On a smooth compactification of

 $\mathrm{PSL}(n,\mathbb{C})/T$

Indranil Biswas, S. Senthamarai Kannan, and D. S. Nagaraj

Abstract Let T be a maximal torus of $PSL(n, \mathbb{C})$. For $n \ge 4$, we construct a smooth compactification of $PSL(n, \mathbb{C})/T$ as a geometric invariant theoretic quotient of the won-derful compactification $\overline{PSL}(n, \mathbb{C})$ for a suitable choice of T-linearized ample line bundle on $\overline{PSL}(n, \mathbb{C})$. We also prove that the connected component, containing the identity element, of the automorphism group of this compactification of $PSL(n, \mathbb{C})/T$ is $PSL(n, \mathbb{C})$ itself.

1. Introduction

Let G be a semisimple group of adjoint type over the field \mathbb{C} of complex numbers. De Concini and Procesi [DP] constructed a smooth projective variety \overline{G} with an action of $G \times G$ such that

- the variety G equipped with the action of $G\times G$ given by the left and right translations is an open dense orbit of it, and

• the boundary $\overline{G} \setminus G$ is a union of $G \times G$ stable normal crossing divisors.

This variety \overline{G} is known as the wonderful compactification of G.

Fix a maximal torus T of G. Consider the right action of T on \overline{G} , meaning the action of the subgroup $1 \times T \subset G \times G$. For a T-linearized ample line bundle \mathcal{L} on \overline{G} , let $\overline{G}_T^{ss}(\mathcal{L})$ and $\overline{G}_T^s(\mathcal{L})$ denote, respectively, the loci of semistable and stable points of \overline{G} (see [MFK, p. 30, p. 40]).

Our first main result (Proposition 3.3) says that there is a *T*-linearized ample line bundle \mathcal{L} on \overline{G} such that $\overline{G}_T^{ss}(\mathcal{L}) = \overline{G}_T^s(\mathcal{L})$. For $G = \text{PSL}(n, \mathbb{C})$, we show that there is a *T*-linearized ample line bundle \mathcal{L} on $\overline{\text{PSL}(n, \mathbb{C})}$ such that

- the geometric invariant theoretic (GIT) quotient $\overline{\mathrm{PSL}(n,\mathbb{C})}_T^{ss}(\mathcal{L})/\!\!/T$ is smooth, and

• the boundary $(\overline{\mathrm{PSL}(n,\mathbb{C})}_T^{ss}(\mathcal{L})/\!\!/T) \setminus (\mathrm{PSL}(n,\mathbb{C})/T)$ is a union of $\mathrm{PSL}(n,\mathbb{C})$ stable normal crossing divisors.

Kyoto Journal of Mathematics, Vol. 56, No. 1 (2016), 165-175

DOI 10.1215/21562261-3445183, © 2016 by Kyoto University

Received August 26, 2012. Revised January 16, 2015. Accepted January 16, 2015. 2010 Mathematics Subject Classification: 14F17.

Biswas's work supported by a J. C. Bose Fellowship.

Kannan's work supported in part by the Infosys Foundation.

We further show that, for $n \ge 4$, the connected component of the automorphism group of $\overline{\mathrm{PSL}(n,\mathbb{C})}_T^{ss} /\!\!/ T$ containing the identity automorphism is $\mathrm{PSL}(n,\mathbb{C})$ (Theorem 4.1).

2. Preliminaries and notation

In this section we recall some preliminaries and notation about Lie algebras and algebraic groups (see, e.g., [Hu1] and [Hu2] for the details). Let G be a simple group of adjoint type of rank n over the field of complex numbers. Let T be a maximal torus of G, and let $B \supset T$ be a Borel subgroup of G. Let $N_G(T)$ denote the normalizer of T in G. So $W := N_G(T)/T$ is the Weyl group of G with respect to T.

