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Abstract. We investigate the dynamical properties of continuous maps
of a compact metric space into itself. The notion of chaos is defined as
the instability of all trajectories in a set together with the existence of a
dense orbit. In particular we show that any map on an interval satisfying
a generalized period three condition must have a nontrivial (uncountable)
minimal set as well as "large" chaotic subsets. The nontrivial minimal
sets are investigated by lifting to sequence spaces while the chaotic sets
are investigated using "factors," projections of larger spaces onto smaller
ones.

Introduction. There has been an increasing realization that the
dynamics behind many physical processes are inherently chaotic. Just to
cite an example, consider the fact that Landau [1] explained the transition
to turbulence for flow past a solid object in terms that invoked an infinite
number of degrees of freedom. Then Ruelle and Takens [2] showed that
similar processes could lead to even more chaotic behavior while requir-
ing only five degrees of freedom, i.e., five dimensions. Now it is re-
cognized that only three degrees of freedom are required. Lorenz [3],
Rossler [4, 5], Curry and Yorke [6] and Bo wen [7] are just some of the
papers which discuss the physical relevance of three dimensional chaotic
flows or two dimensional chaotic diffeomorphisms. May [8] and Li and
Yorke [9] emphasize the physical significance of continuous chaotic maps
on the real line. A number of concepts have been introduced to describe
the relevant phenomena. Most important is ergodic theory but this is
particularly difficult to apply to particular situations; the simplest non-
linear dynamical process is the iteration of a quadratic map on an
interval, T(x) = ra(l — x), and yet even here the situation is unsatis-
factory: The set of r for which there is an absolutely continuous
invariant probability measure has only recently been shown to be infinite
(Pianigiani [10] and Jacobson and Sinai) yet it seems likely that this set

1 This research was partially supported by National Science Foundation Grant MCS
76 24432.
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is uncountably infinite and may have positive measure.
A second approach is to discuss the flows in purely topological terms.

Ruelle and Takens captured some of the flavor of turbulence with their
introduction of the concept of "strange attractors," an attracting set
which is compact and connected but is not a point, circle or w-torus.
An alternative approach is to emphasize the chaotic nature of the
dynamics rather than the shape of the set; hence the term "chaotic set"
was introduced (Kaplan-Yorke [11, 12]; see also Li-Yorke [9]).

The notion of chaotic set arises as follows. In the investigation of
systems with complex behavior, in particular turbulent fluids, it seems
reasonable to assume first that the dynamical behavior occurs in some
compact subset of phase space, that is, all limit sets of trajectories lie
in a single compact set X. Secondly, we may assume the trajectories
have sensitive dependence on initial data, that is, trajectories are Liapunov
unstable. Finally some type of ergodicity is present, and at least there
are dense orbits in the components of X. More generally chaotic sets seem
to appear in many types of systems which have nothing to do with fluids.

In Yorke-Yorke [13] certain non-attracting chaotic sets are inves-
tigated. The topological concepts of chaotic behavior are combined
with measure theory by Lasota, Pianigiani, and Yorke in [14, 15]. The
purpose of this paper is to further develop and investigate the topologi-
cal concept of chaos. In particular one objective is to relate chaotic
behavior in a large space to the chaotic behavior in a smaller, easier to
analyze, space. For example, the solenoid is a space which can be
obtained as follows: Let T:X-^X where X is the solid torus, and T
is an "into" diffeomorphism which stretches and double wraps the torus
inside itself. The invariant set (the "solenoid") was the first stable
"strange attractor" described, [2]. The map T can be set up so that the
angle θ around the torus is mapped to 2Θ mod 2π. This map on the circle
Θ\->2Θ is chaotic. This simpler space and map is called a factor of the
original pair (Γ, X) and the fact that the simpler space and map are
chaotic imply in this case that the (Γ, X) is also chaotic. This example
motivates the investigation of chaos in factors.

Period three implies there are nontrivial minimal sets. A compact
system is a pair (X, τ), where X is a compact metric space, and τ: X —> X
is continuous and onto. It is not assumed that τ is invertible.

