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Abstract Let p be an odd prime, and let λ ∈ Z. Consider the loop space Yt = S2t−1
(p)

for

t≥ 1with t|(p−1). Then we first determine the condition for the powermapΦλ on Yt to

be anAp-map.Wenext assume thatX is a simply connectedFp-finiteAp-space and that

λ is a primitive (p− 1)st root of unity mod p. Our results show that if the reduced power

operations {Pi}i≥1 act trivially on the indecomposable module QH∗(X;Fp) and the

power map Φλ onX is an An-map with n > (p− 1)/2, thenX is Fp-acyclic.

1. Introduction

A grouplike space is a homotopy associative H-space with a homotopy inverse.

Let X be a grouplike space. We denote the multiplication and the homotopy

inverse of X by μ : X2 → X and ι : X → X , respectively. Consider the power

maps {Φλ : X →X}λ∈Z on X given as follows. If λ≥ 0, then Φλ is inductively

defined by Φ0(x) = e and

(1.1) Φλ(x) = μ
(
Φλ−1(x), x

)
for λ > 0,

where e ∈X is the base point of X . In the case of λ < 0, we can define Φλ by

Φλ(x) = ι(Φ−λ(x)) with (1.1). From the definition, the multiplication of X is

homotopy commutative if and only if all the power maps {Φλ}λ∈Z on X are H-

maps. On the other hand, if X is a double loop space, then we see that {Φλ}λ∈Z

are loop maps.

Consider the p-localization S2t−1
(p) of the (2t− 1)-dimensional sphere for an

odd prime p and t ≥ 1. Then S2t−1
(p) is a loop space if and only if t|(p − 1) by

Sullivan [31, pp. 103–105] (see also [14, p. 172, Theorem A]). We denote the

loop space S2t−1
(p) by Yt. The loop multiplication of Yt is assumed to be strictly

associative (cf. [14, p. 45]).

From the result of Arkowitz, Ewing, and Schiffman [2, Theorem 2.4], we have

the following (see also [20, Theorem 2(d)]).
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THEOREM 1.1 ([2])

Let p be an odd prime. Then the power map Φλ on Yp−1 is an H-map if and only

if λ(λ− 1)≡ 0 mod p.

When t �= p− 1, all the power maps {Φλ}λ∈Z on Yt are H-maps since the mul-

tiplication of Yt is homotopy commutative by [2, Theorem 0.1(1)]. Although p-

completed spheres are considered in [2], their results are also valid for p-localized

spheres (see [2, p. 296]). We note that Theorem 1.1 is generalized to the case of

several p-localized finite loop spaces by McGibbon [20, Section 4] and Theriault

[32, p. 85].

On the other hand, the condition for the power map Φλ on Yt to be a loop

map is determined by Lin [18, Theorem 1.3].

THEOREM 1.2 ([18])

Let p be an odd prime, and let t≥ 1 with t|(p− 1). Then the power map Φλ on

Yt is a loop map if and only if λ= αt for some p-adic integer α ∈ Z∧
p .

REMARK 1.3

When λ �≡ 0 mod p, the above result was proved by Arkowitz, Ewing, and Schiff-

man [2, Theorem 4.4 and Corollary 4.5] (see also Rector [24, Section 3]). As

is noted in [18, p. 740], Theorem 1.2 can also be derived from the result of

Wojtkowiak [35, Theorem 1] or Møller [23, Theorem 1.2].

Using some results from number theory, Theorem 1.2 implies the following corol-

lary (cf. [2, Lemma 4.3]).

COROLLARY 1.4

Let p and t be as in Theorem 1.2. Put m = (p− 1)/t. Assume that λ �= 0, and

write λ = pab with a ≥ 0 and b �≡ 0 mod p. Then the power map Φλ on Yt is a

loop map if and only if t|a and bm ≡ 1 mod p.

According to Sugawara [30, Section 2], we have a condition for anH-map between

topological monoids (strictly associative H-spaces) to be homotopic to a loop

map. His condition is called strongly homotopy-multiplicativity. Generalizing the

condition, Stasheff [27, II, Definition 4.4] introduced the concept of An-maps

between topological monoids.

From the definition, an A2-map is just an H-map. On the other hand, a map

f : X → Y is an A∞-map if and only if we have the induced map Bf : BX →BY

with f �Ω(Bf ) by Stasheff [27, II, Theorem 4.5], where BX and BY denote the

classifying spaces of X and Y , respectively. Hence, An-maps can be regarded as

intermediate stages between an H-map and a loop map.

McGibbon [21] considered a condition for the power map on a topological

monoid to be an A3-map. Applying the main result [21, Theorem 9] to the case

of Y(p−1)/2, he proved the following result.
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THEOREM 1.5 ([21, THEOREM 10(III)])

Let p > 3. Then the power map Φλ on Y(p−1)/2 is an A3-map if and only if

λ(λ2 − 1)≡ 0 mod p.

We first generalize Theorems 1.1 and 1.5 as follows.

THEOREM A

Let p be an odd prime, and let t≥ 1 with t|(p− 1). Put m= (p− 1)/t. Then the

power maps {Φλ}λ∈Z on Yt satisfy the following.

(1) Φλ is an Am-map for any λ ∈ Z.

(2) Φλ is an Am+1-map if and only if λ(λm − 1)≡ 0 mod p.

When λ �≡ 0 mod p, the power map Φλ on Yt is an Am+1-map if and only if it is

a loop map by Theorem A(2) and Corollary 1.4.

In the case of λ≡ 0 mod p, we have the following.

THEOREM B

Let p, t, and m be as in Theorem A. Assume that λ ≡ 0 mod p and 2 ≤ j ≤ t.

Then the power maps {Φλ}λ∈Z on Yt satisfy the following.

(1) If Φλ is an A(j−1)m+1-map, then it is also an Ajm-map.

(2) Φλ is an Ajm+1-map if and only if λ≡ 0 mod p j .

From Theorems A(2) and B(2) and Corollary 1.4, we have the following corollary.

COROLLARY 1.6

Let p, t, and m be as in Theorem A. Then the power map Φλ on Yt is an Ap-map

if and only if λ≡ 0 mod pt or λm ≡ 1 mod p.

Sugawara [29, Theorem 1.1] also gave a criterion for an H-space to be of the

homotopy type of a topological monoid. His criterion is higher homotopy asso-

ciativity for multiplication. Later Stasheff [27, I, Section 2] expanded the criterion

into the concept of An-spaces (see Section 2).

From the definition, an An-space is anH-space whose multiplication is homo-

topy associative of the nth order. In particular, an A2-space and an A3-space are

an H-space and a homotopy associative H-space, respectively. Moreover, a space

is an A∞-space if and only if it is of the homotopy type of a topological monoid

by Stasheff [28, I, Theorem 5] (see Remark 2.1).

According to Iwase and Mimura [11, Section 3], Stasheff’s definition of An-

maps between topological monoids is also generalized to the case of maps between

An-spaces (see Section 2).

In this article, all spaces are assumed to be pointed, connected, and of the

homotopy type of CW -complexes. Hence, any An-space can be regarded as a

grouplike space for n≥ 3. A space X is called Fp-finite if the mod p cohomology



850 Yusuke Kawamoto

H∗(X;Fp) is finite-dimensional as a vector space over Fp, and is called Fp-acyclic

if the reduced mod p cohomology H̃∗(X;Fp) = 0.

