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HYPERBOLICITY OF CIRCULAR DOMAINS
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1. Introduction. If a domain D in Cn is hyperbolic in the sense
of Kobayashi [5], then every holomorphic mapping from C into D is
constant. In general the converse is not true. In this paper, we show
that the converse holds if D is a strictly starlike circular domain in Cn.
More strongly, if D is a starlike circular domain in Cn with D c \D for
any real λ > 1, and if every C-linear mapping from C into D is zero,
then D is bounded (Proposition 4.4). Geometrically convex, circular
domains or complete Reinhardt domains in Cn are strictly starlike (Prop-
ositions 4.2 and 4.3). Next we obtain equivalent conditions for a starlike
circular domain in Cn to be pseudoconvex (Proposition 5.1 and Theorem
5.4). Finally, modifying the example in Earth [2], we construct a non-
hyperbolic pseudoconvex circular domain in C2 into which every holo-
morphic mapping from C is constant (Proposition 6.5).

In subsequent sections, we call a subset X of Cn or Rn convex, for
brevity, when X is geometrically convex, i.e., {\x + (1 — λ)#; 0 < λ < l}c
X for any x,yeX.

The author would like to express his thanks to Professors T. Kuroda
and M. Suzuki for valuable discussions during the preparation of the
present paper. The author would also like to thank the referee for
helpful suggestions, which led to the improvement of the original
manuscript.

2. Hyperbolicity of domains in Cn. Throughout this paper we
consider the following conditions on a domain D in Cn:

(H. 1) D is bounded.
(H. 2) D is biholomorphic to a bounded domain in Cn.
(H. 3) D is C-hyperbolic, i.e., the Caratheodory pseudodistance of

D is a distance.
(H. 4) D is Jf-hyperbolic, i.e., the Kobayashi pseudodistance of D

is a distance.
(H. 5) D contains no entire holomorphic curve, i.e., there does not

Partly supported by the Grant-in-Aid for Encouragement of Young Scientists, the
Ministry of Education, Science and Culture, Japan.



404 K. AZUKAWA

exist any non-constant holomorphic mapping from C into D.
(H. 6) D contains no complex affine line.
(H. 7) D contains no complex homogeneous line.

Here a complex homogeneous line in Cn is a complex affine line passing
through the origin. We identify the complex projective space Pn~l(C)
with the family of all complex homogeneous lines in Cn. Then the
condition (H. 7) is rewritten as follows: There does not exist any element
ζ of P*-\C) such that ζclλ

In general, (H. i) is stronger than (H. i + 1) for ί = 1, , 6 (cf.
Kobayashi [5] and Remark in the last paragraph of this section). If we
impose some restrictions on D, some of (H. i) are equivalent. For example,
Earth [2] showed the following:

(BJ For a convex domain D in Cn, (H. ί) (ί = 2, , 6) are equiva-
lent.

(B2) There exists a pseudoconvex domain D in C2 which satisfies
(H. 5) but not (H. 4).
Recently the following was shown in Kodama [6]:

(K) For a starlike circular domain D in Cra, the conditions (H. i)
(i = 1, , 4) are equivalent.

REMARK. Sibony [11; Lemme 6] showed the following:
(S) A domain D in C is C-hyperbolic if and only if there exists a

non-constant, bounded holomorphic function on D.
Combining (S) with Ahlfors and Beurling [1; Theorem 15], we conclude
that there exists a C-hyperbolic domain in C which is not biholomorphic
to any bounded domain in C. This shows that in general the condition
(H. 2) is stronger than (H. 3).

3. Starlike circular domains in Cn. A domain D in Cn is called
circular (resp. starlike circular) if D contains the origin 0 and \DcD
for all λeC with |λ| = 1 (resp. if λDcD for all λ e C with |λ] <: 1).

From now on, we use the symbol π to denote the canonical projection
of Cn - {0} to Pn~\C).

To a starlike circular (not necessarily bounded) domain D in Cn, we
associate a (0, + °°]-valued function R (called the defining function of D)
on Pn~\C) as follows: If ζeP71"1^) is a complex homogeneous line in
Cπ, we define R(Q by sup{|z|; z e D Π ζ} (cf. Sadullaev [10]), where | |
denotes the Euclidean norm on Cn. Then R is a lower semicontinuous
mapping from Pn~l(C) into (0, +°°], endowed with the topology induced
by that of the two-point-compactification [—00^+00] of jβ, and D is
reproduced in terms of R as follows:
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(3.1) D = [z eCn - {0}; \z\ < R°π(z)} U {0} .

