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Abstract Let T be a maximal torus of PSL(n,C). For n ≥ 4, we construct a smooth

compactification ofPSL(n,C)/T as a geometric invariant theoretic quotient of the won-

derful compactificationPSL(n,C) for a suitable choice ofT -linearized ample line bundle

onPSL(n,C).We also prove that the connected component, containing the identity ele-

ment, of the automorphism group of this compactification of PSL(n,C)/T is PSL(n,C)

itself.

1. Introduction

Let G be a semisimple group of adjoint type over the field C of complex numbers.

De Concini and Procesi [DP] constructed a smooth projective variety G with an

action of G×G such that

• the variety G equipped with the action of G×G given by the left and right

translations is an open dense orbit of it, and

• the boundary G \G is a union of G×G stable normal crossing divisors.

This variety G is known as the wonderful compactification of G.

Fix a maximal torus T of G. Consider the right action of T on G, meaning

the action of the subgroup 1× T ⊂G×G. For a T -linearized ample line bundle

L on G, let G
ss

T (L) and G
s

T (L) denote, respectively, the loci of semistable and

stable points of G (see [MFK, p. 30, p. 40]).

Our first main result (Proposition 3.3) says that there is a T -linearized ample

line bundle L on G such that G
ss

T (L) =G
s

T (L). For G=PSL(n,C), we show that

there is a T -linearized ample line bundle L on PSL(n,C) such that

• the geometric invariant theoretic (GIT) quotient PSL(n,C)
ss

T (L)//T is

smooth, and

• the boundary (PSL(n,C)
ss

T (L)//T )\ (PSL(n,C)/T ) is a union of PSL(n,C)
stable normal crossing divisors.
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We further show that, for n≥ 4, the connected component of the automorphism

group of PSL(n,C)
ss

T //T containing the identity automorphism is PSL(n,C) (The-
orem 4.1).

2. Preliminaries and notation

In this section we recall some preliminaries and notation about Lie algebras and

algebraic groups (see, e.g., [Hu1] and [Hu2] for the details). Let G be a simple

group of adjoint type of rank n over the field of complex numbers. Let T be a

maximal torus of G, and let B ⊃ T be a Borel subgroup of G. Let NG(T ) denote

the normalizer of T in G. So W :=NG(T )/T is the Weyl group of G with respect

to T .

The Lie algebra of G will be denoted by g. Let h⊂ g be the Lie algebra of T .

The set of roots of G with respect to T will be denoted by R. Let R+ ⊂ R be

the set of positive roots with respect to B. Let

S = {α1, α2, . . . , αn} ⊂R+

be the set of simple roots with respect to B. The group of characters of T will

be denoted by X(T ), while the group of one-parameter subgroups of T will be

denoted by Y (T ). Let

{λi | 1≤ i≤ n}

be the ordered set of one-parameter subgroups of T satisfying the condition that

〈αi, λj〉= δij , where

〈·, ·〉 :X(T )× Y (T )−→ Z

is the natural pairing, and δij is the Kronecker delta function. Let ≤ (resp., ≥) be

the partial order on X(T ) defined as follows: χ1 ≤ χ2 (resp., χ1 ≥ χ2) if χ2 − χ1

(resp., χ1−χ2) is a linear combination of simple roots with nonnegative integers

as coefficients.

Let (·, ·) denote the restriction of the Killing form of g to h. Let

{ωj | 1≤ j ≤ n}

be the ordered set of fundamental weights corresponding to S; in other words,

2(ωi, αj)

(αj , αj)
= δij , 1≤ i, j ≤ n.

For 1≤ i≤ n, let sαi denote the simple reflection corresponding to αi.

The longest element of W corresponding to B will be denoted by w0. Let

B− =w0Bw−1
0

be the Borel subgroup of G opposite to B with respect to T . For the notion of a

G-linearization, and the GIT quotients, we refer to [MFK, p. 30, p. 40].

Consider the flag variety G/B that parameterizes all Borel subgroups of G.

