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Introduction. The main purpose of this paper is to prove the
following theorem: If T,, ---, T, are commuting positive contradictions
on L, of a o-finite measure space such that each operator T, satisfies
the L,-mean ergodic theorem, then the multiple ergodic average

=0

At S, - 8 To - Ti4f(w)

converges to a finite limit almost everywhere as n — - for all fe L,.

Let (X, &, ) be a o-finite measure space and let L,(#), 1 < p £ <o,
denote the usual Banach spaces of (real or complex) functions on (X, #, p).
A linear operator T on L,(u) is called positive if f= 0 implies Tf = 0,
and a contraction if ||T|, <1, ||T|, denoting the operator norm of T
on L,(¢). We shall say that T satisfies the L,-mean ergodic theorem if
the average (1/n) > 7= T'f converges in L,-norm as n — o for all fe L, ().
Ito [9] proved that if T is a positive contradiction on L,(¢) satisfying
the L,-mean ergodic theorem, then the average (1/n) 3222 T'f(x) converges
to a finite limit a.e. on X as w — « for all fe L,(¢). In the present
paper we intend to extend his result to the case of multiple ergodic
averages of d commuting positive contractions on L,(#). To do this, we
use Brunel’s theory [2] concerning a maximal ergodic inequality for
commuting (not necessarily positive) contractions on L,(#t). As a corollary
to the proof, it follows that if T, ..., T, are commuting (not necessarily
positive) contractions on L,(#) such that for some 1 < p < o, ||7,], £ 1
for all 1 <7 <d, 7, denoting the linear modulus [3] of T, then the
above multiple average converges to a finite limit a.e. on X as
n — o for all fe L,(¢). This is a generalization of McGrath’s ergodic
theorem [8], who treated the positive operator case. See also Emilion
[5].

The continuous versions of these results are obtained by using a
standard approximation argument.
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2. Ergodic theorems for the discrete case.

THEOREM 1. Let T, ---, T, be positive contractions on L,(tt) such
that T.T; = T;T, for all 1 <4,j < d. Suppose each T, satisfies the L,-
mean ergodic theorem. Then the limit

n—1 n—1
lim (1/n)* 3, --- >, Tit -« Tuif(x)
n—00 7=0 =

exists and is finite a.e. on X for all fe L,(p).

ProoF. For simplicity we shall consider the case d =2. (The
general case follows similarly.) Since T, satisfies the L,-mean ergodic
theorem, {h + (f — T,f): T;h = h} is a dense subset of L,(#) by a well-
known mean ergodic theorem (cf. e.g. [4, VIII, 5.2]). It follows that

(h+@+Ff—TJf)—T9g+f—T.f): T:h=h,Tyg = g}

is a dense subset of L,(¢). Suppose T;h = h. Then Ito’s ergodic theorem
[9] shows that

WUy S, 5 ToTeh() = (1m) S, Tih(z)

=0 i5=0
converges to a finite limit a.e. on X as n — o. Next suppose k = g +
f— T.f with T\g = g. Then we get

(Uny'S, 'S, ToTi(b — Tob) = <1/n>2’§ Tisk — Tk)

11=0 i5=0

= (1) z Tk — (1/n)2T"( s T”k)

1,1::0

where

lim (1/n)? 5_‘, Tik(x) =0 a.e. on X

n—00 i3=0

by Ito’s theorem, and where
amys(S, 7o) = Wmy (S, Tolg + £ — T.f1)
= (Un)T5g + UnITHf ~ Tof) .

Ito’s theorem shows that lim, ... (1/7)T7g(x) = 0 a.e. on X. On the other
hand, since X7, (1/n)*|| T2(f — Trf)|. < o, we must have

lim (1/n)*T3(f — Trf)(x) =0 a.e. on X .
Thus we have proved that the limit

lim (1/n)? S Z TeTef(x)

11=0 95=0
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exists and is finite a.e. on X for every f in a dense subset of L,(g).
Hence the proof will be completed by Banach’s convergence theorem
(cf. e.g. [4, Theorem IV. 11.3]), if the following lemma is proved.