If xeX, the orbit of x is the set y(x) = {rj(x)\j = 0, 1, 2, •}. The
orbit y(x) is periodic if τm(x) = x, for some m > 1 (so y(x) = {x, τ(x\ ,

and x is stationary if τ(x) = x (so y(x) = {x}).
The omega limit set of x is Ω(x) = ΠA^OT(ΓΛ(»)). Note that y e Ω(x)
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if and only if t h e r e is a sequence of integers n5 —• ^ such t h a t τ**{x) —> y.
Also, t h e orbit closure 7(05) = y(x) U Ω(x); th i s union is disjoint if and
only if x g i2(cc).

An invariant set (for r ) is a subset ilί of X such t h a t r(Λf) c M.
(Equivalently, M is a union of orbits.) If xeX, t h e n 7(35), y(x) and β(sc)
are invariant.

Sometimes (as in the case of interval maps) τ is defined on a set Z
for which τ(Z)Z)Z. Our first lemma shows that, in this case, it is
possible to "cut down" the domain of τ so as to obtain a compact system.

LEMMA 1. Let X be a compact metric space, Z a closed subset of
X, and τ\Z^>X a continuous onto map. Let Z* — ΓU=o,i,2,... τ~\Z).
Then Z* is closed, non-empty, τ-invariant, with τ(Z*) = Z*. If zeZ
such that τ(z) eZ*, then zeZ*.

PROOF. Most of the assertions are obvious. Note that zeZ* if and
only if rγ(z)aZ. Also, 7(Φ))cτ(2), so φ ) e 2 * whenever zeZ*. If
z e Z*, τ(x) = z, for some xe Z, and Ύ(X) = {x}l}j(z)(zZ, so x e Z*. Hence
τ(Z*) = Z*.

Using the notation of Lemma 1, suppose that A and B are closed
non-empty subsets of Z with Z = AU B, τ{A) ID B, τ(B) ZD Z. Set A* =
AΓ\Z*, B*=BOZ*, so Z* = i*US*. If xeZ*, then x = τ(b),
for some beB, so 6 e Z * Π-B = .B*, and 5 * ^ 0 . Also b = τ(α), for
some aeA, and aeZ* f) A = A*, and A* Φ 0 . The above shows
τ(A*)=)B* and r(B*)=)Z*. Since τ(5*)cτ(Z*) - Z*, we actually have
τ(B*) = Z*.

We remark that A* and β* are both infinite sets, unless A* = J3* =
Z*. For, since Γ(A*):D£*, τ(5*) = A*U-B*, then A* is finite if and only
if U* is finite. Letting | | denote the cardinal number, suppose | A*| = n,
\B*\=m, |A*n.β* |=fc (with m, n, k < 00). Since r(Λ*)=)B*, and
τ(B*) = A* U δ*, we have n^m, m + n — k <* m and therefore n ^ k.
But k^m^n, so ft = m = n. That is \A* n ΰ * | = % - |Λ*| = |J5*|,
and A* = 5*.

We apply these considerations to a compact interval Z = [α, c] on the
real line. Let τ: Z->R be continuous and suppose there is a beZ with
α < 6 < c such that τ(a) — b, τ{b) = c, τ(c) ̂  a. This "generalized period
three" condition was studied in [4], where it was shown that it implies
the existence of points of every period k ̂  1. We may suppose further
that if a < x < b, then τ(x) > b (if not, let α* = sup [y e [α, b] | τ(y) = b]
and replace a by a*).

If A = [a, b], B = [6, c], then T ( A ) D B , τ(B)Z)Z, and the previous
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discussion applies with X = τ(Z). Note also that x(A) Γ\ A = {b}, so that
r(A*) = £*.

To study τ further we introduce the one sided shift. Let Σ — {0, 1}V,
the collection of infinite one sided sequences of 0's and Γs, with the
product topology. A metric for Σ is given by

d((ωQ, ω19 -), « ω[, •••))= Σ|ft>i - ^ | 2 " y .
3=0

Let #: Σ-^Σ be the shift transformation σ(ω0, ωlf •) = (<*>!, fi>2, •)• Then
21 is a compact metric space and σ is a continuous onto two to one map.
The pair (Σ, σ) is called the one sided shift on the symbols 0 and 1.