For a character χ of B, let

Lχ =G×B C−→G/B
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be the G-linearized line bundle associated to the action of B on G × C given

by b.(g, z) = (gb,χ(b−1)z) for b ∈ B and (g, z) ∈ G× C. So, in particular, Lχ is

T -linearized. When Lχ is ample, we denote by (G/B)ssT (Lχ) (resp., (G/B)sT (Lχ))

the semistable (resp., stable) locus in G/B for the T -linearized ample line bun-

dle Lχ.

Next we recall some facts about the wonderful compactification of G. Let χ

be a regular dominant weight of G with respect to T and B, and let V (χ) be the

irreducible representation of Ĝ with highest weight χ, where Ĝ is the simply con-

nected covering of G. By [DP, p. 16, Section 3.4], the wonderful compactification

G, which we denote by X , is the closure of the (G×G)-orbit of the point

[1] ∈ P
(
V (χ)⊗ V (χ)∗

)
corresponding to the identity element 1 of V (χ) ⊗ V (χ)∗ = End(V (χ)∗). We

denote by Lχ the ample line bundle on X induced by this projective embed-

ding. Since the regular dominant weights generate the weight lattice, given a

weight χ, we have the line bundle Lχ on X associated to χ.

By [DP, Theorem, p. 14, Section 3.1], there is a unique closed (G×G)-orbit

Z in X . Note that

Z =

n⋂
i=1

Di,

where Di is the G×G stable irreducible component of G \G such that O(Di) =

Lαi (see [DP, p. 29, Section 8.2, Corollary]). Further, Z is isomorphic to G/B×
G/B− as aG×G variety. By [DP, p. 26, Section 8.1], the pullback homomorphism

i∗ : Pic(X)−→ Pic(Z)

for the inclusion map i : Z ↪→X is injective and is given by

i∗(Lχ) = p∗1(Lχ)⊗ p∗2(L−χ),

where Lχ (resp., L−χ) is the line bundle on G/B (resp., G/B−) associated to

χ (resp., −χ), and pj is the projection to the jth factor of G/B × G/B− for

j = 1,2.

3. Choice of a polarization on G

We continue with the notation of Section 2. Let G be a simple algebraic group of

adjoint type of rank n≥ 2 such that its root system R is different from A2. Let

NS :=
{ n∑

i=1

miαi :mi ∈N
}
.

Then, we have the following.

LEMMA 3.1

The above defined NS contains a regular dominant character χ of T such that

sαi(χ)≥ 0 and 〈χ,w(λi)〉 �= 0 for every w ∈W and 1≤ i≤ n.
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Proof

Denote by X(T )Q the rational vector space generated by X(T ), and also denote

by X(T )+ the semigroup of it given by the dominant characters of T . Let ρ ∈
X(T )Q be the half-sum of positive roots of R. Then, 2ρ= 2(

∑n
i=1 ωi) ∈X(T )+

is a regular dominant character of T , and we have 2ρ ∈NS.
Since R is irreducible of rank at least 2 and different from A2, we see that, for

every simple root αi, there are at least three positive roots β satisfying αi ≤ β.

Hence, the coefficient of every simple root αj in the expression of sαi(2ρ) =

2ρ−2αi (as a nonnegative integral linear combination of simple roots) is positive.

Hence, we have sαi(2ρ) ∈NS. Thus, we have

2ρ ∈X(T )+ ∩
( n⋂
i=1

sαi(NS)
)
.

Denote by N the determinant of the Cartan matrix of R. Then we have

Nωi ∈NS for every i= 1,2, . . . , n. By the previous discussion, there exists m ∈N
such that msαi(2ρ)−Nαi ∈NS for every 1≤ i≤ n. Hence, we get

sαi(2mρ+Nωi) =msαi(2ρ)−Nαi +Nωi ∈NS, 1≤ i≤ n,

and from this it follows that

2mρ+Nωi ∈X(T )+ ∩
( n⋂
j=1

sαj (NS)
)
, 1≤ i≤ n.

