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Abstract For a Jacobian elliptic surface S0 over a finite field k and a prime � different

from the characteristic of k, the points of period �r on the smooth fibers of S0 yield, for

each r ∈ Z≥0, a smooth projective curve Cr over k by taking Zariski closure in S0

and normalization. We consider the restriction map in �-adic étale cohomology

H2(S0,Z�(1)) → H2(
⊔

r≥0Cr,Z�(1)) =
∏

r≥0H
2(Cr,Z�(1)). By using an earlier

result of ours we prove that, except for atmost a finite number of such primes �, this map

is faithful on the submoduleF 1H2(S0,Z�(1))
0 of those classes vanishing on the geomet-

ric fibers and on the zero section of S0, and that it gives an isomorphism between this

submodule and the subgroup ofPic(
⊔

r≥0Cr) =
∏

r≥0Pic(Cr) of primitive elements in

the sense of Serre.

1. Introduction

Throughout, unless otherwise specified, k will denote a finite field of positive

characteristic p, and K = k(B), with B a geometrically irreducible, smooth, pro-

jective curve over k, will denote a global field with k as its field of constants.

First, we let E0 be an elliptic curve (an abelian variety of dimension 1) over

K and call π : S0 →B its associated Kodaira–Néron surface, the minimal regu-

lar completion of its Néron model E0 →B. Second, for any prime integer � �= p,

we let E0(�)c → B be the regular completion of the Néron model E0(�)→ B of

the étale group scheme E0(�) over K given by the �-primary component of the

torsion subgroup of E0. The inclusion map E0(�) ↪→E0 extends to a morphism

h : E0(�)c → S0, and we focus here on the restriction map induced in �-adic étale

cohomology, h∗ :H2(S0,Z�(1))→H2(E0(�)c,Z�(1)).

Associated with the increasing filtration of E0(l) by the group subschemes

lnE0, n≥ 0, of ln-torsion points we have an increasing filtration of E0(�)c given by

the regular completions lnEc
0 of their respective Néron models lnE0. The scheme

E0(�)c is the sum
⊔

r≥0Cr of smooth projective curves over k given by Cr =

lrEc
0 \lr−1 Ec

0 if r ≥ 1 and C0 = 1E0, the zero section of S0. Similarly, lnEc
0 =⊔n

r=0Cr for all n≥ 0.

The addition map s : E0(�) ×B E0(�)→ E0(�) extends in a unique way to a

morphism s : (E0(�)×B E0(�))c →E0(�)c between the respective regular comple-
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tions. We define Pic(E0(�)c)inv = {ξ ∈ Pic(E0(�)c) | s∗(ξ) = p∗1(ξ) + p∗2(ξ)}, where
p1, p2 : (E0(�) ×B E0(�))c → E0(�)c are the extensions of the respective projec-

tion maps p1, p2 : E0(�) ×B E0(�) → E0(�). This is a subgroup of Pic(E0(�)c),
whose elements might be called the primitive elements of Pic(E0(�)c), in imi-

tation of [12, p. 181]. We define similarly the subgroup Pic(lnEc
0)

inv of Pic(lnEc
0)

for each n ≥ 0. For m ∈ Z, if m : lnEc
0 → lnEc

0 denotes the extension of the

multiplication by m map m : lnE0 → lnE0, then one has m∗(ξ) = mξ for all

ξ ∈ Pic(lnEc
0)

inv, since (m1 + m2)
∗(ξ) = m∗

1(ξ) + m∗
2(ξ) for all m1,m2 ∈ Z. It

follows from this that Pic(lnEc
0)

inv ⊂ ln Pic(lnEc
0) for all n ≥ 0. In particular,

Pic(E0(�)c)inv = lim←−nPic(lnEc
0)

inv has a natural structure of a Z�-module.

For all r ≥ 0, the kernel of the Chern class map Pic(Cr) → H2(Cr,Z�(1))

is Pic(Cr) (no �), the prime-to-� torsion subgroup of Pic(Cr); actually, since

Br(Cr) = 0 (see [4, p. 96]), this map gives here an isomorphism Pic(Cr)⊗ Z� 	
H2(Cr,Z�(1)). The kernel of the Chern class map Pic(E0(�)c)→H2(E0(�)c,Z�(1))

therefore equals
∏

r≥0Pic(Cr) (no �), and by the preceding, this map yields an

embedding Pic(E0(�)c)inv ↪→H2(E0(�)c,Z�(1)). Similar remarks apply, of course,

with E0(�)c replaced by lnEc
0 , for any n≥ 0.

In studying the Z�-module H2(S0,Z�(1)) one can split off elementary, geo-

metrically motivated submodules and leave an essential part, given by the direct

summand F 1H2(S0,Z�(1))
0 consisting of those cohomology classes that vanish

on the geometric fibers and on the zero section of S0. Here F 1H2(S0,Z�(1))

is the first term (beyond the zeroth) of the filtration of H2(S0,Z�(1)) coming

from the Leray spectral sequence for π : S0 → B and the �-adic sheaf Z�(1) on

S0, and it is given by the kernel of the edge homomorphism H2(S0,Z�(1)) →
H0(B,R2π∗Z�(1)). The submodule F 1H2(S0,Z�(1))

0 is obtained then by tak-

ing the kernel of the restriction map 0∗ : F 1H2(S0,Z�(1))→H2(B,Z�(1)) by the

zero section of S0.

The Tate conjecture for the surface S0 asserts that the Chern class map

induces isomorphisms Pic(S0) ⊗ Z�
∼→ H2(S0,Z�(1)) for all primes � (here dif-

ferent from p) or, equivalently, for a single such �. And it can also be stated

equivalently as yielding isomorphisms Pic0(S0/B)⊗ Z�
∼→ F 1H2(S0,Z�(1))

0 for

all (resp., for a single) �, where Pic0(S0/B)⊂ Pic(S0) is the subgroup of elements

having degree 0 on the irreducible components of the geometric fibers of π and

restricting to the trivial element on the zero section of S0. We consider in this

article the restriction map

(1.1) h∗ : F 1H2
(
S0,Z�(1)

)0 −→H2
(
E0(l)c,Z�(1)

)
on this submodule of H2(S0,Z�(1)).

The point is that there exists, canonically, an alternate way to go from

F 1H2(S0,Z�(1))
0 to H2(E0(l)c,Z�(1)), described as follows. From the Leray

spectral sequence one has an edgelike morphism F 1H2(S0,Z�(1)) → H1(B,

R1π∗Z�(1)), which is surjective due to the existence of a section for the map π.

The kernel being H2(B,Z�(1)), we obtain therefore an isomorphism F 1H2(S0,

Z�(1))
0 ∼→ H1(B,R1π∗Z�(1)). One has furthermore, for all n ≥ 0, canonical
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isomorphisms between sheaves on B for the étale topology: R1π∗μ�n,S0

∼→
�n PicS0/B

∼→ �nE0
0 , where E0

0 ↪→ E0 denotes the (sheaf of sections of the) open

group subscheme cutting out the identity components on the fibers of E0. The
second of these isomorphisms is induced by the morphism of sheaves PicS0/B →E0
given by abelian summation along the smooth fibers of S0 (see Note (b) of Sec-

tion 3). It follows a canonical isomorphism R1π∗Z�(1)
∼→ T�E0

0 . So far we thus

have an isomorphism

(1.2) F 1H2
(
S0,Z�(1)

)0 ∼−→H1(B,T�E0
0 ).

Moreover, the inclusion map E0
0 ↪→E0 induces an isomorphism

(1.3) H1(B,T�E0
0 )

∼−→H1(B,T�E0).

The next and main step is the class invariant morphism considered in [14] and

[15]:

(1.4) γ :H1(B,T�E0)−→ Pic
(
E0(l)c

)inv
.

It was shown in [14] (see also [15]) that this map is an isomorphism for all but

at most a finite set of primes � �= p. Finally, we take the inclusion map

(1.5) Pic
(
E0(�)c

)inv
↪→H2

(
E0(�)c,Z�(1)

)
discussed above. Composition of the maps (1.2)–(1.5) gives a morphism

(1.6) F 1H2
(
S0,Z�(1)

)0 −→H2
(
E0(l)c,Z�(1)

)
,

which, by the preceding, is injective and yields an isomorphism F 1H2(S0,

Z�(1))
0 ∼→ Pic(E0(�)c)inv for all but at worst a finite set of primes � �= p. The

results in [14] imply, in particular, that the maps (1.1) and (1.6) coincide when

restricted to Pic0(S0/B)⊗Z�. The Tate conjecture therefore suggests the equality

of these two maps. This equality is proved in this article.

THEOREM 1.7

For all primes � �= p, the maps (1.1) and (1.6) coincide.

COROLLARY 1.8

For all but at most a finite set of primes � �= p, the map h∗ in (1.1) is injective

and yields an isomorphism F 1H2(S0,Z�(1))
0 ∼→ Pic(E0(�)c)inv.

The proof of Theorem 1.7 is given in Section 6. In the remaining sections we

gather the formulae used for that purpose. Most of this material is common in

the literature; yet, specific features of the relative case and the need for having

the signs in the formulae carefully checked brought us to write out the details.

NOTES

(a) It follows from Theorem 1.7 that the restriction map (1.1) is actually a map
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F 1H2
(
S0,Z�(1)

)0 −→ ∏
r≥0

H2
(
Cr,Z�(1)

)
tors

⊂
∏
r≥0

H2
(
Cr,Z�(1)

)
,

so the corresponding map with rational �-adic coefficients

F 1H2
(
S0,Q�(1)

)0 −→ ∏
r≥0

H2
(
Cr,Q�(1)

)
	

∏
r≥0

Q
nr

� ,

where nr is the number of connected components of Cr, vanishes identically.

(b) For smooth projective varieties X over finite fields, the Tate conjecture in

codimension 1, in the formulation used in this article, states that the Z�-module

H2(X,Z�(1)) = lim←−nH
2(X,μ�n) and its submodule Pic(X)⊗Z� = lim←−nPic(X)/�n

actually coincide. This is known to hold, in particular, for (smooth, projective)

curves. So, an integral codimension 1 �-adic Tate class ξ ∈H2(X,Z�(1)) induces

on the normalization C of any projective curve in X an element of Pic(C) ⊗
Z� which, in the case of being torsion, is an element of Pic(C)(�). That is, ξ |
C is then (the isomorphism class of) a line bundle on C annihilated by some

power of �. This is the case, on our surface S0, for the Tate classes belonging

to F 1H2(S0,Z�(1))
0 ⊂H2(S0,Z�(1)) and the curves labeled Cr in this section,

and also for the vertical curves in S0, sums of irreducible components of fibers

of the map π : S0 →B. Let ξ ∈ F 1H2(S0,Z�(1))
0 be given, and suppose we know

that ξ belongs to Pic(S0) ⊗ Z�. Then it actually belongs to Pic0(S0/B) ⊗ Z�,

ξ = ([Ln])n≥0, [Ln] ∈ Pic0(S0/B)/�n. (To avoid double brackets, here we use the

same symbol for the bundle Ln as for its class in Pic(S0).) If S0(t), t ∈ Bcl,

is (say, for simplicity) a smooth fiber of the map π, then it is easily seen that

ξ | S0(t) ∈ Pic(S0(t)) is the �-primary component of the class of the bundle Ln |
S0(t), n 
 0, in the finite abelian group Pic0(S0(t)). In contrast with this, it

follows from [14] (see also diagram (6.3) of the present article) that, for all r ≥ 0,

ξ |Cr ∈ Pic(Cr) is the (whole) class of the bundle Lr |Cr. This suggests trying to

obtain more information about the Tate classes ξ ∈ F 1H2(S0,Z�(1))
0 from their

associated line bundles ξ |Cr, r ≥ 0. Corollary 1.8 of this article is a support for

this quest.

2. Pairings, I: Abelian schemes

We review here in the relative setting standard pairings for abelian varieties and,

in the next two sections, similar and related pairings in neighboring contexts. We

use explicit recipe and cocycle manipulation; for a more conceptual framework we

refer to [8]. Although our applications in this article concern Néron models E0 →
B of elliptic curves, we treat first, and separately, the case of abelian schemes,

both as a tool and as a blueprint. When speaking of abelian schemes, we shall

always mean projective abelian schemes A→B over (arbitrary) noetherian base

schemes.

NOTES (NOTATION AND CONVENTIONS)

(a) In this article, wherever it will be question of an integer N ∈ Z≥1, N will be

supposed to be prime to the residue characteristics.
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(b) As a rule, we shall not distinguish between sheaves (always for the étale

topology, in this article) induced by group schemes and the group schemes them-

selves, the context indicating which interpretation is at work in each case. For

example, when considering a pairing of an abelian group scheme G over a scheme

B with values in a group scheme H over B, both G ×B G →H and G × G →H
will make sense: in the first case one considers group schemes, and in the second

case, one considers sheaves on B.

(c) Since they are mutual counterparts, we shall alternate the use of invertible

sheaves L on a scheme B with that of line bundles L→B, the latter being better

suited for handling relative morphisms, namely, (f̃ , f) : (L,B)→ (L′,B′) versus

f̃ : L→ f∗(L′), especially when composing two or more of these.

(d) For an abelian scheme π : A→ B and due to the existence of the zero

section, the obvious morphism Pic(A)→ Γ(B,PicA/B), coming from the Leray

spectral sequence for the sheaf Gm on A, is surjective and has π∗Pic(B)	 Pic(B)

as its kernel, so it induces, in particular, an isomorphism Pic0(A/B)
∼→ Γ(B, Â)

between (1) the subgroup Pic0(A/B)⊂ Pic(A) of isomorphism classes of invert-

ible sheaves topologically trivial on the geometric fibers of π and trivial on the

zero section of π, and (2) the group of global sections of the dual abelian scheme

Â →B of A. Unless otherwise stated, we shall always represent global sections

of Â by invertible sheaves (line bundles) with class in Pic0(A/B).

