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SINGULARITIES OF PARALLEL SURFACES
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Abstract. We investigate singularities of all parallel surfaces to a given regular surface.
In generic context, the types of singularities of parallel surfaces are cuspidal edge, swallowtail,
cuspidal lips, cuspidal beaks, cuspidal butterfly and 3-dimensional D±

4 singularities. We give
criteria for these singularity types in terms of differential geometry (Theorems 3.4 and 3.5).

1. Introduction. Classically, a wave front is the locus of points having the same
phase of vibration. A wave front is described by Huygens principle: The wave front of a
propagating wave of light at any instant conforms to the envelope of spherical wavelets ema-
nating from every point on the wave front at the prior instant (with the understanding that the
wavelets have the same speed as the overall wave).

It is well known that a wave front may have singularities at some moment. Singularities
of wave fronts are classified in generic context (see [1, p. 336]). The local classification of
bifurcations in generic one parameter families of fronts in 3-dimensional spaces are also given
in [1, p. 348]. To understand their singularities, it is important to know when the given front
is generic and when the given one parameter family is generic.

In the differential geometric context, a wave front can be described as the parallel surface

g t : U → R3 , g t (u, v) := g(u, v) + tn(u, v) ,

of a regular surface g : U → R3 at time t . Here U is an open set of R2 and n denotes the
unit normal vector given by n = (gu × gv)/‖gu × gv‖. It is well known that when t is either
of the principal radii of curvature at a point of the initial surface g , the parallel surface g t has
a singularity at the corresponding point (see, for example, [13]). So singularities of parallel
surfaces should be investigated in terms of differential geometry of the regular map g .

By Huygens principle, the wave front can be seen as the discriminant set of the distance
squared unfolding

Φt : U × R3 → R , (u, v, x, y, z) �→ −1

2
(‖(x, y, z)− g(u, v)‖2 − t0

2) ,

where t0 is a constant. Porteous [14, 15] investigated the (Thom-Boardman) singularities of
the unfolding (u, v, x, y, z) �→ Φt + 1

2‖(x, y, z)‖2 with t0 = 0. He discovered that the notion
of normal vectors, principal radii of curvature, and umbilics correspond to A1-singularities,
A2-singularities, and D4-singularities or worse, respectively. Moreover, he discovered the
notion of ridge points corresponding to A3-singularities or worse.
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It is now natural to ask a description of the singularity types of g t in terms of differential
geometry, which we answer in this paper. We fix a general regular map g and investigate
singularities of g t for all t . In other words, we investigate changes of singularities due to time
evolution of fronts generated by g . To do this we need the notion of sub-parabolic points
which is introduced by Bruce and Wilkinson [5] to study singularities of folding maps. The
main theorem (Theorem 3.4) states criteria of the singularity types of g t for all t in terms of
differential geometry. For example, we show that, at a first order ridge point, g t has swallow-
tail singularity when it is not sub-parabolic where t is the corresponding principal radius of
curvature. This is enough to find a normal form when Φt is an unfolding of A1, A2, and A3

singularities. This is proved by given a characterization for the unfolding Φt to be K-versal
in terms of differential geometry.

We now know thatΦt is not a K-versal unfolding at a sub-parabolic ridge point, a higher
order ridge, and an umbilic. At these points, we are interested in the unfolding Φ defined by

Φ : U × R4 → R , (u, v, x, y, z, t) �→ −1

2
(‖(x, y, z)− g(u, v)‖2 − t2) .

Theorem 3.4 also gives a characterization for the unfolding Φ to be K-versal in terms of
differential geometry. For example, at a ridge point, we show that Φ is K-versal without
any other condition. The parallel surface is the section of discriminant set of this unfolding
with the hyperplane defined by t = constant. For A4-singularities, that is, at a second order
ridge point, we also show (Theorem 3.5 (1)) that g t has cuspidal butterfly when it is not sub-
parabolic where t is the corresponding principal radius of curvature. At a sub-parabolic ridge
point where Φt fails to be K-versal, we show (Theorem 3.5 (2)) the singularities of g t are
cuspidal beaks or cuspidal lips when the corresponding CPC (constant principal curvature)
lines are Morse singularities. For D4-singularities, we also show a similar result (Theorem
3.5 (3)). These results are satisfactory in the context of generic differential geometry.

2. Preliminary from differential geometry. We recall some differential geometric
notions and their properties of regular surfaces in Euclidean space, which we need in this
paper. We present the definitions of ridge points, sub-parabolic points and umbilics, and their
fundamental properties. We then discuss constant principal curvature (CPC) lines, which are
the locus of singular points of the parallel surface. We state a characterization of these notions
in terms of the coefficients of a Monge normal form of the surface.

2.1. Fundamental forms. Consider a surface g defined by the Monge form:

g(u, v) = (u, v, f (u, v)) , f (u, v) = 1

2
(k1u

2 + k2v
2)+

∑
i+j≥3

1

i!j !aij u
ivj .(2.1)

The coefficients of the first fundamental form are given by

E = 〈gu, gu〉 = 1 + fu
2 , F = 〈gu, gv〉 = fufv , G = 〈gv, gv〉 = 1 + fv

2.
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Here subscripts denotes partial derivatives and 〈 , 〉 denotes the Euclidean inner product of
R3. The unit normal vector is given by

n = 1√
1 + fu

2 + fv
2
(−fu,−fv, 1) .

The coefficients of the second fundamental form are given by

L = 〈guu,n〉 = fuu√
1 + fu

2 + fv
2
, M = 〈guv,n〉 = fuv√

1 + fu
2 + fv

2
,

N = 〈gvv,n〉 = fvv√
1 + fu

2 + fv
2
.

2.2. Principal curvatures. We say that κ is a principal curvature if there is a non-
zero vector (ξ, ζ ) such that (

L M

M N

) (
ξ

ζ

)
= κ

(
E F

F G

) (
ξ

ζ

)
.(2.2)

This is rewritten as

1

(1 + fu
2 + fv

2)3/2

(
1 + fv

2 −fufv
−fufv 1 + fu

2

) (
fuu fuv

fuv fvv

) (
ξ

ζ

)
= κ

(
ξ

ζ

)
.

The eigenvector (ξi, ζi ) (i = 1, 2) of the equation (2.2) corresponding to the eigenvalue
κi gives the principal vector vi . We can choose them so that the tangent vectors ξigu+ζigv are
of the unit length. At a point on the surface where two principal curvatures are distinct, there
are two principal vectors and these vectors are mutually orthogonal. These principal vectors
are often colored (blue or red) to distinguish between the two vectors. We assume that v1 is
the blue principal vector and v2 is the red principal vector.

Suppose that k1 �= k2, v1 = (1, 0), and v2 = (0, 1). The principal curvature κ1 is
expressed as

κ1(u, v) = k1 + a30u+ a21v + 1

2(k1 − k2)
{[2a21

2 + (a40 − 3k1
3)(k1 − k2)]u2

+ 2[2a21a12 + a31(k1 − k2)]uv(2.3)

+ [2a12
2 + (a22 − k1k2

2)(k1 − k2)]v2} +O(u, v)3 ,

and we have

∂3κ1

∂u3 (0, 0)

= 6a21
2(−a30 + a12)+ 6a21a31(k1 − k2)+ (a50 − 18a30k1

2)(k1 − k2)
2

6(k1 − k2)2
.