Consider the characters 2mρ, 2mρ+Nω2, . . . , 2mρ+Nωn of T . These are

linearly independent in X(T ) and by construction they all lie in the rational cone

C ⊂X(T )+Q

generated by the semigroup X(T )+ ∩ (
⋂n

i=1 sαi(NS)). It follows that C has a

maximal dimension in X(T )Q; hence it is not contained in any hyperplane of

X(T )Q. Therefore, there exists a regular dominant character χ ∈ C
⋂
NS such

that 〈χ,w(λi)〉 �= 0 for all 1 ≤ i ≤ n and every w ∈ W , and hence the lemma

follows. �

LEMMA 3.2

Let χ ∈NS be a regular dominant character of T satisfying the properties stated

in Lemma 3.1. Then we have

(a) (G/B)ssT (Lχ) = (G/B)sT (Lχ), and

(b) the set of all unstable points

(G/B) \ (G/B)ssT (Lχ)

is contained in the union of W -translates of all Schubert varieties of codimension

at least two.
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Proof

Set L := Lχ. Since 〈χ,w(λi)〉 �= 0 for every w ∈W and 1≤ i≤ n, by [Ka1, p. 38,

Lemma 4.1] we have

(G/B)ssT (L) = (G/B)sT (L).

This proves (a).

To prove (b), take an unstable point x ∈G/B for the polarization L. Then,

there is a one-parameter subgroup λ of T such that μL(x,λ)< 0. Let φ ∈W be

such that φ(λ) is in the fundamental chamber, say,

φ(λ) =
n∑

i=1

ciλi,

where {ci} are nonnegative integers. Consequently, we have

μL
(
nφ(x), φ(λ)

)
= μL(x,λ)< 0,

where nφ is a representative of φ in NG(T ). Now, let nφ(x) be in the Schubert

cell BwB/B for some w ∈W . By [Se, Lemma 5.1], we have

μL
(
nφ(x), φ(λ)

)
=

(
−

n∑
i=1

ci
〈
w(χ), λi

〉)
< 0.

(The sign here is negative because we are using the left action of B on G/B

while in [Se, Lemma 5.1] the action of B on B \G is on the right.) Therefore we

have w(χ)� 0. For every 1≤ i≤ n we have sαi(χ)≥ 0, and hence w0sαi(χ)≤ 0.

Hence we have l(w0)− l(w)≥ 2. This completes the proof of (b). �

PROPOSITION 3.3

Let X = G be the wonderful compactification of G. Let χ be as in Lemma 3.2,

and let Xss
T (Lχ) (resp., Xs

T (Lχ)) be the semistable (resp., stable) locus of X for

the action of 1× T and the polarization Lχ on X. Then we have

(1) Xss
T (Lχ) =Xs

T (Lχ), and

(2) the set of unstable points X \ (Xss
T (Lχ)) is a union of irreducible closed

subvarieties of codimension at least three.

Proof

Let Z be the unique closed (G × G)-orbit in X . Let Zss
T (Lχ) (resp., Zs

T (Lχ))

be the semistable (resp., stable) locus of Z for the action of 1 × T and the

polarization i∗(Lχ), where i : Z ↪→X is the inclusion map. Since Z is isomorphic

to G/B ×G/B− and i∗(Lχ) = p∗1(Lχ)⊗ p∗2(L−χ), we see that

Zss
T (Lχ)
 (G/B)×

(
(G/B−)ssT (L−χ)

)
and Zs

T (Lχ) 
 (G/B) × ((G/B−)sT (L−χ)). Set Zss = Zss
T (Lχ), and set Zs =

Zs
T (Lχ). By Lemma 3.2 and the above discussion, we have Zss = Zs.

For convenience, we will denoteXss
T (Lχ) andXs

T (Lχ) byXss andXs, respec-

tively. If Xss �= Xs, then the complement Xss \ Xs is a nonempty (G × T )-

invariant closed subset of Xss . Hence, the complement (Xss//T ) \ (Xs//T ) is a
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nonempty G× {1}-invariant closed subset of Xss//T . In particular, (Xss//T ) \
(Xs//T ) is a finite union of nonempty G × {1}-invariant projective varieties.