Conversely, given a (0, + °°]-valued lower semicontinuous function R on
Pn~\C), the set D defined by (3.1) is a starlike circular domain in Cn.

It is clear that a starlike circular domain D satisfies the condition
(H. 1) (resp. (H. 7)) if and only if the defining function R of D is bounded
(resp. real valued) on Pn~l(C}.

4. Strictly starlike circular domains in Cn. A starlike circular
domain D in Cn is called strictly starlike if D c λD for any real λ > 1
(cf. [9; p. 125]). As we see in the following proposition, this concept is
equivalent to the continuity of the mapping R: Pn~l(C) —> (0, +00].

PROPOSITION 4.1. Let D be a starlike circular domain in Cn defined
by R. Then D is strictly starlike if and only if R is upper semicon-
tinuous on Pn~~l(C).

PROOF. Suppose R is not upper semicontinuous on Pn~l(C). Then
we can find a sequence {ζ, } and a point ζ in Pn~l(C) such that ζ, —> ζ and
lim^co Λ(ζy) > Λ(ζ). Pick, for each j, a point zj from S2"-1: = {z e Cn\
\z\ = 1} so that π(Zj) = ζy. Taking a subsequence, if necessary, we may
assume the sequence {zό} converges to a point z e S271"1; then π(z) = ζ
and lim^oc Roπ(Zj) > R°π(z). Let r be the real number with
lim^oo R°π(Zj) Ξ> r > R°π(z). Then rzeD. Indeed, if (rlf r2) and V are
arbitrary neighborhoods of r in (0, +00) and of 2 in S27*"1, respectively,
it follows that rzj e (rlf r2) V, ̂  ̂  j\ for some j\. Since lim^oo Roπ(Zj) ^ r,
we can find j2 ^ j\ so that R<>π(Zj) > (rx + r)/2, j ^ ^V Therefore we
have ((rt + r ) / 2 ) z s e D f ] (rl9 r2)V, j ^ j\. This shows r^6D. Moreover,
taking λ with r/R°π(z) ^ λ > 1, we have rz $ \D. Thus D is not strictly
starlike.

Conversely, suppose R is upper semicontinuous on Pn~l(C). Then R
is a continuous (0, +oo]-valued function. Hence we have

(4.1) Dd{zeCn -{0}; \z\ £ R°π(z)} \J {0} .

But \D = {2 G C71 - {0}; |z | <_λjβoτr(3)} u {0} for any real λ > 1. Combining
this with (4.1), we obtain Dd\D. This completes the proof.

COROLLARY. Let D be a starlike circular domain in Cn defined by
R. Then the following assertions are equivalent:

( i ) D is strictly starlike.
(ii) D = {zeCn-{Q}', \z\ £ R°π(z)} \J {0}.
(iii) 3D = {zeCn - {0}; \z = R°π(z)}.

PROOF. First we note that
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(4.2) D => {z 6 Cn - {0}; | z ^ #°:r(z)} U {0} .

Indeed, for zeCn, \z\ = R°π(z) implies \zeD for any λe(0,1); therefore
z e D. Now suppose D is strictly starlike. Then, since R is continuous
by Proposition 4.1, (4.1) holds. Combining this with (4.2), we obtain
the equality (ii). The converse implication (ii) => ( i ) is clear by the last
argument in the proof of Proposition 4.1. Since D is open in Cn, the
equivalence (ii)»(iii) is clear. q.e.d.

There are the following two typical families of strictly starlike
circular domains as in Propositions 4.2 and 4.3.

PROPOSITION 4.2. Convex circular domains in Cn are strictly starlike.

PROOF. Let D be a convex circular domain in Cn. Clearly D is
starlike circular; let R be the defining function of D. Suppose β(ζ) < λ
for ζ e Pn~l(C), λ e R. Take a point z e 3D Π ζ. Since by convexity there
exists a supporting real hyperplane of D at z, it follows that R°π < λ
in a neighborhood U of z in Cn — {0}. Therefore R < λ in the neigh-
borhood π(U) of ζ in Pn~\C). This means that R is upper semicon-
tinuous, as desired.

PROPOSITION 4.3. Complete Reinhardt domains in Cn are strictly
starlike circular.