(e) Let f :X
∼→X be an automorphism of a scheme X . If M is a line bun-

dle on X such that f∗(M) 	M , then we have relative automorphisms (f̃ , f) :

(M,X)→ (M,X), with f̃ determined up to a factor ρ ∈ Γ(X,Gm). This happens,

in particular, for trivial line bundles M 	 1X , 1 = Spec(Z[T ])→ Spec(Z). Now,

since there is a canonical choice f̃0 of f̃ for 1X , by composing this map with

any isomorphism M
∼→ 1X and its inverse one finds a canonical choice f̃

(M)
0 of

f̃ for M , too. The symbol f̃
(M)
0 has obvious functorial properties in M and in

f , which we shall use freely below. Also, always for trivial line bundles M , we

may identify thus at our convenience relative isomorphisms f̃ = ρf̃
(M)
0 for f and

M with invertible functions ρ ∈ Γ(X,Gm) on X . If not always, then we shall do

this regularly, below, with X an abelian scheme and f = τα the translation map

with a section α of X . To lighten notation we shall then write α̃ instead of τ̃α.

(f) Last but not least, we shall always approach étale cohomology through

the Čech theory. This puts a (weak) constraint on the schemes considered in this

article (see [7, p. 104, Theorem 2.17]): through Artin’s work, this is allowed for

quasicompact schemes such that every finite subset is contained in an open affine

set. We shall assume that our schemes satisfy this property, where this should

not be the case by default.

(i) The pairing ēN . Let A→B be an abelian scheme over some base scheme B,

and let Â →B be its dual. Call NA, N Â their respective N -torsion group sub-

schemes. We shall use the following description of the standard pairing between

the kernels of the mutually dual multiplication by N maps NA : A → A and

NÂ : Â → Â:
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(2.1) ēN,A : NA× N Â −→ μN,B ⊂Gm,B .

Let α ∈ Γ(U,NA) and λ ∈ Γ(U,N Â) be sections over some open U → B in the

étale topology. The section λ is represented by a line bundle L on AU such

that L⊗N 	 1AU
. By refining U → B suitably we may assume that τ∗α(L) 	 L,

where τα : AU → AU denotes translation by α. Then, as explained above, any

relative automorphism (α̃, τα) : (L,AU )→ (L,AU ) lifting τα yields an invertible

function α̃⊗N ∈ Γ(AU ,Gm) = Γ(U,Gm), and by refining U → B again we may

choose α̃ such that α̃⊗N = 1. Indeed, take any α̃, write α̃⊗N as an N th power

α̃⊗N = aN , a ∈ Γ(U,Gm), and then replace α̃ with a−1α̃. Note that such an α̃ is

determined up to multiplication by elements from Γ(U,μN ). IteratingN times the

automorphism (α̃, τα) we obtain (α̃, τα)
◦N = (α̃◦N ,1AU

); hence, α̃◦N ∈ Γ(U,Gm),

and as a matter of fact, α̃◦N ∈ Γ(U,μN ), since (α̃◦N )N = (α̃◦N )⊗N = (α̃⊗N )◦N =

1◦N = 1.

PROPOSITION 2.2

In the preceding notation and with the given assumptions, if (α̃, τα) ∈Aut(L,AU )

satisfies α̃⊗N = 1, then one has, in Γ(U,μN ), ēN,A(α,λ) = (α̃◦N )−1.

Proof

The line bundle N∗L=N∗
AU

(L) on AU is trivial and so we have the canonical

relative automorphism (α̃
(N∗L)
0 , τα) of (N∗L,AU ) described in Note (e) above.

A second relative automorphism (α̃
(N∗L)
1 , τα) for (N∗L,AU ) is obtained from

the canonical isomorphism N∗L
∼→ τ∗α(N

∗L) coming from the equality NAU
=

NAU
◦ τα. Then (see [10, p. 184]), ēN,A(α,λ) ∈ Γ(U,μN ) is defined by the identity

α̃
(N∗L)
1 = ēN,A(α,λ)α̃

(N∗L)
0 . It suffices therefore to show that the function h =

α̃◦N satisfies α̃
(N∗L)
0 = hα̃

(N∗L)
1 .

Upon refining U →B if necessary, we may write α=Nβ with β ∈ Γ(U,A).

The relative automorphism (β̃
(N∗L)
0 , τβ) of (N∗L,AU ) descends by the map

NAU
: AU → AU to a relative automorphism (α̃L, τα) of (L,AU ). This holds

because, more generally, relative automorphisms (β̃, τβ) and (γ̃, τγ) for a triv-

ial line bundle on AU always commute; hence, in particular, (β̃
(N∗L)
0 , τβ) com-

mutes with (γ̃
(N∗L)
1 , τγ) for all γ ∈ Γ(U ′,NA), with U ′ → U any refinement of

U → B. Iterating N times the relative automorphism and its descent we find

that (α̃
(N∗L)
0 , τα) = ((β̃

(N∗L)
0 )◦N , τ◦Nβ ) : (N∗L,AU )→ (N∗L,AU ) descends by the

map NAU
: AU → AU to (h′,1AU

) = (α̃◦N
L , τ◦Nα ) : (L,AU ) → (L,AU ). Since on

the other hand (α̃
(N∗L)
1 , τα) : (N

∗L,AU ) → (N∗L,AU ) descends to the iden-

tity (1L,1AU
) of (L,AU ), it follows that α̃

(N∗L)
0 = h′α̃

(N∗L)
1 . It remains to see

that h′ = h. To this end, note that (β̃
(N∗L)
0 )⊗N = β̃

(N∗L)⊗N

0 = β̃
N∗(L⊗N )
0 and

that ((β̃
(N∗L)
0 )⊗N , τβ) descends to (α̃⊗N

L , τα), while (β̃
N∗(L⊗N )
0 , τβ) descends to

(α̃
(L⊗N )
0 , τα). Therefore, α̃

⊗N
L = α̃

(L⊗N )
0 = α̃⊗N , so α̃L and α̃ differ by a factor in

Γ(U,μN ) and the functions h= α̃◦N and h′ = α̃◦N
L coincide, as claimed. �
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For a different proof of this proposition we refer to the remark at the end of

the proof of Proposition 2.16. Note also that it follows from Proposition 2.2

that, in the notation and with the assumptions preceding it but without the

added assumption from the proposition, one has, in Γ(U,μN ), ēN,A(α,λ) =

α̃⊗N/α̃◦N .

As a particular case of the canonical pairing between the kernels of two

mutually dual morphisms of abelian schemes, the pairing ēN is antisymmetric.

This means that one has

(2.3) ē
N,Â(λ,α) = ēN,A(α,λ)

−1,

for any sections α ∈ Γ(U,NA) and λ ∈ Γ(U,N Â), with U →B open in the étale

topology of B.

The effect of the pairing ēN in cohomology will be denoted by the same

symbol, that is,

(2.4) ēN,A :Hr(B,NA)×Hs(B,N Â)−→Hr+s(B,μN )

for all r, s≥ 0. By (2.3) one has

(2.5) ē
N,Â(λ,α) = (−1)rs+1ēN,A(α,λ)

for all α ∈ Hr(B,NA) and λ ∈ Hs(B,N Â). Note that we switched to additive

notation when dealing with cohomology classes.

PROPOSITION 2.6

Let ∂ denote the connecting homomorphisms in the cohomology exact sequences

of the exact sequences deduced from the respective Kummer sequences for Gm,B ,

A, and Â:

0 −→ μN,B −→ μN2,B

N−→ μN,B −→ 0,

0 −→ NA −→ N2A N−→ NA −→ 0,

0 −→ N Â −→ N2Â N−→ N Â −→ 0.

For all α ∈ Hr(B,NA) and λ ∈ Hs(B,N Â) the following identity holds in

Hr+s+1(B,μN ):

∂ēN,A(α,λ) = ēN,A(∂α,λ) + (−1)r ēN,A(α,∂λ).

Proof

We choose a sufficiently fine open covering (Ui →B)i∈I of B (see [7, Chapter III,

Lemma 2.19]) so that the following holds: α is represented by a cocycle {αi0···ir},
αi0···ir ∈ Γ(Ui0···ir ,NA), with αi0···ir = Nα̃i0···ir , α̃i0···ir ∈ Γ(Ui0···ir ,N2A), and

λ is represented by a cocycle {λi0···is}, λi0···is ∈ Γ(Ui0···is ,N Â), with λi0···is =

Nλ̃i0···is , λ̃i0···is ∈ Γ(Ui0···is ,N2Â). Then ∂α is represented by the cocycle given

by (∂α)i0···ir+1 =
∑r+1

0 (−1)ν α̃i0···̂iν ···ir+1
and ∂λ is represented by the cocy-

cle given by (∂λ)i0···is+1 =
∑s+1

0 (−1)ν λ̃i0···̂iν ···is+1
. The class ēN,A(α,λ) is rep-
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resented by the cocycle given by ēN,A(α,λ)i0···ir+s = ēN,A(αi0···ir , λir···ir+s) =

ēN2,A(α̃i0···ir , λ̃ir···ir+s)
N . The last equality follows from the general fact that,

given α ∈ Γ(U,N2A) and λ ∈ Γ(U,N Â), one has ēN2,A(α,λ) = ēN,A(Nα,λ) (see

[10, p. 185]).

So we have

ēN,A(∂α,λ)i0···ir+s+1 = ēN,A
(
(∂α)i0···ir+1 , λir+1···ir+s+1

)

= ēN,A

(r+1∑
0

(−1)ν α̃i0···̂iν ···ir+1
, λir+1···ir+s+1

)

= ēN2,A

(r+1∑
0

(−1)ν α̃i0···̂iν ···ir+1
, λ̃ir+1···ir+s+1

)

=

r+1∏
0

ēN2,A(α̃i0···̂iν ···ir+1
, λ̃ir+1···ir+s+1)

(−1)ν ,

ēN,A(α,∂λ)i0···ir+s+1 = ēN,A
(
αi0···ir , (∂λ)ir···ir+s+1

)

= ēN,A

(
αi0···ir , (−1)r

r+s+1∑
r

(−1)ν λ̃ir···̂iν ···ir+s+1

)

= ēN2,A

(
α̃i0···ir ,

r+s+1∑
r

(−1)ν λ̃ir···̂iν ···ir+s+1

)(−1)r

=
(r+s+1∏

r

ēN2,A(α̃i0···ir , λ̃ir···̂iν ···ir+s+1
)(−1)ν

)(−1)r

,

and

∂ēN,A(α,λ)i0···ir+s+1 =

r∏
0

ēN2,A(α̃i0···̂iν ···ir+1
, λ̃ir+1···ir+s+1)

(−1)ν

·
r+s+1∏
r+1

ēN2,A(α̃i0···ir , λ̃ir···̂iν ···ir+s+1
)(−1)ν ,

hence(
∂ēN,A(α,λ)− ēN,A(∂α,λ)

)
i0···ir+s+1

= ēN2,A(α̃i0···ir , λ̃ir+1···ir+s+1)
−(−1)r+1

·
r+s+1∏
r+1

ēN2,A(α̃i0···ir , λ̃ir···̂iν ···ir+s+1
)(−1)ν

=

r+s+1∏
r

ēN2,A(α̃i0···ir , λ̃ir···̂iν ···ir+s+1
)(−1)ν

=
(
(−1)r ēN,A(α,∂λ)

)
i0···ir+s+1

. �
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(ii) The pairing eN . Let A→B be an abelian scheme with a principal polarization

Φ :A ∼→Â. One has Φ̂ = Φ; hence, (NΦ)̂ =NΦ. The pairing

(2.7) eN,A : NA× NA−→ μN,B ⊂Gm,B

is the standard pairing on the kernel of the self-dual map NΦ. It is also derived

from ēN,A by transport via Φ, eN,A(α,β) = ēN,A(α,Φ(β)) = ē
N,Â(Φ(α), β) for

α,β ∈ Γ(U,NA). In the notation of [10], if Φ is given by a line bundle L on A,

Φ = ΦL, then one has eN,A = eL
⊗N

(see [10, Section IV.23]). The pairing eN is

antisymmetric. Hence, using as before the same symbol to denote the pairings

induced in cohomology for all r, s≥ 0,

(2.8) eN,A :Hr(B,NA)×Hs(B,NA)−→Hr+s(B,μN ),

one has

(2.9) eN,A(β,α) = (−1)rs+1eN,A(α,β)

for α ∈Hr(B,NA) and β ∈Hs(B,NA).

As the morphism Φ induces a morphism between the Kummer sequences

for A and Â, the result from Proposition 2.6 translates verbatim, so that for all

r, s≥ 0 and α ∈Hr(B,NA), β ∈Hs(B,NA) one has

(2.10) ∂eN,A(α,β) = eN,A(∂α,β) + (−1)reN,A(α,∂β)

in Hr+s+1(B,μN ).

We shall be concerned in this work with the particular case of an abelian

scheme A → B of (relative) dimension 1, with the polarization defined by the

invertible sheaf associated with the zero section, Φ = ΦL, L=OA(0).

(iii) The (opposite) Tate pairing 〈·, ·〉T . Let A → B be an abelian scheme.

The opposite of the Tate pairing for abelian varieties is obtained as follows, in

the more general setting of abelian schemes:

(2.11) 〈·, ·〉T,A :H1(B,A)×H0(B, Â)−→H2(B,Gm).

Given λ ∈H0(B, Â), represented by the line bundle L with class in Pic0(A/B),

one considers the extension of sheaves over B (actually of commutative group

schemes; see [10, Section IV.23] and Note (a) of Section 3 in this article)

(2.12) 0−→Gm,B −→G(λ)−→A−→ 0,

where the sections of G(λ) over U →B are given by the relative automorphisms

of (LAU
,AU ) lifting translations by global sections of AU :

Γ
(
U,G(λ)

)
=
{
(α̃,α)

∣∣ α ∈ Γ(U,A), (α̃, τα) ∈Aut(LAU
,AU )

}
.

The group law is given by composition, (β̃, β) ◦ (α̃,α) = (β̃ ◦ α̃,α+ β). Commu-

tativity follows because, A→B being proper, the commutator e :A×B A→Gm

for G(λ) must be constant and, hence, trivial (see [10, Section IV.23]). The image

of (α̃,α) in Γ(U,A) is α, and the image of u ∈ Γ(U,Gm,B) in Γ(U,G(λ)) is (u,0).
For later convenience we point out that if in the construction just given we

replace the line bundle L by any line bundle on A isomorphic to L⊗M , with
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M the pullback of a line bundle from B, then we obtain an extension equal to

(2.12) up to a (necessarily) unique isomorphism. The notation G(λ) reflects the
fact (Weil–Barsotti isomorphism; see [11, Theorem (18.1)]) that this extension

depends solely on the section λ of Â and not on the particular line bundle on A
giving rise to it.

