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0. Introduction. By the Fermat variety of dimension r and of de-
gree m we mean the non-singular hypersurface in the projective space
P r + 1 defined by the equation

(0.1) x? + x? + + x?+ί = 0 .

Throughout this paper, we denote it by Xr

m, or by Xr

m(p), when we need
to specify the characteristic p of the base field k; we always assume
that m ^ 0 (mod p).

The purpose of this paper is to clarify the "inductive structure" of
Fermat varieties of a common degree and of various dimensions, and apply
it to the questions concerning the unirationality and algebraic cycles of
a Fermat variety. The main results are stated as follows:

THEOREM I. For any positive integers r and s, XZf8 is obtained
from the product Xr

m x X8

m by 1) blowing up a subvariety isomorphic to
Xr~x x X'*1, 2) taking the quotient of the blown up variety with respect
to an action of the cyclic group of order m, and 3) blowing down from
the quotient two subvarieties isomorphic to Pr x X'ΰ1 and Xlr1 x P\

THEOREM II. Suppose that r is even and m ^ 4. Then the l-adic
cohomology ring of Xr

m{p) is spanned by algebraic cycles if and only if

(0.2) pv = — 1 (mod m) for some integer v .

THEOREM III. Suppose that r is even. If the condition (0.2) is
satisfied, then Xr

m(p) is a unirational variety, and the converse is also
true ifr — 2 and m ^ 4.

COROLLARY. A Fermat surface X2

m(p) is unirational if and only
if it is super singular (cf. [8]).

This paper is organized as follows. In § 1, we study the relationship
between Xlt8 and Xr

m x X*m, and obtain Theorem I (for a more precise
statement, see Theorem 1.7). As a consequence, it will be seen, in §2,
that the cohomology of Xr

m is described in terms of that of Xζ with
r'<r. Then we prove the if part of Theorem II in a slightly generalized
form (Theorem 2.10) by induction on r, the first step of which is based
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on some results of Weil [11], [12] and of Tate [10]. In §3, we first recall
Weil's results on the zeta function of Xr

m(p) over a finite field and then
prove the only if part of Theorem II, by making use of a result due to
I. Miyawaki (Theorem 3.4). In §4, we prove Theorem III by reducing
it to the case of surfaces (Theorem 4.1).

It should be remarked that the if part of Theorem II was first
discovered by Tate [9] whose proof is based on the representation theory
of finite unitary groups (compare the recent article [4] of Hotta and
Matsui). In case r = 2, Shioda [6] deduced it from the unirationality.
The only if part of Theorem II was observed in some special cases by
Shioda [7], [8] and applied to the unirationality question of certain
algebraic surfaces. Theorem III for p odd was proved before in [6].
We shall improve it here by clarifying the higher dimensional case by
means of Theorem I and supplying a proof for the case p = 2.

Finally we wish to thank I. Miyawaki who has kindly communicated
to us the proof of Proposition 3.5 of §3.

1. Inductive structure of Fermat varieties. We study in this sec-
tion the relationship among Fermat varieties of a common degree and
of various dimensions. Let m, r and s be positive integers, and let us
consider Fermat varieties Xr

m, X*m, and Γm

+β:

I Xr

m: x™ + xT + + a?Γ+i - 0

(1.1) Xs

m: yT + VT + + vT+ί = 0

[Xr

m

+S: z? + zT + + z?+8+ί = 0 .

The characteristic of the base field k is arbitrary provided that it does
not divide the degree m.

LEMMA 1.1. There exists a rational map of degree m

(1.2) φ:Xr

mx X8

m-^Xr

m

+s

defined by

. (s* XxVs+i (i = 0, 1, , r )

\zr+1+j = exr+ιy,- U = 0,1, , s) ,

ε being a fixed 2m-th root of unity such that em = — 1.

PROOF. Immediate.

Let Y denote the locus of points of Xr

m x X*m where the rational map
φ is not defined. Then Y is the subvariety of Xr

m x Xs

m defined by
%r+ι = Vs+i = 0, which can be naturally identified with XζΓ1 x X'm1* Let

(1.4) β: Z^ -> XI x X\
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denote the blowing up of Xr

m x X8

m along the non-singular center Y.
More explicitly, Zr^s is given as follows. We denote by Ut (or Vό) the
affine open subset of Xr

m (or X8

m) defined by xi Φ 0 (or yά Φ 0). Then
{Ui x Vj\0 <; i ^ r, 0 <; i ^ s} forms an affine open covering of Xr

mx Xs

m.
In the product Ut x V,- x P 1 , we consider the subset

(1.5) Zxi = ί((a;0: •: x r + 1), (y0: •: y.+1), (ί0: « ) I t ^ = tβ
[ x t V

and the natural projections
(1.6) βίά: ZiS ^UtX V3 , 7 t, : ZiS — P 1 .