The Lie algebra of G will be denoted by \mathfrak{g} . Let $\mathfrak{h} \subset \mathfrak{g}$ be the Lie algebra of T. The set of roots of G with respect to T will be denoted by R. Let $R^+ \subset R$ be the set of positive roots with respect to B. Let

$$S = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset R^+$$

be the set of simple roots with respect to B. The group of characters of T will be denoted by X(T), while the group of one-parameter subgroups of T will be denoted by Y(T). Let

$$\{\lambda_i \mid 1 \le i \le n\}$$

be the ordered set of one-parameter subgroups of T satisfying the condition that $\langle \alpha_i, \lambda_j \rangle = \delta_{ij}$, where

$$\langle \cdot, \cdot \rangle : X(T) \times Y(T) \longrightarrow \mathbb{Z}$$

is the natural pairing, and δ_{ij} is the Kronecker delta function. Let \leq (resp., \geq) be the partial order on X(T) defined as follows: $\chi_1 \leq \chi_2$ (resp., $\chi_1 \geq \chi_2$) if $\chi_2 - \chi_1$ (resp., $\chi_1 - \chi_2$) is a linear combination of simple roots with nonnegative integers as coefficients.

Let (\cdot, \cdot) denote the restriction of the Killing form of \mathfrak{g} to \mathfrak{h} . Let

$$\{\omega_j \mid 1 \le j \le n\}$$

be the ordered set of fundamental weights corresponding to S; in other words,

$$\frac{2(\omega_i, \alpha_j)}{(\alpha_j, \alpha_j)} = \delta_{ij}, \quad 1 \le i, j \le n.$$

For $1 \leq i \leq n$, let s_{α_i} denote the simple reflection corresponding to α_i .

The longest element of W corresponding to B will be denoted by w_0 . Let

$$B^{-} = w_0 B w_0^{-1}$$

be the Borel subgroup of G opposite to B with respect to T. For the notion of a G-linearization, and the GIT quotients, we refer to [MFK, p. 30, p. 40].

Consider the flag variety G/B that parameterizes all Borel subgroups of G. For a character χ of B, let

$$L_{\chi} = G \times_B \mathbb{C} \longrightarrow G/B$$

be the *G*-linearized line bundle associated to the action of *B* on $G \times \mathbb{C}$ given by $b.(g,z) = (gb, \chi(b^{-1})z)$ for $b \in B$ and $(g,z) \in G \times \mathbb{C}$. So, in particular, L_{χ} is *T*-linearized. When L_{χ} is ample, we denote by $(G/B)_T^{ss}(L_{\chi})$ (resp., $(G/B)_T^s(L_{\chi})$) the semistable (resp., stable) locus in G/B for the *T*-linearized ample line bundle L_{χ} .

Next we recall some facts about the wonderful compactification of G. Let χ be a regular dominant weight of G with respect to T and B, and let $V(\chi)$ be the irreducible representation of \widehat{G} with highest weight χ , where \widehat{G} is the simply connected covering of G. By [DP, p. 16, Section 3.4], the wonderful compactification \overline{G} , which we denote by X, is the closure of the $(G \times G)$ -orbit of the point

$$[1] \in \mathbb{P}(V(\chi) \otimes V(\chi)^*)$$

corresponding to the identity element 1 of $V(\chi) \otimes V(\chi)^* = \operatorname{End}(V(\chi)^*)$. We denote by \mathcal{L}_{χ} the ample line bundle on X induced by this projective embedding. Since the regular dominant weights generate the weight lattice, given a weight χ , we have the line bundle \mathcal{L}_{χ} on X associated to χ .

By [DP, Theorem, p. 14, Section 3.1], there is a unique closed $(G \times G)$ -orbit Z in X. Note that

$$Z = \bigcap_{i=1}^{n} D_i,$$

where D_i is the $G \times G$ stable irreducible component of $\overline{G} \setminus G$ such that $\mathcal{O}(D_i) = \mathcal{L}_{\alpha_i}$ (see [DP, p. 29, Section 8.2, Corollary]). Further, Z is isomorphic to $G/B \times G/B^-$ as a $G \times G$ variety. By [DP, p. 26, Section 8.1], the pullback homomorphism

$$i^* : \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(Z)$$

for the inclusion map $i: Z \hookrightarrow X$ is injective and is given by

$$i^*(\mathcal{L}_{\chi}) = p_1^*(L_{\chi}) \otimes p_2^*(L_{-\chi}),$$

where L_{χ} (resp., $L_{-\chi}$) is the line bundle on G/B (resp., G/B^-) associated to χ (resp., $-\chi$), and p_j is the projection to the *j*th factor of $G/B \times G/B^-$ for j = 1, 2.

3. Choice of a polarization on \overline{G}

We continue with the notation of Section 2. Let G be a simple algebraic group of adjoint type of rank $n \ge 2$ such that its root system R is different from A_2 . Let

$$\mathbb{N}S := \left\{ \sum_{i=1}^{n} m_i \alpha_i : m_i \in \mathbb{N} \right\}.$$

Then, we have the following.