For α ∈ H1(B,A) and λ ∈ H0(B, Â) the image 〈α,λ〉T,A of (α,λ) by the

pairing 〈·, ·〉T,A is defined as the image of α by the connecting homomorphism

H1(B,A)→H2(B,Gm,B) in the cohomology sequence of (2.12).

To understand the relation between the pairing 〈·, ·〉T and the pairing ēN
from (2.4) for r = s = 1, we introduce two intermediate pairings 〈·, ·〉T 0 and

〈·, ·〉T 1 , and express these in terms of ēN . Here and below, we shall always use the

symbol ν to denote the (forgetful) maps induced in cohomology by the inclusion

maps NA ↪→A, N Â ↪→Â, and μN,B ↪→Gm,B .

(iv) The pairing 〈·, ·〉T 0 . For an abelian scheme A→B we shall denote by

(2.13) 〈·, ·〉T 0,A :H1(B,A)×H0(B,N Â)−→H2(B,μN ),

the pairing defined similarly to 〈·, ·〉T,A, but instead of taking (2.12) for νλ, we

take, for λ ∈H0(B,N Â), the subextension

(2.14) 0−→ μN,B −→G0(λ)−→A−→ 0

defined by

Γ
(
U,G0(λ)

)
=
{
(α̃,α) ∈ Γ

(
U,G(νλ)

) ∣∣ α̃⊗N = 1
}
.

Note that this makes sense since, in the above notation, one now has L⊗N 	 1A,

by assumption.

The relationship between 〈·, ·〉T 0 and 〈·, ·〉T is expressed by the formula for

all α ∈H1(B,A) and λ ∈H0(B,N Â)

(2.15) ν〈α,λ〉T 0,A = 〈α,νλ〉T,A.

The relationship between the pairings 〈·, ·〉T 0 and ēN is described as follows.

PROPOSITION 2.16

For all α ∈H1(B,A) and λ ∈H0(B,N Â), letting ∂ denote here the connecting

homomorphism for the Kummer sequence for A and multiplication by N , one

has, in H2(B,μN ), 〈α,λ〉T 0,A =−ēN,A(∂α,λ).

Proof

This follows from the existence of a commutative diagram

0−→ NA −→ A N−→ A−→ 0⏐⏐�ēN,A(−,λ)−1

⏐⏐�
⏐⏐�1

0−→ μN,B −→G0(λ)−→ A−→ 0

where the bottom sequence is (2.14), and the middle vertical arrow is given by the

following recipe. Let λ be represented by L, with class in Pic0(A/B). Then, given
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α ∈ Γ(U,A) one locally lifts τα to a relative automorphism (α̃, τα) of (LAU
,AU )

such that α̃⊗N = 1, and then takes, as the image of α, (α̃◦N ,Nα) ∈ Γ(U,G0(λ)).

Note that, indeed, (α̃◦N )⊗N = (α̃⊗N )◦N = 1◦N = 1. By Proposition 2.2, this

restricts to NA as indicated in the diagram. �

REMARK

We mention in passing that the preceding proof may be used to give another proof

of Proposition 2.2. Namely, the commutative diagram above is already known,

and since HomB(A, μN,B) = 0, there is at most one arrow A→G0(λ) and, hence,

at most one arrow NA → μN,B fitting in this diagram, so both definitions for

ēN,A in Proposition 2.2 must coincide.

(v) The pairing 〈·, ·〉T 1 . For an abelian scheme A→B we shall denote by

(2.17) 〈·, ·〉T 1,A :H1(B,NA)×H0(B, Â)−→H2(B,μN ),

the pairing defined similarly to 〈·, ·〉T,A, but using, instead of (2.12), the subex-

tension

(2.18) 0−→ μN,B −→ NG(λ)−→ NA−→ 0,

obtained by taking N -torsion everywhere in (2.12).

The relationship between 〈·, ·〉T 1 and 〈·, ·〉T is expressed by the formula, for

all α ∈H1(B,NA) and λ ∈H0(B, Â),

(2.19) ν〈α,λ〉T 1,A = 〈να,λ〉T,A.

The relationship between the pairings 〈·, ·〉T 1 and ēN is described as follows.

PROPOSITION 2.20

For all α ∈H1(B,NA) and λ ∈H0(B, Â), letting ∂ denote here the connecting

homomorphism for the Kummer sequence for Â and multiplication by N , one

has, in H2(B,μN ), 〈α,λ〉T 1,A =−ēN,A(α,∂λ).

REMARK 2.21

(a) In contrast with the proof of Proposition 2.16, which benefited from

Proposition 2.2, our proof for this proposition is quite long. Later on (see Remark

3.25) we shall describe a way to circumvent this, in the case in which λ comes

from H0(B,N Â).

(b) We point out that we shall make repeated use, without further mention,

of the commutativity of the composition of relative automorphisms of line bundles

M with class in Pic0(AU/U) over translation maps τa :AU →AU , a ∈ Γ(U,AU )

(see Part (iii) of this section).

Proof of Proposition 2.20

Let L, [L] ∈ Pic0(A/B), represent λ. Through successive refinements we find and

choose a covering U = {Ui →B}i∈I fine enough so as to fulfill all the requirements
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listed below. For notational convenience we shall write Ai for AUi , Aij for AUij ,

with Uij = Ui ×B Uj , and so on. Similarly, we shall write Li instead of LAi and

Lij instead of LAij .

The conditions that U is assumed to satisfy are the following. For all i ∈ I

we have λUi = Nμi, with μi ∈ Γ(Ui, Âi). We call Mi, [Mi] ∈ Pic0(Ai/Ui), the

line bundle representing μi, so that M⊗N
i 	 Li. Furthermore, α ∈H1(B,NA) is

represented by a 1-cocycle {aij}i,j∈I , aij ∈ Γ(Uij ,NAij) for U , and for all i, j, k ∈
I the restriction of Mi to Aijk is invariant under translation by the restriction of

ajk, that is, τ
∗
ajk

(Mi)	Mi on Aijk, for short. Moreover, for each i, j ∈ I we have

relative automorphisms (ãij , τaij ) ∈Aut(Lij ,Aij) lifting the translation map by

aij and such that ã◦Nij = 1.

We compute first 〈α,λ〉T 1,A. This is the image of α by the connecting homo-

morphism for the exact sequence (2.18). The 1-cochain {(ãij , aij)}i,j∈I for U with

values in NG(λ) lifts the 1-cocycle {aij}i,j∈I , so that 〈α,λ〉T 1,A ∈H2(B,μN ) is

represented by the 2-cocycle

(2.22) (ijk) �−→ ãjk ◦ ã−1
ik ◦ ãij ,

where the factors are taken to be restricted above Aijk. The expression on the

right is an element of Γ(Uijk,Gm) and belongs in fact to Γ(Uijk, μN ), since (ãjk ◦
ã−1
ik ◦ ãij)N = (ãjk ◦ ã−1

ik ◦ ãij)◦N = (ã◦Njk ) ◦ (ã◦Nik )−1 ◦ (ã◦Nij ) = 1 ◦ 1 ◦ 1 = 1.

Next we compute ēN,A(α,∂λ). The class ∂λ ∈ H1(B,N Â) is represented

by the 1-cocycle {μij}i,j∈I , μij = μj − μi on Uij . We write Mij = Mj ⊗M−1
i ,

[Mij ] ∈ Pic0(Aij/Uij), for the line bundle representing μij ∈ Γ(Uij ,N Â); note

that M⊗N
ij 	 1Aij . The class ēN,A(α,∂λ) is represented by the 2-cocycle

(2.23) (ijk) �−→ ēN,A(aij , μjk).

If (ãijk, τaij ) ∈Aut(Mjk,Aijk) denotes (slightly abusively) an arbitrary automor-

phism of the restriction of Mjk to Aijk over the translation map by the restriction

of aij to Uijk such that ã⊗N
ijk = 1, then

(2.24) ēN,A(aij , μjk) = (ã◦Nijk)
−1.

We shall choose ãijk linked to the ãij ’s so as to allow comparison between

(2.22) and (2.23)–(2.24). To this end we choose first, for each i, j, υ ∈ I , a relative

automorphism

(ãij,υ, τaij ) ∈Aut(Mυ,Aijυ)

of the restriction of Mυ to Aijυ over the translation map by the restriction of

aij to Aijυ , satisfying the property

ã⊗N
ij,υ = ãij .

This may require yet a further refinement of our initial covering U , and we

assume this accomplished. We have, for the invertible function ã◦Nij,υ on Uijυ ,

ã◦Nij,υ ∈ Γ(Uijυ, μN ), since (ã◦Nij,υ)
N = (ã◦Nij,υ)

⊗N = (ã⊗N
ij,υ)

◦N = ã◦Nij = 1. We choose

now

ãijk = ãij,k ⊗ ã
⊗(−1)
ij,j .
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This choice fulfills ã⊗N
ijk = ã⊗N

ij,k ⊗ (ã⊗N
ij,j )

⊗(−1) = ãij ⊗ ã
⊗(−1)
ij = 1. We have, more-

over, ã◦Nijk = ã◦Nij,k ⊗ (ã◦Nij,j)
⊗(−1) = (ã◦Nij,k)(ã

◦N
ij,j)

−1.

To end the proof of the proposition we show that the product of the cocycles

(2.22) and (2.23) is a coboundary. Multiplying and dividing this product by the

coboundary of the 1-cochain {ã◦Nij,j}i,j∈I , (δ{ã◦Nij,j})ijk = (ã◦Njk,k)(ã
◦N
ik,k)

−1(ã◦Nij,j),

we have

(ãjk ◦ ã−1
ik ◦ ãij)(ã◦Nijk)−1 = (ãjk ◦ ã−1

ik ◦ ãij)(ã◦Nij,k)−1(ã◦Nij,j)

= (ãjk ◦ ã−1
ik ◦ ãij)(ã◦Njk,k)−1(ã◦Nik,k)(ã

◦N
ij,k)

−1
(
δ{ã◦Nij,j}

)
ijk

,

ãjk ◦ ã−1
ik ◦ ãij = ã⊗N

jk,k ◦ (ã⊗N
ik,k)

−1 ◦ ã⊗N
ij,k

= (ãjk,k ◦ ã−1
ik,k ◦ ãij,k)⊗N

= (ãjk,k ◦ ã−1
ik,k ◦ ãij,k)N ,

and

(ã◦Njk,k)
−1(ã◦Nik,k)(ã

◦N
ij,k)

−1 = (ã◦Njk,k)
−1 ◦ (ã◦Nik,k) ◦ (ã◦Nij,k)−1

= (ã−1
jk,k ◦ ãik,k ◦ ã−1

ij,k)
◦N

=
(
(ãjk,k ◦ ã−1

ik,k ◦ ãij,k)−1
)◦N

= (ãjk,k ◦ ã−1
ik,k ◦ ãij,k)−N ,

from which the result now follows. �

The relationship between the pairings 〈·, ·〉T 0 and 〈·, ·〉T 1 is deduced from Propo-

sitions 2.6, 2.16, and 2.20.

COROLLARY 2.25

For all α ∈H1(B,NA) and λ ∈H0(B,N Â) one has, in H2(B,μN ),

〈α,νλ〉T 1,A − 〈να,λ〉T 0,A = ∂ēN,A(α,λ).

3. Pairings, II: 1-dimensional Néron models

In the notation of Section 1, we now replace the abelian scheme A → B from

Section 2 by the Néron model E0 →B of the elliptic curve E0 over K, as well as

by its restrictions to arbitrary (Zariski) open subsets U of B, and we discuss a

version in this context of the pairings of that section. To ease notation, except in

Note (a) below, but otherwise throughout this section, the symbol B will stand

for a fixed open subset U of our former B, and E0, S0, .. will denote instead the

restrictions (E0)U , (S0)U , (..)U of these objects above U .

NOTES (PRELIMINARIES)

(a) We give first a description of the extensions (2.12) and (2.14) with A replaced

by Â, but viewed from the side of A, that is, in the notation of Section 2, for



758 Gerald E. Welters

α ∈H0(B,A), a description of

(3.1) 0−→Gm,B −→G(α)−→ Â−→ 0

and, for α ∈H0(B,NA), a description of

(3.2) 0−→ μN,B −→G0(α)−→ Â−→ 0,

in both cases interpreted through the biduality isomorphism A	 ˆ̂A. The duality

correspondence between the abelian schemes A→B and Â →B is given by the

Poincaré torsor P → A ×B Â, whose fiber P(ā, [L̄]) above a geometric point

(ā, [L̄]) of A×B Â over a geometric point t̄ of B is described canonically as the

set of relative automorphisms of L̄ lifting the translation map by ā:

L̄
˜̄a−→ L̄⏐⏐�

⏐⏐�
A(t̄ )

τā−→A(t̄ )

The group scheme G(λ) in (2.12) is the pullback of P according to the map

A = A ×B B
1×Bλ−→ A ×B Â. Changing roles between A and Â gives that, for

α ∈H0(B,A), the group scheme G(α) in (3.1) is the pullback of P by the map

Â=B ×B Â α×B1−→ A×B Â. Thus,

Γ
(
U,G(α)

)
=
{(

α̃(λ), λ
) ∣∣ λ ∈ Γ(U, Â),

(
α̃(λ), τα

)
∈Aut

(
L(λ),AU

)}
,

with L(λ), [L(λ)] ∈ Pic0(AU/U), denoting the representative of λ. The (commu-

tative) group law of G(α) is given by the tensor product, (α̃(λ), λ)⊗ (α̃(μ), μ) =

(α̃(λ)⊗ α̃(μ), λ+μ). The image of (α̃(λ), λ) ∈ Γ(U,G(α)) in Γ(U, Â) is λ, and the

image of u ∈ Γ(U,Gm,B) in Γ(U,G(α)) is (u,0). As for (3.2), we have

Γ
(
U,G0(α)

)
=
{(

α̃(λ), λ
)
∈ Γ

(
U,G(να)

) ∣∣ α̃(λ)◦N = 1
}
.

(b) An important role is played in this article by the morphism of sheaves

PicS0/B → E0 obtained by taking the abelian sum along the smooth fibers of

S0 → B. This map induces an isomorphism Pic0S0/B
∼→ E0

0 between these two

subsheaves, and this in turn gives, for all our N , the isomorphism N Pic0S0/B =

N PicS0/B
∼→ NE0

0 appearing in Section 1.