Our result is as follows.

THEOREM C

Let p be an odd prime. Assume that X is a simply connected Fp-finite Ap-space

and that λ is a primitive (p − 1)st root of unity mod p. If the reduced power

operations {Pi}i≥1 act trivially on the indecomposable module QH∗(X;Fp) and

the power map Φλ on X is an An-map with n > (p− 1)/2, then X is Fp-acyclic.

REMARK 1.7

(1) In Theorem C, the assumption that X is an “Ap-space” cannot be

relaxed. In fact, the power maps {Φλ}λ∈Z on the Ap−1-space Zt in Example 2.2

are Ap−1-maps for any p > 3 and t≥ 1.

(2) If λ is not a primitive (p− 1)st root of unity mod p, then Theorem C

does not hold from the following facts.

(i) When λ ≡ 0 mod p, the power map Φλ on Y2 is an A(p+1)/2-map by

Theorem A(2).

(ii) Assume that λk ≡ 1 mod p for some k with 1≤ k < p− 1 and k|(p− 1).

Put t = (p− 1)/k > 1. Then the power map Φλ on Yt is a loop map by Corol-

lary 1.4.

(3) Since the power maps {Φλ}λ∈Z on Y2 are A(p−1)/2-maps by Theorem

A(1), the assumption “n > (p− 1)/2” is necessary.

This article is organized as follows. In Section 2, we outline the higher homotopy

associativity of H-spaces and H-maps introduced by Stasheff [27, Section 2] and

Iwase and Mimura [11, Section 3], respectively. In Section 3, Theorems A and B

are proved by using the Brown–Peterson operations. Section 4 is devoted to the

proof of Theorem C. We first recall the modified projective space Rp(X) of an Ap-

space X constructed by Hemmi [7, Section 2]. Based on the mod p cohomology

of Rp(X), we have an unstable Ap-algebra T (p) (see Theorem 4.2(2)). We next

recall the concept of Dn-algebras in Hemmi and Kawamoto [8, Section 2], and we

show that if the power map Φλ on X is an An-map, then T (p) is a Dn-algebra

(see Theorem 4.3). Theorem C is proved by using Theorem 4.3 and some results

on Dn-algebras from [8, Section 3].

2. Higher homotopy associativity

We first recall associahedra and multiplihedra constructed by Stasheff [27] and

Iwase and Mimura [11], respectively.
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Figure 1. The associahedra K3 and K4.
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Figure 2. The associahedron K5.

Stasheff [27, I, Section 6] constructed the associahedra {Kn}n≥1 in order to

define An-spaces. From the construction, the associahedron Kn is an (n − 2)-

dimensional polytope whose boundary ∂Kn is given by

∂Kn =
⋃

(r,s,k)∈Kn

Kk(r, s) for n≥ 2,

where (see Figures 1 and 2)

Kn =
{
(r, s, k) ∈N

3 | r, s≥ 2 with r+ s= n+ 1 and k ≤ r
}
.

The facet (codimension 1 face) Kk(r, s) is isomorphic (affinely homeomor-

phic) to the product Kr ×Ks via a face operator

∂k(r, s) : Kr ×Ks →Kk(r, s) for (r, s, k) ∈Kn,

and there is a family {σj : Kn →Kn−1}1≤j≤n of degeneracy operators (see [27,

I, Section 2]). For convenience, we also put K1 = {∗}. Note that the associahedra
{Kn}n≥1 are also used to define An-maps from An-spaces to topological monoids

by Stasheff [28, Definition 11.9].

Iwase and Mimura [11, Section 2] introduced another family {Jn}n≥1 of

special complexes when defining An-maps between An-spaces. Later Forcey [3,

Theorem 3] reconstructed Jn as the convex hull of a finite set of points in Rn

(see also [10, Appendix E]). The polytopes {Jn}n≥1 are called multiplihedra.
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Figure 3. The multiplihedra J2 and J3.
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Figure 4. The multiplihedron J4.

From their constructions, the multiplihedron Jn is an (n − 1)-dimensional

polytope whose boundary ∂Jn is given by

∂Jn =
⋃

(r,s,k)∈Jn

Jk(r, s)∪
⋃

(t1,...,tm)∈J′n

J ′(t1, . . . , tm) for n≥ 1,

where (see Figures 3 and 4)

Jn =
{
(r, s, k) ∈N

3 | s≥ 2 with r+ s= n+ 1 and k ≤ r
}

and

J
′
n =

{
(t1, . . . , tm) ∈N

m |m≥ 2 and t1 + · · ·+ tm = n
}
.

Moreover, we have face operators{
δk(r, s) : Jr ×Ks → Jk(r, s)

}
(r,s,k)∈Jn

and {
δ′(t1, . . . , tm) : Km × Jt1 × · · · × Jtm → J ′(t1, . . . , tm)

}
(t1,...,tm)∈J′n

and degeneracy operators {ζj : Jn → Jn−1}1≤j≤n. As in the case of associahedra,

the facets Jk(r, s)∼= Jr ×Ks and J ′(t1, . . . , tm)∼=Km×Jt1 ×· · ·×Jtm via δk(r, s)

and δ′(t1, . . . , tm), respectively.

We next outline the higher homotopy associativity of H-spaces and H-maps.
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Figure 5. The An-forms on X for n= 3 and 4.

According to Stasheff [27, I, Section 2], an An-form on a space X is a family

{μi : Ki ×Xi →X}1≤i≤n of maps with the following relations:

μ1(∗, x) = x,(2.1)

μi

(
∂k(r, s)(a, b), x1, . . . , xi

)
= μr

(
a,x1, . . . , xk−1, μs(b, xk, . . . , xk+s−1), xk+s, . . . , xi

)
(2.2)

for (r, s, k) ∈Ki,

μi(a,x1, . . . , xj−1, e, xj+1, . . . , xi)
(2.3)

= μi−1

(
σj(a), x1, . . . , xj−1, xj+1, . . . , xi

)
for 1≤ j ≤ i.

A space with an An-form is called an An-space for n≥ 1 (see Figure 5). If

there is a family {μi}i≥1 of maps such that {μi}1≤i≤n is an An-form on X for

any n≥ 1, then X is called an A∞-space.

REMARK 2.1

(1) An A1-space is just a space. Since μ2(∗, x, e) = μ2(∗, e, x) = x,

μ3

(
∂1(2,2)(∗,∗), x, y, z

)
= (xy)z, and μ3

(
∂2(2,2)(∗,∗), x, y, z

)
= x(yz),

an A2-space and an A3-space are an H-space and a homotopy associative H-

space, respectively.

(2) From the result of Stasheff [27, I, Theorem 5], a space is an A∞-space

if and only if it is of the homotopy type of a topological monoid (see also [28,

Theorem 11.4] and [14, Sections 5 and 6]).

The concept of higher homotopy associativity for maps was first introduced by

Sugawara [30, Section 2] and Stasheff [27, II, Definition 4.4] in the case of maps

between topological monoids. Later Stasheff [28, Definition 11.9] also consid-

ered An-maps from An-spaces to topological monoids by using the associahedra

{Ki}i≥1.

The full generalization was described by Iwase and Mimura [11, Section 3].