From now on, we use A* and B* (instead of 0 and 1) as the symbols
in Σ, and we omit parentheses and commas in writing the points of
Σ. Thus A* and B* will have two roles: subsets of Z — [a, c], and
symbols for Σ. It will be clear from the context which meaning is
intended.

The point co = o)Qωι e Σ will be called admissible if it contains
no 2 block of the form-A*A* (that is, if ω, — A*, then ωj+1 = B*). The
subset Σ* of admissible points is a closed ^-invariant subset of Σ. We
show that every point of Z* defines an admissible sequence, and that
every admissible sequence gives rise to a closed non-empty subset of Z*.
In fact, there is a natural map π: Z* —> Σ* defined by π{z) = ω =
ω0ω1ω2 where ωt = A* or i?* according as τ*(z) e A* or 5*. (If b e Z*
and z\z) = b, let ωt = ΰ*. This choice, and the standing assumption
that τ(ίc) > 6 for α < a < b, guarantee that ω is admissible.)

THEOREM 1. ( i ) The map π: Z* —> Z* is equivariant (πτ = σπ) and
onto.

(ii) π is continuous at all points of Z*\P, where P = {b}\J[z e Z*
τ\z) = b and τk~\z) e £*, for some k > 0]. (So, if τ(c) < α, then P = 0 ,
and π is continuous on Z*.)

(iii) IfzeZ*, π(z) = a), and j(z) contains a periodic point, then
y(ω) contains a periodic point.

(iv) If ωeΣ* is periodic, then π~\ω) contains a periodic point.

PROOF. Equivariance and continuity on Z*\P are obvious. If ω e Σ*,
ω = ωQωλ , let Cn(ω) = ω0 Π τ~\ωj Π Π τ~n(ωn). Then each Cn(ω) is
closed and non-empty, and also C0(ω) Z) d(α>) . Thus π"\ω) =
Π«=i,2,... Cn(α)) is closed and non-empty, so π is onto. Suppose z'ey(z)
is periodic. If z' $ P, π is continuous at zf and it follows easily that
ω' = π(z')ey((θ) and ω' is periodic. If zf eP with z' periodic, then zf = δ.
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But then a = τ(b) e 7(3), and since π is continuous at α, we again have
ττ(α) e 7(ω) is periodic. Let ω e J?* be periodic, <D = α^α)! ωk_1ωQωι

ωfc_! . Let λ, = A or i? according as ωt — A* or 5* (i = 0, 1, •••,& — 1).
Choose x 6 λ0 such that τ*(ίc) 6 λ* (ΐ = 0, 1, , fc — 1) and such that
z\χ) = x (see [9], Lemmas 0 and 2). Then certainly xeZ*, x is periodic,
and π(x) = α>.

Note that (iv) is a partial converse of (iii). An interesting question
is whether the complete converse of (iii) is valid. Namely if zeZ*,
π(z) = a), and 7(0)) contains a periodic point in I7*, does y(z) contain a
periodic point in Z*?

Recall that a minimal set is a non-empty closed invariant set, which
contains no proper non-empty closed invariant subsets. Equivalently,
the non-empty set M is minimal if, for each x e M, the orbit closure
τθ) = M. An argument using Zorn's lemma shows that if (X, τ) is a
compact system any non-empty closed invariant subset of X contains
minimal subsets. Of course, stationary and periodic orbits are minimal
sets. We will call a minimal set M non-trivial if it is not one of these —
that is, if M is infinite.

COROLLARY 1. Z* contains non-trivial minimal sets.

PROOF. Let ωeΣ* such that y(ω) contains no periodic points (for
example, let y(ω) be a non-trivial minimal set in 21*), and let xeπ~\ω).
Since yζx) is closed and invariant, it contains minimal sets. Now j(x)
contains no periodic points (Theorem 1, (iii)), so any minimal set in j(x)
must be non-trivial.