(2.4)

It follows form (2.2) that there is a real number µ �= 0 such that (ξ1, ζ1) = µ(N−κ1G,−M+
κ1F). Selection of (ξ1, ζ1) in order for the tangent vector ξ1gu + ζ1gv to be of the unit length
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shows that v1 is expressed as

v1(u, v) = (1 +O(u, v)2)
∂

∂u
+

(
1

k1 − k2
(a21u+ a12v)+O(u, v)2

)
∂

∂v
,(2.5)

and that

∂2ζ1

∂u2 (0, 0) = 2a21(a12 − a30)+ a31(k1 − k2)

2(k1 − k2)2
.(2.6)

Since v1 and v2 are orthogonal, it follows from (2.5) that v2 is expressed as

v2(u, v) =
(

1

k2 − k1
(a21u+ a12v)+O(u, v)2

)
∂

∂u
+ (1 +O(u, v)2)

∂

∂v
.(2.7)

If two principal curvatures are equal at a point on the surface, we call such a point an
umbilic. At an umbilic every direction through the umbilic is principal and the umbilic is an
isolated singularity of the direction field.

If only one principal curvature is zero, such a point is called a parabolic point. If both
principal curvatures are zero, such a point is called a flat umbilic or a planer point.

We can consider the focal surface. Except for the umbilics, the focal surface consists of
two sheets, the blue and red sheets given by g + n/κ1 and g + n/κ2, respectively. The two
sheets come together at umbilics. We note that at parabolic points only one of the two sheets
exits, and at flat umbilics the common focal point lies at infinity.

The focal surface might have a singular point where the same colored principal curvature
has an extreme value along the same colored line of curvature. Such a point on g is called
a ridge point and on the focal surface a rib. Ridges were first studied in details by Porteous
[14].

The locus of points where the principal curvature has extreme value along the other
colored line of curvature is also of importance. This locus is called a sub-parabolic line. The
sub-parabolic line was studied in details by Bruce and Wilkinson [5] in terms of folding maps.
The sub-parabolic line is also the locus of points on the surface whose image is the parabolic
line on the same colored sheet of the focal surface. In [12] the sub-parabolic line appear as
the locus of points where the other colored line of curvature has the geodesic inflections.

2.3. Ridge points and sub-parabolic points. Let g(p) be not an umbilic of a regular
surface g . We say that the point g(p) is a ridge point relative to vi (‘blue ridge point’ for
i = 1, ‘red’ for i = 2) if viκi (p) = 0, where viκi is the directional derivative of κi in vi .
Moreover, g(p) is a k-th order ridge point relative to vi if v(m)i κi(p) = 0 (1 ≤ m ≤ k) and

v(k+1)
i κi(p) �= 0, where v(k)i κi is the k-times directional derivative of κi in vi . The set of ridge

points is called a ridge line or ridges.
We turn to sub-parabolic points. A point g(p) which is not an umbilic is a sub-parabolic

point relative to vi (‘blue sub-parabolic point’ for i = 1, ‘red’ for i = 2) if viκj (p) = 0 (i �=
j). The set of sub-parabolic points is called a sub-parabolic line.

Let g be given in Monge form as in (2.1), and let k1 �= k2. From (2.3) through (2.7), we
obtain the following lemmas.
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LEMMA 2.1. (1) The origin is a first order blue ridge point if and only if

a30 = 0 and 3a21
2 + (a40 − 3k1

3)(k1 − k2) �= 0 .

(2) The origin is a second order blue ridge point if and only if

a30 = 3a21
2 + (a40 − 3k1

3)(k1 − k2) = 0 and

15a21
2a12 + 10a21a31(k1 − k2)+ a50(k1 − k2)

2 �= 0 .

LEMMA 2.2. The origin is a red sub-parabolic point if and only if a21 = 0.

From (2.3), (2.5), and (2.7), it follows that the equation of the blue ridge line through the
origin is expressed as

[3a21
2 + (a40 − 3k1

3)(k1 − k2)]u+ [3a21a12 + a31(k1 − k2)]v + · · · = 0 .(2.8)

and that the red sub-parabolic line through the origin is expressed as

a31(k1 − k2)u+ [a12(2a12 − a30)+ (a22 − k1k2
2)(k1 − k2)]v + · · · = 0 .(2.9)

Equation (2.8) implies the following lemma.

LEMMA 2.3. Suppose that the origin is a blue ridge point. Then the blue ridge line
has a singular point at the origin if and only if

3a21
2 + (a40 − 3k1

3)(k1 − k2) = 3a21a12 + a31(k1 − k2) = 0 .

2.4. Umbilics. Umbilics of a regular surface are points where the two principal cur-
vatures coincide. The classification of generic umbilics is due to Darboux [6]. He gave three
configurations of the lines of curvature. The three configurations were given the names lemon,
star, and monstar by Berry and Hannay [2]. Their classification was provided by Gutierrez and
Sotomayor [7].

Suppose that the origin is an umbilic of a surface g , and that g is given in Monge form

g(u, v) = (u, v, f (u, v)) , f (u, v) = k

2
(u2 + v2)+

∑
i+j≥3

1

i!j !aiju
ivj ,(2.10)

where k is the common value for the principal curvatures at the origin.
At the umbilic the cubic part f3 of f in (2.10) determines its type. The umbilic of g

is said to be elliptic or hyperbolic if f3 has three real roots or one real root, respectively.
Moreover, the umbilic is said to be right-angled if the root directions of the quadratic form
which is the determinant of the Hessian matrix of f3 are mutually orthogonal with respect to
the standard scalar product on R2. Such an umbilic necessarily is a hyperbolic umbilic.

We shall present the conditions for types of umbilics in terms of the coefficients of the
Monge form. We set

Γ :=
a30 2a21 a12 0
0 a30 2a21 a12

a21 2a12 a03 0
0 a21 2a12 a03

, and Γ ′ :=
1 0 1
a30 a21 a12

a21 a12 a03

.
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The discriminant of f3 is given by −Γ . Hence, the origin is an elliptic umbilic or hyperbolic
umbilic if and only if Γ < 0 or Γ > 0, respectively. Moreover, the determinant of the Hessian
matrix of f3 is given by

−36[(a21
2 − a30a12)u

2 + (a21a12 − a30a03)uv + (a12
2 − a21a03)v

2] .
It follows that the origin is a right-angled umbilic if and only if Γ ′ = 0.

It is shown in [15] that there is one ridge line passing through a hyperbolic umbilic and
three ridge lines passing through an elliptic umbilic. It is also shown in [15] that ridge lines
change their color as they pass through a generic umbilic.