We form the union

(1.7) ZV = U Zίά

by identifying a point (x, y, t0: tx) of Zι3 with a point (sc, y, ίj: ίί) of
if and only if

Then we have a unique morphism (1.4) such that its restriction to Zi5

coincides with βijm Obviously β induces an isomorphism of Z^8 — β~\Y)
onto Xr

m x X8

m — Y, while the exceptional set β~\ Y) is a /^-bundle over
Y.

LEMMA 1.2. The composed map

(1.9) ψ = φoβ:Z^8^XT

is a morphism.

PROOF. We look at the map

Ψij = φ ° β t i : Ziό -> XT (i ύr,j£s).

By (1.3), (1.5) and (1.6), we have

(1.10) iKi((av * : »r+i), (»0: * : ».+i), (t0: «i))

= ( « A : *i—: e ί ^ : : είo\ xt Xt y5

This shows that all ψijf and hence ψ, are morphisms. q.e.d.

We put

(1.11) So - U 7,7(1: 0) , S . - U 7Γ/(0:1) .

By (1.8), So and Soo are subvarieties of codimension 1 in Z^8, and β
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induces isomorphisms:

On the other hand, we fix the following embeddings of Xr

m~ι and X*'1

i n t o Xr

m

+8:

;-1 ~ {(x0: : xr: 0: : 0) e XXs) c X^+β

( 1 Λ 3 ) Ί ; - 1 ci {(0: : 0: y0: . . .: y9) e XT) c

Note that Xr~ι and X^"1 are disjoint from each other in Xr

m

+S.

LEMMA 1.3. With the above notation, the restrictions of the morphism
ψ to So and SL are the projections:

o — Λ.m X Λ.m > Λ.m C_^LTO

^Ooo — Λ . m X

The induced map

(1.15) ψ: Z^ - So U SL - X;+ 8 - Xs."1 U X;-1

is α ̂ ϊ^iίe morphism. Moreover, if B is the divisor of Xr^s defined by
zT + + z? = 0, ίfee^

(1.16) f: ^ - ^ ( B ) -> Xr

m

+S - B

is an Stale morphism of degree m.

PROOF. This is easily verified by using (1.10). q.e.d.

Now we introduce an action of the group μm of m-th roots of unity
o n Xr

m x X8

m:

(1.17) ((&„: : xr: a?r+i), (Vo : 1/.: 2/.+i))
^ ((a?0: : α;r: ζa?r+ι), (y0: •••:!/.: Cl/.+i)) (C e ̂  J .

The fixed point set of this action is the subvariety Y defined before,
and this μm-action naturally extends to one on the blown up variety
r/r,s
Am

LEMMA 1.4. The quotient Zr^s\μm is non-singular.

PROOF. By (1.5) and (1.7), {ZiS} forms a μm-invariant open covering
of Zli8. Each Ztj is covered by the two affine open subsets Zijk defined
by tk Φ 0(fc = 0,1). The coordinate ring of ZijQ is

(1.18) λ f e *r±L % . . . 3b±L
α?,

Lf A
t0
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The subring of invariants with respect to the μm-action is given by

Hence the quotient ZιjQ/μm is isomorphic to the hypersurface in Ar x
A8 x A1 defined by

(1.20) ( ! + £ « + . . . + f «)t« _ (1 + η~ + ... + η«) = 0 ,

and so it is non-singular. In the same way, we can see that Ziύx\μm is
non-singular. q.e.d.

LEMMA 1.5. Let π denote the quotient morphism of Zr^s to Zr^$/μm.
Then

(i.2i) ] ;;;'~ J x \
[πiSoo) a XT x P8.

PROOF. With the notation of the previous proof, π(SQ) is contained
in the union of π(Zij0) for i <̂  r and j <^ s. Hence the first assertion
immediately follows from the equation (1.20) for all i and j. The second
one is similarly shown. q.e.d.

LEMMA 1.6. The morphism ψ of Zr^8 to XT induces a birational
morphism

(1.22) ψ: Z^8\μm -> XT ,

and it blows down π(SQ) and π(Soo) to XT and XT respectively.

PROOF. Since ψ is compatible with the μm-action on Z^8 (cf. (1.10)
and (1.17)), we obtain the morphism f. By (1.14) and (1.21), ψ induces
the maps

(1.14) " ' — * 1 C

^Oooj - Λ m X f —> Λ.m C- Λ.m ,

which are nothing but the projections. Then (1.15) implies that the
restriction of ψ

(1.24) Zr

ni

8/μm - π(So) U ̂ S J -> Xr

m

+S - XT U X;-1

is a finite birational morphism and hence an isomorphism since XT is
non-singular. q.e.d.

Summarizing the above, we obtain the following result which was
stated as Theorem I in the Introduction.