They defined An-maps between An-spaces by using the multiplihedra {Ji}i≥1.
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Figure 6. The An-forms on f for n= 2 and 3.

Let X and Y be An-spaces with An-forms {μX
i }1≤i≤n and {μY

i }1≤i≤n, respec-

tively. An An-form on a map f : X → Y is a family {ηi : Ji ×Xi → Y }1≤i≤n of

maps with the following relations:

η1(∗, x) = f(x),(2.4)

ηi
(
δk(r, s)(a, b), x1, . . . , xi

)
= ηr

(
a,x1, . . . , xk−1, μ

X
s (b, xk, . . . , xk+s−1), xk+s, . . . , xi

)
(2.5)

for (r, s, k) ∈ Ji,

ηi
(
δ′(t1, . . . , tm)(a, b1, . . . , bm), x1, . . . , xi

)
= μY

m

(
a, ηt1(b1, x1, . . . , xt1), . . . , ηtm(bm, xt1+···+tm−1+1, . . . , xi)

)
(2.6)

for (t1, . . . , tm) ∈ J
′
i,

ηi(a,x1, . . . , xj−1, e, xj+1, . . . , xi)
(2.7)

= ηi−1

(
ζj(a), x1, . . . , xj−1, xj+1, . . . , xi

)
for 1≤ j ≤ i.

A map between An-spaces admitting an An-form is called an An-map for

n≥ 1 (see Figure 6). From the definition, an A1-map is just a map. Since

η2
(
δ1(1,2)(∗,∗), x, y

)
= f(xy) and η2

(
δ′(1,1)(∗,∗), x, y

)
= f(x)f(y),

an A2-map is the same as anH-map. In general, an An-map is anH-map between

An-spaces preserving homotopically their An-forms for n≥ 2.

If there is a family {ηi}i≥1 of maps such that {ηi}1≤i≤n is an An-form on f

for any n≥ 1, then f is called an A∞-map. From the result of Iwase and Mimura

[11, Theorem 3.1], f : X → Y is an A∞-map if and only if we have the induced

map Bf : BX →BY with f �Ω(Bf ), where BX and BY denote the classifying

spaces of X and Y , respectively (see also [14, p. 55]).

Assume that X and Y are An-spaces with An-forms {μX
i }1≤i≤n and

{μY
i }1≤i≤n, respectively. According to Stasheff [27, II, Definition 4.1], a map

f : X → Y is called an An-homomorphism if fμX
i = μY

i (1Ki × f i) for 1≤ i≤ n.

From the definition, an An-homomorphism is an An-map.
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Let p be an odd prime, and let t≥ 1. The double suspension Σ2 : S
2t−1
(p) →

Ω2S2t+1
(p) is defined as the double adjoint of the identity 1S2t+1

(p)
on S2t+1

(p) �
Σ2S2t−1

(p) . Then S2t−1
(p) is an Ap−1-space so that Σ2 is an Ap−1-homomorphism by

Stasheff [27, I, Theorem 17]. We denote S2t−1
(p) with this Ap−1-structure by Zt.

EXAMPLE 2.2

Let p > 3 and t≥ 1. Then the power map Φλ on the Ap−1-space Zt is an Ap−1-

map for any λ ∈ Z.

Proof

For simplicity, we write Ωt =Ω2S2t+1
(p) . Since Ωt is a double loop space, the power

map Φ̂λ on Ωt is an A∞-map for any λ ∈ Z. We denote the A∞-form on Φ̂λ by

{η̂i}i≥1. Let ωi : Ji × (Zt)
i →Ωt be defined by ωi = η̂i(1Ji × (Σ2)

i) for i≥ 1.

By induction on i, we construct an Ap−1-form {ηi}1≤i≤p−1 on Φλ with

Σ2ηi = ωi for 1 ≤ i ≤ p − 1. Put η1(∗, x) = x for x ∈ Zt. Assume inductively

that {ηj}1≤j<i is constructed for some i with 2≤ i≤ p− 1. Let Γi(X) = ∂Ji ×
Xi∪Ji×X [i] for a space X , and let i≥ 1, where X [i] denotes the i-fold fat wedge

of X defined as

X [i] =
{
(x1, . . . , xi) ∈Xi | xj = e for some j with 1≤ j ≤ i

}
.

Then (Ji × (Zt)
i)/Γi(Zt)� S2ti−1

(p) .

Now we define νi : Γi(Zt) → Zt by (2.5)–(2.7). By inductive hypothesis,

Σ2νi = ωi|Γi(Zt). The obstructions to obtain ηi : Ji × (Zt)
i → Zt with ηi|Γi(Zt) =

νi and Σ2ηi = ωi appear in the following cohomology groups (cf. [1, Proposi-

tion 9.2.3]):

(2.8) Hk+1
(
Ji × (Zt)

i, Γi(Zt);πk(Ft)
)∼= H̃k

(
S2ti−2
(p) ;πk(Ft)

)
for k ≥ 1,

where Ft denotes the homotopy fiber of Σ2. Then (2.8) is nontrivial only if

k = 2ti− 2≤ 2tp− 2t− 2≤ 2tp− 4.

On the other hand, πk(Ft) = 0 for k ≤ 2tp− 4 by Toda [34, Corollary 13.2].

Hence, (2.8) is trivial for any k, and we have a map ηi. This completes the

induction, and we have an Ap−1-form {ηi}1≤i≤p−1 on Φλ. �

REMARK 2.3

When p= 3 and t > 1, Zt is not a grouplike space from the following facts.

(1) If S2t−1
(3) is an A3-space, then t= 1 or 2 by [4, Theorem 1.2].

(2) Z2 for p= 3 is a homotopy commutative H-space (cf. [15, Example 4.8

and Remark 4.5(1)]). Then it is not an A3-space by [2, Proposition 3.1 and

Theorem 3.3].

The following propositions are used to prove Theorems A and B in Section 3.
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PROPOSITION 2.4

Assume that p, t, and m are as in Theorem A. Let λ ∈ Z and 1≤ j ≤ p. If the

power map Φλ on Yt is an A(j−1)m+1-map, then it is also an Ajm-map.

PROPOSITION 2.5

Let p, t, and m be as in Theorem A. If the power map Φλ on Yt is an Am+1-map,

then λ(λm − 1)≡ 0 mod p.

In a similar way to the proof of Example 2.2, we can show Proposition 2.4 as

follows.

Proof of Proposition 2.4

By induction on i, we construct an Ajm-form {ηi}1≤i≤jm on Φλ. From the

assumption, we have an A(j−1)m+1-form {ηi}1≤i≤(j−1)m+1 on Φλ. Assume induc-

tively that {ηj}1≤j<i is constructed for some i with

(2.9) (j − 1)m+ 2≤ i≤ jm.

Define η̃i : Γi(Yt) → Yt by (2.5)–(2.7). Then the obstructions to obtain

ηi : Ji × (Yt)
i → Yt with ηi|Γi(Yt) = η̃i appear in the cohomology groups (cf. [1,

Proposition 9.3.3])

(2.10) Hk+1
(
Ji × (Yt)

i, Γi(Yt);πk(Yt)
)∼= H̃k

(
S2ti−2
(p) ;πk(Yt)

)
for k ≥ 1.