LEMMA 3.1

The above defined $\mathbb{N}S$ contains a regular dominant character χ of T such that $s_{\alpha_i}(\chi) \geq 0$ and $\langle \chi, w(\lambda_i) \rangle \neq 0$ for every $w \in W$ and $1 \leq i \leq n$.

Proof

Denote by $X(T)_{\mathbb{Q}}$ the rational vector space generated by X(T), and also denote by $X(T)^+$ the semigroup of it given by the dominant characters of T. Let $\rho \in X(T)_{\mathbb{Q}}$ be the half-sum of positive roots of R. Then, $2\rho = 2(\sum_{i=1}^{n} \omega_i) \in X(T)^+$ is a regular dominant character of T, and we have $2\rho \in \mathbb{N}S$.

Since R is irreducible of rank at least 2 and different from A_2 , we see that, for every simple root α_i , there are at least three positive roots β satisfying $\alpha_i \leq \beta$. Hence, the coefficient of every simple root α_j in the expression of $s_{\alpha_i}(2\rho) = 2\rho - 2\alpha_i$ (as a nonnegative integral linear combination of simple roots) is positive. Hence, we have $s_{\alpha_i}(2\rho) \in \mathbb{N}S$. Thus, we have

$$2\rho \in X(T)^+ \cap \Big(\bigcap_{i=1}^n s_{\alpha_i}(\mathbb{N}S)\Big).$$

Denote by N the determinant of the Cartan matrix of R. Then we have $N\omega_i \in \mathbb{N}S$ for every i = 1, 2, ..., n. By the previous discussion, there exists $m \in \mathbb{N}$ such that $ms_{\alpha_i}(2\rho) - N\alpha_i \in \mathbb{N}S$ for every $1 \leq i \leq n$. Hence, we get

$$s_{\alpha_i}(2m\rho + N\omega_i) = ms_{\alpha_i}(2\rho) - N\alpha_i + N\omega_i \in \mathbb{N}S, \quad 1 \le i \le n,$$

and from this it follows that

$$2m\rho + N\omega_i \in X(T)^+ \cap \Big(\bigcap_{j=1}^n s_{\alpha_j}(\mathbb{N}S)\Big), \quad 1 \le i \le n.$$

Consider the characters $2m\rho$, $2m\rho + N\omega_2, \ldots, 2m\rho + N\omega_n$ of T. These are linearly independent in X(T) and by construction they all lie in the rational cone

 $\mathcal{C} \subset X(T)_{\mathbb{O}}^+$

generated by the semigroup $X(T)^+ \cap (\bigcap_{i=1}^n s_{\alpha_i}(\mathbb{N}S))$. It follows that \mathcal{C} has a maximal dimension in $X(T)_{\mathbb{Q}}$; hence it is not contained in any hyperplane of $X(T)_{\mathbb{Q}}$. Therefore, there exists a regular dominant character $\chi \in \mathcal{C} \cap \mathbb{N}S$ such that $\langle \chi, w(\lambda_i) \rangle \neq 0$ for all $1 \leq i \leq n$ and every $w \in W$, and hence the lemma follows. \Box

LEMMA 3.2

Let $\chi \in \mathbb{N}S$ be a regular dominant character of T satisfying the properties stated in Lemma 3.1. Then we have

- (a) $(G/B)_T^{ss}(L_{\chi}) = (G/B)_T^s(L_{\chi})$, and
- (b) the set of all unstable points

$$(G/B) \setminus (G/B)_T^{ss}(L_\chi)$$

is contained in the union of W-translates of all Schubert varieties of codimension at least two.

Proof

Set $L := L_{\chi}$. Since $\langle \chi, w(\lambda_i) \rangle \neq 0$ for every $w \in W$ and $1 \leq i \leq n$, by [Ka1, p. 38, Lemma 4.1] we have

$$(G/B)_T^{ss}(L) = (G/B)_T^s(L).$$

This proves (a).