An explicit example of a non-trivial minimal set in I7* will be given
later.

Sensitive dependence on initial conditions (transitivity and chaos).
Let (X, τ) be an arbitrary compact system. The point x 6 X is said to
be stable if, for any ε > 0, there is a d > 0 such that d(x, x') < δ implies
d(τn(x), τn(xr)) < ε, for n = 0, 1, 2, . (We also say τ is stable at x.)
Thus x is not stable (unstable) if and only if there is an ε > 0, and a
sequence {Xj} in X and {nά} of positive integers such that xά —> x and
d{τn>(x\ τn3(Xj)) ^ ε. (The continuity of τ forces nά—> 00.) In this case,
we say that x is ε unstable.

LEMMA 2. Let Kz denote the set of ε unstable points. Then Kε c Kε/2.

PROOF. Let {Xj} be a sequence in Kε, and let xά —> x. Since each xά

is ε unstable, there is a sequence {x'ό} with d(xάj x's) —> 0 and d{τhi(xά),
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))^ε, for some sequence {hd} of positive integers. If d(zh'{x), zhi(
ε/2, then certainly x is ε/2 unstable. If not, then d(τhί(x), τhi{x))) ^ ε/2
(otherwise d{zhΐ{xά), τhi(x'/)) < ε, contradicting the above). Since xά —• x
and Xj-^x, ε/2 instability of x is proved.

COROLLARY 2. Le£ (X, τ) be a compact system.
( i ) IfxeXίsε unstable, then every point of y(x) is ε/2 unstable.
(ii) // (X, τ) is minimal and contains an unstable point, then there

is an ε > 0 such that every point is ε unstable.

PROOF. If x is ε unstable, so is τ(x). Thus (i) follows from Lemma
2, and (ii) follows from (i).

The compact system (X, τ) is said to be chaotic if every point is
unstable, and X contains a dense orbit, ([2]). (It follows that a minimal
set which contains an unstable point is chaotic.) We now develop an
alternate characterization of chaos in terms of topological transitivity.
We say that (X, τ) is topologically transitive if, for every non-empty
open set U, the set U* = \Jk=lt2,...t~k(U) is dense in X.

LEMMA 3. Let (X, z) be a compact system. Then the following are
equivalent:

( i ) (X, τ) is topologically transitive.
(ii) There is an xeX with a dense orbit.
(iii) There is an xeX with Ω(x) = X.

PROOF. If Ω{x) = X, then certainly y(x) = X. Suppose there is an
x 6 X with y(x) = X. Let x' e X with z{x') = x. Now &' e y(x) = j(x) U
!2(ίc). If x' ey(x)f then & = z(x')ey(x) and τ(«) = τθ*0 = 42(α;) = X is a
finite set. If x' e Ω(x), then sc = τ(x') e Ω(x), and, since Ω{x) is always
closed and invariant, y(x) c i2(ίc), so Ω(x) = X.

Suppose (X, τ) is topologically transitive. Let {Ulf U2, •} be a counta-
ble base for the open sets of X, and, if j and N are positive integers,
let Uψ] = U^NTΛUJ). Then (since z~N(Ud) Φ 0 and open), Uf' is
open and dense. By the Baire category theorem there is an x 6 Π ^ o ^ o ^ Γ
Thus, for every pair of positive integers j and N, xe Uf\ so z\x)e U3 ,
for some k^ N. Hence Ω(x) Π Uά Φ 0, and it follows that Ω(x) = X.

Finally, suppose Ω(x) = X, for some x, and let ί7 and W be open
sets in X. We show [/* Π W Φ 0 (where, as above U* = U^~fc(^))
Let fc > 0 such that z\x) e W and let I > 0 such that τfe+z(tf) e U, so
rfc(a0e FΓnτ-I(Z7)cTΓΠ ϋ'*.