The above is nontrivial only if k is an even integer with

(2.11) 2t+ 2(j − 1)(p− 1)− 2< k < 2t+ 2j(p− 1)− 2

since (j − 1)(p− 1) + 2t≤ ti≤ j(p− 1) by (2.9).

On the other hand, πk(Yt) = 0 for any even integer k with (2.11) by [34,

Theorem 13.4]. Hence, (2.10) is trivial for any k, and we have a map ηi. This

completes the induction, and we have an Ajm-form {ηi}1≤i≤jm on Φλ. �

Let X be an An-space. Stasheff [27, I, Theorem 5] constructed the projective

spaces {Pi(X)}0≤i≤n associated to the An-form on X . From the construction,

P0(X) = {∗}, P1(X) =ΣX , and we have a fibration

(2.12) X −−−−→ Σi−1X∧i γi−1−−−−→ Pi−1(X)

and a long cofibration sequence

Σi−1X∧i γi−1−−−−→ Pi−1(X)
ιi−1−−−−→ Pi(X)

ρi−−−−→ ΣiX∧i Σγi−1−−−−→ · · · for 1≤ i≤ n,

where X∧i denotes the i-fold smash product of X . When X is an A∞-space, we

have P∞(X) =BX .

Proof of Proposition 2.5

It is known that (cf. [14, Sections 7 and 24])
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H∗(Pm+1(Yt);Fp

)∼= Fp[x]/(x
m+2) with degx= 2t

and

(2.13) P1(x) = ξxm+1 with ξ �≡ 0 mod p.

Since Φλ is an Am+1-map, we have the induced map

Pm+1(Φλ) : Pm+1(Yt)→ Pm+1(Yt) with Pm+1(Φλ)εm � εm(ΣΦλ)

by [28, Theorem 8.4], where εi = ιi · · · ι1 : ΣYt = P1(Yt) → Pi+1(Yt) for i ≥ 1.

Then Pm+1(Φλ)
∗(x) = λx, and so we have that

P1Pm+1(Φλ)
∗(x) = ξλxm+1 and Pm+1(Φλ)

∗P1(x) = ξλm+1xm+1.

Hence, λ(λm − 1)≡ 0 mod p. �

3. Brown–Peterson cohomology

Let X be a connected space with the homotopy type of a CW -complex of finite

type. The Brown–Peterson cohomology BP∗(X) of X is a module over

BP∗ = Z(p)[v1, v2, . . . ] with deg vi =−2(pi − 1) for i≥ 1,

where Z(p) denotes the p-localized integers. When H∗(X;Z(p)) is torsion-free,

BP∗(X) is a free BP∗-module and the Thom maps

T̃ : BP∗(X)→H∗(X;Z(p)) and T : BP∗(X)→H∗(X;Fp)

are epimorphisms with ker T̃ = (v1, v2, . . . ) and kerT = (p, v1, v2, . . . ), respec-

tively.

As in the case of the reduced power operations {Pi}i≥1 on H∗(X;Fp), there

are operations {ri}i≥1 on BP∗(X) with the following commutative diagram:

BP∗(X)
ri−−−−→ BP∗+2i(p−1)(X)

T

⏐⏐� ⏐⏐�T

H∗(X;Fp) −−−−→
χ(Pi)

H∗+2i(p−1)(X;Fp)

where χ denotes the canonical antiautomorphism on Ap. In particular, we have

(3.1) T r1 =−P1T

since χ(P1) =−P1 by [22, p. 167].

According to Kane [13, Sections 1 and 2], the Brown–Peterson operations

{ri}i≥1 have many useful properties similar to those of {Pi}i≥1 (see also [14,

Appendix C]).

In order to prove Theorems A and B, we first show the following propositions.

PROPOSITION 3.1

Assume that p, t, and m are as in Theorem A. If 0≤ j ≤ p−1 and λ≡ 0 mod p j ,

then the power map Φλ on Yt is an Ajm+1-map.
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PROPOSITION 3.2

Let p, t, and m be as in Theorem A. Assume that 1≤ j ≤ t and λ≡ 0 mod p. If

the power map Φλ on Yt is an Ajm+1-map, then λ≡ 0 mod p j .

From the result of Toda [34, Theorem 13.4], we have

(3.2) π2t+2j(p−1)−2(Yt)∼= Z/p{αj} for 1≤ j ≤ p− 1.

Put ϕj =Σαj : S
2t+2j(p−1)−1
(p) →ΣYt for 1≤ j ≤ p− 1. Let C(ϕj) be the cofiber

of ϕj . Then

H∗(C(ϕj);Z(p)

)
= Z(p){z,w} as a Z(p)-algebra

with deg z = 2t and degw = 2t+ 2j(p− 1).

Take z ∈BP2t(C(ϕj)) andw ∈BP2t+2j(p−1)(C(ϕj)) with T̃ (z) = z and T̃ (w) =

w, respectively. For dimensional reasons, we can write that

(3.3) r1(z) = ζvj−1
1 w for some ζ ∈ Z(p).

In the proof of Proposition 3.1, we need the following lemma.

LEMMA 3.3

We have ζ �≡ 0 mod p in (3.3).

Proof

Put ϕ′
j = Σkϕj : S

2t+2j(p−1)+k−1
(p) → Σk+1Yt, where k is an integer with 2t +

k > 2j(p − 1). Then ϕ′
j ∈ πS

2j(p−1)−1. Since C(ϕ′
j) = ΣkC(ϕj), we have that

σk : BP∗(C(ϕj))→ BP∗+k(C(ϕ′
j)) is an isomorphism, where σ denotes the sus-

pension isomorphism.

Put z′ = σk(z) ∈BP2t+k(C(ϕ′
j)) and w′ = σk(w) ∈BP2t+2j(p−1)+k(C(ϕ′

j)),

respectively. Then by (3.3),

(3.4) r1(z
′) = ζvj−1

1 w′.

Applying rj−1 to (3.4), we have rj−1r1(z
′) = ζp j−1w′ by [13, p. 458, (2.2)].

On the other hand, rj−1r1(z
′) ≡ jrj(z

′) mod ker T̃ by [13, p. 455, (1.2)] and

[22, p. 164]. Now rj(z
′) = γw′ with γ �≡ 0 mod p j by [26, Proposition 1.1 and

Theorem 2.1]. Hence, ζ �≡ 0 mod p. �

Since ϕj = Σαj is a suspension map, we have a self-map Λj : C(ϕj) → C(ϕj)

with the following commutative diagram:

(3.5)

S
2t+2j(p−1)−1
(p)

ϕj−−−−→ ΣYt −−−−→ C(ϕj)

[λ]

⏐⏐� ⏐⏐�ΣΦλ

⏐⏐�Λj

S
2t+2j(p−1)−1
(p)

ϕj−−−−→ ΣYt −−−−→ C(ϕj)

where [λ] denotes the self-map of degree λ.
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Proof of Proposition 3.1

We work by induction on j. The result is clear for j = 0. Assume inductively that

the result is proved for j− 1 with 1≤ j ≤ p− 1. Now λ≡ 0 mod p j . By inductive

hypothesis, Φλ is an A(j−1)m+1-map, and so Proposition 2.4 implies that it is

also an Ajm-map. Then we have the induced map

Pjm(Φλ) : Pjm(Yt)→ Pjm(Yt) with Pjm(Φλ)εjm−1 � εjm−1(ΣΦλ)

by [28, Theorem 8.4].