To prove (b), take an unstable point $x \in G/B$ for the polarization L. Then, there is a one-parameter subgroup λ of T such that $\mu^L(x,\lambda) < 0$. Let $\phi \in W$ be such that $\phi(\lambda)$ is in the fundamental chamber, say,

$$\phi(\lambda) = \sum_{i=1}^{n} c_i \lambda_i$$

where $\{c_i\}$ are nonnegative integers. Consequently, we have

$$\mu^L(n_\phi(x),\phi(\lambda)) = \mu^L(x,\lambda) < 0,$$

where n_{ϕ} is a representative of ϕ in $N_G(T)$. Now, let $n_{\phi}(x)$ be in the Schubert cell BwB/B for some $w \in W$. By [Se, Lemma 5.1], we have

$$\mu^{L}(n_{\phi}(x),\phi(\lambda)) = \left(-\sum_{i=1}^{n} c_{i}\langle w(\chi),\lambda_{i}\rangle\right) < 0.$$

(The sign here is negative because we are using the left action of B on G/B while in [Se, Lemma 5.1] the action of B on $B \setminus G$ is on the right.) Therefore we have $w(\chi) \nleq 0$. For every $1 \le i \le n$ we have $s_{\alpha_i}(\chi) \ge 0$, and hence $w_0 s_{\alpha_i}(\chi) \le 0$. Hence we have $l(w_0) - l(w) \ge 2$. This completes the proof of (b).

PROPOSITION 3.3

Let $X = \overline{G}$ be the wonderful compactification of G. Let χ be as in Lemma 3.2, and let $X_T^{ss}(\mathcal{L}_{\chi})$ (resp., $X_T^s(\mathcal{L}_{\chi})$) be the semistable (resp., stable) locus of X for the action of $1 \times T$ and the polarization \mathcal{L}_{χ} on X. Then we have

(1) $X_T^{ss}(\mathcal{L}_{\chi}) = X_T^s(\mathcal{L}_{\chi}), and$

(2) the set of unstable points $X \setminus (X_T^{ss}(\mathcal{L}_{\chi}))$ is a union of irreducible closed subvarieties of codimension at least three.

Proof

Let Z be the unique closed $(G \times G)$ -orbit in X. Let $Z_T^{ss}(\mathcal{L}_{\chi})$ (resp., $Z_T^s(\mathcal{L}_{\chi})$) be the semistable (resp., stable) locus of Z for the action of $1 \times T$ and the polarization $i^*(\mathcal{L}_{\chi})$, where $i: Z \hookrightarrow X$ is the inclusion map. Since Z is isomorphic to $G/B \times G/B^-$ and $i^*(\mathcal{L}_{\chi}) = p_1^*(L_{\chi}) \otimes p_2^*(L_{-\chi})$, we see that

$$Z_T^{ss}(\mathcal{L}_{\chi}) \simeq (G/B) \times \left((G/B^-)_T^{ss}(L_{-\chi}) \right)$$

and $Z_T^s(\mathcal{L}_{\chi}) \simeq (G/B) \times ((G/B^-)_T^s(L_{-\chi}))$. Set $Z^{ss} = Z_T^{ss}(\mathcal{L}_{\chi})$, and set $Z^s = Z_T^s(\mathcal{L}_{\chi})$. By Lemma 3.2 and the above discussion, we have $Z^{ss} = Z^s$.

For convenience, we will denote $X_T^{ss}(\mathcal{L}_{\chi})$ and $X_T^s(\mathcal{L}_{\chi})$ by X^{ss} and X^s , respectively. If $X^{ss} \neq X^s$, then the complement $X^{ss} \setminus X^s$ is a nonempty $(G \times T)$ -invariant closed subset of X^{ss} . Hence, the complement $(X^{ss}/\!\!/T) \setminus (X^s/\!\!/T)$ is a

nonempty $G \times \{1\}$ -invariant closed subset of $X^{ss}/\!\!/T$. In particular, $(X^{ss}/\!\!/T) \setminus (X^s/\!\!/T)$ is a finite union of nonempty $G \times \{1\}$ -invariant projective varieties. Therefore, there is a $B \times \{1\}$ -fixed point in $(X^{ss}/\!\!/T) \setminus (X^s/\!\!/T)$. Let