Note that the preceding proof shows that if there is a point with a
dense orbit, then there is a residual set of such points. A point with
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a dense orbit will be called a transitive point.
Trivial examples (e.g., an orbit tending to a stationary point) show

that if r : X —>X is not onto, the existence of a dense orbit does not
imply topological transitivity. However, if x is unstable, and has a dense
orbit, then Ω(x) = X (in which case τ is necessarily onto). Since x is
unstable there is a sequence y, -» x with d(τ*>(x), τn^yά)) >̂ ε > 0, for some
{Uj}. This inequality implies that yά Φ x and we may assume all the y5

are distinct. If yό e y(x), y5 = τ*'(sc), and n3 -^°°. Thus a? 6 Ω(x). If 2/,- g
7(a?), then, since yi e y(x) = 7(0;) U i2(x), so yi 6 fl(ίc), and, since Ω(x) is
closed, again sc e Ω{x). Then X = y(x) c fl(aj), so i2(as) = X.

Thus we may define chaos as "topological transitivity plus pointwise
instability." This formulation (which by Lemma 3 is equivalent to the
definition) has the advantage of homogeneity — it is not necessary to
single out a point with a dense orbit.

Chaotic factors. We now consider the problem of "lifting" chaos
via homomorphisms. If {X, τ) and (Y, φ) are compact systems, a homo-
morphism of (X, τ) to (Y, ψ) is a continuous onto map /: X -> Y such
that fτ = φf. (Y is called a homomorphic image or factor of X.) The
map TΓ: i ^ X P - ^ I 7 * considered earlier is an example.

LEMMA 4. Lei (X, τ) and (Y, 9?) 6e compact systems and f:X-*Y
a homomorphism. Let xeX be a stable point, and suppose that f is
open at x. Then y = f(x) is stable.

PROOF. If y is unstable, there are sequences yn-^y and {kn} such
that d(φkn(y), φkn(yn)) ^ ε > 0. By openness of / at x, there is a sequence
xn —> x with f{xn) = yn. Since x is stable, d(τkn(x), τkn(xn)) —> 0, so
d(f(τk*(x)\ f(τk*(xn))) -> 0. That is d(φk*(y), φkn(yn)) -> 0, which is a con-
tradiction.

THEOREM 2. Let (X, τ) and (Y, φ) be topologically transitive compact
systems, with (Y, ψ) chaotic. Let f:X->Y be a homomorphism which
is open at a transitive point x. Then (X, τ) is chaotic.

PROOF. By Lemma 4, x is unstable. Since x is a transitive point,
it follows (Corollary 2), that all points of X are stable.

A natural question is whether the openness hypotheses on / can
be dispensed with. Theorem 2 does apply to "skew product" systems
φ: X x Y -± X x Y, of the form <p(x, y) = (τ(x), <f{x, y)), where (X, τ) is
chaotic, and ψ:X x Y-+Y is chosen so that φ is topologically transitive.

THEOREM 3. Let (X, τ) and (Y, φ) be compact systems and let
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f:X-> Y be a homomorphism. Suppose (Y, φ) is chaotic. Then there
is a closed τ-invariant subset Xo of X such that f(X0) — Y and such that
the subsystem (Xo, τ) is chaotic.

PROOF. Using Zorn's lemma and the compactness of X we can find
a closed τ invariant subset Xo of X such that f(X0) = Y, and such that
Xo is minimal with respect to these properties. Let y e Y be a transi-
tive point, and let xQ e Xo such that f(xQ) = y. It follows easily that
f(Ω(x0)) = Ω{y) = Y, and since Ω(xQ) is a closed τ invariant subset of X09

the defining minimality property of Xo implies that Ω(x0) = Xo.
Since (Y, φ) is chaotic, there are sequences yn-^y, and integers {kn}

such that d(φkn(y), φκ(yn)) ^ ε > 0. Let xn e Xo with f(xn) = yn, and
choose a convergent subsequence of {xn}. Still call the subsequence {xn}
and let xn->xoeXo. Then f(x0) = yQ. Now, if d(τk*(x0), τk"(xn))-+0, then
d(φHVo\ 9HVn)) = d& Wxo)), φHf(xn))) = d(f(τHxo)\ /(^GO)) - 0, by
continuity of /. This contradicts d(φkn(y0), φkn(yn)) ^ ε > 0 so there is
an έ > 0 such that c£(τfcγl(#0), τ

kn(xn)) ^ ε. Hence ίc0 is an unstable point.
By Corollary 2, every point of Ω(x0) = Xo is unstable, so {X09 τ) is
chaotic.