Indeed, consider an open U → B in the étale topology; an element λ ∈
Γ(U,PicS0/B) maps to α ∈ Γ(U,E0) if and only if λ is representable by [L] ∈
Pic((S0)U ) with L = O(S0)U (D), D = Γα − Γ0U + Dv , where 0U indicates the

zero section of (S0)U , Γ(..) denotes the graph of the corresponding section (..),

and Dv is a divisor of (S0)U whose components are nonneutral components of

fibers of (S0)U → U . On the other hand, this element λ belongs to Γ(U,Pic0S0/B)

if and only if the divisor D has zero intersection multiplicity with all compo-

nents of the geometric fibers of (S0)U → U . For one thing, this implies that the

abelian summation map induces an embedding Pic0S0/B ↪→E0, since, in the pre-

ceding notation, D =Dv and D̄v · D̄v = 0 (the bar indicating base change to an
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algebraic closure k̄ of k) imply D = 0 (see, e.g., [13, Lemma 2.5]). Secondly, it

shows that E0
0 ⊂ E0 is contained in the image of Pic0S0/B , by choosing in the above

Dv = 0 for an arbitrarily given α ∈ Γ(U,E0
0 ). Finally, to show the opposite inclu-

sion, suppose that, for a given λ ∈ Γ(U,Pic0S0/B), the section α ∈ Γ(U,E0) does

not belong to Γ(U,E0
0 ). Let t̄ be a geometric point of B above which the graph Γα

meets a nonneutral component of the fiber of S0 → B. Writing out the vanish-

ing of the intersection multiplicities of D̄ with the nonneutral components above

t̄, one finds that the -integral-coefficients of D̄v in these components provide a

column (of the opposite) of the inverse intersection matrix of these components,

contradicting, for example, [13, Table 8.16].

It follows, in particular, that the sheaves Pic0S0/B and N Pic0S0/B are repre-

sentable by schemes. The image of an element λ ∈ Γ(U,PicS0/B) by the abelian

summation map PicS0/B →E0 will be denoted λAb ∈ Γ(U,E0).
(c) Let B− ⊂ B be the open complement of the discriminant locus of the

map S0 →B. We shall denote by (..)− the restriction above B− of any relative

object (..) over B. So, in particular, (E0
0 )

− = E−
0 = S−

0 is an abelian scheme of

dimension 1 over B−, and one has (Pic0S0/B)
− = Pic0E−

0 /B− = (E−
0 )̂ . We note

that the restriction (E−
0 )̂

∼→ E−
0 of the abelian summation isomorphism is the

opposite inverse of the standard isomorphism ΦL : E−
0

∼→ (E−
0 )̂ associated with

the invertible sheaf L=OE−
0
(0E−

0
) as defined in [10, Sections II.6 and III.13].

(d) The action of E0 on S0 by translations induces an action of E0 on PicS0/B

which is trivial on Pic0S0/B . In fact, this holds true when we restrict everything to

B− ⊂B. Consider then Pic0S0/B as the scheme E0
0 , and let α and β be sections of

E0 and E0
0 , respectively, over some open U →B. Then β itself and the transform

of β by α coincide on the dense subset U− ⊂ U , the inverse image of B−; hence,

they are equal.

(e) As in Note (d) of the preceding section, the existence of the zero section

for π : S0 →B and the Leray spectral sequence for the sheaf Gm on S0 provide

a canonically split exact sequence

0−→ Pic(B)−→ Pic(S0)−→ Γ(B,PicS0/B)−→ 0

and, in particular, a canonical isomorphism Pic0(S0/B)
∼→ Γ(B,Pic0S0/B) between

(1) the subgroup Pic0(S0/B) ⊂ Pic(S0) of isomorphism classes of invertible

sheaves which are topologically trivial on the geometric fibers of π and triv-

ial on the zero section of π and (2) the group of global sections of Pic0S0/B . We

shall always represent the latter by invertible sheaves or line bundles with class in

Pic0(S0/B) through this isomorphism, unless otherwise stated. We do the same

thing with S0 → B replaced by its restriction (S0)U → U , for any open U → B

in the étale topology of B.

(i) The pairing ēN . Due to the étaleness of N Pic0S0/B 	 NE0
0 and NE0 over B and

the properness of μN,B over B, the pairing ē
N,(E−

0 )̂
: N (E−

0 )̂×B− NE−
0 → μN,B− of

group schemes over B− extends uniquely to a pairing ēN : N Pic0S0/B ×B NE0 →



760 Gerald E. Welters

μN,B of group schemes over B which yields, in the language of sheaves, a pairing

(3.3) ēN : N Pic0S0/B × NE0 −→ μN,B

inducing the pairing ē
N,(E−

0 )̂
: N (E−

0 )̂× NE−
0 → μN,B− by restriction. By its very

uniqueness, this pairing admits the following description, fitting over B− with

the description given in Section 2 for ēN,A with A= (E−
0 )̂, as translated by the

dictionary given in Note (a) of the present section. Given λ ∈ Γ(U,N Pic0S0/B) and

α ∈ Γ(U,NE0) for U →B open in the étale topology of B, let λ be represented by

the line bundle L on (S0)U . One has L⊗N 	 1(S0)U and, refining U if necessary,

τ∗α(L) 	 L. Upon refining U again we find a relative automorphism (α̃(λ), τα) :

(L, (S0)U )→ (L, (S0)U ) such that α̃(λ)◦N = 1. Then, in Γ(U,μN ),

(3.4) ēN (λ,α) =
(
α̃(λ)⊗N

)−1
.

(ii) The pairing eN . In a similar way as in (i), the pairing of sheaves e
N,E−

0

:

NE−
0 × NE−

0 → μN,B− extends to a pairing of sheaves

(3.5) eN : NE0 × NE0 −→ μN,B ,

which is also antisymmetric, by a continuity argument applied to the correspond-

ing pairings of group schemes. The relation between eN and ēN is described for

sections λ ∈ Γ(U,N Pic0S0/B), α ∈ Γ(U,NE0) by the formula

(3.6) ēN (λ,α) = eN (λAb, α)
−1.

Indeed, this is equivalent to the commutativity of the following diagram of group

schemes:

N Pic0S0/B ×B NE0
ēN−→ μN,B⏐⏐�Ab×B1

⏐⏐�(..)−1

NE0 ×B NE0
eN−→ μN,B

a fact which in turn is equivalent, by continuity, to the commutativity of its

restriction over B−,

N (E−
0 )̂×B− NE−

0

ē
N,(E−

0 )̂−→ μN,B−⏐⏐�Ab×
B−1

⏐⏐�(..)−1

NE−
0 ×B− NE−

0

e
N,E−

0−→ μN,B−

To show the latter, let λ ∈ Γ(U,N (E−
0 )̂) and α ∈ Γ(U,NE−

0 ). One has

ē
N,(E−

0 )̂
(λ,α) = ē

N,E−
0
(α,λ)−1

(
(2.3)

)
= ē

N,E−
0
(α,−λ)

= ē
N,E−

0

(
α,Φ(λAb)

) (
Section 3, Note (c); Section 2, Part (ii)

)
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= e
N,E−

0
(α,λAb)

(
Section 2, Part (ii)

)
= e

N,E−
0
(λAb, α)

−1,

thereby finishing the proof of (3.6).

(iii) The (opposite) Tate pairing 〈·, ·〉T . This is a pairing

(3.7) 〈·, ·〉T :H1(B,Pic0S0/B)×H0(B,E0)−→H2(B,Gm),

compatible by restriction with the pairing (2.11) for A = (E−
0 )̂ and B = B−.

Given α ∈ H0(B,E0) one has, canonically, an extension of sheaves of abelian

groups for the étale topology on B

(3.8) 0−→Gm,B −→G(α)−→ Pic0S0/B −→ 0,

which restricts on B− to the extension (3.1) for A= E−
0 and α= α−,

0−→Gm,B− −→G(α−)−→ (E−
0 )̂−→ 0.

For U →B open in the étale topology of B one defines

Γ
(
U,G(α)

)
=
{(

α̃(λ), λ
) ∣∣ λ ∈ Γ(U,Pic0S0/B),

(
α̃(λ), τα

)
∈Aut

(
L(λ), (S0)U

)}
,

with L(λ), [L(λ)] ∈ Pic0((S0)U/U), representing λ. (Here too, as in Part (iii)

of Section 2, the line bundle L(λ) may be replaced by its tensor product with

any line bundle coming from U . The relative automorphisms over τα for both

line bundles are in canonical correspondence.) The group law for G(α) and the

morphisms in the sequence (3.8) are described as in Note (a) of this section.

For λ ∈ H1(B,Pic0S0/B) and α ∈ H0(B,E0) the image 〈λ,α〉T of (λ,α) by

〈·, ·〉T is defined as the image of λ by the connecting homomorphism H1(B,

Pic0S0/B) → H2(B,Gm) in the cohomology exact sequence of (3.8). As stated

before, restriction to B− gives, for λ and α as above,

〈λ,α〉−T = 〈λ−, α−〉
T,(E−

0 )̂
.

(iv) The pairing 〈·, ·〉T 0 . Paralleling the derivation of (2.14) from (2.12), as

translated in Note (a) of this section into the dual setting, given α ∈H0(B,NE0)
we deduce from (3.8) an extension

(3.9) 0−→ μN,B −→G0(α)−→ Pic0S0/B −→ 0,

which restricts on B− to the extension (3.2) with A= E−
0 and α= α−. For U →B

open in the étale topology one takes, in the notation from Part (iii) above,

Γ
(
U,G0(α)

)
=
{(

α̃(λ), λ
)
∈ Γ

(
U,G(να)

) ∣∣ α̃(λ)◦N = 1
}
.

One then defines the pairing

(3.10) 〈·, ·〉T 0 :H1(B,Pic0S0/B)×H0(B,NE0)−→H2(B,μN )

by sending (λ,α) to the image of λ by the connecting homomorphism H1(B,

Pic0S0/B)→H2(B,μN ) in the cohomology exact sequence of (3.9).

One has, for λ ∈H1(B,Pic0S0/B) and α ∈H0(B,NE0),

(3.11) ν〈λ,α〉T 0 = 〈λ, να〉T .
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Restriction to B− yields, for λ and α as above,

(3.12) 〈λ,α〉−T 0 = 〈λ−, α−〉T 0,(E−
0 )̂ .

The relationship between 〈·, ·〉T 0 and ēN (resp., eN ) is similar to the one for

abelian schemes:

PROPOSITION 3.13

For all λ ∈ H1(B,Pic0S0/B) and α ∈ H0(B,NE0) one has, in H2(B,μN ),

〈λ,α〉T 0 = −ēN (∂λ,α) = eN (∂λAb, α), where ∂ refers to the corresponding con-

necting homomorphism in the cohomology exact sequence of the Kummer sequence

for Pic0S0/B (resp., E0
0 ) and the integer N .

Proof

The last equality is inherited from (3.6), since the abelian summation isomor-

phism Pic0S0/B
∼→ E0

0 identifies the Kummer sequences for both sheaves, and so

(∂λ)Ab = ∂λAb holds. As for the first equality, this is deduced from a commutative

diagram

0−→ N Pic0S0/B −→ Pic0S0/B
N−→ Pic0S0/B −→ 0⏐⏐�ēN (−,α)−1

⏐⏐�
⏐⏐�1

0 −→ μN,B −→ G0(α) −→ Pic0S0/B −→ 0

the bottom sequence being (3.9). Only the middle vertical arrow needs expla-

nation. The rest is a diagram of commutative group schemes (for G0(α) this

follows as in Remark 4.23), which extends the analogous diagram from the

proof of Proposition 2.16, with B = B−, A = (E−
0 )̂ , and λ = α−. By continu-

ity, the middle vertical arrow in that diagram extends over the whole of B,

too, and commutativity is preserved as well. Alternatively, an explicit descrip-

tion of the middle vertical arrow in the diagram above is as follows. Given

λ ∈ Γ(U,Pic0S0/B) for U → B open in the étale topology, we represent this ele-

ment by a line bundle L on (S0)U with [L] ∈ Pic0((S0)U/U) and, upon refin-

ing U if necessary, such that τ∗α(L) 	 L. Refining U again we find a relative

automorphism (α̃(λ), τα) : (L, (S0)U )
∼→ (L, (S0)U ) such that α̃(λ)◦N = 1. Then

(α̃(λ)⊗N , τα) ∈ Aut(L⊗N , (S0)U ) is a well-defined element of Γ(U,G0(α)) map-

ping to Nλ ∈ Γ(U,Pic0S0/B). The commutativity of the left-hand side square in

the diagram follows from the description of ēN given in Part (i) of this section. �

(v) The pairing 〈·, ·〉T 1 . Given α ∈ H0(B,E0) we deduce, by taking N -torsion

everywhere in (3.8), an extension

(3.14) 0−→ μN,B −→ NG(α)−→ N Pic0S0/B −→ 0.

We use this to define a pairing

(3.15) 〈·, ·〉T 1 :H1(B,N Pic0S0/B)×H0(B,E0)−→H2(B,μN )
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by sending (λ,α) to the image of λ by the connecting homomorphism H1(B,

N Pic0S0/B)→H2(B,μN ) in the cohomology exact sequence of (3.14).

One has, for λ ∈H1(B,N Pic0S0/B) and α ∈H0(B,E0),

(3.16) ν〈λ,α〉T 1 = 〈νλ,α〉T .

On the other hand, restriction to B− gives, for λ and α as above,

(3.17) 〈λ,α〉−T 1 = 〈λ−, α−〉T 1,(E−
0 )̂ .

The group H1(B,Pic0S0/B) being a torsion group (see, e.g., [8, Section III.7]),

it follows from (3.16) and the Kummer exact sequences for Pic0S0/B that the pair-

ing 〈·, ·〉T in Part (iii) of this section is actually dominated by the pairing 〈·, ·〉T 1 .

We have included it nevertheless here as a logical link, to keep a comprehensive

picture.

In contrast to what happens for abelian schemes, the multiplication by N

map on E0 needs to not be an epimorphism. For sections α ∈H0(B,NE0), how-
ever, we may parallel—in the present dual setting—Proposition 2.20 in the same

way as Proposition 3.13 parallels Proposition 2.16. We explain this in detail, for

the sake of completeness.