$$p \in (X^{ss} / T) \setminus (X^s / T)$$

be a $B \times \{1\}$ -fixed point. Let Y be the closed $\{1\} \times T$ -orbit in the fiber $\pi^{-1}(\{p\})$ over p for the GIT quotient map $\pi : X^{ss} \longrightarrow X^{ss} /\!\!/ T$. Since this map π is $G \times \{1\}$ equivariant, we conclude that $\pi^{-1}(\{p\})$ is $B \times \{1\}$ -invariant. Hence, for any $b \in B$, the translation $(b, 1) \cdot Y$ lies in $\pi^{-1}(\{p\})$. Since the actions of $B \times \{1\}$ and $\{1\} \times T$ on X commute with each other, we see that $(b, 1) \cdot Y$ is also a closed $\{1\} \times T$ orbit in $\pi^{-1}(\{p\})$. By the uniqueness of the closed $\{1\} \times T$ -orbit in $\pi^{-1}(\{p\})$ we conclude that $(b, 1) \cdot Y = Y$. Hence Y is preserved by the action of $B \times \{1\}$. In particular, Y is $U \times \{1\}$ -invariant, where $U \subset B$ is the unipotent radical. The action of $U \times \{1\}$ on Y induces a homomorphism from U to T/S of algebraic groups, where $\{1\} \times S$ is the stabilizer in $\{1\} \times T$ of some point q in Y. Since there is no nontrivial homomorphism from a unipotent group to a torus, we conclude that $U \times \{1\}$ fixes the point q.

By [DP, p. 32, Proposition], for any regular dominant character χ of T with respect to B, the morphism $X \hookrightarrow \mathbb{P}(V(\chi) \otimes V(\chi)^*)$ is a $(G \times G)$ -equivariant embedding, where $V(\chi)$ is the irreducible representation of G with highest weight χ , and $V(\chi)^*$ is its dual. Hence, the $U \times \{1\}$ -fixed point set of X is equal to $X \bigcap \mathbb{P}(\mathbb{C}_{\chi} \otimes V(\chi)^*)$, where \mathbb{C}_{χ} is the one-dimensional B-module associated to the character χ . Therefore, by the above discussion, we have $q \in X \bigcap \mathbb{P}(\mathbb{C}_{\chi} \otimes V(\chi)^*)$.

Further, by [DP, Theorem, p. 30] we have

$$H^0(X, \mathcal{L}_{\chi}) = \bigoplus_{\nu \leq \chi} V(\nu)^* \otimes V(\nu),$$

where the sum runs over all dominant characters ν of T satisfying $\nu \leq \chi$. By [DP, p. 29, Corollary] and [DP, p. 30, Theorem], the zero locus of

$$\bigoplus_{\nu<\chi} V(\nu)^* \otimes V(\nu) \subset H^0(X, \mathcal{L}_{\chi})$$

in X is the unique closed $(G \times G)$ -orbit $Z = G/B \times G/B^-$. Hence, by the discussion in the previous paragraph, we have $q \in Z$. This contradicts the choice of the polarization \mathcal{L}_{χ} . Therefore, the proof of (a) is complete.

To prove (b), note that $X \setminus X^{ss}$ is a closed subset of X, and

$$Z \setminus Z^{ss} = (X \setminus X^{ss}) \cap Z.$$

Also, by Lemma 3.2, the complement $Z \setminus Z^{ss} \subset Z$ is of codimension at least two. Since we have $Z = \bigcap_{i=1}^{n} D_i$, the complement $D_i \setminus D_i^{ss}$ is of codimension at least two for all $1 \leq i \leq n$. Further, every point in the open subset $G \subset X$ is semistable. Hence, $X \setminus X^{ss}$ is of codimension at least three.

The following lemma will be used in the proof of Corollary 3.5.

LEMMA 3.4

Let H be a reductive algebraic group acting linearly on a polarized projective variety V. Assume that $V^{ss} = V^s$, where V^{ss} (resp., V^s) is the set of semistable (resp., stable) points of V for the action of H. Then the set of all points in V^{ss} whose stabilizer in H is trivial is actually a Zariski-open subset. (It may be empty.)

Proof

Consider the morphism

$$f: H \times V^{ss} \longrightarrow V^{ss} \times V^{ss}, \qquad (h, v) \longmapsto (h \cdot v, v).$$

Since $V^{ss} = V^s$, this map f is proper (see [MFK, p. 55, Corollary 2.5]). Hence the image