LEMMA. If T, ---, Ty are commuting positive contractions on L,(t)
such that each T, satisfies the L,-mean ergodic theorem, then for every
fe L)

=0

sup (1/n)? S - -- 'fioml o Thf@)| < o ae. on X.
nx1 ig=

To prove this lemma we need the following theorem due to Brunel
[2]. (A slightly different form may be seen in [2].)

THEOREM A. If T, ---,T; are commuting (not mecessarily positive)
contractions on L,(u), then there exists a constant C; > 0 and a positive
contraction U on L,(p) of the form

)
e

U=2

i1=0

where a(iy, +++, 1)) =0, Dy +* D=0ty + -+, 1) = 1, and 7, denotes the
linear modulus of T, such that for every fe L,(u)

0
ZO a(ty, = -, 1T -+ T3,
=

sup ()¢ 55 -+ 5 260y, -+, ) | £1@) < G- sup (Um) 3, U*| £ @)

i=0
a.e. on X, where 7(iy, + -+, 1;) denotes the linear modulus of T --- T,

PrROOF OF LEMMA. Let U be as in Theorem A. We shall prove that
U satisfies the L,-mean ergodic theorem, which, in turn, implies the
lemma by virtue of Ito’s theorem. To do this, we first show that for
any 0 < he L(y¢), the set {Tih: ¢ = 0} is weakly sequentially compact in
L,(p). In fact, let C and D denote the conservative and dissipative parts
(cf. e.g. [6]) of T, respectively. Then, since T, satisfies the L,-mean
ergodic theorem, there exists a function 0 < ge L,(#) such that T.\g = ¢
and {g >0} =C ([9]). Further we have lim,m,s (1/m) 33= Tihdpy = 0;

D
hence limmg Tihdp =0. Let E,e. o, E,.CE, and (o E, = 0.
D
Given an € > 0, take an N = 1 so that ||(T7h)1,]|, < e. Write gy = (TVh)1,
and hy = (TVh)1,. Since hy € L,(C, 1), an approximation argument implies
that lim,_., <supi;os Tthda> = 0. Thus
Ep

lim <sup SE,,,, Tfhd;z) = lim <Sig%3 SE,,, Ti(gy + hzv)d)a) = llgxnlli < e;

n—o0 120 n—0

since ¢ > was arbitrary, the first expression equals zero. This shows
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the weak sequential compactness of {T¢h:7 = 0}. (See also [7, Theorem
3.2].)

Now, an induction argument implies easily that for any 0 < he L,(p),
the set {Ti ... Tih:4, +--, i, = 0} is weakly sequentially compact, and
thus {U'h:1 = 0} is also weakly sequentially compact. By this and a
mean ergodic theorem, U satisfies the L,-mean ergodic theorem. The

proof is completed.

The following proposition is needed for the proof of Theorem 3
below. This proposition follows, as in Theorem 1, from an ergodic
theorem of Akcoglu and Chacon [1] and a slight modification of McGrath’s
ergodic theorem ([8, Theorem 3]). Here it should be interesting to note
that, when the author was typing the manuscript, he learned from Dr.
Emilion that he also proved this proposition by using Brunel’s theory
[2]. See [6]. Hence we omit the details.

PROPOSITION. Let T, - -+, T; be commuting (not necessarily positive)
contractions on L,(t) such that for some 1 < p = o, |7, £ 1 for each
11 d, where 7, denotes the linear modulus of T,. Then for any
fe L(y¢) the limit

Lm (Un) S, - S Th - Tiaf(e)
. 17=0 ig=0

n—o0

exists and is finite a.e. on X.

3. Ergodic theorems for the continuous case. By a strongly con-
tinuous semigroup {T'(t):¢ > 0} of contractions on L, (¢), we mean that
IT®)l, <1, T(H)T(s) = T(t +s) and lim,, || T(s)f — T(&)f]l, = 0 for all

t,s >0 and feL,(¢#). Such a semigroup {7'(¢):¢ > 0} is said to satisfy

the L,-mean ergodic theorem if (1/a)S T(t)fdt converges in L,-norm as
0

a — oo for all fe L, ().

THEOREM 2. Let {T,(t):t>0}, ¢ =1,---,d, be strongly continuous
semigroups of positive contractions on L,(¢) such that T (t)T;(s) =
T;8)T(t) for all 1<%, 7<d and t,8>0. Suppose each semigroup
{T.,(t): t > 0} satisfies the L,-mean ergodic theorem. Then the limit
lim (1/a')d Su e Sa T1(t1) ‘e Td(td)f(x)dtl e dtd
0 0

a—o0

exists and is finite a.e. on X for all fe L,(u).