PROPOSITION 3.18

Given λ ∈ H1(B,N Pic0S0/B) and α ∈ H0(B,NE0) we have, in H2(B,μN ),

〈λ,α〉T 1 = −ēN (λ,∂α) = eN (λAb, ∂α), where ∂ refers to the corresponding con-

necting homomorphism in the cohomology exact sequence of the exact sequence

0→ NE0 →E0 N→NE0 → 0.

Proof

As before, the last equality follows from (3.6). We prove the first equality, follow-

ing the proof of Proposition 2.20. Let U = {Ui →B}i∈I be an open covering of B

in the étale topology such that the element λ is given by a family of line bundles

Lij on (S0)ij , i, j ∈ I , with [Lij ] ∈ Pic0((S0)ij/Uij), and such that L⊗N
ij 	 1(S0)ij

and Ljk ⊗ L−1
ik ⊗ Lij 	 1(S0)ijk on (S0)ijk, for all i, j, k ∈ I . (Here and below we

use the notational conventions introduced in the proof of Proposition 2.20.) We

take U fine enough so that for all i, j ∈ I one has τ∗α(Lij)	 Lij and so that there

exists a relative automorphism (α̃ij , τα) of (Lij , (S0)ij) satisfying α̃⊗N
ij = 1, that

is, a section (α̃ij , [Lij ]) ∈ Γ(Uij ,NG(α)) lifting [Lij ] ∈ Γ(Uij ,N Pic0S0/B). Under

these assumptions, 〈λ,α〉T 1 ∈ H2(B,μN ) is represented by the 2-cocycle of U
given by

(3.19) (ijk) �→ α̃jk ⊗ α̃
⊗(−1)
ik ⊗ α̃ij ∈ Γ(Uijk, μN ).

Next we compute ēN (λ,∂α). Refining U again if necessary, we may assume

that α=Nηi on Ui, ηi ∈ Γ(Ui,E0), for all i ∈ I . So ∂α ∈H1(B,NE0) is represented
by the cocycle {βij} of U given by βij = ηj − ηi ∈ Γ(Uij ,NE0), i, j ∈ I . Up to

refining U once more we find, for each i, j, υ ∈ I , a relative automorphism

(η̃ij,υ, τηυ ) ∈Aut
(
Lij

∣∣ (S0)ijυ, (S0)ijυ
)
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such that

η̃◦Nij,υ = α̃ij .

One has η̃⊗N
ij,υ ∈ Γ(Uijυ, μN ) ⊂ Γ(Uijυ,Gm), since (η̃⊗N

ij,υ )
N = (η̃⊗N

ij,υ )
◦N =

(η̃◦Nij,υ)
⊗N = (α̃ij)

⊗N = 1. We put then, for each i, j, k ∈ I ,

β̃ijk = η̃ij,k ◦ η̃−1
ij,j ,

so (β̃ijk, τβjk
) ∈Aut(Lij | (S0)ijk, (S0)ijk). We have (β̃ijk)

◦N = (η̃◦Nij,k)◦(η̃◦Nij,j)−1 =

α̃ij ◦α̃−1
ij = 1. Here we have used the fact that the commutative property described

for abelian schemes in Remark 2.21 implies, by continuity, the same property in

the present setting. By Part (i) of this section, the class ēN (λ,∂α) ∈H2(B,μN )

is therefore represented by the 2-cocycle

(3.20) (ijk) �→ ēN
(
[Lij ], βjk

)
= (β̃⊗N

ijk )−1 = (η̃⊗N
ij,j )(η̃

⊗N
ij,k )

−1 ∈ Γ(Uijk, μN ).

To end this proof, we show that the product of the cocycles (3.19) and (3.20)

is a coboundary. Introducing the 1-cochain {η̃⊗N
ij,j } ∈ C1(U , μN ), (δ{η̃⊗N

ij,j })ijk =

(η̃⊗N
jk,k)(η̃

⊗N
ik,k)

−1(η̃⊗N
ij,j ), we have, for each i, j, k ∈ I ,

(η̃⊗N
ij,j )(η̃

⊗N
ij,k )

−1 = (η̃⊗N
jk,k)

−1(η̃⊗N
ik,k)(η̃

⊗N
ij,k )

−1
(
δ{η̃⊗N

ij,j }
)
ijk

= (η̃jk,k ⊗ η̃
⊗(−1)
ik,k ⊗ η̃ij,k)

−N
(
δ{η̃⊗N

ij,j }
)
ijk

,

and on the other hand,

α̃jk ⊗ α̃
⊗(−1)
ik ⊗ α̃ij = (η̃◦Njk,k)⊗ (η̃◦Nik,k)

⊗(−1) ⊗ (η̃◦Nij,k)

= (η̃jk,k ⊗ η̃
⊗(−1)
ik,k ⊗ η̃ij,k)

N ,

which implies the claimed statement. �

REMARK 3.21

Under a similar restriction as in Proposition 3.18, that is, working with cohomol-

ogy classes of NE0 instead of E0, the Leibniz-type formulae in Proposition 2.6

and (2.10) can be established in the present setting as well. Namely, for abelian

schemes of dimension 1 (or, more generally, for principally polarized abelian

schemes) both formulae are equivalent, and the proof given for Proposition 2.6

can be translated so as to apply directly for (2.10). In this form, the proof carries

over verbatim into the present setting, giving the following statement.

PROPOSITION 3.22

Let α ∈Hr(B,NNE0) and β ∈Hs(B,NNE0). One has, in Hr+s+1(B,μN ),

∂eN (α,β) = eN (∂α,β) + (−1)reN (α,∂β).

One gets, in particular, by Note (b) of this section and (3.6), the following.
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COROLLARY 3.23

Let λ ∈Hr(B,N Pic0S0/B) and α ∈Hs(B,NNE0). One has, in Hr+s+1(B,μN ),

∂ēN (λ,α) = ēN (∂λ,α) + (−1)r ēN (λ,∂α).

As in Section 2, Propositions 3.13 and 3.18 and Corollary 3.23 together yield a

formula similar to the formula in Corollary 2.25 expressing the relation between

〈·, ·〉T 0 and 〈·, ·〉T 1 under the present restrictive assumption (see Remark 3.21).

It is now an essential fact for the purpose of this work that this relation—the

analogue of Corollary 2.25—holds true without any restriction:

PROPOSITION 3.24

For all λ ∈H1(B,N Pic0S0/B) and α ∈H0(B,NE0) one has, in H2(B,μN ),

〈λ, να〉T 1 − 〈νλ,α〉T 0 = ∂ēN (λ,α).

REMARK 3.25

The proof which follows could have been given already for Corollary 2.25, making

that result independent from Propositions 2.6, 2.16, and 2.20. We did not do so

because we wanted to get into the latter two results. On the other hand, any

of them, together with Corollary 2.25, implies again the other one, with a small

restriction on the data (see Remark 2.21).

Proof of Proposition 3.24

For fixed α ∈H0(B,NE0), the statement of the proposition becomes an equal-

ity involving three morphisms H1(B,N Pic0S0/B)→H2(B,μN ), each of which is

given by cup product with a fixed extension class of ZB-modules from

Ext1(N Pic0S0/B, μN,B). Let

(3.26) 0−→ μN,B −→G0(α)N −→ N Pic0S0/B −→ 0

be the extension of sheaves of abelian groups deduced from (3.9) by taking pull-

back by the inclusion map N Pic0S0/B ↪→ Pic0S0/B . First, the composition 〈·, α〉T 0ν

is given by cup product with the class of (3.26). Second, the morphism 〈·, να〉T 1 is

given by cup product with the class of the extension (3.14) for

να ∈H0(B,E0):

(3.27) 0−→ μN,B −→ NG(να)−→ N Pic0S0/B −→ 0.

Finally, the composition ∂ēN (·, α) is given by cup product with the class of

the pullback of the extension 0→ μN,B → μN2,B

N→ μN,B → 0 by the morphism

ēN (·, α) : N Pic0S0/B → μN,B . In the language of Yoneda classes (see, e.g., [9, Sec-

tion VII.1]), the proposition will be proved if we show that this last extension is

equivalent to the sum of (3.27) with the opposite of (3.26). This is tantamount

to the existence of a commutative diagram of sheaves
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0 μN,B × μN,B

(1,1)

NG(να)×
N Pic0S0/B

G0(α)N N Pic0S0/B

ēN (−,α)

0

0 μN,B μN2,B
N

μN,B 0

in which the bottom sequence is the standard one just mentioned, the right-hand

side arrow in the upper sequence is the structure map for the fiber product, and

the left-hand side arrow in that sequence is the product of the corresponding

arrow in (3.27) with the (multiplicative) inverse of the corresponding arrow in

(3.26). It remains to define the middle vertical arrow. The sheaves NG(να) and

G0(α)N are subsheaves of G(να), and the map we consider is the restriction

of the difference map (ξ, ζ) �→ ξζ−1 of G(να). Clearly the image of this map

lies in Gm,B (see (3.8)), and since it is of N2-torsion, it actually lies in μN2,B .

The commutativity of the left-hand side square is obvious. As for the right-

hand side square, a section of NG(να)×
N Pic0S0/B

G0(α)N over an open U →B is

given by a couple ((α̃′, [L]), (α̃′′, [L])) with [L] ∈ Pic0((S0)U/U), L⊗N 	 1(S0)U ,

and (α̃′, τα), (α̃
′′, τα) ∈Aut(L, (S0)U ) such that α̃′⊗N = 1 and α̃′′◦N = 1. One has

α̃′ = ρα̃′′ with ρ ∈ Γ(U,Gm). The image in Γ(U,μN2)⊂ Γ(U,G(να)) of the chosen
section is α̃′ ⊗ α̃′′⊗(−1) = ρ (see Part (iii) and Note (a) of the present section).

Now, 1 = α̃′⊗N = ρN α̃′′⊗N implies ρN = (α̃′′⊗N )−1 = ēN ([L], α) (see (3.4)), and

this ends the proof. �

4. Pairings, III: 0-cycles

(i) Abelian schemes. The (opposite) Tate pairing (2.11) and its refinement (2.17)

can be extended to deal with relative schemes π :X →B such that R0π∗Gm,X =

Gm,B and relative 0-cycles z of degree 0 on them. For simplicity, here in Part (i)

we shall assume that the base scheme B is integral, regular, and of dimension

at most 1. The relative 0-cycles on X are the elements of the free abelian group

Z0(X/B) generated by the irreducible closed subsets of X mapping finitely (in

particular, properly) onto B. Given z ∈ Z0(X/B), z=
∑r

i=1miZi we put deg(z) =∑r
i=1mi[Zi :B], the (relative) degree of z, and we write Z0(X/B)0 ⊂ Z0(X/B)

for the subgroup of the degree 0 relative 0-cycles of X .

One has a natural morphism

(4.1) Z0(X/B)0 −→ Ext1(PicX/B ,Gm,B)

into a group of 1-extension classes of sheaves of abelian groups, which gives, via

cup product, a pairing

(4.2) 〈·, ·〉�T :H1(B,PicX/B)×Z0(X/B)0 −→H2(B,Gm).

By further composing (4.1) with the map

Ext1(PicX/B ,Gm,B)→ Ext1(NPicX/B , μN,B),

obtained by takingN -torsion parts everywhere, one gets in a similar way a pairing
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(4.3) 〈·, ·〉�T 1 :H
1(B,N PicX/B)×Z0(X/B)0 −→H2(B,μN ).

The pairings (4.2) and (4.3) are related by a formula analogous to (3.16), and

for abelian schemes A, they are compatible, respectively, with (2.11) and (2.17)

for Â, through the Albanese map. We give the details.

We recall the definition of the map (4.1). Given z ∈ Z0(X/B)0, let Z =⋃r
i=1Zi be the support of z, considered as a reduced closed subscheme of X .

The exact sequence of higher direct images with respect to the structure map

π :X →B for the short exact sequence on X

0−→Gm,X ,Z −→Gm,X −→Gm,Z −→ 0

provides an extension of sheaves of abelian groups on B:

(4.4) 0−→R0π∗Gm,Z/R
0π∗Gm,X −→ PicX ,Z/B −→ PicX/B −→ 0.

The sheaf PicX ,Z/B is the sheaf associated to the presheaf that attaches to an

open U →B in the étale topology the group Pic(XU ,ZU ) of isomorphism classes

of pairs (L,θ) with L a line bundle on XU and θ an isomorphism of line bundles

1ZU

∼→ L|ZU . We define a morphism

(4.5) z :R0π∗Gm,Z/R
0π∗Gm,X −→Gm,B

by factoring the map z̃ =
∏r

i=1(NmZi/B
◦ ρZ,Zi

)mi :R0π∗Gm,Z →Gm,B , where

ρZ,Zi
stands here for the restriction map R0π∗Gm,Z → R0π∗Gm,Zi and

NmZi/B
: R0π∗Gm,Zi → Gm,B is the norm map for the finite, locally free mor-

phism of schemes Zi → B. To see that this map indeed factors, let f

be a section of R0π∗Gm,X = Gm,B ; one has
∏r

i=1(NmZi/B
◦ ρZ,Zi

)mi(f) =∏r
i=1NmZi/B

(f)mi =
∏r

i=1(f
[Zi:B])mi = fdeg(z) = 1. Taking now the pushout of

the extension (4.4) by the morphism (4.5) we obtain an extension of sheaves of

abelian groups on B

(4.6) 0−→Gm,B −→Gz −→ PicX/B −→ 0,

and this represents the image of z by the map (4.1). We refer to [16] for further

details on this. The image of z in Ext1(NPicX/B , μN,B) is represented by the

extension

(4.7) 0−→ μN,B −→ NGz −→ N PicX/B −→ 0

obtained by taking the N -torsion parts of the members of (4.6). Alternatively,

one may apply a similar procedure as above directly to the sequences (5.4) and

(5.3) from Section 5.