THEOREM 1.7. There exists a commutative diagram:
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(1.25)

Vr-l v Vs-l (— γr w Vs Vr+s => TΓ 8 " 1 Y ^ " 1

— Λ.m X Λ.m L- Λ.m X Λ.m > Λ.m

 < Λ.m , -Λ.m

where 1) /9 is ίfee blowing up of Xr

m x Xs

m along the center Y, 2) π is
the quotient morphism, and 3) ψ is a birational morphism blowing
down the two subvarieties from the quotient to the disjoint subvarieties
Xs-' and XI-1 of Xr

m

+S.

REMARK 1.8. As is seen from the above consideration, all varieties
and morphisms appearing in the diagram (1.25) are defined over arbitrary
field containing a primitive 2m-th root of unity. Furthermore, Theorem
1.7 can be proven in the category of schemes, smooth and protective
over Z[l/m, eπί/m], without any essential alteration.

REMARK 1.9. The Fermat variety Xr-γ is reducible if and only if
r = 1, and in this case X°m consists of m distinct points. Thus, for the
case r = s = 1, ZιJ- is obtained from the self-product Xι

m x X1* of the
Fermat curve by blowing up m2 points, and the Fermat surface X2

m is
obtained from the quotient Z\f/μm by blowing down 2m non-singular
rational curves (cf. Sasakura [5]).

REMARK 1.10. The proof given above for Theorem 1.7 can be applied
to a slightly more general situation. Namely, let X1^1 (or X8ΰι) denote
for a moment arbitrary non-singular hypersurface of degree m defined
by

f(x0, , xr) = 0 (or g(y0, , y8) = 0) ,

and let Xr

m9 X
8

m and Xlf8 respectively denote the hypersurfaces:

(i.i)' g(y<>, ••-,».) + y s + ί = o

f(z0, -- ,zr) + g(zr+l9 , zr+s+1) = 0 .

Then XrJ~8 is obtained from the product Xr

m x X8

m by exactly the same
steps as those described in Theorem 1.7 for the case of Fermat varieties.

COROLLARY 1.11. For any r ^ 1, there exist rational maps of finite
degree:

α θβ\ VI v . . . v VI v Vr

r-times

and
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(1.27) XI x •••xIL ^ X * .

r-times

PROOF. This is an immediate consequence of Theorem 1.7, or more
simply, of Lemma 1.1. q.e.d.

2. Algebraic cycles on Fermat varieties. It follows from Theorem
1.7 that the cohomological structure of a Fermat variety can be describ-
ed in terms of that of lower dimensional ones. To see it, let us first
recall the following general facts.

Let X be a non-singular protective variety over an algebraically
closed field k. Fixing a prime number I different from the characteristic
of k, we denote by H\X) the ϊ-adic etale cohomology group of X.
Moreover, we denotes by H\X)(j) the i-fold twisting of H\X), i.e.,
H\X) <ξ$Qι W

Θi, where W = HXP1) is a one-dimensional vector space over

LEMMA 2.1. Let β: Z x X be the blowing up of X along a non-
singular subvariety Y of codimension d in X. Then there is a natural
isomorphism:

(2.1) H\Z) ~ H\X) 0 Σ H*-*t(Y)(j) .
i=i

LEMMA 2.2. Suppose that G is a finite group of automorphisms
of X such that the quotient X/G is non-singular. Then H^X/G) is
isomorphic to the subspace H\X)G of G-invariants in H*(X):

(2.2) H\XjG) ~ H\Xf .

LEMMA 2.3. Assume that X is a non-singular hypersurface in Pr+1.
Then, for any i Φ r, 0 ^ i ^ 2r, we have

(2.3) H\X) = 0 for i odd ,

and

(2.4) H\X) : 1-dimensional for i even .

In the latter case, H\X) is generated by algebraic cycles.

For the proofs, see [4], [3] Exp. VII and [2] Ch. V.
Now we go back to the case of Fermat varieties.

PROPOSITION 2.4. With the notation used in §1, we have

(2.5) Hr+8(Xr

m

+s) 0 Σ H^-^Xlr'XJ) 0 Σ i? r + s '2

j=l fc=l

~ Hr+'(Xr

m x Z*J"« © Hr+'-\X'm-1 x
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PROOF. Applying Lemma 2.1 to the blowing up (1.4) of Xr

m x Xs

m

along Y = XI-1 x X8~\ we have

(2.6) Hr+s{Z^s) ~ Hr+s(Xr

m x X*m) © Hr+-\Xr

m-1 x X^)(l) .