$$M := f(H \times V^{ss}) \subset V^{ss} \times V^{ss}$$

is a closed subvariety. Now, let

$$U' \subset V^{ss}$$

be the locus of points with trivial stabilizer (for the action of H). Take any

 $v_0 \in U'$,

and set $z_0 := f((1, v_0)) = (v_0, v_0)$. Then, $(f_*\mathcal{O}_{H \times V^{ss}})_{z_0}$ is a free \mathcal{O}_{M, z_0} -module of rank one. Hence by [Mu, p. 152, Souped-up version II of Nakayama's lemma], the locus of points $x \in M$ such that $(f_*\mathcal{O}_{H \times V^{ss}})_x$ is a free $\mathcal{O}_{M,x}$ -module of rank at most one is a nonempty Zariski-open subset. Since $(f_*(\mathcal{O}_{H \times V^{ss}}))_z$ is nonzero for all $z \in M$, the set of all points $x \in M$ such that $(f_*(\mathcal{O}_{H \times V^{ss}}))_x$ is a free \mathcal{O}_{M,x^-} module of rank one is a Zariski-open subset of M; this Zariski-open subset of Mwill be denoted by U. Note that

$$f^{-1}(U) = p_2^{-1}(U'),$$

where $p_2: H \times V^{ss} \longrightarrow V^{ss}$ is the second projection. Since p_2 is flat of finite type over \mathbb{C} , it is an open map (see [Ha, p. 266, Exercise 9.1]). Hence $U' = p_2(f^{-1}(U))$ is a Zariski-open subset. This finishes the proof of the lemma.

COROLLARY 3.5

Let $X = \overline{\text{PSL}(n+1,\mathbb{C})}$ be the wonderful compactification of $\text{PSL}(n+1,\mathbb{C})$, $n \ge 3$. For the choice of the regular dominant character χ of T as in Proposition 3.3,

- (a) the action of $\{1\} \times T$ on $X_T^{ss}(\mathcal{L}_{\chi})$ is free,
- (b) $X_T^{ss}(\mathcal{L}_{\chi})//T$ is a smooth projective embedding of G/T, and

(c) the set of unstable points $X \setminus (X_T^{ss}(\mathcal{L}_{\chi}))$ is a union of irreducible closed subvarieties of codimension at least three.

Proof

Let χ be a regular dominant character of T as in Proposition 3.3. As in the proof of Proposition 3.3, let Z denote the unique closed $(G \times G)$ -orbit in X. Also, let X^{ss}, X^s, Z^{ss} , and Z^s be as in the proof of Proposition 3.3. By Proposition 3.3 we have $X^{ss} = X^s$. Hence by Lemma 3.4, the locus V of points in X^{ss} with trivial stabilizer (for the action of $\{1\} \times T$) is a Zariski-open subset of X^{ss} . Therefore, $X^{ss} \setminus V$ is a $G \times \{1\}$ -stable closed subvariety of X^{ss} . By using the arguments in the proof of Proposition 3.3, we see that the set of $B \times \{1\}$ -fixed points in $Z \cap (X^{ss} \setminus V)$ is nonempty. But on the other hand by the proof of [Ka2, p. 194, Example 3.3] we see that, given any point $z \in Z^{ss}$, its stabilizer subgroup in $\{1\} \times T$ is trivial. This is a contradiction. Hence we conclude that the action of $\{1\} \times T$ on X^{ss} is free. This proves parts (a) and (b).

Part (c) follows immediately from the corresponding statement in Proposition 3.3. $\hfill \Box$

4. Automorphism group of $\overline{\mathrm{PSL}(n+1,\mathbb{C})}_T^{ss}(\mathcal{L})/\!\!/T$

Let $G = PSL(n+1, \mathbb{C})$, with $n \ge 3$, and define

$$Y := \overline{\mathrm{PSL}(n+1,\mathbb{C})}_T^{ss}(\mathcal{L}_{\chi}) /\!\!/ T,$$

where χ is as in Proposition 3.3.

THEOREM 4.1

Let A denote the connected component, containing the identity element, of the group of holomorphic (i.e., algebraic) automorphisms of Y. Then

- (a) A is isomorphic to G, and
- (b) the Picard group of Y is a free abelian group of rank 2n.

Proof

Let TY denote the algebraic tangent bundle of Y. From [MO, Theorem 3.7] we know that A is an algebraic group. The Lie algebra of A is $H^0(Y, TY)$ equipped with the Lie bracket operation of vector fields.

