, Soc. Math. France, Montrouge, 1990, 269–284. MR 1098975 (92b:55018).

Department of Mathematics, National Defense Academy of Japan, Yokosuka, Japan; yusuke@nda.ac.jp