Let ϕ̃j = εjm−1ϕj : S
2t+2j(p−1)−1
(p) → Pjm(Yt). Since there is a fibration

Yt −−−−→ S
2t+2j(p−1)−1
(p)

γjm−−−−→ Pjm(Yt)

by (2.12), we have

π2t+2j(p−1)−1

(
Pjm(Yt)

)∼= Z(p){γjm} ⊕Z/p{ϕ̃j}.

Let ϕ̂j = ιjmϕ̃j = εjmϕj : S
2t+2j(p−1)−1
(p) → Pjm+1(Yt). PutXj =C(ϕ̂j). Then

C(ϕj)⊂Xj and we see that π2t+2j(p−1)−1(Xj) = 0 by using the Blakers–Massey

theorem (cf. [1, Theorem 5.6.4]). Since Pjm+1(Yt) = C(γjm), there is a map

Ψ̃j : Pjm+1(Yt)→Xj with the following commutative diagram:

S2t
(p) ΣYt

εjm−1−−−−→ Pjm(Yt)
ιjm−−−−→ Pjm+1(Yt)

[λ]

⏐⏐� ΣΦλ

⏐⏐� ⏐⏐�Pjm(Φλ)

⏐⏐�Ψ̃j

S2t
(p) ΣYt −−−−→

εjm−1

Pjm(Yt) −−−−→
ι̃jm

Xj

where ι̃jm denotes the composition of ιjm and the inclusion Pjm+1(Yt)⊂Xj .

Consider the self-map Ψj : Xj → Xj defined by Ψj |Pjm+1(Yt) = Ψ̃j and

Ψj |C(ϕj) = Λj in (3.5). From the definition of Xj , we have that

H∗(Xj ;Z(p)) = Z(p)[x]/(x
jm+2)⊕Z(p){y} as a Z(p)-algebra

with degx= 2t and deg y = 2t+ 2j(p− 1).

Since Ψj |C(ϕj) = Λj , the induced homomorphism

Ψ∗
j : H

∗(Xj ;Z(p))→H∗(Xj ;Z(p))

is given by Ψ∗
j (x) = λx and Ψ∗

j (y) = λy+ ηxjm+1 for some η ∈ Z(p).

In order to complete the proof, we need to show that

(3.6) η ≡ 0 mod p.

Take x ∈BP2t(Xj) and y ∈BP2t+2j(p−1)(Xj) with T̃ (x) = x and T̃ (y) = y,

respectively. Then we can assume that z = τ∗j (x) and w = τ∗j (y) are as in (3.3),

where τj : C(ϕj) → Xj denotes the inclusion. For dimensional reasons, we can

write that

Ψ∗
j (x) = λx+

j∑
k=1

θkv
k
1x

km+1 + δvj1y with θk, δ ∈ Z(p) for 1≤ k ≤ j,
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r1(x) =

j∑
�=1

ξ�v
�−1
1 x�m+1 + ζvj−1

1 y with ξ� ∈ Z(p) for 1≤ �≤ j,

Ψ∗
j (y) = λy+ ηxjm+1, and r1(y) = 0.

Then

(3.7)

r1
(
Ψ∗
j (x)

)
=

j∑
k=1

(pkθk + λξk)v
k−1
1 xkm+1

+
∑
k,�≥1
k+�≤j

(km+ 1)θkξ�v
k+�−1
1 x(k+�)m+1 + (pjδ + λζ)vj−1

1 y.

On the other hand,

(3.8)
Ψ∗
j

(
r1(x)

)
=

j∑
�=1

ξ�v
�−1
1

(
λx+

j∑
k=1

θkv
k
1x

km+1
)�m+1

+ ζηvj−1
1 xjm+1 + λζvj−1

1 y.

To show (3.6), we first prove that if λ≡ 0 mod p j , then

(3.9) θk ≡ 0 mod p j−k for 1≤ k ≤ j.

We work by induction on k. When k = 1, we compare the coefficients mod p j of

xm+1 in (3.7) and (3.8). From the assumption, we have pθ1 ≡ 0 mod p j . Hence,

θ1 ≡ 0 mod p j−1.

Assume inductively that θi ≡ 0 mod p j−i for 1 ≤ i ≤ k − 1 with 2 ≤ k ≤ j.

Compare the coefficients mod p j−k+1 of xkm+1 in (3.7) and (3.8). By inductive

hypothesis, we have pkθk ≡ 0 mod p j−k+1. Then θk ≡ 0 mod p j−k since k ≤ j ≤
p− 1. This completes the induction, and we have (3.9).

We next compare the coefficients mod p of xjm+1 in (3.7) and (3.8). Then

ζη ≡ 0 mod p by (3.9). Now ζ �≡ 0 mod p by Lemma 3.3, and so we have (3.6).

Let a,b ∈H2t+2j(p−1)(Xj ;Z(p)) denote the Kronecker duals of

xjm+1, y ∈H2t+2j(p−1)(Xj ;Z(p)),

respectively. Using the duality, we can show that

(Ψj)∗(a) = λjm+1a+ ηb and (Ψj)∗(b) = λb.

Consider the homomorphism

Ej : H2t+2j(p−1)(Xj ;Z(p))→ π2t+2j(p−1)−1

(
Pjm(Yt)

)
defined by the following composition:

H2t+2j(p−1)(Xj ;Z(p)) −−−−→ H2t+2j(p−1)

(
Xj , Pjm(Yt);Z(p)

)
H −1

−−−−→∼=
π2t+2j(p−1)

(
Xj , Pjm(Yt)

) ∂−−−−→ π2t+2j(p−1)−1

(
Pjm(Yt)

)
,

where H denotes the Hurewicz isomorphism. Then Pjm(Φλ)#Ej = Ej(Ψj)∗. Since

Ej(a) = γjm and Ej(b) = ϕ̃j , we have that
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Pjm(Φλ)#(γjm) = λjm+1γjm + ηϕ̃j = λjm+1γjm

by (3.6). Hence, ιjmPjm(Φλ)γjm is null-homotopic, and so there is a self-map

ψj : Pjm+1(Yt)→ Pjm+1(Yt) with ψjιjm � ιjmPjm(Φλ).

Then Φλ is an Ajm+1-map by [28, Theorem 8.4]. This completes the proof of

Proposition 3.1. �

Proof of Proposition 3.2

We work by induction on j. From the assumption, the result is clear for j = 1.

Assume inductively that the result is proved for j − 1 with 2≤ j ≤ t. Now Φλ is

an Ajm+1-map. Then we have the induced map

Pjm+1(Φλ) : Pjm+1(Yt)→ Pjm+1(Yt) with Pjm+1(Φλ)εjm � εjm(ΣΦλ)

by [28, Theorem 8.4]. By inductive hypothesis, we have

(3.10) λ≡ 0 mod p j−1

since Φλ is also an A(j−1)m+1-map.

It is known that

H∗(Pjm+1(Yt);Z(p)

)
= Z(p)[x]/(x

jm+2) as a Z(p)-algebra with degx= 2t.

Take x ∈BP2t(Pjm+1(Yt)) with T̃ (x) = x. For dimensional reasons, we can write

that

Pjm+1(Φλ)
∗(x) = λx+

j∑
k=1

θkv
k
1x

km+1 with θk ∈ Z(p) for 1≤ k ≤ j

and

r1(x) =

j∑
�=1

ξ�v
�−1
1 x�m+1 with ξ� ∈ Z(p) for 1≤ �≤ j.