COROLLARY 3. Let (X,τ) and (Y, φ) be minimal sets, with Y a
factor of X7 and (Y, φ) chaotic. Then (X, τ) is chaotic.

One way of showing that a system is chaotic (or has chaotic subsets)
is to find a chaotic factor and apply Theorem 2 or Theorem 3. In
particular, the space I7* of admissible sequences is chaotic. For, if
ω* e Σ* is a sequence which contains all finite blocks which do not contain
A*A* (so it necessarily contains every such block infinitely often) then
Ω(ω*) = Σ*. Moreover, every point of Σ* is unstable; in fact (I7*, σ) is
expansive: there is an a > 0 such that if ω Φ ω', then d(σm(ω), σm(ω')) > a,
for some m ^ 0. It follows that any infinite (hence, self dense) topologi-
cally transitive subset of Σ* is chaotic.

Applying these considerations to Z = [a, c\, recall that if τ(c) < α,
then Σ* is a factor of Z*, so (Theorem 3) there is a closed τ invariant
subset Z* of Z* such that π(Z*) = I7*, and (Zf, τ) is chaotic. Even if
τ(c) = a, any infinite minimal set y(co) in Σ* has a minimal preimage
y(x) in Z* and (Corollary 3), τ(aj) is chaotic.

There is an extensive literature on shift space and its minimal sub-
sets. Most of the literature is concerned with the bilateral (or two
sided) shift — the space of doubly infinite sequences ω = ω_1ωQω1

(ωt = 0 or 1), where the shift transformation, defined by σ(ω) = ωr,
ω'ά = ωj+lf is a homeomorphism. However, it is easy to check that if
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ft) = co_1ω0ω1 has a minimal orbit closure in the bilateral shift then
ft)* = ft)oft)x has a minimal orbit closure in the one sided shift, and
that every minimal set in the one sided shift is obtained in this manner,
as a "restriction" of a (unique) minimal set in the bilateral shift.

A class of examples of minimal sets in I * are the Sturmian minimal
sets, [1]. To define them, consider a circle C of circumference 1, and
let a be an irrational number with 0 < a < 1/2. Let [a, b] be a closed
interval of length a on C and let p:C->C be the counterclockwise
rotation by a. If p e C, define ft)+ and ω~ in J* by

_ fA* if ^(p) e (a, 6]
- j 5 * i f pi(p)£(a9 5]

and

A* if p\p)e[a,b)

B* if ^(p)e[α f &)'

(Note that ft)J = ω~ if and only if neither a nor b are in the p orbit
of p.) Then ft)£ and ft>p are in I7*, and Γα = {ft)J|p e C} U (ft)? |p 6 C} is
minimal under σ.

It is intriguing that a space can be chaotic and can also have many
chaotic subsets, and the shift space is an example with its many minimal
sets. Any subshift is also a chaotic subset.

Pointwise stable minimal sets have one-to-one maps. We return
again to compact systems in general, and consider the consequences of
pointwise stability (all points stable). For minimal sets, pointwise
stability is the opposite of chaos. The straightforward proof of the
following result is omitted.

LEMMA 5. ( i ) If (X, τ) is pointwise stable, it is uniformly stable.
(That is, the collection {τn\n = 1, 2, •••} is a uniformly equicontinuous
family.)

(ii) // (X, τ) is pointwise stable, then every factor is pointwise
stable.

THEOREM 4. Suppose (X, τ) is pointwise stable and topologically
transitive. Then (X, τ) is a minimal set, and τ is a homeomorphism.

