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0. Introduction. By the Fermat variety of dimension = and of de-
gree m we mean the non-singular hypersurface in the projective space
P defined by the equation
(0.1) x4+ X A e a2y, =0.

Throughout this paper, we denote it by X, or by X,(»), when we need
to specify the characteristic p of the base field k; we always assume
that m #= 0 (mod p).

The purpose of this paper is to clarify the “inductive structure” of
Fermat varieties of a common degree and of various dimensions, and apply
it to the questions concerning the unirationality and algebraic cycles of
a Fermat variety. The main results are stated as follows:

THEOREM I. For any positive integers r and s, X, 1is obtained
from the product X x X3, by 1) blowing up a subvariety isomorphic to
Xt x X5, 2) taking the quotient of the blown wp variety with respect
to an action of the cyclic group of order m, and 3) blowing down from
the quotient two subvarieties isomorphic to P™ x X' and X7t x P°.

THEOREM II. Suppose that r is even and m = 4. Then the l-adic
cohomology ring of X,(p) is spanned by algebraic cycles if and only if

(0.2) p’ = —1 (mod m) for some integer v .

THEOREM III. Suppose that r is evem. If the condition (0.2) s
satisfied, then X5(p) is a unirational variety, and the converse is also
true if r =2 and m = 4.

COROLLARY. A Fermat surface Xi(p) ts unirational if and only
if it 1s supersingular (cf. [8]).

This paper is organized as follows. In §1, we study the relationship
between Xot* and X7, x X, and obtain Theorem I (for a more precise
statement, see Theorem 1.7). As a consequence, it will be seen, in §2,
that the cohomology of X7, is described in terms of that of X7 with
r'<r. Then we prove the if part of Theorem II in a slightly generalized
form (Theorem 2.10) by induction on », the first step of which is based
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on some results of Weil [11], [12] and of Tate [10]. In §3, we first recall
Weil’s results on the zeta function of X7 (p) over a finite field and then
prove the only if part of Theorem II, by making use of a result due to
I. Miyawaki (Theorem 3.4). In §4, we prove Theorem III by reducing
it to the case of surfaces (Theorem 4.1).

It should be remarked that the if part of Theorem II was first
discovered by Tate [9] whose proof is based on the representation theory
of finite unitary groups (compare the recent article [4] of Hotta and
Matsui). In case 7 = 2, Shioda [6] deduced it from the unirationality.
The only if part of Theorem II was observed in some special cases by
Shioda [7], [8] and applied to the unirationality question of certain
algebraic surfaces. Theorem III for p odd was proved before in [6].
We shall improve it here by clarifying the higher dimensional case by
means of Theorem I and supplying a proof for the case p = 2.

Finally we wish to thank I. Miyawaki who has kindly communicated
to us the proof of Proposition 3.5 of §3.

1. Inductive structure of Fermat varieties. We study in this sec-
tion the relationship among Fermat varieties of a common degree and
of various dimensions. Let m, » and s be positive integers, and let us
consider Fermat varieties X7, X%, and X5

Xnalr +al + -0 +an, =0
(1.1) Xwyr +yr+ - + Yl =0
Xyl 2+ e 20 =0
The characteristic of the base field k£ is arbitrary provided that it does
not divide the degree m.

LEMMA 1.1. There exists a rational map of degree m

1.2) @ X, X X5, — Xt
defined by

v — LY, .:Oyly"',,r
(1.3) 2, = XY (v )

Zry1+i = EXr Y (J = 0’ 17 Ty 8) ’
¢ being a fized 2m-th root of unity such that eé™ = —1.
ProoF. Immediate.

Let Y denote the locus of points of X7, x X% where the rational map
@ is not defined. Then Y is the subvariety of X, X X; defined by
Z,4y = Yorr = 0, which can be naturally identified with X, * x X5'. Let

(1.4) B: Zn — X1, x Xt
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denote the blowing up of X7 x X% along the non-singular center Y.
More explicitly, Z3* is given as follows. We denote by U, (or V) the
affine open subset of X, (or X%) defined by x, =0 (or y; # 0). Then
(U, xV;|/0£i1<7r,0=< j < s} forms an affine open covering of X7, x X5,
In the product U, x V; x P!, we consider the subset

(1-5) Zu‘ = {((xo: cel xr-l-l)! (yo: ceel ys-H)! (tO: tl)) | tlh = toh}

% )

and the natural projections

(1.6) Bijs Zi; — U, x V;, 7, 4;;—P.
We form the union
1.7 Zy =UZ;

by identifying a point (z, v, t,: t,) of Z,; with a point (z, y, t.: t1) of Z,.;
if and only if

(1.8) h t; _Y; tl

x, to x; &

Then we have a unique morphism (1.4) such that its restriction to Z,;
coincides with B;;. Obviously B induces an isomorphism of Z7*—B%(Y)
onto X7, x X% — Y, while the exceptional set 87}(Y) is a P!-bundle over
Y.