It is known that when there is one direction for lines of curvature at an umbilic, there is
one sub-parabolic line through the umbilic in the same direction, while, when there are three
directions for lines of curvature at an umbilic, there are three sub-parabolic lines through the
umbilic in the same three directions [5, 12].

2.5. Constant principal curvature lines. We set

Σc := {(u, v) ∈ U ; κi(u, v) = c for some i} .
We callΣc the constant principal curvature (CPC) line with the value of c. There are two CPC
lines Σκ1(p) (colored by blue) and Σκ2(p) (colored by red) locally through a non-umbilical
point g(p). We recall that a point p ∈ U is a singular point of the parallel surface g t at
distance t if and only if t = 1/κi(p) for some i. This means that the set of singular points of
g t is the CPC line Σκi(p).

Firstly, we investigate the CPC lines away form umbilics. Suppose that a surface g is
given in Monge form as in (2.1). From (2.3), κ1(u, v) = k1 is expressed by the equation

0 = a30u+ a21v + 1

2(k1 − k2)
{[2a21

2 + (a40 − 3k1
3)(k1 − k2)]u2

+ 2[2a21a12 + a31(k1 − k2)]uv + [2a12
2 + (a22 − k1k2

2)(k1 − k2)]v2} + · · · .
(2.11)

This equation shows that the CPC line Σk1 is singular at the origin if and only if a30 = a21 =
0, that is, the origin is a blue ridge point and red sub-parabolic point (Lemmas 2.1 and 2.2).

LEMMA 2.4. Suppose that the origin is a blue ridge point which is not a red sub-
parabolic point. The CPC line Σk1 is transverse (resp. tangential) to the blue ridge line at
the origin if and only if the order of the ridge is one (resp. more than one).

PROOF. It follows from (2.8) and (2.11) that the CPC line Σk1 is transverse (resp. tan-
gentail) to the blue ridge line at the origin if and only if

3a21
2 + (a40 − 3k1

3)(k1 − k2) �= 0 (resp. 3a21
2 + (a40 − 3k1

3)(k1 − k2) = 0) .

Hence, the assertion of the lemma follows from Lemma 2.1. �

LEMMA 2.5. Suppose that the origin is a blue ridge point and red sub-parabolic point.
Then the CPC line Σk1 is locally either an isolated point or the union of two intersecting
smooth curves at the origin, if the blue ridge line crosses the red sub-parabolic line at the
origin.
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PROOF. First we remark that

∂κ1

∂u
(0, 0) = a30 = 0 and

∂κ1

∂v
(0, 0) = a21 = 0 .

The equations of the blue ridge line (2.8) and the red sub-parabolic line (2.9) are reduce to

(a40 − 3k1
3)(k1 − k2)u+ a31(k1 − k2)v + · · · = 0

and

a31(k1 − k2)u+ [2a12
2 + (a22 − k1k2

2)(k1 − k2)]v + · · · = 0 ,

respectively. From these equations, the blue ridge line crosses the red sub-parabolic line at
the origin if and only if A �= 0, where

A = (a40 − 3k1
3)(k1 − k2)[2a12

2 + (a22 − k1k2
2)(k1 − k2)] − a31

2(k1 − k2)
2 .

In addition, from (2.3), the determinant of the Hessian matrix of κ1 at (0, 0) is given by A. By
the Morse lemma (see, for example, [3]), we complete the proof. �

Secondly, we investigate the CPC line near an umbilic.

THEOREM 2.6. (1) The CPC line Σk is locally an isolated point at an elliptic um-
bilic, where k is the common value for the principal curvatures at the umbilic.

(2) The CPC lineΣk is locally two intersecting smooth curves at a hyperbolic umbilic.
The locally two curves change their color as they pass through the hyperbolic umbilic.

PROOF. We suppose that the origin is an umbilic of a surface g , and that the surface
g is given in Monge form as in (2.10). The principal curvatures are the roots of the quadric
equation

(EG− F 2)κ2 − (EN − 2FM +GL)κ + (LN −M2) = 0 .

Replacing κ by k which is the common value for the principal curvatures at the origin, we can
express the equation in the form

(a30a12 − a21
2)u2 + (a30a03 − a21a12)uv + (a21a03 − a12

2)v2 + · · · = 0 .(2.12)

The locus of this equation isΣk . We denote the quadric part of (2.12) by αu2 + 2βuv+ γ v2.
Then we have β2 − αγ = Γ/4, where Γ is as in Subsection 2.4. Hence, Σk at an umbilic is
locally either an isolated point if the origin is an elliptic umbilic or two smooth intersecting
curves if the origin is a hyperbolic umbilic .

We investigate the case of hyperbolic umbilics in detail. For a hyperbolic umbilic, we
may assume that g is locally given in the form

g(u, v) = (u, v, f (u, v)) ,

f (u, v) = k

2
(u2 + v2)+ P

6
u(u2 + 2Quv + Rv2)+ · · ·(2.13)
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for some P , Q, and R with P �= 0 andQ2 − R < 0. Then κ1 and κ2 (κ1 ≥ κ2) are expressed
as

κi(u, v)= k + 1

6
(P [(R + 3)u+ 2Qu]

+ε|P |
√

[16Q2 + (R − 3)2]u2 + 12Q(R + 1)uv + 4(Q2 + R2)v2)+ · · · ,
where ε = 1 for i = 1 and −1 for i = 2. Therefore, the locally two smooth curves change
their color as they go through the hyperbolic umbilic. �

REMARK 2.7. (1) A simple calculation gives Γ ′ = α + γ , where Γ ′ is as in Sub-
section 2.4. It follows that the tangents to the locally two smooth curves of Σk through the
right-angled umbilic are mutually orthogonal.

(2) Equation (2.12) shows thatΣk is approximated by a conic near the origin when the
origin is an elliptic or hyperbolic umbilic.

Finally, we investigate bifurcations of the CPC lines at an umbilic. We start with the case
of an elliptic umbilic. There are three ridge lines through the elliptic umbilic. The bifurcation
of the CPC lines at the elliptic umbilic is shown in Figure 1 (i), (ii) (cf. [4, Figure 2]). We
now turn to the case of a hyperbolic umbilic. We may assume that the surface given in the
from (2.13). There is one ridge line through the hyperbolic umbilic. Calculations show that
the ridge line is tangent to 2Qu + Rv = 0 at the origin (cf. [15, part (iii) of the corollary
of Theorem 11.10]), and that the locally two smooth curves of Σk are tangent to [QR ±√
R2(−Q2 + R)]u + R2v = 0. Thus it follows that the bifurcation of the CPC lines at the

hyperbolic umbilic is given in Figure 1 (iii) through (v) (cf. [4, Figure 2]), in the generic
context.

As shown in Figure 1, there are three intersection points of the CPC line and the same
colored ridge line near an elliptic umbilic, and there is one such intersection point near a
hyperbolic umbilic, in the generic context.