PROOF. Let D be a complete Reinhardt domain in CΛ

9 and let z =
(z1, , zn) e D - {0} and λ > 1. Then the set U: = {(w1, , wn) e Cn\
\\wj\ > \zj\ if zj Φ 0} is a neighborhood of z in Cn with the property
that (w\ •• ,wn}e\Uf] (C - {0})n implies \z*\ < \wj\ for all j. Take
(w\ - -, wn) e U Π D n (C - {0})". Then |s>| < λ|w'| for all j. Hence
λ"1^ e D by completeness. This shows that D is strictly starlike, as
desired.

On the hyperbolicity of strictly starlike circular domains in Cn, we
have:

PROPOSITION 4.4. For a strictly starlike circular domain D in Cn,
the conditions (H. i) (i = 1, , 7) are equivalent.

PROOF. Let R be the defining function of D. By what is noted in
the last paragraph in §3, it is sufficient to show the following:

( * ) If R is real valued, then R is bounded.
But by virtue of Proposition 4.1, the assertion (*) holds, because Pn~l(C)
is compact. q.e.d

Making use of Propositions 4.2 and 4.3, we obtain the following:
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COROLLARY. For a convex circular or complete Reίnhardt domain
D in Cn, the conditions (H. i) (i — 1, , 7) are equivalent.

5. Pseudoconvexity of starlike circular domains in Cn. Let D be
a starlike circular domain in Cn defined by R. In this section we shall
establish some criteria for the pseudoconvexity of D in terms of R.

We define a [— °°, +°o)-valued function Φ on Cn by

(5.1)
= 0 .

Then the expression (3.1) becomes D = {z e Cn\ Φ(z) < 0}. Since R is lower
semicontinuous on Pn~l(C), Φ is upper semicontinuous on Cn — {0}. More-
over, Φ is upper semicontinuous also at 0. Indeed, it can be seen that

(5.2) limsupΦ(z) = — 0 0 ,
2-»0, Z^O

because R is bounded from below. For each ΐe{ l , •••, n] and any u =
(u\ , ul~\ uί+1, , O e Cn~\ let

(5.3) Φt(u): = Φ« -, tt'-1, 1, ui+1, - , u )

= -log βoπ fa1, , ul~\ 1, uί+1, -, un)

Then, we have

(5.4) Φ(z) = Φ^l/β')^1, , «'"1, ^ί+1, , «n)) + log I «' I

for z = (ί?1, , «n) 6 Cn with s* ̂  0.
Our key criterion is the following:

PROPOSITION 5.1. Let D be a starlike circular domain in Cn defined
by R, and Φt the functions given by (5.3). Then D is pseudoconvex if
and only if Φt(ί = 1, , n) are plurisubharmonic on Cn~l.

PROOF. Fixing i e {1, , n} arbitrarily, we set At: = {(z1, , zn) e Cn;
z* = 0}. By the holomorphic mapping from Cn — At into Cn defined by

the domain D — At is mapped bijectively to a Hartogs domain Gt — Aiy

where Gί is a domain in Cn consisting of all points (w\ , wn) e Cn such
that

Thereby we obtain the following implications: D — A< is pseudoconvex «
Gί — At is pseudoconvex <=> G^ is pseudoconvex <=* Φt is plurisubharmonic.
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The middle equivalence follows from Lelong [8; Proposition 14] and Hor-
mander [4; Theorem 2.5.14].

But, since pseudoconvexity for a domain in Cn is a local property
with respect to its boundary (cf. [4; Theorem 2.6.10]), D — At is pseu-
doconvex for each i = 1, , n if and only if D is pseudoconvex. This
completes the proof.

We can simplify the above criterion using the following extension
theorem for plurisubharmonic functions, due to Grauert and Remmert
[3; Satz 6]:

(G-R) Let A be a principal analytic set of a domain D in Cn and
/ a plurisubharmonic function on D — A. Suppose that for any a e A,
we can find a neighborhood U of a in D so that / is bounded from
above on U — A. Then the function

= , z 6 D - A

(lim sup f ( w ) , z 6 A
w-*z,w eD—A

is the uniquely extended plurisubharmonic function of / on D.
We can rearrange the theorem (G — R) as follows:

PROPOSITION 5.2. Let D, A be as in the theorem (G — R) and f a
[— °°f + o°)-valued function on D. Suppose that f satisfies the following
two conditions:

(a) / is plurisubharmonic on D — A.
(b) limsup^α>wejD_.ι/(w) = f(a) for any aeA.

Then f is plurisubharmonic on D.