Then, considering the μm-action (1.17), we have by Lemma 2.2

(2.7) H'+ (Zϊ'/μm) ^ Hr+°(Xr

m X X'my» 0 Hr+S-\Y)(1) ,

since μm acts trivially on Y. On the other hand, Lemma 2.1, applied to
the birational morphism (1.22), gives

(2.8) Hr+s(Z^/μm) ~ Hr+s(Xr

m

+a) 0 Σ H*+

k=i

Hence (2.5) follows at once from (2.7) and (2.8). q.e.d.

COROLLARY 2.5. We have

(mW®rβ (r: even)

(2.9) H'(X'm) 0 H'-\χr-*){l) 0
(0 (r:

~ mXr^ x Xy^
Here mV denotes the direct sum of m copies of a vector space V.

PROOF. We replace r and s in (2.5) by r — 1 and 1 respectively.
Since X°m consists of m distinct points, we obtain (2.9) by Lemma 2.3.

q.e.d.

Now we shall consider questions concerning algebraic cycles on a
Fermat variety (cf. Tate [9]). In general, let W(X) denote the subspace
of H2i(X)(—i) generated by algebraic cycles of codimension i in X. If
X is defined over a finite field k0 and k is its algebraic closure, then
the Galois group G = Gal (k/k0) acts on the space H2ί(X) in a natural
way and one has the inclusion

(2.10) W{X) c [H2ί(X)(-i)]G (0 ^ i ^ dim X)

by replacing kQ by a suitable finite extension. Tate [9] has conjectured
that the equality should hold in (2.10) in place of the inclusion, and
verified it for a Fermat variety Xr

m{p) (r: even) in the following two
cases:

(I) pv = — l(modm) for some integer v
(II) r = 2 and p = l(mod m).

Also he has proved in [10] the equality

(2.11) Sϊ1^) = [H\X)(-l)f
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in case X is an abelian variety or a product of curves, defined over a
finite field.

By making use of this latter result, we first see that Tate's conjec-
ture holds for any Fermat surface X2

m(p), thus improving (II). We shall
then give a new proof in case (I) which is perhaps more geometric than
the original proof in [9].

THEOREM 2.6. For a Fermat surface X = X2

m(p), the space
[H\X){ — 1)]G is generated by algebraic cycles.

PROOF. Setting r = 2 in (2.9), we have

(2.12) H\Xi) ^U H\X'm x X\>y» 0 mH\Xl)(l) .

The action of G = Gal(fc/fc0) on the space ΈL\Xγ

m x -XIX-1) commutes
with the μm-action, provided that kQ is sufficiently large. Hence it follows
from (2.12) that

(2.13) [H*(X*m)(-l)]° c [HXXl x Γ w ) ( - l ) r 0 (m2Q0 .

In view of (2.11) quoted above, the first term on the right is spanned
by algebraic cycles, and the second term is obviously algebraic. This
proves the assertion. q.e.d.

REMARK 2.7. The above theorem holds for any surface in P 3 defined
by the equation f(xOf xt) + g(x2, xz) = 0, where / and g are binary forms
without multiple factors and with coefficients in a finite field. The proof
is completely parallel to the above (cf. Remark 1.10).

Now we make the following definition:

DEFINITION 2.8. A non-singular variety X of an even dimension will
be called supersingular if the cohomology groups H2ί(X) are spanned by
algebraic cyclesf for all i, 0 <̂  i ^ dim X.

For instance, a non-singular hypersurface X of an even dimension
r is supersingular if and only if Hr(Xr) is spanned by algebraic cycles
(cf. Lemma 2.3).

LEMMA 2.9. Assume that

(2.14) pv = — 1 (mod m) for some integer v .

Then the product of Fermat curves X\n(p) x Xι

m(p) is supersingular.

PROOF. Under the assumption (2.14), the zeta function of the curve
Xm(p) over k0 = Fq (q: sufficiently large even power of p) is given by

(2.15) (1 - ei/*JD<—i>c«-t>/(i - Γ)( l -
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this follows from Weil [11], [12] and will be explained in the next section
(see Lemma 3.3). Therefore the zeta function of the product X =
Xι

m{p) x X*(p) over k0 has a pole at T = 1/q of order

(2.16) 2 + {(m - l)(m - 2)}2 = dim H\X) .

Then, by Theorem 4 of Tate [10] (which is equivalent to (2.11)), the
subspace 8P(X) of algebraic cycles has the same dimension (2.16) as
H\X), which proves that X = X»(j>) x Xm(ί>) is supersingular. q.e.d.

THEOREM 2.10. Assume that (2.14) holds. Then (i) /or r βvβw, ίfcβ
Fermat variety Xr

m(p) is supersingular, and (ii) for r odd, the product
of Xr

m(p) with the curve Xι

m(p) is supersingular.

PROOF. We prove this by induction on r, the first step r = 1 being
true by Lemma 2.9. Assume that the statement is true up to r — 1
and r ^ 2. By Corollary 2.5, we have

(2.17) mxi) c=-* ̂ (x ;- 1 x χιy» © miΓ'-(x;r»)(i).