3. Singularities of parallel surfaces. In this section we present our main theorem.

3.1. Augmented distance squared functions. Let f : (Rn, 0) → (R, 0) be a smooth
function germ. We say that a smooth function germF : (Rn×Rr , 0) → (R, 0) is an unfolding
of f if F(u, 0) = f (u). We define the discriminant set of F by

D(F ) =
{

x ∈ Rr ; F(u, x) = ∂F

∂u1
(u, x) = · · · ∂F

∂un
(u, x) = 0 for some u ∈ U

}
,

where (u, x) = (u1, . . . , un, x1, . . . , xr ) ∈ (Rn× Rr , 0). We say that F is a K-versal unfold-
ing if any unfolding G : (Rn × Rs , 0) → (R, 0) of f is representable in the form

G(u, y) = h(u, y) · F(Ψ (u, y), ψ(y)) ,

where Ψ : (Rn × Rs , 0) → (Rn, 0) is a smooth map germ with Ψ (u, 0) = u, ψ : (Rs , 0) →
(Rr , 0) is a smooth map germ with ψ(0) = 0 and h : (Rn×Rs , 0) → R is a smooth function
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FIGURE 1. Bifurcations of the CPC lines near an elliptic umbilic (i) and (ii), and a hyperbolic umbilic
(iii) through (v), where ε is a small positive number.

germ with h(0, 0) �= 0 (cf. [1, §8]). This condition is equivalent to the equality

En =
〈
∂f

∂u1
, . . . ,

∂f

∂un
, f

〉
En

+
〈
∂F

∂x1

∣∣∣∣
Rn×{0}

, . . . ,
∂F

∂xr

∣∣∣∣
Rn×{0}

〉
R

+ Mk+1
n

when f (u) is k-determined (see [17, §3] and [11, p.75]). Here, En is the set of smooth function
germs (Rn, 0) → R, which is the local ring with the unique maximal ideal Mn = {f ∈
En ; f (0) = 0}. We say that two function germs f and g : (Rn, 0) → (R, 0) are K-equivalent
if there exist a diffeomorphism germ ψ : (Rn, 0) → (Rn, 0) and a smooth function germ
h : (Rn, 0) → R with h(0) �= 0 such that g(u) = h(u) ·f ◦ψ(u). Let F ,G : (Rn×Rr , 0) →
(R, 0) be K-versal unfoldings of K-equivalent function germs f , g , respectively. Then, there
exist a diffeomorphism germ Ψ̃ : (Rn × Rr , 0) → (Rn × Rr , 0), (u, x) �→ (Ψ (u, x), ψ(x))
and a smooth function germ h : (Rn × Rr , 0) → R with h(0, 0) �= 0 such that

G(u, x) = h(u, x) · F(Ψ (u, x), ψ(x)) .
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FIGURE 2. From left to right: Cuspidal edge, Swallowtail.

(cf. [1, §8]). Moreover, a calculation shows the equality D(F ) = ψ(D(G)).
In order to investigate singularities of parallel surfaces, we consider the functions

Φt : U × R3 → R , defined by (u, v, x, y, z) �→ −1

2
(‖(x, y, z)− g(u, v)‖2 − t0

2) ,

where t0 ∈ R \ {0}, and

Φ : U × R4 → R , defined by (u, v, x, y, z, t) �→ −1

2
(‖(x, y, z)− g(u, v)‖2 − t2) .

We call them augmented distance squared functions.
Calculating the discriminant set of Φt , we have

D(Φt ) = {(x, y, z) ∈ R3 ; (x, y, z) = g(u, v) + t0n(u, v) for some (u, v) ∈ R2} ,
which is the parallel surface of g at a distance t0. Besides, the discriminant set of Φ is given
by

D(Φ) = {(x, y, z, t) ∈ R4 ; (x, y, z) = g(u, v) + tn(u, v) for some (u, v) ∈ R2} .
Its intersection with the hyperplane t = t0 is the parallel surface of g at distance t0.

We take points p ∈ U , and q = (x0, y0, z0) ∈ R3 or q = (x0, y0, z0, t0) ∈ R4 where

(x0, y0, z0) = g(p)+ t0n(p), t0 = 1

κi(p)
,

possibly with κ1(p) = κ2(p), and set ϕ(u, v) = Φt(u, v, q) or ϕ(u, v) = Φ(u, v, q). Then
the augmented distance functions Φ and Φt are the unfoldings of ϕ.

If ϕ is K-equivalent to A2 (resp. A3) and Φt is a K-versal unfolding of ϕ, then the
discriminant set of Φt is locally diffeomorphic to the discriminant set of the versal unfolding
G : (U × R3, 0) → (R, 0),

G(u, v, x, y, z) = u3 ± v2 + x + yu (resp. G(u, v, x, y, z) = u4 ± v2 + x + yu+ zu2) ,

of g(u, v) = u3 ± v2 (resp. g(u, v) = u4 ± v2). The singularity of the discriminant set of G
is the cuspidal edge (resp. swallowtail).

Here, the cuspidal edge is a set locally diffeomorphic to the image of a map germ CE :
(R2, 0) → (R3, 0), (u, v) �→ (u, v2, v3) and the swallowtail is a set locally diffeomorphic
to the image of a map germ SW : (R2, 0) → (R3, 0), (u, v) �→ (u, 3v4 + uv2, 4v3 + 2uv).
The pictures of the cuspidal edge and the swallowtail are shown in Figure 2.
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If ϕ is K-equivalent to A4 (resp. D±
4 ) and Φ is a K-versal unfolding of ϕ, then the

discriminant set of Φ is locally diffeomorphic to the discriminant set of the versal unfolding
G : (U × R4, 0) → (R, 0),

G(u, v, x, y, z, t) = u4 ± v2 + x + yu+ zu2 + tu3

(resp. G(u, v, x, y, z, t) = u2v ± v3 + x + yu+ zv + tv2) ,

of g(u, v) = u4 ± v2 (resp. g(u, v) = u2v ± v3). The singularity of the discriminant set ofG
is a butterfly (resp.D±

4 singularities).
Here, the butterfly is a set locally diffeomorphic to the image of a map germ BF :

(R3, 0) → (R4, 0), (u, v,w) �→ (u, 5v4 + 2uv + 3v2w, 4v5 + uv2 + 2v3w,w) and the
4-dimensional D±

4 singularity is a set locally diffeomorphic to the image of a map germ
FD± : (R3, 0) → (R4, 0), (u, v,w) �→ (uv, u2 + 2vw ± 3v2, 2u2v + v2w ± 2v3, w).

3.2. Criteria for singularities of fronts in R3. It is well known that the parallel sur-
face g t is a front. Fronts were first studied in details by Arnol’d and Zakalyukin. They showed
that the generic singularities of fronts in R3 are cuspidal edges and swallowtails. Moreover,
they showed that the singularities of the bifurcations in generic one parameter families of
fronts in R3 are cuspidal lips, cuspidal beaks, cuspidal butterflies and 3-dimensionalD±

4 sin-
gularities (cf. [1]).