LEmMMA 1.2. The composed map
(1.9) Vo=@ Zy — X3
18 a morphism.
Proor. We look at the map
Vis = PoBit Ly — X5 =7, J=<5s).
By (1.8), (1.5) and (1.6), we have

(1.10) Poi(@or * = o2 Bryn)y (Yol =222 Yora)s (G2 81))
= (tlﬁ: ceel 1&: stoﬂ‘lz ceel stﬂ-‘-) .
Z; i Y; Y;
This shows that all +,;, and hence +, are morphisms. q.e.d.
We put
(1.11) S, = LJ 7;1:0), S, = L! v70: 1) .

By (1.8), S, and S., are subvarieties of codimension 1 in Z7°, and B
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induces isomorphisms:

(1.12) Sy=Xn, x X', So=Xmtx X5, .

On the other hand, we fix the following embeddings of X7 ! and X33

into X7t
Xt~ teeer,: 02 0)e X0 Xt

(1.13) i {(=, x ) 1

Xt = {(0: eee:0:yy: oo o1y, ) e X Xt

Note that X7 ! and X% are disjoint from each other in X7

LeEMMA 1.8. With the above notation, the restrictions of the morphism

¥ to S, and S. are the projections:
~ rm X:n—l — :n—l. C X:‘n+s
(1.14) Sy = X, X X
Se = X0t X X5 — X C X

The induced map
(1.15) P Zmt — S, U S, — Xt — X5t U Xt
is a finite morphism. Moreover, if B is the divisor of Xi5'* defined by
2+ eee + 20 =0, then
(1.16) ¥: 2y — 4 7(B) - X, — B
18 an étale morphism of degree m.

PROOF. This is easily verified by using (1.10). q.e.d.

Now we introduce an action of the group g, of m-th roots of unity
on X7 x X¢:
1.17) ((@or == =2 @02 py), (Yob =+ 2 Yt Yorn)

B (@0 + 02 2,0 Cpgy), Wol oo U0t CYan))  (CE L) -

The fixed point set of this action is the subvariety Y defined before,
and this pg,-action naturally extends to one on the blown up variety
yALS

LEMMA 1.4. The quotient Z%3°/t, is mon-singular.

Proor. By (1.5) and (1.7), {Z,;} forms a p,-invariant open covering
of Z7*. Each Z,; is covered by the two affine open subsets Z,;. defined
by t. # 0(k = 0,1). The coordinate ring of Z,;, is

(1.18) k[ﬂ o, e Yoo Yo t_]
s Te Y; Yi b

:k[ﬂ e e Yo Y 21_]
b ’ ’ b b ’ .
Xy Ty Y; Y;i &
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The subring of invariants with respect to the x,-action is given by
(1.19) k[ﬁh,...,zg,<3&iL)”,yg,...,yi,IL],
T, Xy Z; Y Y;

Hence the quotient Z,;/t, is isomorphic to the hypersurface in A" x
A* x A* defined by

(1.20) A+t e+t —Q 4+ + -+ =0,

and so it is non-singular. In the same way, we can see that Z,;/u, is
non-singular. q.e.d.

LEMMA 1.5. Let © denote the quotient morphism of Zy* to Z7*/tt,.
Then

(S,) =~ P™ x X3!
T(S.) = X5t X P°.

ProOF. With the notation of the previous proof, z(S,) is contained
in the union of 7#(Z;;,) for 1 < and j <s. Hence the first assertion

immediately follows from the equation (1.20) for all ¢ and j. The second
one is similarly shown. g.e.d.

LEMMA 1.6. The morphism + of Z7° to X5+t imduces a birational
morphism

(1.22) Vi Lt [t — X0,
and it blows down 7(S,) and n(S.) to X5*' and X, respectively.

(1.21)

Proor. Since 4 is compatible with the g,-action on Z7* (ef. (1.10)

and (1.17)), we obtain the morphism +. By (1.14) and (1.21), ¥ induces
the maps

(S, = P" x X5t — Xt Xnbe
7(S.) = Xt X P*— Xt X,

which are nothing but the projections. Then (1.15) implies that the
restriction of ¥

(1.14)

(1.24) Z5 e — 7(Sy) U m(S.) — X5 — X5 U X
is a finite birational morphism and hence an isomorphism since X7 is
non-singular. q.e.d.