Therefore, there is a B × {1}-fixed point in (Xss//T ) \ (Xs//T ). Let

p ∈ (Xss//T ) \ (Xs//T )

be a B×{1}-fixed point. Let Y be the closed {1}×T -orbit in the fiber π−1({p})
over p for the GIT quotient map π :Xss −→Xss//T . Since this map π is G×{1}-
equivariant, we conclude that π−1({p}) is B×{1}-invariant. Hence, for any b ∈B,

the translation (b,1) ·Y lies in π−1({p}). Since the actions of B×{1} and {1}×T

on X commute with each other, we see that (b,1) · Y is also a closed {1} × T -

orbit in π−1({p}). By the uniqueness of the closed {1}× T -orbit in π−1({p}) we
conclude that (b,1) · Y = Y . Hence Y is preserved by the action of B × {1}. In
particular, Y is U × {1}-invariant, where U ⊂ B is the unipotent radical. The

action of U × {1} on Y induces a homomorphism from U to T/S of algebraic

groups, where {1}×S is the stabilizer in {1}×T of some point q in Y . Since there

is no nontrivial homomorphism from a unipotent group to a torus, we conclude

that U × {1} fixes the point q.

By [DP, p. 32, Proposition], for any regular dominant character χ of T

with respect to B, the morphism X ↪→ P(V (χ)⊗V (χ)∗) is a (G×G)-equivariant

embedding, where V (χ) is the irreducible representation of G with highest weight

χ, and V (χ)∗ is its dual. Hence, the U × {1}-fixed point set of X is equal to

X
⋂
P(Cχ⊗V (χ)∗), where Cχ is the one-dimensional B-module associated to the

character χ. Therefore, by the above discussion, we have q ∈X
⋂
P(Cχ⊗V (χ)∗).

Further, by [DP, Theorem, p. 30] we have

H0(X,Lχ) =
⊕
ν≤χ

V (ν)∗ ⊗ V (ν),

where the sum runs over all dominant characters ν of T satisfying ν ≤ χ. By

[DP, p. 29, Corollary] and [DP, p. 30, Theorem], the zero locus of⊕
ν<χ

V (ν)∗ ⊗ V (ν)⊂H0(X,Lχ)

in X is the unique closed (G×G)-orbit Z =G/B ×G/B−. Hence, by the dis-

cussion in the previous paragraph, we have q ∈ Z. This contradicts the choice of

the polarization Lχ. Therefore, the proof of (a) is complete.

To prove (b), note that X \Xss is a closed subset of X , and

Z \Zss = (X \Xss)∩Z.

Also, by Lemma 3.2, the complement Z \Zss ⊂ Z is of codimension at least two.

Since we have Z =
⋂n

i=1Di, the complement Di \Dss
i is of codimension at least

two for all 1≤ i≤ n. Further, every point in the open subset G⊂X is semistable.

Hence, X \Xss is of codimension at least three. �

The following lemma will be used in the proof of Corollary 3.5.
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LEMMA 3.4

Let H be a reductive algebraic group acting linearly on a polarized projective

variety V . Assume that V ss = V s, where V ss (resp., V s) is the set of semistable

(resp., stable) points of V for the action of H . Then the set of all points in

V ss whose stabilizer in H is trivial is actually a Zariski-open subset. (It may be

empty.)

Proof

Consider the morphism

f :H × V ss −→ V ss × V ss , (h, v) �−→ (h · v, v).