The claimed relationship between 〈·, ·〉�T and 〈·, ·〉�T 1 is obvious in view of

the definitions. We turn to the compatibility of these pairings with 〈·, ·〉T and

〈·, ·〉T 1 , respectively, for abelian schemes. Actually, we will consider this in a more

general setting (see Remark 4.11 below). Suppose that π :X →B is smooth and

projective, with irreducible geometric fibers, and suppose that the sheaf Pic0X/B ,

now considered in the big étale site of B (see [5, Section 2]), is represented by

an abelian scheme, a fact which happens if and only if the Picard varieties of the
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geometric fibers X (t̄ ) of π : X → B have constant dimension equal to h1OX (t̄ )

(see [5, Section 5]). Writing then Alb0X/B = (Pic0X/B )̂ for the dual abelian scheme

of the abelian scheme Pic0X/B , one has a natural map

(4.8) alb : Z0(X/B)0 −→ Γ(B,Alb0X/B),

defined as follows. Assuming first that π has a global section, we may find a

(Poincaré) line bundle M on X ×B Pic0X/B such that, for any geometric point λ̄

of Pic0X/B , over a geometric point t̄ of B, the line bundle M |(X (t̄ )× λ̄) represents

the class λ̄ ∈ Pic0(X (t̄ )). For z ∈ Z0(X/B)0, z=
∑r

i=1miZi, the line bundle

r⊗
i=1

NmZi×BPic0X/B /B×BPic0X/B

(
M

∣∣ (Zi ×B Pic0X/B)
)⊗mi

on Pic0X/B defines a global section of Alb0X/B , and this is the image alb(z) of z in

this case. Note that the result is indeed independent from the choice of M , since

two such choices will differ by a factor line bundle coming from Pic0X/B , and this

will have no effect on the above formula.

In the general case, a section of π exists locally in the étale topology, and by

the previous remark, the above construction, performed over the members Ui →
B, i ∈ I , of a suitable étale open covering of B matches above the intersections

Uij = Ui ×B Uj , i, j ∈ I , and descends to give a global section alb(z) of Alb0X/B .

PROPOSITION 4.9

(a) For all λ0 ∈H1(B,Pic0X/B) and z ∈ Z0(X/B)0, one has in H2(B,Gm),

calling λ ∈H1(B,PicX/B) the image of λ0, 〈λ, z〉�T = 〈λ0,alb(z)〉
T,Pic0X/B

.

(b) For all λ0 ∈H1(B,N Pic0X ,B) and z ∈ Z0(X/B)0, one has in H2(B,μN ),

calling λ ∈H1(B,N PicX/B) the image of λ0, 〈λ, z〉�T 1 = 〈λ0,alb(z)〉
T 1,Pic0X/B

.

Proof

It suffices to exhibit a commutative diagram of sheaves of abelian groups on B

(a similar diagram of corresponding N -torsion parts then follows from this):

0 Gm,B

1

G0
z Pic0X/B

1

0

0 Gm,B G
(
alb(z)

)
Pic0X/B 0

the top sequence being the pullback of (4.6) by the morphism Pic0X/B → PicX/B

and the bottom sequence being (2.12). The existence of such a diagram is equiv-

alent to the existence of a commutative diagram of sheaves on B:
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(4.10)

0 R0π∗Gm,Z/R
0π∗Gm,X

z

Pic0X ,Z/B Pic0X/B

1

0

0 Gm,B G
(
alb(z)

)
Pic0X/B 0

the top sequence coming from (4.4) by the pullback by the morphism Pic0X/B →
PicX/B . The existence of the middle vertical map can be proved locally. Namely,

if it exists, then it is unique since HomB(Pic
0
X/B ,Gm,B) = 0, and therefore, local

constructions glue together and descend to a global one. So we may assume,

without loss of generality, that π : X → B admits a global section. We then let

M be a Poincaré bundle on X ×B Pic0X/B , as before.

Consider a section of Pic0X ,Z/B over some open U → B, given by a couple

(L,θ) with L a line bundle on XU yielding a section λ ∈ Γ(U,Pic0X/B) and θ an

isomorphism of line bundles 1ZU

∼→ L | ZU . By writing as before z=
∑r

i=1miZi

for the chosen z ∈ Z0(X/B)0, the liftings of λ to a section of G(alb(z)) are given

by the relative automorphisms of the line bundle

M0 =

r⊗
i=1

Nm(Zi)U×UPic0XU/U /U×UPic0XU/U

(
M

∣∣ ((Zi)U ×U Pic0XU/U

))⊗mi

on Pic0XU/U over the translation map τλ : Pic0XU/U → Pic0XU/U . Denoting by η :

Pic0XU/U → U the structure map, we have from Note (d) of Section 2 canonical iso-

morphisms τ∗λ(M0)⊗M−1
0

∼→ η∗0∗U (τ
∗
λ(M0)⊗M−1

0 )
∼→ η∗(λ∗(M0)⊗ 0∗U (M0)

−1),

with 0U denoting the zero section of Pic0XU/U . So the set of liftings of λ to a

section of G(alb(z)) can be identified with the set IsoU (0
∗
U (M0), λ

∗(M0)) of iso-

morphisms of line bundles on U . Since M | (X ×B 0Pic0X/B
) = π∗(Q) for some line

bundle Q on B, one has, canonically,

0∗U (M0) =

r⊗
i=1

Nm(Zi)U/U

(
π∗
U (QU )

∣∣ (Zi)U
)⊗mi

=

r⊗
i=1

Q
⊗mi[Zi:B]
U =Q

⊗
∑r

i=1 mi[Zi:B]
U = 1U .

Similarly, since (1×U λ)∗(M) = L⊗ π∗
U (R) on XU , with R a line bundle on U ,

one has, also canonically,

λ∗(M0) =

r⊗
i=1

Nm(Zi)U/U

((
L⊗ π∗

U (R)
) ∣∣ (Zi)U

)⊗mi

=
r⊗

i=1

Nm(Zi)U/U

(
L
∣∣ (Zi)U

)⊗mi
.

Therefore, the set of liftings of the section λ of Pic0X/B to a section of G(alb(z))
is finally identified with the set IsoU (1U ,

⊗r
i=1Nm(Zi)U/U (L | (Zi)U )

⊗mi) of iso-

morphisms of line bundles on U . The middle vertical arrow in diagram (4.10) is
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defined then by sending the section of Pic0X ,Z/B given by (L,θ) to the isomor-

phism

r⊗
i=1

Nm(Zi)U/U

(
θ
∣∣ (Zi)U

)⊗mi
: 1U

∼−→
r⊗

i=1

Nm(Zi)U/U

(
L
∣∣ (Zi)U

)⊗mi
.

This makes the diagram commutative, thereby ending this proof. �

We note that, due to our hypotheses on the scheme B, the group H1(B,Pic0X/B)

is here a torsion group (see, e.g., [8, Section II.5, the proof of Proposition 5.1(a)],

together with [1, Section 1.2, Proposition 8]), and hence, Proposition 4.9(a) is in

fact a consequence of Proposition 4.9(b).

REMARK 4.11

The foregoing applies, in particular, to abelian schemes π :A→ B, the scheme

Pic0A/B being then the dual abelian scheme Â of A. The biduality isomorphism

A ∼→ ˆ̂A yields here a natural isomorphism A ∼→ Alb0A/B and, with this identifi-

cation, the map alb : Z0(A/B)0 → Γ(B,A) from (4.8) is just abelian summation

along the fibers of π.

(ii) Néron models. Back in the notation of Section 1, we treat here the analogue

of Proposition 4.9 of Part (i) of the present section, with π :X →B now replaced

by π : S0 →B, as well as by its restrictions to arbitrary open subsets U of B. We

shall adopt in this Part (ii) the same notational conventions as in Section 3, and

assume that an open subset U of B has been fixed, now denoted B, and E0, S0,

.. standing here for the restrictions (E0)U , (S0)U , (..)U of these objects above U .

We show that the pairings 〈·, ·〉�T and 〈·, ·〉�T 1 are similarly related to the

pairings 〈·, ·〉T (see (3.7)) and 〈·, ·〉T 1 (see (3.15)), respectively, at least if one

restricts oneself to the subgroup Z0(E0/B)⊂ Z0(S0/B) of relative 0-cycles sup-

ported inside E0 ⊂ S0, that is, formal linear combinations with integral coefficients

of irreducible closed subsets of E0 mapping finitely (and hence properly) onto B.

Here appears, instead of the Albanese map from (4.8), the abelian summation

map (restricted to Z0(E0/B)0)

(4.12) Z0(E0/B)−→ Γ(B,E0), z �→ zAb.

By using the Néron universal property, this map extends to the whole of Z0(S0/

B), yielding the composition of the natural map Z0(S0/B)→ Γ(B,PicS0/B) with

the map induced on global sections by the abelian summation map PicS0/B →E0
from Note (b) of Section 3. We have not looked into the theme of the following

proposition in this more extended setting.

PROPOSITION 4.13

(a) For all λ0 ∈H1(B,Pic0S0/B) and z ∈ Z0(E0/B)0 one has in H2(B,Gm),

calling λ ∈H1(B,PicS0/B) the image of λ0, 〈λ, z〉�T = 〈λ0, zAb〉T .
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(b) For all λ0 ∈H1(B,N Pic0S0/B) and z ∈ Z0(E0/B)0, one has in H2(B,μN ),

calling λ ∈H1(B,N PicS0/B) the (isomorphic) image of λ0, 〈λ, z〉�T 1 = 〈λ0, zAb〉T 1 .

Proof

We freely use notation from Part (i) of the present section; in particular, we

write z =
∑r

i=1miZi, with
∑r

i=1mi[Zi : B] = 0, and Z stands for
⋃r

i=1Zi ⊂ E0
with its reduced scheme structure. We put, moreover, α= zAb ∈ Γ(B,E0). By the

definitions of 〈·, ·〉�T and 〈·, ·〉�T 1 and the definitions of 〈·, ·〉T and 〈·, ·〉T 1 given in

(3.7) and (3.15), respectively, the result will follow if we show the existence of

the middle vertical arrow making the following diagram of sheaves commutative:

0 Gm,B

1

G0
z Pic0S0/B

1

0

0 Gm,B G(α) Pic0S0/B 0

This is equivalent to the existence of the middle vertical arrow making the fol-

lowing diagram commutative:

(4.14)

0 R0π∗Gm,Z/R
0π∗Gm,S0

z

Pic0S0,Z/B Pic0S0/B

1

0

0 Gm,B G(α) Pic0S0/B 0

To define this arrow, consider a section of Pic0S0,Z/B over some open U →B, given

by a line bundle L on (S0)U defining a section λ of Pic0S0/B on U , together with an

isomorphism of line bundles θ : 1ZU

∼→ L | ZU . The sections of G(α) on U which

lift λ ∈ Γ(U,Pic0S0/B) are the relative automorphisms (α̃, τα) ∈ Aut(L, (S0)U ) of

L over the translation map of (S0)U by (the restriction of) α. Note that the line

bundle L may have nontrivial restriction on the zero section of (S0)U , but that

this does not affect the description just given (see Part (iii) of Section 3). By Notes

(d) and (e) of Section 3, we have canonically, as in the proof of Proposition 4.9

above, τ∗α(L)⊗L−1 	 π∗0∗U (τ
∗
α(L)⊗L−1)	 π∗(α∗

U (L)⊗ 0∗U (L)
−1), with αU and

0U denoting the restrictions of α and of the zero section of S0 to U , respectively.

Hence, to give such an α̃ is tantamount to giving a line bundle isomorphism on

U , 0∗U (L)
∼→ α∗

U (L). So, the set of liftings of λ ∈ Γ(U,Pic0S0/B) to a section of G(α)
is identified canonically with the set IsoU (0

∗
U (L), α

∗
U (L)) of isomorphisms of line

bundles on U . To continue, we are led to open the black box from Remark 4.11.

�

LEMMA 4.15

We keep the above notation. One has a canonical isomorphism of line bundles
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on B
r⊗

i=1

Nm(Zi)U/U

(
L
∣∣ (Zi)U

)⊗mi ∼−→ α∗
U (L)⊗ 0∗U (L)

−1.

Proof of Lemma 4.15

The claim is equivalent to the existence of a canonical isomorphism of line bundles

on U :

(4.16)
r⊗

i=1

Nm(Zi)U/U

(
L⊗ 0∗U (L)

−1
∣∣ (Zi)U

)⊗mi ∼−→ α∗
U (L)⊗ 0∗U (L)

−1.

Put in this way, the statement actually holds without the restriction
∑r

i=1mi[Zi :

B] = 0 on the relative degree of z, and consequently, we drop it.

(1) We review first the analogous statement for an abelian variety Ā over an

algebraically closed field. Here L ∈ Pic0(Ā), z =
∑r

i=1miāi, āi ∈ Ā, and (4.16)

reads

(4.17)

r⊗
i=1

(
L(āi)⊗L(0̄)−1

)⊗mi ∼−→ L(ā)⊗L(0̄)−1

canonically, with ā ∈ Ā the abelian sum of the 0-cycle z; thus, ā =
∑r

i=1miāi,

here considered not formally, but performed inside Ā. The line bundle L is invari-

ant by translations, and for all b̄ ∈ Ā one has L(b̄)⊗ L(0̄)−1 =Hom(L, τ∗
b̄
(L)) =

Homτb̄(L,L), the latter term denoting the vector space of relative endomorphisms

(˜̄b, τb̄) : (L, Ā)→ (L, Ā) over the translation map by b̄. For all b̄1, b̄2 ∈ Ā we have

a canonical isomorphism of 1-dimensional vector spaces

(4.18) Homτb̄1
(L,L)⊗Homτb̄2

(L,L)
∼−→Homτb̄1+b̄2

(L,L)

given by the composition of relative endomorphisms. This map is associative and

commutative in b̄1, b̄2, the latter fact being explained as in Part (iii) of Section 2

on the commutativity of the group scheme G(λ). From this, the canonical iso-

morphism (4.17) follows. The (yet to be defined) isomorphism (4.16) will have

this description on geometric fibers at points of good reduction, underpinning

therewith its canonical nature.

(2) We extend the foregoing to the case of an abelian scheme π :A→B over a

scheme B. Let L be a line bundle on A, yielding a section belonging to Γ(B, Â)⊂
Γ(B,PicA/B), and suppose that z=

∑r
i=1miΓαi is given, with Γαi ⊂B×BA=A

the graph of a section αi ∈ Γ(B,A), i= 1, . . . , r. Call α=
∑r

i=1miαi ∈ Γ(B,A).