Here, the cuspidal lips is a set locally diffeomorphic to the image of a map germ CLP :
(R2, 0) → (R3, 0), (u, v) �→ (3u4 + 2u2v2, u3 + uv2, v), the cuspidal beaks is a set lo-
cally diffeomorphic to the image of a map germ CBK : (R2, 0) → (R3, 0), (u, v) �→
(3u4 − 2u2v2, u3 − uv2, v), the cuspidal butterfly is a set of the image of a map germ
CBF : (R2, 0) → (R3, 0), (u, v) �→ (4u5 + u2v, 5u4 + 2uv, v) and the 3-dimensional
D+

4 singularity (resp. D−
4 singularity) is a set of the image of a map germ TD+ : (R2, 0) →

(R3, 0), (u, v) �→ (uv, u2 +3v2, u2v+v3) (resp. TD− : (u, v) �→ (uv, u2 −3v2, u2v−v3)).
Their pictures are shown in Figure 3.

Recently, criteria for these singularities are shown in [8, 9, 10, 16]. To present these
criteria, we prepare basic notions of fronts in R3. A smooth map f : U → R3 is called a
front if there exists a unit vector field ν of R3 along f such that Lf = (f, ν) : U → T1R

3 is
a Legendrian immersion, where T1R

3 is the unit tangent bundle of R3 (cf. [1], see also [10]).
For a front f , we define a function λ : U → R by λ(u, v) = det(fu, fv, ν). The function
λ is called a discriminant function of f . The set of singular points S(f ) of f is the zero set
of λ. A singular point p ∈ U of f is said to be non-degenerate if dλ(p) �= 0. Let p be a
non-degenerate singular point of a front f . Then S(f ) is parameterized by a regular curve
γ (t) : (−ε, ε) → U near p. Moreover, there exists a unique direction η(t) ∈ Tγ (t)U up to
scalar multiplications such that df (η(t)) = 0. We call η(t) the null direction. Under these
notations, we present the criterion for the cuspidal butterfly.

THEOREM 3.1 ([8]). Let f : U → R3 be a front and let p ∈ U be a non-degenerate
singular point of f . Then the germ of the front f at p is A-equivalent to the map germ CBF

if and only if ηλ(p) = η2λ(p) = 0 and η3λ(p) �= 0.
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FIGURE 3. From top left to bottom right: Cuspidal lips, Cuspidal beaks, Cuspidal butterfly, 3-dimensional
D+

4 singularity, 3-dimensional D−
4 singularity.

Here, two map germs f1, f2 : (R2, 0) → (R3, 0) are A-equivalent if there exist
diffeomorphism germs ψ1 : (R2, 0) → (R2, 0) and ψ2 : (R3, 0) → (R3, 0) such that
ψ2 ◦ f1 = f2 ◦ ψ1, and ηλ denotes the directional derivative of λ in the direction of η.

We now turn to degenerate singularities. Let p be a degenerate singular point of the front
f . If rank(dfp) = 1, then there exists the non-zero vector field η near p such that if q ∈ S(f )
then dfq(η(q)) = 0. Criteria for degenerate singularities are as follows:

THEOREM 3.2 ([9]). Let f : U → R3 be a front and let p ∈ U be a degenerate
singular point of f .

(1) The germ of the front f at p is A-equivalent to the map germ CLP if and only if
rank(dfp) = 1 and det(Hess λ(p)) > 0, where det(Hess λ(p)) denotes the determinant of the
Hessian matrix of λ at p.

(2) The germ of the front f at p is A-equivalent to the map germ CBK if and only if
rank(dfp) = 1, det(Hess λ(p)) < 0 and η2λ(p) �= 0.

THEOREM 3.3 ([16]). Let f : U → R3 be a front and let p ∈ U be a degenerate
singular point of f . Then the germ of the front f at p is A-equivalent to the map germ TD+
(resp. TD−) if and only if rank(df )p = 0 and det(Hess λ(p)) < 0 (resp. det(Hess λ(p)) >
0).

3.3. Singularities of parallels surfaces. Now we are ready to state our main theorem.

THEOREM 3.4. Let g : U → R3 be a regular surface and let g t be the parallel surface
of g at distance t = 1/κi(p), where U is an open subset of R2 and p ∈ U . Assume that Φ,
Φt , and ϕ is defined as in Subsection 3.1.
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(1) If g(p) is neither a ridge point relative to the principal vector vi nor an umbilic,
then ϕ has an A2 singularity at p. In this case, Φt is a K-versal unfolding of ϕ. Moreover, g t

is locally diffeomorphic to the cuspidal edge at g t (p).
(2) If g(p) is a first order ridge point relative to the principal vector vi , then ϕ has

an A3 singularity at p. In this case, Φt is a K-versal unfolding of ϕ if and only if g(p) is
not a sub-parabolic point relative to the other principal vector vj . Moreover, g t is locally
diffeomorphic to the swallowtail at g t (p).

(3) If g(p) is a second order ridge point relative to the principal vector vi , then ϕ
has an A4 singularity at p. In this case, Φ is a K-versal unfolding of ϕ if and only if p is a
non-singular point of the ridge line relative to the same principal vector vi . Moreover, g t is
the section of the discriminant set D(Φ), which is locally diffeomorphic to the butterfly, with
the hyperplane t = 1/κi(p).

(4) If g(p) is a hyperbolic umbilic, then ϕ has a D+
4 singularity at p. In this case, Φ

is a K-versal unfolding of ϕ if and only if g(p) is not a right-angled umbilic. Moreover, g t is
the section of the discriminant set D(Φ), which is locally diffeomorphic to the 4-dimensional
D+

4 singularity, with the hyperplane t = 1/κi(p).
(5) If g(p) is an elliptic umbilic, then ϕ has a D−

4 singularity at p. In this case, Φ is
a K-versal unfolding of ϕ. Moreover, g t is the section of the discriminant set D(Φ), which is
locally diffeomorphic to the 4-dimensional D−

4 singularity, with the hyperplane t = 1/κi(p).

A proof of this theorem is given in Section 5.
Again, we remark that the parallel surfaces g t of a regular surface g are the front. Since

the unit normal vector of g t coincides with the unit normal vector n of the initial surface g ,
the discriminant function of g t is given by

λ(u, v) = det(g tu(u, v), g
t
v(u, v),n(u, v)) .

Moreover, the Jacobian matrix Jg t of g t is given by

Jg t = Jg

((
1 0
0 1

)
− t

(
E F

F G

)−1 (
L M

M N

))
,(3.1)

where Jg is the Jacobian matrix of g . Applying criteria for singularities of fronts (Theorem 3.1
through 3.3) to g t , we obtain Theorem 3.5 as corollaries of these criteria.

THEOREM 3.5. Let g : U → R3 be a regular surface and let g t be the parallel surface
of g at distance t = 1/κi(p), where U is an open subset of R2 and p ∈ U .

(1) Suppose that g(p) is a second order ridge point relative to the principal vector
vi which is not a sub-parabolic point relative to the other principal direction vj . Then g t is
locally diffeomorphic to the cuspidal butterfly at g t (p).