Since V ss = V s, this map f is proper (see [MFK, p. 55, Corollary 2.5]). Hence

the image

M := f(H × V ss)⊂ V ss × V ss

is a closed subvariety. Now, let

U ′ ⊂ V ss

be the locus of points with trivial stabilizer (for the action of H). Take any

v0 ∈ U ′,

and set z0 := f((1, v0)) = (v0, v0). Then, (f∗OH×V ss )z0 is a free OM,z0 -module of

rank one. Hence by [Mu, p. 152, Souped-up version II of Nakayama’s lemma], the

locus of points x ∈M such that (f∗OH×V ss )x is a free OM,x-module of rank at

most one is a nonempty Zariski-open subset. Since (f∗(OH×V ss ))z is nonzero for

all z ∈M , the set of all points x ∈M such that (f∗(OH×V ss ))x is a free OM,x-

module of rank one is a Zariski-open subset of M ; this Zariski-open subset of M

will be denoted by U . Note that

f−1(U) = p−1
2 (U ′),

where p2 :H ×V ss −→ V ss is the second projection. Since p2 is flat of finite type

over C, it is an open map (see [Ha, p. 266, Exercise 9.1]). Hence U ′ = p2(f
−1(U))

is a Zariski-open subset. This finishes the proof of the lemma. �

COROLLARY 3.5

Let X =PSL(n+ 1,C) be the wonderful compactification of PSL(n+1,C), n≥ 3.

For the choice of the regular dominant character χ of T as in Proposition 3.3,

(a) the action of {1} × T on Xss
T (Lχ) is free,

(b) Xss
T (Lχ)//T is a smooth projective embedding of G/T , and

(c) the set of unstable points X \ (Xss
T (Lχ)) is a union of irreducible closed

subvarieties of codimension at least three.

Proof

Let χ be a regular dominant character of T as in Proposition 3.3. As in the proof

of Proposition 3.3, let Z denote the unique closed (G×G)-orbit in X . Also, let
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Xss , Xs, Zss , and Zs be as in the proof of Proposition 3.3. By Proposition 3.3 we

have Xss =Xs. Hence by Lemma 3.4, the locus V of points in Xss with trivial

stabilizer (for the action of {1} × T ) is a Zariski-open subset of Xss . Therefore,

Xss \ V is a G× {1}-stable closed subvariety of Xss . By using the arguments

in the proof of Proposition 3.3, we see that the set of B × {1}-fixed points in

Z ∩ (Xss \ V ) is nonempty. But on the other hand by the proof of [Ka2, p. 194,

Example 3.3] we see that, given any point z ∈ Zss , its stabilizer subgroup in

{1} × T is trivial. This is a contradiction. Hence we conclude that the action of

{1} × T on Xss is free. This proves parts (a) and (b).

Part (c) follows immediately from the corresponding statement in Proposi-

tion 3.3. �

4. Automorphism group of PSL(n+ 1,C)
ss

T (L)//T

Let G=PSL(n+ 1,C), with n≥ 3, and define

Y := PSL(n+ 1,C)
ss

T (Lχ)//T,

where χ is as in Proposition 3.3.

THEOREM 4.1

Let A denote the connected component, containing the identity element, of the

group of holomorphic (i.e., algebraic) automorphisms of Y . Then

(a) A is isomorphic to G, and

(b) the Picard group of Y is a free abelian group of rank 2n.

Proof

Let TY denote the algebraic tangent bundle of Y . From [MO, Theorem 3.7] we

know that A is an algebraic group. The Lie algebra of A is H0(Y,TY ) equipped

with the Lie bracket operation of vector fields.

The Lie algebra of G will be denoted by g. Define X := PSL(n+ 1,C), and
define U := PSL(n+ 1,C)

ss

T (Lχ). The connected component, containing the iden-

tity element, of the automorphism group of X is G×G (see [Br, Example 2.4.5]).

From this and the fact that the complement X \U ⊂X is of codimension at least

three (see Corollary 3.5), we conclude that

H0(U,TU) =H0(X,TX) = g⊕ g.

Let φ : U −→ Y be the geometric invariant theoretic quotient map. Let

TU ⊃ Tφ −→ U

be the relative tangent bundle for φ. Since φ makes U a principal T -bundle over

Y (see Corollary 3.5(a)), we have the following short exact sequence of vector

bundles on U :

(4.1) 0−→ Tφ −→ TU −→ φ∗(TY )−→ 0,
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and the relative tangent bundle Tφ is identified with the trivial vector bundle

OU ⊗C h, where h is the Lie algebra of T .