Then

(3.11)

r1
(
Pjm+1(Φλ)

∗(x)
)
=

j∑
k=1

(pkθk + λξk)v
k−1
1 xkm+1

+
∑
k,�≥1
k+�≤j

(km+ 1)θkξ�v
k+�−1
1 x(k+�)m+1.

On the other hand,

(3.12) Pjm+1(Φλ)
∗(r1(x))= j∑

�=1

ξ�v
�−1
1

(
λx+

j∑
k=1

θkv
k
1x

km+1
)�m+1

.

To complete the proof, we first show that

(3.13) θk ≡ 0 mod p j−k for 1≤ k ≤ j.

We work by downward induction on k. The result is clear for k = j. Assume

inductively that the result is proved for k+ 1 with 1≤ k ≤ j − 1. Then
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(3.14) θk+1 ≡ 0 mod p j−k−1.

Using the same way as in the proof of (3.9), we have that θi ≡ 0 mod p j−i−1 for

1≤ i≤ j − 1 by (3.10). Hence,

(3.15) θi ≡ 0 mod p j−k for 1≤ i≤ k− 1.

Compare the coefficients mod p j−k of x(k+1)m+1 in (3.11) and (3.12). Then

(km+1)θkξ1 ≡ 0 mod p j−k by (3.10), (3.14), and (3.15). Now we note that ξ1 �≡
0 mod p by (2.13) and (3.1). Then θk ≡ 0 mod p j−k since k ≤ j − 1≤ t− 1. This

completes the induction, and so we have (3.13).

We next compare the coefficients mod p j of xm+1 in (3.11) and (3.12). Then

pθ1 + λξ1 ≡ 0 mod p j . Since ξ1 �≡ 0 mod p and θ1 ≡ 0 mod p j−1 by (3.13), we

have λ≡ 0 mod p j . This completes the proof of Proposition 3.2. �

We are now in position to prove Theorems A and B.

Proof of Theorem A

We see that (1) follows from Proposition 2.4 in the case of j = 1. We have (2) by

Propositions 2.5 and 3.1 for j = 1 and Corollary 1.4. �

Proof of Theorem B

Proposition 2.4 implies (1). We have (2) by Propositions 3.1 and 3.2. �

4. Modified projective spaces

Let p be an odd prime. Assume that X is a simply connected Ap-space whose

mod p cohomology H∗(X;Fp) is an exterior algebra given as

(4.1) H∗(X;Fp) = ΛFp(x1, . . . , x�) with degxi = 2ti − 1 for 1≤ i≤ �.

Iwase [9] gave a structure theorem for the K-cohomology of the projective

spaces {Pn(X)}1≤n≤p. Later Hemmi [5, Section 3] used his method to determine

the mod p cohomology of them. Consider the homomorphisms

Fn : H̃
∗(X;Fp)

⊗n → H̃∗(Pn(X);Fp

)
for 1≤ n≤ p

and

Gn : H̃
∗(Pn(X);Fp

)
→ H̃∗(X;Fp)

⊗n+1 for 0≤ n≤ p− 1

defined by the following compositions:

H̃∗(X;Fp)
⊗n ∼= H̃∗(X∧n;Fp)

σn

−−−−→∼=
H̃∗(ΣnX∧n;Fp)

ρ∗
n−−−−→ H̃∗(Pn(X);Fp

)
and

H̃∗(Pn(X);Fp

) γ∗
n−−−−→ H̃∗(ΣnX∧n+1;Fp)

(σ−1)n−−−−→∼=
H̃∗(X∧n+1;Fp)∼= H̃∗(X;Fp)

⊗n+1,
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respectively. Here M⊗j is the j-fold tensor product of an Fp-module M , and σ

denotes the suspension isomorphism. From the definition, degFn =−degGn = n

and F1 = σ.

Consider the reduced coproduct Δ̃ : H̃∗(X;Fp) → H̃∗(X;Fp)
⊗2 on H̃∗(X;

Fp). Then by [5, p. 100],

(4.2) GnFn =

n∑
j=1

(−1)j1⊗(j−1) ⊗ Δ̃⊗ 1⊗(n−j) for 1≤ n≤ p− 1.

Put S(n) = Fn(D(n))⊂ H̃∗(Pn(X);Fp), where

D(n) =

n∑
j=1

H̃∗(X;Fp)
⊗(j−1) ⊗DH∗(X;Fp)⊗ H̃∗(X;Fp)

⊗(n−j)

and DA denotes the decomposable module of an Fp-algebra A. Then S(n) is

an ideal of H∗(Pn(X);Fp) closed under the action of Ap with (see [5, Theo-

rem 3.5(1)])

ι∗n−1

(
S(n)

)
= 0 and S(n) · H̃∗(Pn(X);Fp

)
= 0.

Let Fp[z1, . . . , z�] be a polynomial algebra over Fp with generators {zi}1≤i≤�.

Then the truncated polynomial algebra T
[k]
Fp

[z1, . . . , z�] at height k is defined by

T
[k]
Fp

[z1, . . . , z�] = Fp[z1, . . . , z�]/D
k
Fp[z1, . . . , z�],

where DkA denotes the k-fold decomposable module of an Fp-algebra A for k ≥ 2

with D2A=DA.

Iwase [9] and Hemmi [5] proved the following result.

THEOREM 4.1 ([9, THEOREM A] AND [5, THEOREM 3.5])

Let p be an odd prime, and let 1≤ n≤ p−1. Assume that X is a simply connected

Ap-space whose mod p cohomology H∗(X;Fp) is as in (4.1). Then there are

classes

yi ∈ H̃2ti
(
Pn(X);Fp

)
with ι∗1 · · · ι∗n−1(yi) = σ(xi) for 1≤ i≤ �

such that

H∗(Pn(X);Fp

)∼= T (n)⊕ S(n) as an Fp-algebra,

where T (n) = T
[n+1]
Fp

[y1, . . . , y�].

We remark that they also proved Theorem 4.1 in the case of n = p under an

additional assumption that the generators {xi}1≤i≤� are Ap-primitive, where a

class x ∈ H̃∗(X;Fp) is called An-primitive if there is a class

y ∈ H̃∗+1
(
Pn(X);Fp

)
with ι∗1 · · · ι∗n−1(y) = σ(x).

Since γ∗
1 = σΔ̃σ−1, we see that a class is A2-primitive if and only if it is primitive.

From Theorem 4.1, if X is a simply connected Ap-space whose mod p cohomology

H∗(X;Fp) is as in (4.1), then {xi}1≤i≤� are Ap−1-primitive.



864 Yusuke Kawamoto

Hemmi [7, Section 2] modified the construction of Pp(X) to obtain the trun-

cated polynomial algebra T (p) without the assumption that {xi}1≤i≤� are Ap-

primitive. He proved the following result.

THEOREM 4.2 ([7, THEOREM 1.1])

Let p and X be as in Theorem 4.1. Then we have a space Rp(X) and a map

ε : ΣX →Rp(X) with the following properties.