PrRoOF. We consider the case d = 2. First we prove that each
single operator T,(1) satisfies the L,-mean ergodic theorem. To do this,
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take he L,(¢) such that o >0 a.e. on X, and write h, = Sl T.(t)hdt.
0
Since {T,(t):t > 0} satisfies the L,-mean ergodic theorem,

(U/m) S TiR, = (Um) || T(o)hat
=0
converges in L,-norm as n — co. Therefore the set {(1/n) 322 Ti(1)h,:
n = 1} is weakly sequentially compact in L,(x).

Now, let 0 < feL,(¢#) be given. Then the strong continuity of
{T.(t): t > 0} implies that {T,(1)f > 0} c {T.(1)h > 0} < {h, > 0}, and there-
fore by an approximation argument, the set {(1/n) X7z Ti(1)f:n =1} is
also weakly sequentially compact in L,(¢#). By this and a mean ergodie
theorem, T,(1) satisfies the L,-mean ergodic theorem.

Next, to finish the proof, write f, = S S T,(t)T,(t,)fdtdt, for 0 < fe
0Jo

L,(y), and » = [a] for a > 1, where [a] denotes the integral part of a.
Then we obtain

‘ (1) S S T,(t) To(t ) f(@)dtdt, — (1n)? So SO T,(t,) To(t)f () dt dt,

n n—1 n—1

< Any 3, , TeTEDf@) — @) 20 5 THDTHLSf(@)

=0 9= 11=0 9=

and the second expression converges the to zero a.e. on X as n — oo,
by Theorem 1. This and Theorem 1 complete the proof.

THEOREM 3. Let {T,(t):t >0}, i =1, ---,d, be commuting strongly
continuous semigroups of (not necessarily positive) contractions on L,(ft)
such that for some 1 < p < oo, [[z()|, =1 for all 1 <1< d and t >0,
where t,(t) denotes the linear modulus of T, t). Then for any fe L,(t)
the limit

lim (1/a)* So e SO Ty(t) -+ Tot)f@)dt, - - - dia

exists and is finite a.e. on X.
PrOOF. We consider the case d = 2. By the Riesz convexity theorem
we may assume p < co. First suppose fe L,(¢) N L,(x). Write

7= | s sidndt (€L n L.

1(1
Here we note that the Bochner integral S S 7,(t)7(t) | f | dt. dt, exists,
0Jo

because ||z,(s)za(t)|f| — Tu(t)Telt) | f1],— 0 as s—¢ 4+ 0 and ¢ —¢ + 0,
independently (cf. Sato [10]). Write » = [a] for ¢ > 1. Then we obtain
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|| rea e nmandt, — wmy || e Tt fw)dtdt,

n n ~ n—1 n—1 . N

= (1/n) ) 5_‘5 T.(1)7(i)f (&) — (/) I iZo 7,(1)7e(1)f (%) ,
’Ll= l2= 1,1= 2=

and the second expression converges to zero a.e. on X as n — o, by

McGrath’s ergodic theorem ([8, Theorem 8]). This and Proposition show

that
tim (10 || T Tut) @ty
a—oc0 0Jo

exists and is finite a.e. on X.

Next, suppose fe L,(¢). If we denote by z(i, %,) the linear modulus
of T\(1,)T.(t,), then

(1/a)?

n

< Uy 3 3% 7, i/ (@)

11=0 ip=

S S T,(t,) Ty(t)f(2)dt,dt,

By virtue of Theorem A there exists a constant C > 0 and a positive
contraction U on L,(¢) such that

sup (1/n)? g g 2(G,, if(@) < C-sup (1/m) z, Ufx) ae. on X.

Since ||7,(1)||, £ 1 and ||z,(1)|, £ 1, we have ||U]|, <1, and hence by an

ergodic theorem of Akcoglu and Chacon [1], (1/n) 3r=! Uf(x) converges
to a finite limit a.e. on X as n — «. Therefore

sup (1/) go Uf@) < o a.e. on X.

Thus Banach’s convergence theorem completes the proof.
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