(Recall that this inclusion is induced by the birational morphism
ψ: Zr-γΛlμm -> Xr

m, (1.22).) (i) In case r is even, both Xr~ι x XI and
Xr^2 are supersingular by the induction assumption, and the right side
of (2.17) is spanned by algebraic cycles. Hence Xr

m is also supersingular.
(ii) In case r is odd, we consider the following diagram:

ά m XI
(2.18) βxiά\

\Xm X Xm) X Xm

which is deduced from (1.25). The surjective morphism ψ x id induces
the inclusion:

(2.19) Hr+\Xr

m x XI) c=—> H'+^Zlr1'1 x X1.) .

Since β x id is the blowing up of Xr~λ x Xι

m x X^ along the subvariety
Xrn2 x XI x Xι

m9 we have by Lemma 2.1

(2.20) Hr+\Zr

m~1Λ x Xi.) ~ Jff'+1(Xi"1 x I U XU

© ff'-^X;-1 x X°m x XUd) .

By Kiinneth formula and Lemma 2.3, the right side is isomorphic to

(2.21) J5Γ'+1(x;rι) e [ i r - ^ x r ) Θ H2(X^ x xi)]
φ [£Γr-8(Xί-1) (g) fί^XJ. x XU] 0 mfΓ^ίXί- x XL)(1) .
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All the terms in (2,21) are spanned by algebraic cycles by the induction
assumption, and by Lemma 2.3. It follows from (2.19) that Xr

m x Xι

m is
supersingular (of course under the assumption (2.14)). This completes
the proof of Theorem 2.10. q.e.d.

REMARK 2.11. It is still unknown whether Tate's conjecture holds
for a Fermat variety Xr

m(p) if r is even >2 and the condition (2.14) is
not satisfied. By the same arguments as above, we can reduce it to
the corresponding conjecture for the self-products of the Fermat curve
Xι

m(p) of dimensions up to r.

3. Zeta functions and Jacobi sums. In this section, we shall prove
the second part of Theorem II in the Introduction, the first part of
which is contained in Theorem 2.10 of the previous section.

For this purpose, we first recall Weil's results expressing the zeta
function of a Fermat variety in terms of Jacobi sums (cf. [11], [12]).
For the sake of simplicity, we consider the Fermat variety Xr

m(p) over
the finite field Fq with q elements, where q = pf is the least power of
p such that q = 1 (mod m). The zeta function of Xr

m(p) over Fq is given
by

(3.1) P(Γ)'-ι'r~7(l - Γ)(l - qT) - - • (1 - q'T)

where

(3.2) P(T) = Π (1 - 3(ά)T) .
a

In the above, a — (α0, alf , ar+ί) runs over the set

(3.3)

and j{a) denotes the Jacobi sum:

,r = | ( α 0 , a l 9 •••, α r + 1 )
at e ZjmZ, at =έ 0

a0 + + α r + 1 = 0.

(3.4) j(a) - (-1)' Άvr+ 1 ) a r + ί

1 being a fixed character of order m of the multiplicative group of Fq.
At this point, we can give a geometric explanation to the following

fact, observed by Weil ([12] p. 488 and p. 492): for any r ^ 2 and any
αeSίm,r, the Jacobi sum j(a) can be expressed as a suitable product of
j(β)'& with /3e9ίm>1. Indeed, by the general theory of zeta functions,
the quantities j(a) defined by (3.1) and (3.2) are the eigenvalues of the
endomorphism of Hr(Xr

m(p)) induced by the Frobenius morphism of Xr

m(p)
relative to Fq. But the vector space Hr(Xr

m(p)) can be naturally considered
as a subspace of a direct sum of spaces of the form ίί1(X1

m(p))<8)r' with
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r' < r, as is easily seen from Corollary 2.5 by induction on r. The
above mentioned fact follows immediately from this.

Now each j(a) is an algebraic integer of absolute value qr/2 in the
m-th cyclotomic field K — Q(e2πifm), and its prime ideal decomposition is
described by Stickelberger's theorem ([12] p. 490):

(3.5) (i(α)) = Γ ( α )

where p is a prime ideal in K with Np = pf = q and where ω(a) is an
element of the group ring of the Galois group G of K over Q defined
by

(3.6) ω(α)= Σ f ^ W
( t ) i κ i \ m I
Σ

(t,m)=i
t mod m

(Here σt is the automorphism of K over Q mapping e2πilm to e27Γiί/m, and
<\) = λ — [λ] denotes the fractional part of the real number λ.) Identify-
ing G with (Z/mZ)*9 we denote by H the subgroup of G generated by
p mod m:

(3.8) H = {

it is the decomposition group of p over p. We put

(3.9) AH{a)= Σ Γ Σ ( ^

Taking a set of representatives {tλ = 1, ί2, , ^} of G mod i ϊ and letting
k = ρσi (α\ = <7i}t), we can rewrite (3.5) as follows:

(3.10)

in which ^ α denotes the element ( ί ^ , ί,^, •••, ttar+1) of Sίm,r.