(1) There is a subalgebra A∗ ⊂H∗(Rp(X);Fp) with

A∗ ∼= T
[p+1]
Fp

[y1, . . . , y�]⊕M as an Fp-algebra,

where

yi ∈ H̃2ti
(
Rp(X);Fp

)
with ε∗(yi) = σ(xi) for 1≤ i≤ �

and M is an ideal of H∗(Rp(X);Fp) with

ε∗(M) = 0 and M · H̃∗(Rp(X);Fp

)
= 0.

(2) A∗ and M are closed under the action of Ap. Hence,

(4.3) T (p) = T
[p+1]
Fp

[y1, . . . , y�]∼=A∗/M

is an unstable Ap-algebra.

(3) We have that σ−1ε∗|A∗ : A∗ →H∗−1(X;Fp) induces an isomorphism

Q : QT (p)→QH∗−1(X;Fp) of Ap-modules.

Let p be a prime, and let n ≥ 1. According to Hemmi and Kawamoto [8, Def-

inition 2.4], an unstable Ap-algebra A is called a Dn-algebra if the following

condition is satisfied: for any zj ∈A and Oj ∈ Ap for 1≤ j ≤m with

(4.4)

m∑
j=1

Oj(zj) ∈DA,

there are decomposable classes dj ∈DA for 1≤ j ≤m with

(4.5)

m∑
j=1

Oj(zj − dj) ∈Dn+1A.

From the definition, any unstable Ap-algebra is a D1-algebra. On the other

hand, if X is a simply connected Ap-space whose mod p cohomology H∗(X;Fp)

is as in (4.1) with � ≥ 1, then T (p) in (4.3) cannot be a Dp-algebra by [8,

Remark 2.5].

In order to prove Theorem C, we need the following result.

THEOREM 4.3

Let p and λ be as in Theorem C, and let 1≤ n≤ p−1. If X is a simply connected

Ap-space whose mod p cohomology H∗(X;Fp) is as in (4.1) and the power map

Φλ on X is an An-map, then T (p) in (4.3) is a Dn-algebra.
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The proof of Theorem 4.3 is similar to that of [8, Theorem 2.6]. In the proof, we

use the following lemma instead of [8, Lemma 2.7].

LEMMA 4.4

Let p, λ, n, and X be as in Theorem 4.3. If zj ∈H∗(Pn(X);Fp) and Oj ∈ Ap for

1≤ j ≤m satisfy

(4.6)

m∑
j=1

Oj(zj) =w+ u with w ∈DT (n) and u ∈ S(n),

then there are decomposable classes dj ∈DT (n) for 1≤ j ≤m with

m∑
j=1

Oj(zj − dj) = u.

Proof

We first prove the case of zj ∈ T (n)\DT (n) for 1≤ j ≤m. We work by induction

on n. Since DT (1) = 0, the result is clear for n = 1. Assume that the result is

proved for n− 1 with 2≤ n≤ p− 1.

Applying ι∗n−1 to (4.6), we have that ι∗n−1(zj) ∈ T (n− 1) \DT (n− 1) and

m∑
j=1

Oj

(
ι∗n−1(zj)

)
= ι∗n−1

( m∑
j=1

Oj(zj)
)
= ι∗n−1(w) ∈DT (n− 1).

By inductive hypothesis, we have d̂j ∈DT (n− 1) for 1≤ j ≤m with

m∑
j=1

Oj

(
ι∗n−1(zj)− d̂j

)
= 0.

Take d̃j ∈ DT (n) with ι∗n−1(d̃j) = d̂j , and put z̃j = zj − d̃j ∈ T (n) \DT (n) for

1≤ j ≤m. Then

ι∗n−1

( m∑
j=1

Oj(z̃j)
)
=

m∑
j=1

Oj

(
ι∗n−1(zj)− d̂j

)
= 0,

and so
m∑
j=1

Oj(z̃j) = w̃+ u for some w̃ ∈DnT (n).

From the definition of S(n), we have that Pn(Φλ)
∗(S(n)) ⊂ S(n) and

Oj(S(n))⊂ S(n) for 1≤ j ≤m. Then

Pn(Φλ)
∗
( m∑
j=1

Oj(z̃j)
)
≡ Pn(Φλ)

∗(w̃) = λnw̃ mod S(n).

On the other hand,
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Pn(Φλ)
∗
( m∑
j=1

Oj(z̃j)
)
=

m∑
j=1

Oj

(
Pn(Φλ)

∗(z̃j)
)
≡

m∑
j=1

Oj(λz̃j + gj)

= λ

m∑
j=1

Oj(z̃j) +

m∑
j=1

Oj(gj)≡ λw̃+

m∑
j=1

Oj(gj) mod S(n)

since Pn(Φλ)
∗(z̃j)≡ λz̃j + gj mod S(n) with gj ∈DT (n) for 1≤ j ≤m. Then

(4.7) w̃ ≡
m∑
j=1

Oj

( gj
λn − λ

)
mod S(n).

Now we note that both sides of (4.7) are classes of DT (n). Hence,

w̃ =

m∑
j=1

Oj

( gj
λn − λ

)
.

Let dj ∈DT (n) be defined by

dj = d̃j +
gj

λn − λ
for 1≤ j ≤m.

Then
m∑
j=1

Oj(zj − dj) = u,

and so we have the required conclusion.

We next consider the general case. Let zj ∈ H∗(Pn(X);Fp) ∼= T (n) ⊕ S(n)

and Oj ∈ Ap for 1 ≤ j ≤ m with (4.6). Write zj = z′j + z′′j with z′j ∈ T (n) and

z′′j ∈ S(n) for 1≤ j ≤m.

Now by permuting j suitably, we have an integer m′ with 0≤m′ ≤m such

that z′j ∈ T (n)\DT (n) for 1≤ j ≤m′ and z′j ∈DT (n) for m′+1≤ j ≤m. Define

w′ ∈DT (n) and u′ ∈ S(n) by

w′ =w−
m∑

j=m′+1

Oj(z
′
j) and u′ = u−

m∑
j=1

Oj(z
′′
j ),

respectively. Then

m′∑
j=1

Oj(z
′
j) =w′ + u′ with w′ ∈DT (n) and u′ ∈ S(n).

From the above proof, we have d′j ∈DT (n) for 1≤ j ≤m′ with

m′∑
j=1

Oj(z
′
j − d′j) = u′.

Put

dj =

{
d′j if 1≤ j ≤m′,

z′j if m′ + 1≤ j ≤m.
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Then dj ∈DT (n) for 1≤ j ≤m with

m∑
j=1

Oj(zj − dj) = u,

which implies the required conclusion. This completes the proof of Lemma 4.4.

�

Proof of Theorem 4.3

From the construction of Rp(X) in [7, Section 2], we have a space Rp−1(X) with

the following commutative diagram:

(4.8)

Pp−2(X)
ep−1−−−−→ Rp−1(X)

ep−−−−→ Rp(X)∥∥∥ fp−1

⏐⏐�
Pn(X) −−−−→

ιn
· · · −−−−→

ιp−3

Pp−2(X) −−−−→
ιp−2

Pp−1(X)

Since e∗p(M) = 0 by [7, p. 593], we have that e∗p|A∗ : A∗ → H∗(Rp−1(X);Fp)

induces a homomorphism E : T (p) = A∗/M →H∗(Rp−1(X);Fp) of Ap-algebras

by Theorem 4.2(2).