(2) Suppose that g(p) is a ridge point relative to the principal direction vi and
sub-parabolic point relative to the other principal direction vj . Then g t is locally diffeomor-
phic to the cuspidal lips (resp. cuspidal beaks) at g t (p) if det(Hess(v1,v2)κi(p)) > 0 (resp.
det(Hess(v1,v2)κi(p)) < 0 and the order of ridge is one), where Hess(v1,v2)κi is the Hessian
matrix of κi with respect to v1 and v2.
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(3) Suppose that g(p) is an umbilic. Then g t is locally diffeomorphic to a 3-dimen-
sionalD+

4 singularity (resp.D−
4 singularity) at g t (p) if g(p) is a hyperbolic umbilic (resp. el-

liptic umbilic).

PROOF. (1) We may assume that p = (0, 0) and that the initial regular surface g given
in Monge form as in (2.1). We remark that k1 �= k2. Now we prove the theorem in the case
t = 1/κ1(0, 0) = 1/k1. From Lemmas 2.1 and 2.2, we have

a30 = 3a21
2 + (a40 − 3k1

3)(k1 − k2) = 0,

15a2
21a12 + 10a21a31(k1 − k2)+ a50(k1 − k2)

2 �= 0 , and a21 �= 0 .
(3.2)

Suppose that t = 1/k1. Then we have λ(0, 0) = 0. Moreover, from (3.2), we have λu(0, 0) =
0 and λv(0, 0) �= 0. It turns out that (0, 0) is a non-degenerate singular point of g t . Therefore,
the set of singular points of g t is a locally smooth curve near (0, 0), which is the CPC lineΣk1 ,
and there exists a null direction η with dg t (η) = 0 along this smooth curve. It follows form
(3.1) that the null direction η has the same direction as the principal vector v1. From (3.2),
we have v1λ(0, 0) = v1

2λ(0, 0) = 0 and v1
3λ(0, 0) �= 0. Therefore, we obtain ηλ(0, 0) =

η2λ(0, 0) = 0, η3λ(0, 0) �= 0. If the two map germs are A-equivalent, their images are locally
diffeomorphic. By Theorem 3.1, g t is locally diffeomorphic to the cuspidal butterfly at g t (p).

(2) We may assume that p = (0, 0) and that the initial regular surface g given in
Monge form as in (2.1). We remark that k1 �= k2. Now we prove the theorem in the case
t = 1/κ1(0, 0) = 1/k1. From Lemmas 2.1 and 2.2, we have

a30 = a21 = 0 .(3.3)

Suppose that t = 1/k1. Then we have λ(0, 0) = 0 and

Jg t (0, 0) =

0 0

0 (k1 − k2)/k1

0 0


 .

Moreover, from (3.3), we have λu(0, 0) = λv(0, 0) = 0. It follows that (0, 0) is a degenerate
singular point of g t with rank(dg tp) = 1. Using (3.3), we obtain

det(Hess(v1,v2)κ1(0, 0))=
a40 − 3k1

3 a31

a31
2a12

2 + (a22 − k1k2
2)

k1 − k2

(3.4)

= k1
4

(k1 − k2)2
det(Hess λ(0, 0)) .

Therefore, the sign of det(Hess λ(0, 0)) is the same as that of det(Hess(v1,v2)κ1(0, 0)). Be-
sides, since rank(dg tp) = 1, there exists a non-zero vector η with dg tp(η) = 0. From (3.1), the
non-zero vector η has the same direction as the principal vector v1. Using (3.3), we conclude
that (0, 0) is a first order blue ridge point relative to v1 if and only if v1

2λ(0, 0) �= 0, that is,
η2λ(0, 0) �= 0. Applying Theorem 3.2 to the argument indicated above, we obtain (2).

(3) We may assume that p = (0, 0) and that the initial regular surface g given in Monge
form as in (2.10). We remark that κ1(0, 0) = κ2(0, 0) = k. Suppose that t = 1/k. Then we
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have λ(0, 0) = λu(0, 0) = λv(0, 0) = 0 and rank(Jg t (0, 0)) = 0. Hence, (0, 0) is a degener-
ate singular point of g t with rank(dg tp) = 0. Moreover, we have det(Hess λ(0, 0)) = −Γ/k1

4,
where Γ is as in Subsection 2.4. It follows that det(Hess λ(0, 0)) < 0 (resp. det(Hess λ(0, 0))
> 0) if and only if g(0, 0) is a hyperbolic (resp. elliptic) umbilic Therefore, using Theo-
rem 3.3, we obtain (3). �

REMARK 3.6. Suppose that g(p) is a ridge point relative to the principal direction vi
and sub-parabolic point relative to the other principal direction vj . It follow from (2.8), (2.9)
and (3.4) that det(Hess(v1,v2)κi(p)) = 0 if and only if the ridge line relative to vi and the
sub-parabolic line relative to vj are tangent at p.

These theorems imply that the configuration of CPC lines, ridge lines, and sub-parabolic
lines determines types of singularities of parallel surfaces. For example, it follows from The-
orem 3.4 (1) and Lemma 2.4 that if the CPC line Σκi(p) does not meet the ridge line relative
vi at p then the parallel surface g t at distance t = 1/κi(p) is the cuspidal edge at g t (p).
Moreover, it follows from Theorem 3.4 (2) and Lemma 2.4 that if CPC lineΣκi(p) crosses the
ridge line relative to the principal vector vi and does not cross the sub-parabolic line relative
to the other principal vector vj at p then the parallel surface g t at distance t = 1/κi(p) is the
swallowtail at g t (p). Therefore, Figure 1 (i) and (ii) show that there are three swallowtails
near g t (p) on the parallel surface g t at distance t = 1/(κi(p) ± ε) if g(p) is an elliptic um-
bilic. Similarly, Figure 1 (iii) through (v) show that there is one swallowtail near g t (p) on the
parallel surface g t at distance t = 1/(κi(p)± ε) if g(p) is a hyperbolic umbilic which is not
right-angled. These bifurcations of parallel surfaces near umbilics are depicted in Figure 4.
These are also shown in [1, p. 384].

FIGURE 4. From top to bottom: Elliptic umbilic, Hyperbolic umbilic.
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4. Criteria for A1, A2, A3, A4 and D±
4 singularities. Before we present proof of

Theorem 3.4, we shall provide a convenient criteria for A≤4 and D4 singularities in this sec-
tion.

We consider the function f : (R2, 0) → (R, 0) whose Taylor expansion at (0, 0) is

f (u, v) =
∑
i,j

1

i!j !cij u
ivj .

4.1. Criteria for Ak-singularities (k ≤ 4). We assume that f is singular at (0, 0)
(i.e., c10 = c01 = 0). It is well known that the function f has an A1-singularity at (0, 0) if
and only if

(
c20 c11

c11 c02

)

is of full rank. Now we set

cn(u, v) :=
∑
i+j=n

1

i!j !cij u
ivj .

It is easy to see that the following conditions are equivalent.
(1) The matrix

(
c20 c11
c11 c02

)
is of rank 1.

(2) There exists a non-zero vector (λ, µ) such that
(
c20 c11
c11 c02

) (
λ
µ

)
=

(0
0

)
.