LEMMA 3.1. With the above notation, the following conditions on
& ̂  9ίm,r are equivalent:

( i ) some power of j(a) is a power of p:

(3.11) j(ay = p^ r / 2 for some v .

(ii) the integers AH{tfiί) are independent of i, and equal to fr/2.

PROOF. Since (p) = ft ft, (i) implies (ii) by (3.10). Conversely,
(ii) implies that the ideal (j(a)) is equal to (pμ), μ being the common
value of AH(tfii). If we set j(a) = s{a)pμ, ε(a) is a unit in ίΓ and ε(a)σt =
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e(ta) for all t with (ί, m) = 1. It follows that μ = fr/2 and that all the
conjugates of ε(α) are of absolute value 1. Hence e(α) is a root of unity
by Kronecker's theorem, and we can find some v satisfying (3.11).

q.e.d.

Now the condition that pv = — 1 (mod m) for some v is obviously
equivalent to the condition:

(3.12) i Ϊ 9 - l modm.

LEMMA 3.2. If (3.12) holds, then AH(a) = fr/2 for all a e Sίm,r.

PROOF. This is easily verified by the definition (3.9) of AH(a).

q.e.d.

LEMMA 3.3. If p" = —1 (modm) for some v, then the zeta function
of the Fermat variety Xr

m(p) over FQί for a suitable p-power qγ is of
the form

(3.13) (1 - tf*Ty-»r-lb/(l - T) . . . (1 - qlT) ,

where b is the cardinality of 3ϊm,r.

PROOF. By Lemmas 3.1 and 3.2, we can find a positive integer v
such that (3.11) holds for all αe3ϊm, r. Then the assertion follows from
(3.1) and (3.2) by taking qγ = q\ q.e.d.

THEOREM 3.4. Suppose that Xr

m(v) (x: even, r ^ 2) is super singular.
If m ^ 4, then there exists an integer v such that pv = — 1 (modm).

PROOF. By assumption, Hr(Xr

m(p)) is spanned by algebraic cycles.
Choosing a suitable finite field fc0 = Fqι (&: p-power), we may assume
that Hr(Xr

m(p)) has a basis consisting of elements which are represented
by &0-rational algebraic cycles on Xr

m(p). Then the Frobenius morphism
of Xr

m(p) over k0 acts on Hr{Xr

m(p)) by multiplication by qlί2, so that the
zeta function of Xr

m(p) over k0 takes the form (3.13). By comparing it
with (3.1) and (3.2), we see that some power of each Jacobi sum j(a)
is a power of p for all αeSITO,r. Therefore, by Lemma 3.1, we have

(3.14) AH(a) = fr/2 for all a e 9ίw,r .

Thus Theorem 3.4 will follow from the following

PROPOSITION 3.5. For any r ^ 1 and m ^ 4, the condition (3.14)

implies the condition (3.12).

The proof of this proposition given below is essentially due to I.
Miyawaki. We need some lemmas. First, setting
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(3.15) SH(a) = Σ (-)

for any integer a such that a ^ 0 (modm), we have

(3.16) AH(a) = Σ SM - SH( - a0)

for a = (do, alf , αr+1) 6 3Im,r (cf. (3.6)).

LEMMA 3.6. // (3.14) holds, then SH(ά) is independent of a.

PROOF. Assume (3.14). First we claim that, if 0 < ί < m — 2, then

(3.17) SH(i + 1) - SH(i) = SH(i + 2) - SH(i + 1) .

In fact, given such an ΐ, we can easily find an element aγ = (α0, i + 1,
i + 1, α3, , αr+1) of Sίw,r unless r = 1 and 2i + 2 = 0 (modm). Aside
from the latter case, a2 = (α0, ί, i + 2, α3, , α r+1) belongs also to Sϊm,r.
By (3.14), AH(aύ is equal to AH(a2), and hence, using (3.16), we have
(3.17). When r = 1 and 2ί + 2 Ξ= 0 (m), (3.17) follows from the definition
(3.15) of SH.

It follows from (3.17) that

(3.18) SH(a) = SH(X) + (α - 1){SH(2) - SH(1)} (1 ^ α ^ m - 1) .