We have an (a fortiori canonical) isomorphism

(4.19)

r⊗
i=1

(
α∗
i (L)⊗ 0∗B(L)

−1
)⊗mi ∼−→ α∗(L)⊗ 0∗B(L)

−1

inducing (4.17) on the geometric fibers of π. For all β ∈ Γ(B,A) the translation

map τβ :A→A acts as the identity on Â, and hence, as before, one has canoni-

cal isomorphisms τ∗β (L)⊗ L−1 ∼→ π∗(β∗(L)⊗ 0∗B(L)
−1). From this the following
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canonical isomorphisms ensue (here we alternate somewhat crudely between the

notions of line bundle and invertible sheaf; see Note (c) of Section 1):

β∗(L)⊗ 0∗B(L)
−1 ∼−→ R0π∗π

∗(β∗(L)⊗ 0∗B(L)
−1

)
∼−→ R0π∗

(
τ∗β (L)⊗L−1

)
∼−→ R0π∗

(
HomA

(
L, τ∗β (L)

))
∼−→ R0π∗

(
Homτβ

(L,L)
)
,

with Homτβ
(L,L) denoting here the sheaf of relative endomorphisms of L over

the translation map τβ :A→A. Given sections β1, β2 ∈ Γ(B,A), the composition

of relative endomorphisms gives an isomorphism of line bundles on B

R0π∗
(
Homτβ1

(L,L)
)
⊗R0π∗

(
Homτβ2

(L,L)
) ∼−→R0π∗

(
Homτβ1+β2

(L,L)
)

restricting to (4.18) on geometric fibers. From this and from the preceding iso-

morphisms we derive the isomorphism (4.19), given by (4.17) on geometric fibers,

as desired.

(3) Finally, we turn to the isomorphism (4.16). There will be no loss of gen-

erality in assuming U to be a (Zariski) open subset of B and it will cause no

harm either to restrict ourselves to the case U =B in order to simplify notation

in what follows. Thus, L is now supposed to be a line bundle on S0 yielding a sec-

tion belonging to Γ(B,Pic0S0/B) ⊂ Γ(B,PicS0/B), and the claimed isomorphism

reads

(4.20)

r⊗
i=1

NmZi/B

(
L⊗ 0∗B(L)

−1
∣∣ Zi

)⊗mi ∼−→ α∗(L)⊗ 0∗B(L)
−1.

Suppose first that Zi =Γαi , αi ∈ Γ(B,S0), i= 1, . . . , r, as in (2). Then (4.20)

is rewritten as

(4.21)
r⊗

i=1

(
α∗
i (L)⊗ 0∗B(L)

−1
)⊗mi ∼−→ α∗(L)⊗ 0∗B(L)

−1

with α=
∑r

i=1miαi. The existence of this isomorphism, restricting to (4.17) on

the geometric fibers at points of good reduction, is established as in (2), bear-

ing in mind (see Note (d) of Section 3) that for all β ∈ Γ(B,S0) = Γ(B,E0) the

translation map τβ : S0 → S0 acts as the identity on Pic0S0/B .

In the general case, z=
∑r

i=1miZi with components Zi of arbitrary degree

over B, it will suffice now, by (4.21), to consider the case z = Z of an irre-

ducible cycle. Let f : B′ → B be a finite morphism with B′ a smooth pro-

jective curve such that the Cartier divisor Z ′ = Z ×B B′ of S′
0 = S0 ×B B′

splits as Z ′ =
∑r′

i=1m
′
iΓα′

i
, with α′

i ∈ Γ(B′, S′
0), i = 1, . . . , r′. Similarly, write

E ′
0 = E0 ×B B′ so that Z ′ ⊂ E ′

0 ⊂ S′
0 and hence α′

i ∈ Γ(B′,E ′
0), i = 1, . . . , r′. By

[3, Proposition 6.5.8, p. 130], f∗NmZ/B =NmZ′/B′g∗, where g : Z ′ → Z is the

map induced by f . Writing L′ for the pullback of L to S′
0 one has thus, canon-

ically,
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f∗NmZ/B

(
L⊗ 0∗B(L)

−1
∣∣ Z) ∼−→NmZ′/B′

(
L′ ⊗ 0∗B′(L′)−1

∣∣ Z ′)

∼−→
r′⊗
i=1

NmΓα′
i
/B′

(
L′ ⊗ 0∗B′(L′)−1

∣∣ Γα′
i

)⊗m′
i

∼−→
r′⊗
i=1

(
α′
i
∗
(L′)⊗ 0∗B′(L′)−1

)⊗m′
i .

Call α′ =
∑r′

i=1m
′
iα

′
i ∈ Γ(B′,E ′

0). We claim that the following formula, similar to

(4.21), holds on B′:

(4.22)

r′⊗
i=1

(
α′∗

i (L
′)⊗ 0∗B′(L′)−1

)⊗m′
i ∼−→ α′∗(L′)⊗ 0∗B′(L′)−1,

by an isomorphism inducing (4.17) on geometric fibers at points of good reduc-

tion. This is proved in the same way as in (2) and here above, upon settling the

claim below. The action of E0 on S0 by translations E0 ×B S0 → S0 pulls back

to a similar action of E ′
0 on S′

0, E ′
0 ×B′ S′

0 → S′
0. Given a section β′ ∈ Γ(B′,E ′

0),

we have therefore a translation isomorphism τβ′ : S′
0 → S′

0. We claim that the

line bundle τ∗β′(L′) ⊗ (L′)−1 is the pullback of some line bundle on B′ by the

structure map π′ : S′
0 → B′. Since the geometric fibers of π′ are isomorphic to

the geometric fibers of π and since the vector space of global regular functions

of the latter ones is 1-dimensional, we may apply the seesaw principle (see [10,

Sections II.5 and III.10]), and the statement reduces to showing that, for all

geometric points t̄′ of B′, τ∗β(t̄′)(L
′(t̄′)) 	 L′(t̄′) holds. If t̄ = f(t̄′) denotes the

geometric point of B obtained as the image of t̄′ by the morphism f , then one

has β(t̄′) ∈ E0(t̄ ), so β(t̄′) is the value at a certain geometric point x̄0 ∈ U above

t̄ of a section β0 ∈ Γ(U,E0) for a suitable open U →B in the étale topology. Since

translation by β0 leaves the line bundle LU invariant up to tensor product with

a line bundle coming from U , it follows that τ∗β0(x̄0)
(LU (x̄0)) 	 LU (x̄0); hence,

τ∗β(t̄′)(L
′(t̄′))	 L′(t̄′).

Now having that α′ = f∗(α) and 0B′ = f∗(0B) and consequently that

α′∗(L′) = f∗α∗(L) and 0∗B′(L′) = f∗0∗B(L), we obtain finally, from (4.22) and

the chain of isomorphisms preceding it, an isomorphism of line bundles on B′

f∗NmZ/B

(
L⊗ 0∗B(L)

−1
∣∣ Z) ∼−→ f∗(α∗(L)⊗ 0∗B(L)

)
fulfilling the descent conditions for the map f , namely, the equality of its two

restrictions to B′ ×B B′, because this holds at geometric points of B of good

reduction; hence, it holds everywhere. By descent we thus obtain the isomor-

phism NmZ/B(L ⊗ 0∗B(L)
−1 | Z)

∼→ α∗(L) ⊗ 0∗B(L) with the required property.

This finishes the proof of Lemma 4.15. �

By Lemma 4.15, the set of liftings of λ ∈ Γ(U,Pic0S0/B) to a section of G(α)
becomes finally identified, as in Proposition 4.9 above, with the set

IsoU (1U ,
⊗r

i=1Nm(Zi)U/U (L | (Zi)U )
⊗mi) of isomorphisms of line bundles on U .



Cohomology of elliptic surfaces over finite fields 775

The image of our chosen section of Pic0S0,Z/B over U by the middle vertical map

in (4.14) is defined then to be the isomorphism
⊗r

i=1Nm(Zi)U/U (θ | (Zi)U )
⊗mi

deduced from θ. This makes the diagram (4.14) commutative, and ends the proof

of Proposition 4.13.

REMARK 4.23

The price we paid with the proof of Lemma 4.15 for an explicit description of

the middle vertical arrow in diagram (4.14) can be avoided as follows. As was

the case with Proposition 4.9, here in Proposition 4.13 and by a similar reason

(see Part (v) of Section 3), Part (a) follows from Part (b). To prove Part (b),

one needs only the existence of the middle vertical arrow yielding a commutative

diagram of sheaves of abelian groups

0−→ μN,B −→ NG0
z −→ N Pic0S0/B −→ 0⏐⏐�1

⏐⏐�
⏐⏐�1(4.24)

0−→ μN,B −→ NG(α)−→ N Pic0S0/B −→ 0

deduced from the diagram above (4.14) by taking N -torsion parts everywhere.

Except for the middle terms so far, the sheaves in this diagram are represented

by commutative group schemes. It follows, as in [11, Proposition 17.4]—with the

flat topology now replaced by the étale topology—that these two terms are also

representable, so that (4.24) is actually a diagram of commutative group schemes

over B. Then, as in the proof of Proposition 3.13, we may apply a continuous

extension argument to the restriction of (4.24) above the dense open subset B−

of B, for which a middle vertical arrow with the required properties exists, by

the proof of Proposition 4.9 together with Remark 4.11.

5. A formula of Manin

In this section we consider, as in Part (i) of Section 4, relative schemes π :X →B

with B integral, regular, and of dimension at most 1 and such that R0π∗Gm,X =

Gm,B holds. Let F 1H2(X , μN ) = Ker(H2(X , μN ) → H0(B,R2π∗μN,X )) be the

first term of the filtration of H2(X , μN ) coming from the Leray spectral sequence

for π and the sheaf μN,X . Given a relative 0-cycle of X , z ∈ Z0(X/B), z =∑r
i=1miZi, we have an evaluation map

(5.1) evz :H
2(X , μN )−→H2(B,μN ),

obtained as the composition

H2(X , μN )
ρX ,Z−→ H2(Z, μN )

∼←−H2(B,R0π∗μN,Z)
z̃−→H2(B,μN ),

where, as in Section 4, Z =
⋃r

i=1Zi with its structure as a reduced closed sub-

scheme of X , ρX ,Z is the restriction map, the intermediate morphism is the

inverse of the edge isomorphism from the degenerating Leray spectral sequence
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for π and μN,Z , and z̃ is induced by the map z̃ =
∏r

i=1(NmZi/B
◦ ρZ,Zi

)mi :

R0π∗μN,Z → μN,B .

On the other side, if we assume in addition that z has degree 0, z ∈ Z0(X/B)0,

then we have from Part (i) of Section 4 the map

(5.2) 〈·, z〉�T 1 :H
1(B,N PicX/B)−→H2(B,μN )

given by the composition of the first connecting homomorphism in the cohomol-

ogy sequence of the exact sequence

(5.3) 0−→R0π∗μN,Z/R
0π∗μN,X −→R1π∗μN,X ,Z −→R1π∗μN,X −→ 0

deduced from the sequence

(5.4) 0→ μN,X ,Z → μN,X → μN,Z → 0,

with the morphism H2(B,z), deduced from the map z :R0π∗μN,Z/R
0π∗μN,X →

μN,B that factors our map z̃ above. (Note that R1π∗μN,X = NPicX/B .)

We shall need the following result, which goes back to [6, Proposition 8,

p. 407].

PROPOSITION 5.5

As above, let π : X → B be a relative scheme with B integral, regular, and of

dimension at most 1 and such that R0π∗Gm,X =Gm,B holds. Let z ∈ Z0(X/B)0
be a relative 0-cycle of degree 0 of X , and let ξ ∈ F 1H2(X , μN ) have image

λ ∈ H1(B,N PicX/B) by the canonical map F 1H2(X , μN ) → H1(B,N PicX/B)

coming from the Leray spectral sequence for π and μN,X . One then has the equal-

ity, in H2(B,μN ), evz(ξ) =−〈λ, z〉�T 1 .

Proof

In view of the relationship between the mappings z and z̃, it will be sufficient to

show that the following diagram, associated with z, is anticommutative:

(5.6)

F 1H2(X , μN )
ρX ,Z

H2(Z, μN ) H2(B,R0π∗μN,Z)
∼

H1(B,R1π∗μN,X )
∂

H2(B,R0π∗μN,Z/R
0π∗μN,X )

where the left-hand side vertical arrow is the aforementioned map and the right-

hand side vertical arrow is the obvious map.

Let 0→ (I ′·, φ′)→ (I ·, φ)→ (I ′′·, φ′′)→ 0 be an injective resolution of the

sequence (5.4), with I · = I ′· ⊕I ′′· and

φ=

(
φ′ ε

0 φ′′

)
,

where ε : I ′′· → I ′·+1 is a morphism of degree 1. We have the relations φ′2 =

0, φ′′2 = 0, and φ′ε + εφ′′ = 0. For a sheaf of abelian groups F on X and an
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injective resolution (J ·, ψ) of it, there are canonical isomorphisms, for all q ≥
0, Hq(X ,F)	Hq(Γ(X ,J ·))	Hq(B,π∗J ·)	 lim−→UH

q(C ·(U , π∗J ·)tot), where U
runs through the étale open coverings of B. The Leray spectral sequence for

π and F is given by the second spectral sequence of hypercohomology for the

complex π∗J · on B. The differential in the total complex C ·(U , π∗J ·)tot is given

by dx = (−1)pψx + δx for x ∈ Cp(U , π∗J q). As usual, we shall denote kernels

(resp., images) of π∗J · by Z · (resp., B·).

The map ε sends, in particular, Z ′′0 into Z ′1, and the morphism so obtained

Z ′′0 → Z ′1/B′1 is the connecting homomorphism ∂ : R0π∗μN,Z → R1π∗μN,X ,Z
of the cohomology sequence of (5.4); hence, it describes the first morphism in

(5.3). Indeed, let u be a section of R0π∗μN,Z = Z ′′0 over some open U → B.
This lifts to the section (0, u) of I0 over U . Since φ(0, u) = (εu,0), it follows that

εu ∈ Γ(U,Z ′1) represents ∂u ∈ Γ(U,R1π∗μN,X ,Z).

Now let ξ ∈ F 1H2(X , μN ) be given, represented in H2(X , μN ) by a =

(a′, a′′) ∈ Γ(X ,B2). For a suitable open covering U of B we may write, for its

image a ∈ C0(U , π∗I2), a = φb with b = (b′, b′′) ∈ C0(U , π∗I1). So a′ = φ′b′ +

εb′′ and a′′ = φ′′b′′. Then, as db = a + δb in C ·(U , π∗I ·)tot, it follows that a ∈
Z0(U ,Z2) is cohomologous to −δb= (−δb′,−δb′′) ∈ Z1(U ,Z1), and therefore, the

latter cocycle also represents ξ in H2(X , μN ) = H2(B,π∗I ·) and visualizes the

image of ξ in H1(B,R1π∗μN,X ) as the element represented by −δb ∈ Z1(U ,Z1).