(3) There exist a non-zero vector (λ, µ) and non-zero real number s such that
(
c20 c11

c11 c02

)
= s

(
µ2 −λµ

−λµ λ2

)
.(4.1)

The rank of the Hesse’s matrix of f is 1 if and only if one of these conditions holds. Under
this assumption, we have the followings.

THEOREM 4.1. (1) The function f is A2-singularity at (0, 0) if and only if c3(λ, µ)

�= 0.
(2) The function f is A3-singularity at (0, 0) if and only if c3(λ, µ) = 0,

ĉ4(λ, µ) := c4(λ, µ)+ 1

8s

∣∣∣∣∣∣
µ2 −λµ λ2

c30 c21 c12

c21 c12 c03

∣∣∣∣∣∣ �= 0 .

(3) The function f is A4-singularity at (0, 0) if and only if c3(λ, µ) = ĉ4(λ, µ) = 0
and one of the following conditions holds.

(a) λ �= 0, c5(λ, µ)− 1

sλ2 c4v(λ, µ)c3v(λ, µ)+ 1

2s2λ4 c3v(λ, µ)
2c3vv(λ, µ),

(b) µ �= 0, c5(λ, µ)− 1

sµ2 c4u(λ,µ)c3u(λ,µ)+ 1

2s2µ4 c3u(λ,µ)
2c3uu(λ,µ).

Here, (λ, µ) is a non-zero vector and s is a non-zero real number that satisfy (4.1).
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PROOF. (1) If λ �= 0, the coefficient of u2, v2, and u3 in f (u, v + (µ/λ)u) are 0,
sλ2/2, and c3(λ, µ)/λ

3, respectively. Hence, we obtain the result. The case that µ �= 0 is
similar.

(2) We assume that c3(λ, µ) = 0. Suppose that λ �= 0. Setting c = c3v(λ, µ)/(sλ
4),

we obtain that the coefficients of v2, u2v, and u4 in f (u, v+ (µ/λ)u− cu2) are sλ2/2, 0, and

1

λ4

(
c4(λ, µ)− 1

2sλ2
c3v(λ, µ)

2
)
,(4.2)

respectively. Since

λ2

∣∣∣∣∣∣
λ2 −λµ µ2

c30 c21 c12

c21 c12 c03

∣∣∣∣∣∣ + 4c3v(λ, µ)
2 = 6c3vv(λ, µ)c3(λ, µ) ,

ĉ4(λ, µ) �= 0 implies that (4.2) is not zero. The case that µ �= 0 is similar.
(3) We keep the notation above and assume c3(λ, µ) = ĉ4(λ, µ) = 0. We shall con-

sider case (a). (Case (b) is similar and we omit the detail.) If λ �= 0, the coefficients of v2,
u2v, u4, and u5 in f (u, v + (µ/λ)u− cu2) are sλ2/2, 0, 0, and

1

λ5

(
c5(λ, µ)− 1

sλ2 c4v(λ, µ)c3v(λ, µ)+ 1

2s2λ4 c3v(λ, µ)
2c3vv(λ, µ)

)
,

respectively. The case that µ �= 0 is similar.
�

4.2. Criterion for D±
4 -singularity. We assume that c10 = c01 = c20 = c11 = c02 =

0. Then f is at least D4-singularity at (0, 0). We have the following.

THEOREM 4.2. The function f is D+
4 -singularity (resp. D−

4 -singularity) at (0, 0) if
and only if ∣∣∣∣∣∣∣∣

c30 2c21 c12 0
0 c30 2c21 c12

c21 2c12 c03 0
0 c21 2c12 c03

∣∣∣∣∣∣∣∣
(4.3)

takes positive values (resp. negative values).

PROOF. The function f is D+
4 -singularity or D−

4 -singularity at (0, 0) if the cubic part
c3 of f has one real root or three real roots, respectively. The discriminant∆ of c3 is given by

∆ = − 1

48
(a30

2a03
2 − 6a03a21a12a30 + 4a30a12

3 + 4a21
3a03 − 3a21

2a12
2) .

Expanding (4.3), we have ∣∣∣∣∣∣∣∣

c30 2c21 c12 0
0 c30 2c21 c12

c21 2c12 c03 0
0 c21 2c12 c03

∣∣∣∣∣∣∣∣
= −48∆ ,
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and we complete the proof. �

5. Singularities of ϕ and K-versality. In this section we give the proof of Theo-
rem 3.4. Let g be given in Monge from as (2.1). If we write down Φ as

Φ = c00 + xu+ yv + 1

2
(k̂1u

2 + k̂2v
2)+

∑
i+j≥3

1

i!j !cij u
ivj ,

then we obtain that

c00 = t2 − x2 − y2 − z2

2
, k̂i = kiz − 1 (i = 1, 2) , cij = aij z (i + j = 3) ,

c40 = a40z − 3k1
2 , c31 = a31z, c22 = a22z− k1k2 , c13 = a13z ,

c04 = a04z − 3k2
2 , c50 = a50z− 10k1a30 , c05 = a05z− 10k2a03 .

We recall that we take points p ∈ U , and q = (x0, y0, z0) ∈ R3 or q = (x0, y0, z0, t0) ∈ R4

where

(x0, y0, z0) = g(p)+ t0n(p) , t0 = 1

κi(p)
,

and that we set ϕ(u, v) = Φ(u, v, q) or ϕ(u, v) = Φt(u, v, q). Now we assume that p =
(0, 0). So we have (x0, y0, z0) = (0, 0, 1/ki) and t0 = 1/ki . We note that Φ (resp. Φt ) is a
K-versal unfolding of ϕ if and only if

E2 = 〈ϕ, ϕu, ϕv〉E2 + 〈Φx |R2×q ,Φy |R2×q,Φz|R2×q,Φt |R2×q 〉R + 〈u, v〉k+1

(resp. E2 = 〈ϕ, ϕu, ϕv〉E2 + 〈Φtx |R2×q ,Φty |R2×q,Φtz|R2×q〉R + 〈u, v〉k+1)

when ϕ is k-determined. To show K-versality of Φ andΦt , it is enough to check these condi-
tioins. We skip the proofs of (1) and (2), since the proofs are similar to that of (3). The proof
of (5) is also omitted, since it is completely parallel to that of (4).

PROOF OF THEOREM 3.4 (3). From Theorem 4.1 (3), ϕ is K-equivalent to A4 at (0, 0)
if and only if one of the following conditions holds:

(a) k̂1 = 0, k̂2 �= 0, c30 = 0, k̂2c40 − 3c21
2 = 0, k̂2

2c50 − 10k̂2c21c31 + 15c21
2c12 �= 0;

(b) k̂1 �= 0, k̂2 = 0, c03 = 0, k̂1c04 − 3c12
2 = 0, k̂2

1c05 − 10k̂1c12c13 + 15c21c12
2 �= 0.