Now we note that H Φ {1}. Indeed, setting

, O 1 O , _ ( ( - 3 , 1 , 1 , 1 , 1, - 1 , . . . , 1 , - 1 ) r: even
yό Lu) CL — "j

we easily see that A{1)(a) Φ A{1}(—a) for m ^ 4. Since we are assuming
(3.14), we have H Φ {1}. Therefore there exists an integer a such that
l < α < m and a m o d m e H . Obviously we have then SH(a) = SH(1),
which implies by (3.18) that SH(2) = SH(Ϊ). Using (3.17), we conclude that
SH(i) is independent of i. q.e.d.

LEMMA 3.7. Let m0 be a divisor of m, and let Ho denote the image
of H under the natural homomorphism

(3.20) φ\ (Z/mZr -> (Z/mQZy .

Define SHo(a) in the same way as (3.15). Then, if (3.14) holds, SHo(a)
is independent of a with α ϊ O (modm0).

PROOF. For any integer a with a Φ 0 (mod m0), we have

(3.21) SH(am/mQ) = Σ (tam/mΛ = \HΠ Ker φ\SHo(a) .(
\

Hence the assertion follows from Lemma 3.6. q.e.d.
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PROOF OF PROPOSITION 3.5. Assume (3.14). We shall derive a con-
tradiction assuming that Hi —1 modm. Let H1 be the subgroup of
G = {ZjmZγ generated by H and - 1 mod m; we have [JET: H] = 2. Then
there exists a character of G, say X, which is trivial on H but non-
trivial on H'. Hence %( — 1) = — 1 . Let Xo be the primitive character
inducing X and let m0 be the conductor of Xo. Obviously we have
XQ( — 1) = —1 and Zo is trivial on Ho = <p(iϊ), ^ being as in (3.20).

Extending Xo to a function on Z by setting Z0(α) = 0 for (α, m0) =£ 1,
we define the Dirichlet L-series L(s, Zo). Since Z( — 1) = — 1 , we have

ψ oo mo

(3.22) 0 Φ L(l, Z,) = Σ Z,(n)/w = (πV-1 r(%0)/m0

2) Σ Zβί*)*
% = 1 35 = 1

where τ(Z0) denotes the Gauss sum (see e.g., [1] Ch. 5, §2).
On the other hand, we have

(3.23) SHΰ(a) = Σ ( — ) = Σ ( — ) = Σ —
tH\m/ # \ m / m

Hΰ( ( ) ( )
teH0\mQ/ seα#θ\mo/ «α^0 mo

0<l<OTo

Since Xo is trivial on Ho, we have

(3.24) A - Σ UΦ = Σ Xo(a)( Σ - ? - ) = Σ Zo(α)Si,o(α) ,

where α runs over the coset representatives of the group (Z/mQZ)x modulo
HQ. By Lemma 3.7, the right hand side of (3.24) is equal to

which vanishes because χ0 can be considered as a non-trivial character
of the factor group of (Z/mZ)x by Ho. This contradicts (3.22), and
proves the proposition. q.e.d.

REMARK 3.8. Proposition 3.5 also holds for m = 3 except for the
case r = 2. The verification is straightforward. In the exceptional case
r — 2, X3 is a rational surface (as a cubic surface) and hence super-
singular in the sense of §2 in any characteristic p Φ 3.

REMARK 3.9. The above proof of Proposition 3.5 is not so elementary
since it depends on the fact (3.22). We have a more elementary proof
for it in case m is a power of a prime number, but it will be omitted.

Finally we state an application of the case r = 1 of Proposition 3.5:

PROPOSITION 3.10. The Jacobian variety of the Fermat curve X^ip)
is isogenous to a product of supersingular elliptic curves if and only
ifpv= — 1 (mod m) for some integer v.
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PROOF. In view of Theorem 2 of Tate [10], the if part follows
from Lemma 3.3, while the only if part follows from Lemma 3.1 and
Proposition 3.5. q.e.d.

In [8] §1, a similar result for the curve y2 = 1 — xm was applied to
the proof of the unirationality of arbitrary supersingular Kummer
surfaces.

4. Unirationality. An irreducible variety X is called unirational
if there exists a rational map of finite degree from a projective space
to X. Equivalently, X is unirational if the function field k(X) of X is
contained in a purely transcendental extension of the base field k.

THEOREM 4.1. If pv = —1 (mod m) for some integer v, then the
Fermat variety Xr

m{p) of an even dimension r is unirational.

PROOF. By Corollary 1.11, the unirationality of Xr

m(p) (r: even) will
follow from that of X2

m(p). Also, for any positive integer d, the map
(Xi) —> (xf) defines a surjective morphism of Xr

md to Xr

m. Therefore the
proof of the theorem is reduced to the case where r = 2 and m = q + 1,
q being a power of p. In this case, we further distinguish the case
p > 2 and the case p = 2.