Summarizing the above, we obtain the following result which was
stated as Theorem I in the Introduction.

THEOREM 1.7. There exists a commutative diagram:
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Zn = Zneipn, —= PTox X5, Xt P

RN l l
(1.25) ﬁl Ny ﬂ
Y= X0t ) Xt C XL X Koo Xt = X, X

where 1) B is the blowing up of X, X X3 along the center Y, 2) @ 1is
the quotient morphism, and 3) + is a birational morphism blowing
down the two subvarieties from the quotient to the disjoint subvarieties
X5t and Xyt of Xt

REMARK 1.8. As is seen from the above consideration, all varieties
and morphisms appearing in the diagram (1.25) are defined over arbitrary
field containing a primitive 2m-th root of unity. Furthermore, Theorem
1.7 can be proven in the category of schemes, smooth and projective
over Z[1/m, ¢**/™], without any essential alteration.

REMARK 1.9. The Fermat variety X7 ' is reducible if and only if
r =1, and in this case X9 consists of m distinet points. Thus, for the
case r = s =1, Z4.' is obtained from the self-product X!, x X of the
Fermat curve by blowing up m? points, and the Fermat surface X2 is
obtained from the quotient Z%!/¢. by blowing down 2m non-singular
rational curves (cf. Sasakura [5]).

REMARK 1.10. The proof given above for Theorem 1.7 can be applied
to a slightly more general situation. Namely, let X7 (or X%*) denote
for a moment arbitrary non-singular hypersurface of degree m defined
by

f(xoy ""xr) =0 (Or g(?/o, %y y,) :0)9
and let X7, X% and X5 respectively denote the hypersurfaces:

f(xo, ) xr) + X7y = 0
L1y IWYos ***3Ys) + Yors = 0

f(zo’ 0y zr) + g(zr+u *t zr+s+1) =0.
Then X7** is obtained from the product X7, x X3 by exactly the same
steps as those described in Theorem 1.7 for the case of Fermat varieties.

COROLLARY 1.11. For any r = 1, there exist rational maps of finite
degree:
(1.26) X, x .-+ x Xi, — X7,
~——

r-times

and
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(1.27) X% X +e0 X X5 — XV,
N —
r-times

Proor. This is an immediate consequence of Theorem 1.7, or more
simply, of Lemma 1.1. q.e.d.

2. Algebraic cycles on Fermat varieties. It follows from Theorem
1.7 that the cohomological structure of a Fermat variety can be describ-
ed in terms of that of lower dimensional ones. To see it, let us first
recall the following general facts.

Let X be a non-singular projective variety over an algebraically
closed field k. Fixing a prime number ! different from the characteristic
of k, we denote by H(X) the l-adic étale cohomology group of X.
Moreover, we denotes by H*(X)(j) the j-fold twisting of H*X), i.e.,
H{(X) @, W®, where W = H*(P*) is a one-dimensional vector space over

Q.

LEMMA 2.1. Let B: Z X X be the blowing up of X along a mon-
singular subvariety Y of codimension d in X. Then there is a natural
180mor phism:

@.1) H(Z) = H(X) @ 3 HH(Y)(J) -

LEMMA 2.2. Suppose that G is a finite group of automorphisms
of X such that the quotient X/G is mon-singular. Then H (X/G) is
isomorphic to the subspace H(X)? of G-invariants in HY(X):

(2.2) H{(X/G) = HI(X) .

LEMMA 2.3. Assume that X is a non-singular hypersurface in Pr,
Then, for any 1+ 7r, 0 < 1 < 2r, we have

(2.3) HY{X)=0 for < odd,
and
(2.4) HY(X) : 1-dimensional for 1 even .

In the latter case, H(X) is generated by algebraic cycles.

For the proofs, see [4], [8] Exp. VII and [2] Ch. V.
Now we go back to the case of Fermat varieties.