In order to find the image of this class by the bottom map ∂ in (5.6), we

write the sequence (5.3) as

0−→Z ′′0/Z0 ε−→Z ′1/B′1 −→Z1/B1 −→ 0

and seek—upon refining U suitably—a lift of −δb ∈ Z1(U ,Z1) to a cochain in

C1(U ,Z ′1), modulo C1(U ,B1). The vanishing of R1π∗μN,Z gives Z ′′1 = B′′1, and

so δb′′ ∈ Z1(U ,Z ′′1) = Z1(U ,B′′1) can be written, after refining U , as δb′′ = φ′′c′′

for some c′′ ∈C1(U , π∗I ′′0). Hence, −δb+φ(0, c′′) = (−δb′,−δb′′)+ (εc′′, φ′′c′′) =

(εc′′ − δb′,0), and therefore, εc′′ − δb′ ∈ C1(U ,Z ′1) does the job. Then, since

δ(εc′′−δb′) = ε(δc′′), it follows finally that δc′′ ∈ Z2(U ,Z ′′0) represents the image

of ξ ∈ F 1H2(X , μN ) in H2(B,R0π∗μN,Z/R
0π∗μN,X ) by the composition of the

left-hand side vertical map and the bottom map in (5.6).

On the other hand, the image of ξ by the map ρX ,Z is the class of H2(Z, μN )

represented by a′′ ∈ Γ(X ,B′′2). We have, for its image a′′ ∈ Z0(U ,Z ′′2) in

C ·(U , π∗I ′′·)tot, d(b
′′ + c′′) = a′′ + δc′′; hence, ρX ,Z(ξ) is also represented by the

cocycle −δc′′ ∈ Z2(U ,Z ′′0), and this says that ρX ,Z(ξ) is the image, by the edge

map, of the element represented by −δc′′ in H2(B,R0π∗μN,Z). The image of the

latter element in H2(B,R0π∗μN,Z/R
0π∗μN,X ) is also represented by −δc′′, and

this, being the opposite of the result that we found earlier, finishes the proof of

Proposition 5.5. �

REMARK 5.7

Everything in this section remains true if one replaces μN with Gm, N PicX/B

with PicX/B , and 〈·, ·〉�T 1 with 〈·, ·〉�T .
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6. The comparison result

In this section we prove Theorem 1.7. In the notation of Section 1, it states that,

for all prime integers � �= p, the following diagram is commutative:

(6.1)

H1(B,T�E0
0 )

∼
H1(B,T�E0)

γ
Pic

(
E0(�)c

)inv

F 1H2
(
S0,Z�(1)

)0 h∗

	 ε

H2
(
E0(�)c,Z�(1)

)

where ε (edge) denotes the composition

F 1H2
(
S0,Z�(1)

)0 ∼−→H1
(
B,R1π∗Z�(1)

) ∼−→H1(B,T�PicS0/B)
∼−→H1(B,T�E0

0 )

and where γ is the class invariant homomorphism (see [14], [15]).

The restriction of this diagram to Pic0(S0/B)⊗ Z� ⊂ F 1H2(S0,Z�(1))
0 can

be written

(6.2)

H0(B,E0
0 )⊗Z� H1(B,T�E0)

γ
Pic

(
E0(�)c

)inv

Pic0(S0/B)⊗Z�

	 Ab

h∗
H2

(
E0(�)c,Z�(1)

)

with the first upper arrow equal to the composition

H0(B,E0
0 )⊗Z�

∂−→H1(B,T�E0
0 )

∼−→H1(B,T�E0).

This is because the restriction of ε to Pic0(S0/B)⊗ Z� equals the composition

∂Ab due to the commutative diagram (with standard maps), for all N prime

to p,

H0(B,Pic0S0/B)−→H1(B,N PicS0/B)�⏐⏐
�⏐⏐

Pic0(S0/B) −→ F 1H2(S0, μN )

Diagram (6.2) is the projective limit of the following ones tensored with Z/NZ,

for N = �r, r ≥ 0:

(6.3)

H0(B,E0
0 ) H1(B,NE0)

γN
Pic(NEc

0)
inv

Pic0(S0/B)

	 Ab

h∗
Pic(NEc

0)

The diagrams (6.3) were shown in [14] to be commutative, for all N prime to

p, using geometric arguments. (The restrictions imposed in that article do not

affect the proof of this fact, which holds in the present generality.)
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Our diagram (6.1) is the projective limit of the following ones, for N = �r,

r ≥ 0:

(6.4)

H1(B,NE0
0 ) H1(B,NE0)

γN
Pic(NEc

0)
inv

F 1H2(S0, μN )0

	 εN

h∗
H2(NEc

0 , μN )

with εN equal to the composition

F 1H2(S0, μN )0
∼−→H1(B,R1π∗μN,S0

)
∼−→H1(B,N PicS0/B)

∼−→H1(B,NE0
0 ).

The following will then prove the commutativity of diagram (6.1).

CLAIM 6.5

For all N prime to p, the diagram (6.4) is commutative for all elements in the

image of the map F 1H2(S0, μN2)0 → F 1H2(S0, μN )0 deduced from the multipli-

cation by N map (i.e., the N th power map) μN2,S0
→ μN,S0

.

We put B̃ = NEc
0 and f = πh : B̃ →B. Let π̃ : S̃0 → B̃ be the Kodaira–Néron sur-

face of the pullback of the curve E0 to the generic points of the (irreducible)

connected components of B̃, and let Ẽ0 ⊂ S̃0 (resp., Ẽ0
0 ⊂ S̃0) be the Néron

model of that curve (resp., the open group subscheme of the identity compo-

nents of the fibers of the latter). One has a natural morphism (E0)B̃ → Ẽ0 of

group schemes over B̃, and the tautological section of N (E0)B̃ → B̃ over the open

subset f−1(B−) ⊂ B̃ extends uniquely to a section ω̃ of N Ẽ0 → B̃. We rewrite

diagram (6.4) as follows, by writing out γN according to its definition (see [15,

p. 404]) and using elementary functoriality properties:

H1(B,NE0
0 )

f∗

H1
(
B̃, (NE0

0 )B̃
)

H1(B̃,N Ẽ0
0 ) H1(B̃,N Ẽ0)

eN (−,ω̃)
H1(B̃,μN )

ν

Pic(B̃)

∂

F 1H2(S0, μN )0

� εN

h∗
H2(B̃,μN )

(6.6)

The map ∂ on the right-hand side is a connecting homomorphism from the coho-

mology exact sequence of the Kummer sequence for Gm,B̃ and the integer N ,

and the composition ∂ν is therefore a connecting homomorphism (also written

as ∂ in this article) for the restriction of the latter to μN,B̃ ⊂Gm,B̃ (see the first

exact sequence in Proposition 2.6).
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For its study we split (6.6) into two other diagrams. The first one is

(6.7)

H1(B,NE0
0 )

f∗

H1
(
B̃, (NE0

0 )B̃
)

H1(B̃,N Ẽ0
0 )

F 1H2(S̃0, μN )0

	ε̃N

ω̃∗

F 1H2(S0, μN )0

	 εN

h∗
H2(B̃, μN )

the upper side being the first half of the upper side of (6.6), and the map ε̃N being

defined similarly to the map εN using the Leray spectral sequence for π̃ : S̃0 → B̃

and the sheaf μN,S̃0
.

The second diagram is

(6.8)

H1(B̃,N Ẽ0
0 ) H1(B̃,N Ẽ0)

eN (−,ω̃)
H1(B̃, μN )

ν

Pic(B̃)

∂

F 1H2(S̃0, μN )0

	 ε̃N

ω̃∗
H2(B̃, μN )

the upper side being the second half of the upper side of (6.6). Diagram (6.6) is

then obtained from diagrams (6.7) and (6.8) by joining them along their common

arrows ε̃N and ω̃∗. Claim 6.5 will follow from the next lemma.

LEMMA 6.9

(a) The diagram (6.7) is commutative, replacing the arrow ε̃N by its inverse

ε̃−1
N .

(b) The diagram (6.8) commutes for all elements belonging to the image of

the morphism F 1H2(S̃0, μN2)0 → F 1H2(S̃0, μN )0, deduced from the multiplica-

tion by N map μ
N2,S̃0

→ μ
N,S̃0

.

Proof

We prove Part (a). The morphism (E0)B̃ → Ẽ0 embeds (S−
0 )B̃ as an open subset

of S̃0, and the projection map (S−
0 )B̃ → S−

0 defines a rational map S̃0 ��� S0,

compatible with f : B̃ → B. We may complete this picture into a commutative
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diagram (see [2])

(6.10)

S−
0 (S−

0 )B̃
id

(S−
0 )B̃

S0

π

S̃′
0

g δ

π̃′

S̃0

π̃

B B̃
f id

B̃

with S̃′
0 a smooth projective surface over k and morphisms g and δ, the latter

one birational, and the upper vertical arrows being open embeddings. The lower

half of this diagram yields, by the functorial properties of the Leray spectral

sequence, a commutative diagram

(6.11)

H1(B,NE0
0 ) H1(B̃,N Ẽ0

0 )

H1(B,N PicS0/B)

	

H1(B̃,N PicS̃′
0/B̃

) H1(B̃,N PicS̃0/B̃
)

	

	

	

H1(B,R1π∗μN,S0
)

	

H1(B̃,R1π̃′
∗μN,S̃′

0

)

	

H1(B̃,R1π̃∗μN,S̃0
)

	

	

F 1H2(S0, μN )0

	

g∗

F 1H2(S̃′
0, μN )0

	

F 1H2(S̃0, μN )0

	

δ∗
	

The right-hand side horizontal morphisms are isomorphisms, for instance, because

the upper first one is as well: for all open Ũ → B̃ in the étale topology, the

map (S̃′
0)Ũ → (S̃0)Ũ is a proper birational morphism of smooth varieties; hence,

Pic((S̃′
0)Ũ ) is the direct sum of Pic((S̃0)Ũ ) and a (finitely generated) free abelian

group. Hence, these groups have the same torsion subgroup. It follows, in partic-

ular, that N PicS̃′
0/B̃

∼← N PicS̃0/B̃
.

Next, the diagram obtained from (6.11) by inserting the upper side of dia-

gram (6.7) remains commutative. This follows from the commutativity of the

diagram of étale group schemes over B̃:

(6.12)

(NE0
0 )B̃ N Ẽ0

0

(N PicS0/B)B̃

	

g∗

N PicS̃′
0/B̃ N PicS̃0/B̃

	

	
δ∗
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which is due to the commutativity of its restriction to the open dense subset

f−1(B−) ⊂ B̃, where all the horizontal arrows become identities (see the lower

half of diagram (6.10)).

In this way, the commutativity of diagram (6.7) amounts to the equality

between h∗ and ω̃∗(δ∗)−1g∗. To prove this equality, note that the section ω̃ of

π̃ : S̃0 → B̃ lifts to a section ω̃′ of π̃′ : S̃′
0 → B̃, ω̃ = δω̃′, and that h= gω̃′, because

this equality holds above the open dense subset f−1(B−) ⊂ B̃. So ω̃∗ = ω̃′∗δ∗,

and hence, ω̃∗(δ∗)−1g∗ = ω̃′∗g∗ = (gω̃′)∗ = h∗. This proves Part (a) of Lemma 6.9.

We prove Part (b). Let ξ̃ ∈ F 1H2(S̃0, μN )0, and call λ̃ ∈H1(B̃,N PicS̃0/B̃
)

its image by the edgelike morphism in the Leray spectral sequence for π̃ : S̃0 → B̃

and the sheaf μ
N,S̃0

. The image of ξ̃ in H1(B̃,N Ẽ0
0 ) by the composition of ε̃N with

the first upper arrow in diagram (6.8) is λ̃Ab, and so its image by the composition

of the left-hand side, the top side, and the right-hand side in that diagram equals

∂eN (λ̃Ab, ω̃) = −∂ēN (λ̃, ω̃)
(
(3.6)

)
= 〈νλ̃, ω̃〉T 0 − 〈λ̃, νω̃〉T 1 (Proposition 3.24).

(Here and below, the propositions and formulae referred to from earlier sections

are being applied over each connected (i.e., irreducible) component of B̃ sepa-

rately.)

Secondly, call Γ0̃ and Γω̃ , respectively, the graphs of the sections 0̃ and ω̃ of

π̃ : Ẽ0 → B̃, and let z̃ = Γω̃ − Γ0̃ ∈ Z0(S̃0/B̃)0. In the notation of Section 5, we

have evz̃ = ω̃∗ − 0̃∗ and z̃Ab = νω̃. Thus, bearing in mind that 0̃∗(ξ̃) = 0, we have

that the image of ξ̃ by the bottom arrow in diagram (6.8) equals

ω̃∗(ξ̃) = evz(ξ̃)

= −〈λ̃, z̃〉�T 1 (Proposition 5.5)

= −〈λ̃, νω̃〉T 1

(
Proposition 4.13(b)

)
.

The discrepancy between these two results is given by the term

〈νλ̃, ω̃〉T 0 =−ēN (∂νλ̃, ω̃) (Proposition 3.13).

This term vanishes, and diagram (6.8) consequently becomes commutative, for

instance, for those ξ̃ ∈ F 1H2(S̃0, μN )0 such that ∂νλ̃ = 0. This condition is

equivalent to λ̃ belonging to the image of the morphism H1(B̃,N2 PicS̃0/B̃
)→

H1(B̃,N PicS̃0/B̃
) induced by the multiplication by N map N2 PicS̃0/B̃

→
N PicS̃0/B̃

, which in turn is equivalent to ξ̃ ∈ F 1H2(S̃0, μN )0 fulfilling the con-

dition in the statement of Part (b) of Lemma 6.9. The proof of Lemma 6.9(a)

and the analog of diagram (6.11) with N replaced by N2 imply that, in diagram

(6.7), the elements mentioned in the statement of Claim 6.5 are mapped to the

elements mentioned in the statement of Lemma 6.9(b). Together with Lemma 6.9

this proves Claim 6.5 and therefore finishes the proof of Theorem 1.7. �
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Études Sci. 8 (1961). MR 0217084.

[4] , “Le groupe de Brauer, III: Exemples et compléments” in Dix exposés
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