Set Z =X \U . Since codim(Z)≥ 3 (see Corollary 3.5), we have

H0(U,Tφ) =H0(X,OX ⊗ h) = h.

Note that H1(U,Tφ) =H2
Z(X,OX ⊗ h). Indeed, this follows from the following

cohomology exact sequence (see [Gr, Corollary 1.9])

H1(X,OX ⊗ h)−→H1(U,OX ⊗ h)−→H2
Z(X,OX ⊗ h)−→H2(X,OX ⊗ h),

combined with the fact that Hi(X,OX) = 0 for all i > 0 (see [DP, p. 30, Theo-

rem]). As X is smooth and codim(Z)≥ 3, it follows from [Gr, Theorem 3.8 and

Proposition 1.4] that

H2
Z(X,OX) = 0,

and hence H1(U,Tφ) = 0. Now, using this fact in the long exact sequence of

cohomologies corresponding to the short exact sequence in (4.1), we obtain the

following short exact sequence:

0−→ 0⊕ h−→ g⊕ g−→H0(U,φ∗TY )−→ 0.

Hence, we have

H0(U,φ∗TY ) = g⊕ (g/h).

By using geometric invariant theory, H0(Y,TY ) is the invariant part

H0(Y,TY ) =H0(U,φ∗TY ){1}×T ⊂H0(U,φ∗TY ).

Thus we have H0(Y,TY ) = g. This proves (a).

To prove (b), let {Di | 1 ≤ i ≤ n} be the (G × G)-stable irreducible closed

subvarieties of G of codimension one such that

G=G \
( n⋃
i=1

Di

)
.

Let Dss
i =Di

⋂
Xss ⊂Di be the semistable locus of Di. Set Z := Y \ (G/T ), and

write it as a union

Z =

n⋃
i=1

Zi,

where each Zi =Dss
i //T is an irreducible closed subvariety of Y of codimension

one. As Y is smooth, each Zi produces a line bundle Li −→ Y whose pullback

to Xss is OXss (Dss
i ). Since Pic(Xss) = Pic(X) and {OX(Di)}1≤i≤n are linearly

independent in Pic(X) (see [DP, p. 26, Section 8.1]), we get that Li, 1≤ i≤ n,

are linearly independent in Pic(Y ). The Picard group of G/T is isomorphic to

the group of characters of the inverse image T̂ of T inside the simply connected

covering Ĝ of G (see [KKV]). Now it follows from the exact sequence in [Fu,

Proposition 1.8] that Pic(Y ) is a free abelian group of rank 2n, thus completing

the proof of (b). �
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REMARK 4.2

The compactification Y of G/T constructed here is an example of a nonspherical

variety for the action of G whose connected component of the automorphism

group is G.

REMARK 4.3

Note that both Y and G/B ×G/B are smooth compactifications of G/T with

isomorphic Picard groups. Further, both are Fano varieties, that is, the anti-

canonical line bundle is ample. The fact that G/B×G/B is Fano is well known.

That the variety Y is Fano follows as a consequence of the exact sequence in

(4.1) together with the facts that X is Fano (see [DP]) and that the codimension

of X \ U is greater than or equal to three, where X and U are as in the proof

of Theorem 4.1. But Y and G/B × G/B are not isomorphic, as Aut0(Y ) 
 G

and Aut0(G/B×G/B)
G×G, where Aut0(M) denotes the connected compo-

nent of the group of algebraic automorphisms of a smooth projective variety M

containing the identity element.

REMARK 4.4

Strickland [St] extended the construction of G to any arbitrary algebraically

closed field. Also, G is a Frobenius split variety in positive characteristic (see [St,

p. 169, Theorem 3.1]; see [MR] for the definition of Frobenius splitting). Since T

is linearly reductive, using the Reynolds operator, one can see that the geometric

invariant theoretic quotient of G for the action of T is also Frobenius split for

any polarization on G.
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