PROPOSITION 2.4. With the motation used in §1, we have

@5  HUXE)@ 3 HHEG) @ 5 B X))
= H(X; x Xo)m @ H (X5 x Xa)(1) .
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ProoF. Applying Lemma 2.1 to the blowing up (1.4) of X, X X3,
along Y = X' x X%*', we have

(2.6) Hr+s(Z;;s) ~ Hr+s(er X X:n) @ Hr+s—2(er—1 X X:;l)(l) .
Then, considering the p,-action (1.17), we have by Lemma 2.2
(2.7 H(Z% ) = H(X7 X X5 @ H(Y)Q1),

since ,, acts trivially on Y. On the other hand, Lemma 2.1, applied to
the birational morphism (1.22), gives

(2.8) H (25 ) = H (X000 @ 3 H (X))
@ ,‘Ei:‘ H’r—{-s—zk(le—l)(k) .
Hence (2.5) follows at once from (2.7) and (2.8). q.e.d.

COROLLARY 2.5. We have

2.9 HxXn @ H- X m e ™ even)
-9) (X%) D (X7H1) D 0 (r: odd)

~ H (X5 X X5)" P mH *(X5;(1) .
Here mV denotes the direct sum of m copies of a wvector space V.

ProOF. We replace r and s in (2.5) by » — 1 and 1 respectively.
Since X consists of m distinct points, we obtain (2.9) by Lemma 2.3.
q.e.d.

Now we shall consider questions concerning algebraic cycles on a
Fermat variety (cf. Tate [9]). In general, let 2 X) denote the subspace
of H*(X)(—1) generated by algebraic cycles of codimension 7 in X. If
X is defined over a finite field %k, and % is its algebraic closure, then
the Galois group G = Gal (k/k,) acts on the space H*(X) in a natural
way and one has the inclusion

(2.10) A(X)Cc[H¥X)(—)]f 0=17=dimX)

by replacing k, by a suitable finite extension. Tate [9] has conjectured
that the equality should hold in (2.10) in place of the inclusion, and
verified it for a Fermat variety X7(p) (r: even) in the following two
cases:

(I) p*'= —1(modm) for some integer v

(II) =2 and p = 1l(modm).
Also he has proved in [10] the equality

(2.11) A(X) = [H(X)(—-D)°
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in case X is an abelian variety or a product of curves, defined over a
finite field.

By making use of this latter result, we first see that Tate’s conjec-
ture holds for any Fermat surface X%(p), thus improving (II). We shall
then give a new proof in case (I) which is perhaps more geometric than
the original proof in [9].

THEOREM 2.6. For a Fermat surface X = X2(p), the space
[H¥(X)(—1)]° is gemerated by algebraic cycles.

ProOOF. Setting r» = 2 in (2.9), we have

(2.12) H*X3) c(fi HY X, X Xu)t= P mHY(X5)1) .

The action of G = Gal (k/k,) on the space H* X! x X.)(—1) commutes
with the g,-action, provided that k, is sufficiently large. Hence it follows
from (2.12) that

(2.13) [H¥(X)(—D))° C [HH X, X X)(—1)°) D (m'Q)) .

In view of (2.11) quoted above, the first term on the right is spanned
by algebraic cycles, and the second term is obviously algebraic. This
proves the assertion. q.e.d.

REMARK 2.7. The above theorem holds for any surface in P® defined
by the equation f(x,, x,) + g(x,, ;) = 0, where f and ¢g are binary forms
without multiple factors and with coefficients in a finite field. The proof
is completely parallel to the above (ef. Remark 1.10).

Now we make the following definition:

DEFINITION 2.8. A non-singular variety X of an even dimension will

be called supersingular if the cohomology groups H*(X) are spanned by
algebraic cycles] for all 7, 0 < ¢ < dim X.

For instance, a non-singular hypersurface X of an even dimension
r is supersingular if and only if H"(X") is spanned by algebraic cycles
(cf. Lemma 2.3).

LEMMA 2.9. Assume that
(2.14) p’= —1 (modm) for some integer v .
Then the product of Fermat curves X,(p) X X.(p) is supersingular.

ProoF. Under the assumption (2.14), the zeta function of the curve
X:..(p) over k, = F, (q: sufficiently large even power of p) is given by

(2.15) (= @rT) ™)L = T)L - qT) ;
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this follows from Weil [11], [12] and will be explained in the next section
(see Lemma 3.3). Therefore the zeta function of the product X =
Xi(p) x XL(p) over k, has a pole at T = 1/q of order

(2.16) | 2 + {(m — 1)(m — 2)P = dim H*X) .

Then, by Theorem 4 of Tate [10] (which is equivalent to (2.11)), the
subspace A(X) of algebraic cycles has the same dimension (2.16) as
H*X), which proves that X = X.L(p) x X.L(p) is supersingular. q.e.d.

THEOREM 2.10. Assume that (2.14) holds. Then (i) for r even, the
Fermat wvariety X&(p) is supersingular, and (ii) for r odd, the product
of Xn(p) with the curve Xn(p) is supersingular.