In case p > 2, the proof can be found is Shioda [6], but it will be
reproduced here for the reader's convenience. We write the equation
of X2

q+1(p) in the form:

(4.1) x q + 1 - x q + 1 = x q + 1 - x q + 1

by replacing x2 and x3 by εx2 and εx3 (ε?+1 = — 1). By the coordinate
transformation

the equation (4.1) becomes

(4.2) y\y% + yxy\ =

If we set y0 = 1, y2 = yxu and yz — uv, the function field of X2

q+1(p) over
k is isomorphic to the field k(ylf u, v) with the relation

(4.3) uq-\yl+1 - vq) = v - yl+1.

Hence, putting

(4.4) t = y\lq , s = u(tq+1 - v) ,

we have

(4.5) sq-\tq+1 — v ) = v — tq{q+1)
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which shows that the field k(ylf u, v) is contained in the field k{s, t).
In case p = 2, we modify the above as follows. Letting p be a

primitive cube root of unity, we put

(A n, \Xi =Vl + Vz (&3 = 2/3 + Vo

(4.o) j j
[χ2 = ρy± + y2, [Xo = pyz + y0.

Then the equation (4.1) becomes

(4.7) (1 + pq+ί)yl+1 + (1 + pq)y\y2 + p2yίVl

= (1 + ρq+ί)yl+i + (1 + pq)yly0 + p2y2yl .

Since q — 2V is congruent to 1 or 2 (mod 3) according to the parity of vf

we have

(0 [p (v: odd)

l/o , (^ (v: even) .

First, suppose that v is odd. Then the equation (4.7) reads

(4.8) yly2 + py.yl = yly0 + py.yl.

Comparing this with (4.2), we can prove its unirationality exactly in the
same way as before.

Next, suppose that v is even. Then we have

(4.9) yl+1 + pylyt + pyxy\ = yl+1 + pyly0 + pysyl .

Set here

(4.10) yx = y3 + 1 , y0 = y* + p2u + p2.

Then the function field of X2

q+1(p) is isomorphic to the field k(y2, ys, u)
with the relation

(4.11) ylu + y*uq + pyl + ρy2 + 1 = 0 .

Putting

(4.12) t - y\lq , s =tu + py2,

we have

(4.13) tq*-\8 + ρy2) + sq + py2 + 1 = 0 ,

which shows that k(y2f yzy u) is contained in k(s, ί). This completes the
proof of Theorem 4.1. q.e.d.

REMARK 4.2. Let k0 = FP2 for p = 2 and &0 = ^ ( e ) for p > 2, ε

being a root of unity such that εpl/+1 = — 1. Then the above proof shows
that the Fermat variety Xr

m(p) of an even dimension r and of degree m
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dividing pυ + 1 is &0-unirational, i.e., there exists a rational map of
finite degree defined over k0 from Pr to XrJ&).

THEOREM 4.3. For the Fermat surface X2

m(p) of order m ^ 4, the
following conditions are equivalent to each other:

( i ) Xm(p) is unirational,
(ii) Xm(p) is super singular,
(iii) pv = — 1 (mod m) for some integer v.

PROOF. Since every unirational surface is supersingular, (i) implies
(ii) (cf. Shioda [6] §2). By Theorem 3.4, (ii) implies (iii). Finally (iii) => (i)
follows from Theorem 4.1. q.e.d.

REMARK 4.4. We expect that Theorem 4.3 should hold also for
higher dimensional cases. The only unproven part is the implication
(i) =» (ii). We stated before in [6] p. 236 that this would follow from
the resolution of singularities for higher dimensional varieties in char-
acteristic p, but it was a wrong observation. In fact, it should be
noticed that there are unirational (or even rational) varieties which are
not supersingular. For instance, let Y be a non-singular surface in Pi

and let X be the rational variety of dimension 4 which is obtained by
blowing up P 4 along Y. Then X is supersingular (i.e., H\X) is spanned
by algebraic cycles) if and only if Y is supersingular. (This follows
easily from Lemma 2.1.) Since there certainly exist Y's which are not
supersingular, we thus obtain examples of rational varieties which are
not supersingular.

REMARK 4.5. Going back to the case of surfaces, the part (ii) => (i)
of Theorem 4.4 lends some support to a rather optimistic conjecture that
any supersingular surface in P3 might be unirational (cf. Shioda [8], p.
167).
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Added in proof.
(1) The rational map φ of Lemma 1.1 (p. 98) has been independently

introduced by P. Deligne in his hand-written note: "Cycles de Hodge sur
les varietes abeliennes", in order to define the embedding of H*(X£) into
H*(Π.Xm)' Also Professor Safarevic has told one of the authors that
Sermenev (unpublished) studied the motif of Xζ, using such an embedding.

(2) For the results in § 3, compare the paper of N. Koblitz in
Compositio Math., 31 (1975). In particular, the proof of Proposition 3.5
proves his Conjectures (I), (II), (III) in p. 199-200.