We first prove the case of 1≤ n≤ p− 2. Let Kn : T (p)→H∗(Pn(X);Fp) be

defined by Kn = ι∗n · · · ι∗p−3e
∗
p−1E . Put Kn(zj) = z̃j for 1≤ j ≤m. Applying Kn

to (4.4), we have

m∑
j=1

Oj(z̃j) ∈DT (n).

Now we have d̃j ∈DT (n) for 1≤ j ≤m with

(4.9)

m∑
j=1

Oj(z̃j − d̃j) = 0

by Lemma 4.4. Take dj ∈DT (p) with Kn(dj) = d̃j for 1≤ j ≤m. Then by (4.9),

m∑
j=1

Oj(zj − dj) ∈Dn+1T (p),

and so we have the required conclusion.

We next consider the case of n= p− 1. Since

(4.10) E
(
T (p)

)
= f∗

p−1

(
T (p− 1)

)
⊂H∗(Rp−1(X);Fp

)
by [7, Proposition 5.2], there are classes z̃j ∈ T (p− 1) with f∗

p−1(z̃j) = E (zj) for

1≤ j ≤m. Moreover, we take w ∈DT (p− 1) with

f∗
p−1(w) = E

( m∑
j=1

Oj(zj)
)
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by (4.4) and (4.10). Hence,

m∑
j=1

Oj(z̃j) =w+ u for some u ∈H∗(Pp−1(X);Fp

)
with f∗

p−1(u) = 0.

Now u ∈ S(p−1) by [7, Lemma 5.1], and so we have d̃j ∈DT (p−1) for 1≤ j ≤m

with
m∑
j=1

Oj(z̃j − d̃j) = u

by Lemma 4.4. Taking dj ∈DT (p) with E (dj) = f∗
p−1(d̃j) for 1≤ j ≤m, we have

m∑
j=1

Oj(zj − dj) ∈DpT (p).

This completes the proof of Theorem 4.3. �

From Theorems 4.2(3) and 4.3 and the result of Hemmi and Kawamoto [8, Propo-

sition 3.2], we have the following proposition.

PROPOSITION 4.5

Let p and λ be as in Theorem C. If X is a simply connected Ap-space whose

mod p cohomology H∗(X;Fp) is as in (4.1) and the power map Φλ on X is an

An-map with n > (p− 1)/2, then we have the following.

(1) If a≥ 0, b > 0, and 0< c < p, then

QH2pa(pb+c)−1(X;Fp) = PpakQH2pa(p(b−k)+c+k)−1(X;Fp)

for 1≤ k ≤min{b, p− c}

and

PpakQH2pa(pb+c)−1(X;Fp) = 0 for c≤ k < p.

(2) If a≥ 0 and 0< c < p, then

Ppak : QH2pac−1(X;Fp)→QH2pa(kp+c−k)−1(X;Fp)

is an isomorphism for 1≤ k < c.

REMARK 4.6

When p = 3 and X is a homotopy associative and homotopy commutative H-

space, Proposition 4.5(1) was first proved by Hemmi [6, Theorem 1.1]. Later Lin

[17, Theorem B] also proved (1) of the above result for any odd prime p under

the additional assumptions that Φλ is an Ap−1-map and H∗(X;Fp) is generated

by Ap-primitive classes.
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LEMMA 4.7

Assume that p, λ, n, and X are as in Theorem C. Then the mod p cohomology

H∗(X;Fp) is as in (4.1) such that ti = pai with ai > 0 for 1≤ i≤ �.

Proof

We first prove that there is no even-dimensional generator in H∗(X;Fp). Assume

contrarily that x ∈QH∗(X;Fp) is an even-dimensional generator. According to

Lin [16, Theorem 4.3.1] (see also [14, Section 35]),

x= βPn(y) for some y ∈QH2n+1(X;Fp) with n≥ 1.

Then PnQH2n+1(X;Fp) �= 0. From the assumption, {Pi}i≥1 act trivially on

QH∗(X;Fp), and so we have a contradiction. Hence, H∗(X;Fp) is as in (4.1).

Let x ∈QH2t−1(X;Fp) be one of the generators {xi}1≤i≤� in (4.1). Write

t= pa(pb+ c) with a, b≥ 0 and 0< c < p.

When b > 0, we have that

x ∈ Ppa

QH2(t−pa(p−1))−1(X;Fp)

by Proposition 4.5(1). If b= 0 and 1< c < p, then

Ppa

(x) �= 0 in QH2(t+pa(p−1))−1(X;Fp)

by Proposition 4.5(2). Now we note that {Pi}i≥1 act trivially on QH∗(X;Fp),

and so b= 0 and c= 1. Since t > 1, we have t= pa with a > 0. �

We are now in position to prove Theorem C.

Proof of Theorem C

We use a similar way to the proof of [5, Theorem 1.1]. From Theorem 4.1 and

Lemma 4.7, there are classes

yi ∈ H̃2pai
(
Pp−1(X);Fp

)
with ι∗1 · · · ι∗p−2(yi) = σ(xi) for 1≤ i≤ �

such that

H∗(Pp−1(X);Fp

)∼= T (p− 1)⊕ S(p− 1) as an Fp-algebra,

where T (p− 1) = T
[p]
Fp

[y1, . . . , y�].

Assume contrarily that X is not Fp-acyclic. Put a = min{ai}1≤i≤�. Take

x ∈ QH2pa−1(X;Fp) and y ∈ T (p − 1) with ι∗1 · · · ι∗p−2(y) = σ(x) �= 0. Then the

composition

(4.11) Ht
(
Pp(X);Fp

) ι∗p−1−−−−→ Ht
(
Pp−1(X);Fp

)
−−−−→ T (p− 1)

is an isomorphism for t < 2pa+1 and an epimorphism for t < 2(pa+1+pa−1) (see

[5, p. 106, (4.10)]). From Lemma 4.7 and (4.11), we have

Ht
(
Pp(X);Fp

)
∩ (Imβ ∪ ImP1) = 0 for t≤ 2pa+1.
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Then

(4.12) Ht
(
Pp(X);Fp

)
∩ ImPpa

= 0 for t≤ 2pa+1

by Shimada and Yamanoshita [25, Theorem 5.3] or Liulevicius [19, Theorem

1.2.1].

Taking z ∈H2pa

(Pp(X);Fp) with ι∗p−1(z) = y by (4.11), we have

Fp(x
⊗p) = zp = Ppa

(z) = 0

by (4.12) and [33, Theorem 2.4] (see also [9, Theorem 4.1]). Hence,

x⊗p = Gp−1(u) for some u ∈H2pa+1−1
(
Pp−1(X);Fp

)
.

For dimensional reasons, we have u ∈ S(p− 1), and so

u= Fp−1(v) for some v ∈D(p− 1).

Let c ∈ PH2pa−1(X;Fp) be a primitive class with 〈x,c〉 �= 0. Then 〈x⊗p,

c⊗p〉 �= 0 by [22, p. 152, (3)]. On the other hand,

〈x⊗p,c⊗p〉=
〈
(Gp−1Fp−1)(v),c

⊗p
〉
= 0

by (4.2) and [12, Lemma 2.5] (see also [14, p. 98, Corollary C(i)]). This is a

contradiction, and so X is Fp-acyclic. �
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