PrROOF. We prove this by induction on 7, the first step » = 1 being
true by Lemma 2.9. Assume that the statement is true up to » —1
and r = 2. By Corollary 2.5, we have

(2.17) H(X,)=—— H(X5; ' X X))@ mH (X5 5QA) .

(Recall that this inclusion is induced by the birational morphism
W A — X5, (1.22).) (i) In case 7 is even, both X' x X) and
X% are supersingular by the induction assumption, and the right side

of (2.17) is spanned by algebraic cycles. Hence X7, is also supersingular.
(ii) In case 7 is odd, we consider the following diagram:

Zrux X Py oo xn

2.18) ,Bxidl
(Xt X X5) X X5
which is deduced from (1.25). The surjective morphism + X id induces
the inclusion:
(2.19) H (X5, x X3) = H™Z7" X X)) .

Since B x id is the blowing up of X7 x Xi x X! along the subvariety
X x X% x X%, we have by Lemma 2.1

(2.20) H(Zm x X3) =~ HH X x X X X5)
@D H (X2 x X5, x Xi)A) .
By Kiinneth formula and Lemma 2.8, the right side is isomorphic to
2.21)  H™X7@H X Q H(Xn X X))l
D [H (X Q HY(X;, X X)]@ mH X, x X5)(1) .
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All the terms in (2.21) are spanned by algebraic cycles by the induction
assumption, and by Lemma 2.3. It follows from (2.19) that X7 x X is
supersingular (of course under the assumption (2.14)). This completes
the proof of Theorem 2.10. q.e.d.

REMARK 2.11. It is still unknown whether Tate’s conjecture holds
for a Fermat variety X,(p) if » is even >2 and the condition (2.14) is
not satisfied. By the same arguments as above, we can reduce it to
the corresponding conjecture for the self-products of the Fermat curve
X.(p) of dimensions up to 7.

3. Zeta functions and Jacobi sums. In this section, we shall prove
the second part of Theorem II in the Introduction, the first part of
which is contained in Theorem 2.10 of the previous section.

For this purpose, we first recall Weil’s results expressing the zeta
function of a Fermat variety in terms of Jacobi sums (ef. [11], [12]).
For the sake of simplicity, we consider the Fermat variety X7.(p) over
the finite field F, with ¢ elements, where q = p’ is the least power of
p such that ¢ = 1 (mod m). The zeta function of X7,(p) over F, is given
by

3.1) P 1 - T)A —qT)--- (1 — ¢'T)
where
(8.2) PT) =111~ i@T).

In the above, @ = (a,, a,, * -, @,,,) runs over the set
a,eZmZ,a, 0

3.3 91,,,,,= Aoy Agy **°y Ay ’
(3.9 e A

and j(a) denotes the Jacobi sum:
(3.4) J(a) = (—1) > ()™« o+ (0,47,

1+vr*;;'e';;’r+1=0

X being a fixed character of order m of the multiplicative group of F,.

At this point, we can give a geometric explanation to the following
fact, observed by Weil ([12] p. 488 and p. 492): for any » = 2 and any
ae,,, the Jacobi sum j(a) can be expressed as a suitable product of
j(B)’s with ge,,. Indeed, by the general theory of zeta functions,
the quantities j(a) defined by (8.1) and (3.2) are the eigenvalues of the
endomorphism of H"(X%(p)) induced by the Frobenius morphism of X7(p)
relative to F,. But the vector space H"(X(p)) can be naturally considered
as a subspace of a direct sum of spaces of the form H(X,(p))®~ with
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' < r, as is easily seen from Corollary 2.5 by induction on ». The
above mentioned fact follows immediately from this.

Now each j(a) is an algebraic integer of absolute value ¢ in the
m-th cyclotomic field K = Q(e***'™), and its prime ideal decomposition is
described by Stickelberger’s theorem ([12] p. 490):

(3.5) (J(a) = p=@

where p is a prime ideal in K with Np = p = ¢ and where w(a) is an
element of the group ring of the Galois group G of K over @ defined

by
(3.6) w@ = l%zmig <%> _ < :igl >}03
- ;t’%ﬁ[z}f <tq%>]gj )

(Here o, is the automorphism of K over @ mapping ¢**/™ to e¢***/™, and
(M) = N — [A] denotes the fractional part of the real number \.) Identify-
ing G with (Z/mZ)*, we denote by H the subgroup of G generated by
p mod m:

(3.8) H={p'modm|0Z v < f};
it is the decomposition group of p over p. We put
r41
3.9 A4@) = 5[5 (2]
teHd Lo=1 \m

Taking a set of representatives {¢, =1, ¢, <+, t,} of G mod H and letting

p; = p% (0, = 0;), we can rewrite (3.5) as follows:
(3.10) (§(@) = T ptns

i=1

in which ¢, denotes the element ({.a,, t.a,, *--, t;a,,,) of %, .