We work on Case (a). (Case (b) is similar and we omit the detail.) Condition (a) is equivalent
to

z0 = 1/k1, k1 �= k2, a30 = 0, 3a2
21 + (a40 − 3k1

3)(k1 − k2) = 0,

15a21
2a12 + 10a21a31(k1 − k2)

2 + a50(k1 − k2)
2 �= 0,

in the original coefficients of the Monge form. By Lemma 2.1, we obtain the first assertion.
Let us prove K-versality ofΦ. We assume that ϕ has an A4-singularity at (0, 0). We next

remark that A4-singularity is 5-determined. To show K-versality of Φ, it is enough to verify
that

E2 = 〈ϕu, ϕv, ϕ〉E2 + 〈Φx |R2×q ,Φy |R2×q,Φz|R2×q ,Φt |R2×q〉R + 〈u, v〉6 .(5.1)
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Setting c = c21/(2k̂2) and replacing v by v − cu2, we see that the coefficients of uivj of
functions appearing in (5.1) are given by Table 1.

1 u v u2 uv v2 u3 u2v uv2 v3 u4 u5

Φx 0 1 0 0 0 0 0 0 0 0 0 0

Φy 0 0 1 −c 0 0 0 0 0 0 0 0

Φz −z0 0 0 1
2k1 0 1

2k2 0 ∗ ∗ ∗ ∗ ∗
Φt t0 0 0 0 0 0 0 0 0 0 0 0

ϕu 0 0 0 0 0 1
2c12 0 1

2 ĉ31
1
2 ĉ22

1
6c13

1
24 ĉ50 ∗

ϕv 0 0 k̂2 0 c12
1
2c03

1
6 ĉ31

1
2 ĉ22

1
2c13 0 1

24 ĉ41 ∗
ϕ 0 0 0 0 0 1

2 k̂2 0 0 1
2c12

1
6c03 0 1

120 ĉ50

uϕu 0 0 0 0 0 0 0 0 1
2c12 0 0 1

24 ĉ50

vϕu 0 0 0 0 0 0 0 0 0 1
2c12 0 0

uϕv 0 0 0 0 k̂2 0 0 c12
1
2c03 0 1

6 ĉ31
1

24 ĉ41

vϕv 0 0 0 0 0 k̂2 0 0 c12
1
2c03 0 0

u2ϕv 0 0 0 0 0 0 0 k̂2 0 0 0 1
6 ĉ31

uvϕv 0 0 0 0 0 0 0 0 k̂2 0 0 0

v2ϕv 0 0 0 0 0 0 0 0 0 k̂2 0 0

uivj (i + j ≤ 3) u4 u3v u2v2 uv3 v4 u5

u3ϕv 0 0 k̂2 0 0 0 0

u2vϕv 0 0 0 k̂2 0 0 0

uv2ϕv 0 0 0 0 k̂2 0 0

v3ϕv 0 0 0 0 0 k̂2 0

uivj (i + j ≤ 4) u5 u4v u3v2 u2v3 uv4 v5

u4ϕv 0 0 k̂2 0 0 0 0

u3vϕv 0 0 0 k̂2 0 0 0

u2v2ϕv 0 0 0 0 k̂2 0 0

uv3ϕv 0 0 0 0 0 k̂2 0

v4ϕv 0 0 0 0 0 0 k̂2

TABLE 1.
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Here,

ĉ40 = (k̂2c40 − 3c21
2)/k̂2 , ĉ31 = (k̂2c31 − 3c21c12)/k̂2 , ĉ22 = (k̂2c22 − c21c03)/k̂2 ,

ĉ50 = (k̂2
2c50 − 10k̂2c21c31 + 15c21

2c12)/k̂
2
2 , ĉ41 = (k̂2

2c41 − 6k̂2c21c22 + 3c21
2c03)/k̂

2
2 ,

and so on. The coefficients mentioned by “∗” are not important. The equality (5.1) holds if
and only if the matrix presented by this table is of full rank. Using Gauss’s elimination method
using boxed elements as pivots, we conclude that Φ is K-versal if and only if ĉ31 �= 0. The
condition ĉ31 �= 0 is equivalent to 3a12a21 + a31(k1 − k2) �= 0 in the original coefficients
of the Monge form. From Lemma 2.3, Φ is K-versal unfolding of ϕ if and only if (0, 0) is a
non-singular point of the ridge line relative to v1. �

PROOF OF THEOREM 3.4 (4). From Theorem 4.2, ϕ is K-equivalent to D+
4 at (0, 0) if

k̂1 = k̂2 = 0, and

∣∣∣∣∣∣∣∣

c30 2c21 c12 0
0 c30 2c21 c12

c21 2c12 c03 0
0 c21 2c12 c03

∣∣∣∣∣∣∣∣
> 0 .

These conditions are equivalent to

k1 = k2 = 1

z0
, and

∣∣∣∣∣∣∣∣

a30 2a21 a12 0
0 a30 2a21 a12

a21 2a12 a03 0
0 a21 2a12 a03

∣∣∣∣∣∣∣∣
> 0

in the original coefficients of the Monge form. Therefore, ϕ is K-equivalent toD+
4 at (0, 0) if

the origin is a hyperbolic umbilic (see Section 2.4).
We assume that ϕ has a D+

4 -singularity at (0, 0). Since D±
4 -singularity is 3-determined,

Φ is K-versal unfolding of ϕ if and only if

E2 = 〈ϕu, ϕv, ϕ〉E2 + 〈Φx |R2×q ,Φy |R2×q,Φz|R2×q ,Φt |R2×q〉R + 〈u, v〉4 .(5.2)

The coefficients of uivj of functions appearing in (5.2) are given by Table 2.
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1 u v u2 uv v2 u3 u2v uv2 v3

Φx 0 1 0 0 0 0 0 0 0 0

Φy 0 0 1 0 0 0 0 0 0 0

Φz −z0 0 0 1
2k1 0 1

2k2
1
6a30

1
2a21

1
2a12

1
6a03

Φt t0 0 0 0 0 0 0 0 0 0

Φu 0 0 0 1
2c30 c21

1
2c12

1
6c40

1
2c31

1
2c22

1
6c13

Φv 0 0 0 1
2c21 c12

1
2c03

1
6c31

1
2c22

1
2c13

1
6c04

uΦu 0 0 0 0 0 0 1
2c30 c21

1
2c12 0

vΦu 0 0 0 0 0 0 0 1
2c30 c21

1
2c12

uΦv 0 0 0 0 0 0 1
2c21 c12

1
2c03 0

vΦv 0 0 0 0 0 0 0 1
2c21 c12

1
2c03

TABLE 2.

Thus we obtain that Φ is K-versal if and only if∣∣∣∣∣∣
1 0 1
c30 c21 c12

c21 c12 c03

∣∣∣∣∣∣ �= 0 .

This condition is equivalent to ∣∣∣∣∣∣
1 0 1
a30 a21 a12

a21 a12 a03

∣∣∣∣∣∣ �= 0

in the original coefficients of the Monge form. This condition is equivalent to the origin is not
a right-angled umbilic. Hence, we complete the proof. �
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