The Lie algebra of G will be denoted by \mathfrak{g} . Define $X := \overline{\mathrm{PSL}(n+1,\mathbb{C})}$, and define $U := \overline{\mathrm{PSL}(n+1,\mathbb{C})}_T^{ss}(\mathcal{L}_X)$. The connected component, containing the identity element, of the automorphism group of X is $G \times G$ (see [Br, Example 2.4.5]). From this and the fact that the complement $X \setminus U \subset X$ is of codimension at least three (see Corollary 3.5), we conclude that

$$H^0(U,TU) = H^0(X,TX) = \mathfrak{g} \oplus \mathfrak{g}.$$

Let $\phi: U \longrightarrow Y$ be the geometric invariant theoretic quotient map. Let

$$T_U \supset T_\phi \longrightarrow U$$

be the relative tangent bundle for ϕ . Since ϕ makes U a principal T-bundle over Y (see Corollary 3.5(a)), we have the following short exact sequence of vector bundles on U:

(4.1)
$$0 \longrightarrow T_{\phi} \longrightarrow TU \longrightarrow \phi^*(TY) \longrightarrow 0,$$

and the relative tangent bundle T_{ϕ} is identified with the trivial vector bundle $\mathcal{O}_U \otimes_{\mathbb{C}} \mathfrak{h}$, where \mathfrak{h} is the Lie algebra of T.

Set $Z = X \setminus U$. Since $\operatorname{codim}(Z) \ge 3$ (see Corollary 3.5), we have

$$H^0(U, T_\phi) = H^0(X, \mathcal{O}_X \otimes \mathfrak{h}) = \mathfrak{h}.$$

Note that $H^1(U, T_{\phi}) = H^2_Z(X, \mathcal{O}_X \otimes \mathfrak{h})$. Indeed, this follows from the following cohomology exact sequence (see [Gr, Corollary 1.9])

 $H^1(X, \mathcal{O}_X \otimes \mathfrak{h}) \longrightarrow H^1(U, \mathcal{O}_X \otimes \mathfrak{h}) \longrightarrow H^2_Z(X, \mathcal{O}_X \otimes \mathfrak{h}) \longrightarrow H^2(X, \mathcal{O}_X \otimes \mathfrak{h}),$

combined with the fact that $H^i(X, \mathcal{O}_X) = 0$ for all i > 0 (see [DP, p. 30, Theorem]). As X is smooth and $\operatorname{codim}(Z) \ge 3$, it follows from [Gr, Theorem 3.8 and Proposition 1.4] that

$$H_Z^2(X, \mathcal{O}_X) = 0,$$

and hence $H^1(U, T_{\phi}) = 0$. Now, using this fact in the long exact sequence of cohomologies corresponding to the short exact sequence in (4.1), we obtain the following short exact sequence:

$$0 \longrightarrow 0 \oplus \mathfrak{h} \longrightarrow \mathfrak{g} \oplus \mathfrak{g} \longrightarrow H^0(U, \phi^*TY) \longrightarrow 0.$$

Hence, we have

$$H^0(U,\phi^*TY) = \mathfrak{g} \oplus (\mathfrak{g}/\mathfrak{h}).$$

By using geometric invariant theory, $H^0(Y,TY)$ is the invariant part

$$H^0(Y,TY) = H^0(U,\phi^*TY)^{\{1\} \times T} \subset H^0(U,\phi^*TY).$$

Thus we have $H^0(Y, TY) = \mathfrak{g}$. This proves (a).

To prove (b), let $\{D_i \mid 1 \leq i \leq n\}$ be the $(G \times G)$ -stable irreducible closed subvarieties of \overline{G} of codimension one such that

$$G = \overline{G} \setminus \left(\bigcup_{i=1}^n D_i\right).$$

Let $D_i^{ss} = D_i \bigcap X^{ss} \subset D_i$ be the semistable locus of D_i . Set $Z := Y \setminus (G/T)$, and write it as a union

$$Z = \bigcup_{i=1}^{n} Z_i$$

where each $Z_i = D_i^{ss} //T$ is an irreducible closed subvariety of Y of codimension one. As Y is smooth, each Z_i produces a line bundle $L_i \longrightarrow Y$ whose pullback to X^{ss} is $\mathcal{O}_{X^{ss}}(D_i^{ss})$. Since $\operatorname{Pic}(X^{ss}) = \operatorname{Pic}(X)$ and $\{\mathcal{O}_X(D_i)\}_{1 \le i \le n}$ are linearly independent in $\operatorname{Pic}(X)$ (see [DP, p. 26, Section 8.1]), we get that $L_i, 1 \le i \le n$, are linearly independent in $\operatorname{Pic}(Y)$. The Picard group of G/T is isomorphic to the group of characters of the inverse image \hat{T} of T inside the simply connected covering \hat{G} of G (see [KKV]). Now it follows from the exact sequence in [Fu, Proposition 1.8] that $\operatorname{Pic}(Y)$ is a free abelian group of rank 2n, thus completing the proof of (b).