LEMMA 3.1. With the above motation, the following conditions on
aeU,, are equivalent:
(i) some power of j(a) is a power of p:

(8.11) J(@) = p*  for some v .
(ii) the integers Ay(t.@) are independent of i, and equal to fr/2.

PrROOF. Since (p) =P, +++p,, (i) implies (ii) by (8.10). Conversely,
(ii) implies that the ideal (j(@)) is equal to (p*), ¢ being the common
value of A,(t.). If we set j(a) = ¢(@)p”, e(@) is a unit in K and e(@)’t =
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é(ter) for all ¢ with (¢, m) = 1. It follows that g = fr/2 and that all the
conjugates of e(a) are of absolute value 1. Hence &(@) is a root of unity
by Kronecker’s theorem, and we can find some vy satisfying (3.11).

q.e.d.
Now the condition that »* = —1 (mod m) for some v is obviously
equivalent to the condition:
(3.12) H> —1 modm.

LeEmMMA 8.2. If (8.12) holds, then Ap(e) = fr/2 for all ac¥U,,.

Proor. This is easily verified by the definition (3.9) of A(«).
q.e.d.

LeEmMA 8.8. If p* = —1 (mod m) for some v, then the zeta function

of the Fermat variety X,(p) over F, for a suitable p-power q, is of
the form

(3.13) L — gDy A = T) -1 —qiT),
where b is the cardinality of U,,,.

ProoF. By Lemmas 3.1 and 3.2, we can find a positive integer v
such that (8.11) holds for all @€, ,. Then the assertion follows from
(8.1) and (3.2) by taking q, = ¢". q.e.d.

THEOREM 3.4. Suppose that X5 (p) (r: even, r = 2) is supersingular.
If m = 4, then there exists an integer v such that p* = —1 (mod m).

Proor. By assumption, H"(X%(p)) is spanned by algebraic cycles.
Choosing a suitable finite field k, = F,, (¢, p-power), we may assume
that H"(X7(p)) has a basis consisting of elements which are represented
by Fk,-rational algebraic cycles on X%(p). Then the Frobenius morphism
of X7(p) over k, acts on H"(XL(p)) by multiplication by ¢i%, so that the
zeta function of X7,(p) over k, takes the form (3.13). By comparing it
with (8.1) and (8.2), we see that some power of each Jacobi sum j(a)

is a power of p for all @€, ,. Therefore, by Lemma 3.1, we have
(3.14) Ay(a) = fr/2 for all ac¥,,, .

Thus Theorem 3.4 will follow from the following

PROPOSITION 3.5. For any r=1 and m = 4, the condition (3.14)
implies the condition (3.12).

The proof of this proposition given below is essentially due to L
Miyawaki. We need some lemmas. First, setting
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(3.15) Sul@) = 3, (42)

teH \M

for any integer a such that a = 0 (mod m), we have
r+1
(3.16) Ay(a) = g} Su(a;) — Su(—a,)

for @ = (ay, @y, =+ +, @r1,) €Uy, (cf. (3.6)).
LemMmA 3.6. If (8.14) holds, then Sy(a) is independent of a.
PrROOF. Assume (3.14). First we claim that, if 0 <7 < m — 2, then
(3.17) Sp(t +1) — Sp() = St +2) — Sxt +1).
In fact, given such an 7, we can easily find an element a, = (a,, © + 1,
i+ 1,a, -, a,,,) of A,, unless »r =1 and 2¢ + 2 =0 (modm). Aside
from the latter case, a, = (ay, %, % + 2, a3, -+ -, a,,,) belongs also to %U,,,.

By (38.14), Ay(a,) is equal to Au(a,), and hence, using (3.16), we have
(8.17). When » =1 and 27 + 2 = 0 (m), (8.17) follows from the definition

(8.15) of Sjy.
It follows from (3.17) that

(8.18)  Sgla) = Sx(l) + (@ — ){Sx(2) — Sx(1)} 1 =a=m —1).
Now we note that H =+ {1}. Indeed, setting
o - (-3,1,1,1,1, —1, ---,1, —1) 7r: even

-~ (-2,1,1,1,-1,---,1,—-1)  7: 0dd,
we easily see that A, (@) # A,(—a) for m = 4. Since we are assuming
(3.14), we have H == {1}. Therefore there exists an integer a such that
l1<a<m and @« modme H. Obviously we have then Sy(a) = Sy(1),

which implies by (3.18) that S,;(2) = S,(1). Using (3.17), we conclude that
Su(2) is independent of 1. q.e.d.