PROOF. Let x e X be a transitive point, and let y eX. Then there
are sequences {fej and {ZJ of positive integers such that τki(x) —> y, and
τki+li(x)-+x. Since y is a stable point

so d(x, τli(y))-+0, and xey(y). Thus y is a transitive point. Since y is



186 J . AUSLANDER AND J. A. YORKE

arbitrary, {X, τ) is minimal.
To show that τ is a homeomorphism, consider the space Xx', the set

of all maps (not necessarily continuous) of X to itself, provided with the
product topology (the topology of point wise convergence). Let G be the
closure of the set {τn\n = l, 2, •} in Xx. Since {τ*\n = l, 2, •} is an equi-
continuous family, it follows easily that all elements of G are continuous.
If x, y 6 X, there is a ξ e G such that ζ(y) = x (since y(y) is dense in X and
Xx is compact). Moreover, ξτ = τξ. (For, let {r11*} be a net such that τni->ξ.
Then rn<+1 = rrn*->r£ and rw*+1 = τ*<->£τ.) Now, let a e l , and let y = τ(x).
Let £ e G such that f(#) = x. Then r£(a) = f τ(&) = ξ(y) = α. Also fr& =
τfcf, for all k > 0, and £r(r*(a)) - τfc(fτ(x)) = r*(»); similarly, τζ{τ\x)) =
rfc(x). Hence τf = fτ is the identity on j(x), and, since γ(#) = X, τζ —
ξτ is the identity map. Therefore τ is invertible.

COROLLARY 4. Let (X, τ) be a nonchaotίc minimal set. Then τ is
a homeomorphism.

PROOF. Since (X, τ) is not chaotic, it contains a stable point. By
Corollary 2, all points of X are stable. Thus Theorem 4 applies, and τ
is a homeomorphism.

An example of a (necessarily chaotic) minimal set with respect to a
continuous map which is not a homeomorphism is obtained as follows.
Let h: X —> J be a minimal homeomorphism which contains asymptotic
points — that is, x Φ y such that d(hn(x), hn(y)) —> 0, as n —> °o. (The
Sturmian minimal sets discussed earlier are an example.) Consider a fixed
pair of asymptotic points x and y (x Φ y). Define an equivalence relation
— on X by declaring hn(x) ~ hn(y), (n = 1, 2, •)• Since x and y are
asymptotic the quotient space X = X/~ is compact Hausdorff, hence
metrizable. Moreover, h induces a continuous map h:X-±X. (X, h) is
minimal, since it is a factor of the minimal set (X, h). If [ ] denotes
equivalence class, then [x] Φ [y], but h([x]) = [h(x)] = [h(y)] = h([y]), so
h is not a homeomorphism.

As we have noted, a minimal set is either chaotic or point wise stable.
We do not know whether the same phenomenon holds for any topologi-
cally transitive system (X, τ), even when τ is a homeomorphism. If, as
seems likely, a counterexample exists, all transitive points would have
to be stable (Corollary 2 again). An unsolved related question, relevant
to Theorem 3, is: must a topologically transitive system which has a
chaotic factor be chaotic! An example to the contrary would also
serve as a counterexample for the previous question (Corollary 2 and
Lemma 5).
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The construction of such examples appears to be rather difficult. If
we again consider τ: [a, c] —> R with τ(c) < a, then no topologically
transitive subset Z' of Z* with π(Zr) = Σ* will provide an example. That
is, any such Z' is chaotic. For, since τ(c) < α, bgZ* and since Z* is
closed, there is an ε > 0 such that \zf — b\>ε, for all z'eZ'. Now,
suppose zeZ* is a stable point. Let δ > 0 correspond to the ε above
in the definition of stability of z. Then if z' e Z* with \z — z'\ < δ, then
τr(z) = π(z'). (If not, there would be an integer k such that, say τ\z) e A*
and τ\z')eB*. Therefore, | τ\z) — τ\z') | ^ ε, contradicting the choice
of δ above.) Now, suppose in addition that z is a transitive point of
Z'. In particular, z e Ω(z). Then there is an m such that \z — τm{z)\ < <5,
so π(z) = τr(rm(z)). If α> = TΓ(^)G2T*, then ω = σm(ω), so ω is a periodic
point. This is a contradiction, since a transitive point of Z' must be
mapped to a transitive point of 21* by a homomorphism.
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