REMARK 4.2

The compactification Y of G/T constructed here is an example of a nonspherical variety for the action of G whose connected component of the automorphism group is G.

REMARK 4.3

Note that both Y and $G/B \times G/B$ are smooth compactifications of G/T with isomorphic Picard groups. Further, both are Fano varieties, that is, the anticanonical line bundle is ample. The fact that $G/B \times G/B$ is Fano is well known. That the variety Y is Fano follows as a consequence of the exact sequence in (4.1) together with the facts that X is Fano (see [DP]) and that the codimension of $X \setminus U$ is greater than or equal to three, where X and U are as in the proof of Theorem 4.1. But Y and $G/B \times G/B$ are not isomorphic, as $\operatorname{Aut}^0(Y) \simeq G$ and $\operatorname{Aut}^0(G/B \times G/B) \simeq G \times G$, where $\operatorname{Aut}^0(M)$ denotes the connected component of the group of algebraic automorphisms of a smooth projective variety M containing the identity element.

REMARK 4.4

Strickland [St] extended the construction of \overline{G} to any arbitrary algebraically closed field. Also, \overline{G} is a Frobenius split variety in positive characteristic (see [St, p. 169, Theorem 3.1]; see [MR] for the definition of Frobenius splitting). Since Tis linearly reductive, using the Reynolds operator, one can see that the geometric invariant theoretic quotient of \overline{G} for the action of T is also Frobenius split for any polarization on \overline{G} .

Acknowledgments. We are grateful to the referee for comments to improve the exposition. The first author thanks the Institute of Mathematical Sciences for hospitality while this work was carried out.

References

- [Br] M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), 61–99. MR 2326138. DOI 10.1016/j.jalgebra.2006.12.022.
- [DP] C. De Concini and C. Procesi, "Complete symmetric varieties" in *Invariant Theory (Montecatini, 1982)*, Lecture Notes in Math. **996**, Springer, Berlin, 1983, 1–44. MR 0718125. DOI 10.1007/BFb0063234.
- [Fu] W. Fulton, *Intersection Theory*, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998. MR 1644323. DOI 10.1007/978-1-4612-1700-8.
- [Gr] A. Grothendieck, *Local Cohomology*, Lecture Notes in Math. 41, Springer, Berlin, 1967. MR 0224620.
- [Ha] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, Berlin, 1977. MR 0463157.

- [Hu1] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, Berlin, 1972. MR 0323842.
- [Hu2] _____, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, Berlin, 1975. MR 0396773.
- [Ka1] S. S. Kannan, Torus quotients of homogeneous spaces, II, Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 23–39. MR 1687020. DOI 10.1007/BF02837764.
- [Ka2] _____, "GIT related problems of the flag variety for the action of a maximal torus" in *Groups of Exceptional Type, Coxeter Groups and Related Geometries*, Springer Proc. Math. Stat. 82, Springer, New Delhi, 2014, 189–203. MR 3207277. DOI 10.1007/978-81-322-1814-2_10.
- [KKV] F. Knop, H. Kraft, and T. Vust, "The Picard group of a G-variety" in Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem.
 13, Birkhäuser, Basel, 1989, 77–87. MR 1044586.
- [MO] H. Matsumura and F. Oort, Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1–25. MR 0217090.
- [MR] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27–40.
 MR 0799251. DOI 10.2307/1971368.
- [Mu] D. Mumford, The Red Book of Varieties and Schemes, 2nd expanded ed., Lecture Notes in Math. 1358, Springer, Berlin, 1999. MR 1748380.
 DOI 10.1007/b62130.
- [MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, 3rd ed., Ergeb. Math. Grenzgeb. (3) 34, Springer, Berlin, 1994. MR 1304906. DOI 10.1007/978-3-642-57916-5.
- [Se] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. (2) 95 (1972), 511–556. MR 0309940.
- [St] E. Strickland, A vanishing theorem for group compactifications, Math. Ann.
 277 (1987), 165–171. MR 0884653. DOI 10.1007/BF01457285.

Biswas: School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India; indranil@math.tifr.res.in

Kannan: Chennai Mathematical Institute, Siruseri, Kelambakkam, India; kannan@cmi.ac.in

Nagaraj: Institute of Mathematical Sciences, Central Institutes of Technology Campus, Taramani, Chennai, India; dsn@imsc.res.in