LEMMA 3.7. Let m, be a divisor of m, and let H, denote the image
of H under the natural homomorphism

(3.20) P: (ZImZ)* — (ZImZ)* .

Define Syy(a) in the same way as (3.15). Then, if (3.14) holds, Sy (a)
18 independent of a with a % 0 (mod m,).

Proor. For any integer a with a % 0 (mod m,), we have

(3.19)

(3.21) Sulamim) = 3, <%> = |H N Ker 9| Sy,(a) .

Hence the assertion follows from Lemma 3.6. q.e.d.
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PROOF OF PROPOSITION 3.5. Assume (3.14). We shall derive a con-
tradiction assuming that H? —1modm. Let H' be the subgroup of
G = (Z/mZ)* generated by H and —1 mod m; we have [H': H]=2. Then
there exists a character of G, say X, which is trivial on H but non-
trivial on H'. Hence X(—1) = —1. Let X, be the primitive character
inducing X and let m, be the conductor of X,. Obviously we have
Xo(—1) = —1 and X, is trivial on H, = ¢(H), » being as in (8.20).

Extending X, to a function on Z by setting X,(a) = 0 for (a, m,) # 1,
we define the Dirichlet L-series L(s, X,). Since X(—1) = —1, we have

(322 0% L) = Shmn = @/ TTct/md) ST

where 7(X,) denotes the Gauss sum (see e.g., [1] Ch. 5, §2).
On the other hand, we have

62 Sww=3 (-3 ()= 5 o

m a€aty M,
0 o<z<mg 0

Since X, is trivial on H,, we have

@20 IS5 = Sh0( 5 L) = Sh@S@
m, = = NG me

where a runs over the coset representatives of the group (Z/m,Z)* modulo
H,. By Lemma 3.7, the right hand side of (3.24) is equal to

(5 7(@)-SinD)

which vanishes because Y, can be considered as a non-trivial character
of the factor group of (Z/mZ)* by H, This contradicts (8.22), and
proves the proposition. q.e.d.

REMARK 3.8. Proposition 3.5 also holds for m = 3 except for the
case r =2. The verification is straightforward. In the exceptional case
r =2, X% is a rational surface (as a cubic surface) and hence super-
singular in the sense of §2 in any characteristic p + 3.

REMARK 3.9. The above proof of Proposition 3.5 is not so elementary
since it depends on the fact (3.22). We have a more elementary proof
for it in case m is a power of a prime number, but it will be omitted.

Finally we state an application of the case » =1 of Proposition 3.5:

ProOPOSITION 3.10. The Jacobian variety of the Fermat curve X (p)
18 1sogenous to a product of supersingular elliptic curves if and only
if p* = —1 (mod m) for some integer v.
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PrOOF. In view of Theorem 2 of Tate [10], the if part follows
from Lemma 8.3, while the only if part follows from Lemma 3.1 and
Proposition 3.5. q.e.d.

In [8] §1, a similar result for the curve y* =1 — 2™ was applied to
the proof of the unirationality of arbitrary supersingular Kummer
surfaces.

4, Unirationality. An irreducible variety X is called unirational
if there exists a rational map of finite degree from a projective space
to X. Equivalently, X is unirational if the function field k(X) of X is
contained in a purely transcendental extension of the base field k.

THEOREM 4.1. If p*= —1 (modm) for some integer v, then the
Fermat variety X, (p) of an even dimension r is unirational.

ProOOF. By Corollary 1.11, the unirationality of X.(p) (+: even) will
follow from that of XZ%(p). Also, for any positive integer d, the map
(x;) — (xf) defines a surjective morphism of X7, to X&. Therefore the
proof of the theorem is reduced to the case where r =2and m =q + 1,
q being a power of p. In this case, we further distinguish the case
p > 2 and the case p = 2.

In case p > 2, the proof can be found is Shioda [6], but it will be
reproduced here for the reader’s convenience. We write the equation
of X%, .(p) in the form:

(4.1) wc11+1 — x2q+1 — xg+1 _ wg+1
by replacing x, and 2, by ex, and ex, (¢7"* = —1). By the coordinate
transformation

{xlzyl‘*‘yz {xazya'l“yo

To=Y, — Yoy, @ =Ys— Yo»
the equation (4.1) becomes
(4.2) YiY. + YiYi = Yiyo + YsYs -

If we set y, =1, ¥, = yu and y, = wv, the function field of X2, ,(p) over
k is isomorphic to the field k(y,, u, v) with the relation

(4.3) WYt — ) = v -yt
Hence, putting

4.4) t=wyil", s=ul" -9,
we have

(4.5) ST — @) = p — galety
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which shows that the field k(y,, u, v) is contained in the field k(s, t).
In case p =2, we modify the above as follows. Letting p be a
primitive cube root of unity, we put
(4.6) T =Y + Y. T3 =Y + Y
Ty =P0Yr + Yoy (X = P0Ys + Y
Then the equation (4.1) becomes

(4.7) 1+ eyt + 1 + pYyly, + Y.yl
=1 4+ ™My + A + 09%iy, + Oyl -
Since ¢ = 2" is congruent to 1 or 2 (mod 3) according to the parity of v,
we have
0 (v: odd)

L+ = {0
0> (v: even).

1+p"={

’

First, suppose that v is odd. Then the equation (4.7) reads
(4.8) Yy, + OY.Y: = YiY, + OY:YL .

Comparing this with (4.2), we can prove its unirationality exactly in the
same way as before.
Next, suppose that v is even. Then we have

(4.9) Yyt + oyly, + oYyl = ¥it + pYiy, + oYYl .
Set here
(4.10) =Y+ 1, Y =9y,+ pu+ p*.

Then the function field of X%, (p) is isomorphic to the field k(y,, ¥, u)
with the relation

(4.11) Yiu + yu' + oyl + oy, +1=0.

Putting

(4.12) t=yi", s=tu+ py,,

we have

(4.13) (s + oyy) +8"+ oy, +1=0,

which shows that k(y., ¥, w) is contained in k(s, f). This completes the
proof of Theorem 4.1. q.e.d.

REMARK 4.2. Let k, = F,: for p =2 and k, = F,(e) for p > 2, ¢
being a root of unity such that e””** = —1. Then the above proof shows
that the Fermat variety X7,(p) of an even dimension » and of degree m
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dividing p* + 1 is k,unirational, i.e., there exists a rational map of
finite degree defined over k, from P to X7 (p).

THEOREM 4.3. For the Fermat surface X:(p) of order m = 4, the
following conditions are equivalent to each other:

(i) Xi(p) is unirational,

(i1) X32(p) ts supersingular,

(iii) p* = —1 (mod m) for some integer v.

PrROOF. Since every unirational surface is supersingular, (i) implies
(ii) (ef. Shioda [6] §2). By Theorem 3.4, (ii) implies (iii). Finally (iii) = (i)
follows from Theorem 4.1. q.e.d.

REMARK 4.4. We expect that Theorem 4.3 should hold also for
higher dimensional cases. The only unproven part is the implication
(i) =» (ii). We stated before in [6] p. 236 that this would follow from
the resolution of singularities for higher dimensional varieties in char-
acteristic p, but it was a wrong observation. In fact, it should be
noticed that there are unirational (or even rational) varieties which are
not supersingular. For instance, let Y be a non-singular surface in P*
and let X be the rational variety of dimension 4 which is obtained by
blowing up P* along Y. Then X is supersingular (i.e., H*(X) is spanned
by algebraic cycles) if and only if Y is supersingular. (This follows
easily from Lemma 2.1.) Since there certainly exist Y’s which are not
supersingular, we thus obtain examples of rational varieties which are

not supersingular.

REMARK 4.5. Going back to the case of surfaces, the part (ii) = (i)
of Theorem 4.4 lends some support to a rather optimistic conjecture that
any supersingular surface in P® might be unirational (cf. Shioda [8], p.

167).
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Added in proof.

(1) The rational map ¢ of Lemma 1.1 (p. 98) has been independently
introduced by P. Deligne in his hand-written note: “Cycles de Hodge sur
les variétés abéliennes”, in order to define the embedding of H*(X}) into
H*(II X.). Also Professor Safarevié has told one of the authors that
Sermenev (unpublished) studied the motif of X, using such an embedding.

(2) For the results in §3, compare the paper of N. Koblitz in
Compositio Math., 31 (1975). In particular, the proof of Proposition 3.5
proves his Conjectures (I), (II), (III) in p. 199-200.