Using the uniqueness part of the theorem (G — R), we obtain the
following:

PROPOSITION 5.3. Let D, A be as in the theorem (G — R) and f a
plurisubharmonic function on D. Then Iiτn.8wpw-.atWBD__Af(uΐ) = f(d) for
any given aeA.

Now the main criterion can be stated as follows:

THEOREM 5.4. Let D be a starlike circular domain in Cn deβned
by R, and Φ be the function given by (5.1). Set φ: = Φn (cf. (5.3)),
H: = {(z1, , zn) eCn; zn = 0}. Consider the following condition on Φ:

( # ) lim sup Φ(w) = Φ(z) for any z e H - {0} .
w-»z,t0eCΛ— H

Then the following assertions are equivalent:
( i ) D is pseudoconvex.
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(ii) φ is plurisubharmonίc on Cn~l and (#) holds.
(iiϊ) Φ is plurisubharmonic on Cn.

PROOF, (i) ==> (ii): Suppose D is pseudoconvex. By Proposition 5.1,
φ = Φn is plurisubharmonic on C71"1. To show the condition (#) to hold,
we fix Z0=(zl9 , z?) 6 H-{0}. Take i with zS^O. Given z = (z1, , zn) e
Cn with «* ̂  0, using (5.4), we have

(5.5) lim sup Φ(z) = lim sup Φ^l/z'Xz1, , s'-1, zί+1, , zn)) + log |zj | .

Since Φj is plurisubharmonic on C71"1 by Proposition 5.1, the first term of
the right hand side of (5.5) coincides with Φ^l/zJXzJ, , zl~\ zi+1, , z*))
by Proposition 5.3. Hence we have lim supz^Zθ)Zec"-ίrΦ(2) = Φ(z0)> as desired.

(iii) => (i): Suppose Φ is plurisubharmonic on Cn. Since the restric-
tion of a plurisubharmonic function to a complex hyperplane is also
plurisubharmonic, it follows that 0t(i = 1, •••,%) are plurisubharmonic.
Hence the assertion (i) follows from Proposition 5.1.

(ii)=>(iii): We assume that (ii) holds. By (5.4), we have Φ(z) =
φ((l/zn)(z\ , z71"1)) + log zn 1 f or z = (z1, , zn) e C" - H. This equation
shows that Φ is plurisubharmonic on C71 — H, because so is φ on Cn~l.
On the other hand, by (5.2) we have limsupz_0>zec*_HΦ(z) = — °° = Φ(0).
Combining this with the assumption (#), by virtue of Proposition 5.2,
we conclude that Φ is plurisubharmonic on Cn. The proof is completed.

We can apply Theorem 5.4 to a complete Reinhardt domain and
prove the following well-known criterion for pseudoconvexity:

(**) Let D be a complete Reinhardt domain in Cn and Γ the subset
of Rn given by

Γ: - {(log 1^1, - , log |s" I); (z\ - , z") e D Π (C - {0})"} .

Then D is pseudoconvex if and only if Γ is convex.
Indeed, let R be the defining function of D, and Φ, φ the functions

given by (5.1) and in Theorem 5.4, respectively. We consider the func-
tion r on (0, +00)71-1 given by

r(t): = sup {λ > 0; λ(ί, 1) e D} .

Then we have

R°π(u, 1) = r(\ul\, , I^IXl + NIT2

for u = (u\ , un~l) e C71"1, and so

(5.6) φ(u) = -logrdw1!, -••, In-1!) .

By the definitions of Γ and r, it follows that
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Γ - {(x1, - , xn) e Rn\ xn < log r(ββ1-", , e**'1

Now, since 9? is given by (5.6), and depends only on the absolute
values \ul\, •••, \un~l\, by virtue of [7; Theoreme 9] it follows that φ is
plurisubharmonic on (C — {O})71"1 if and only if the subset

Γ: = {(y\ - -, yn) 6 #*; ir > -log r(e"\ , β '̂1)}

of U71 is convex. Since convexity of a subset in Rn is invariant by a
non-singular linear transformation and since Γ can be transformed to Γ
by such, it follows that φ is plurisubharmonic on (C — {O})71'1 if and
only if Γ is convex.

On the other hand, since R is continuous by Propositions 4.1 and
4.1, so are Φ and φ. By the continuity of φ and Proposition 5.2,
9>|(c-{o})*-ι is plurisubharmonic if and only if so is φ. By the continuity
of Φ, the condition (#) in Theorem 5.4 holds trivially. Combining these
with the assertion stated at the end of the preceding paragraph, and with
Theorem 5.4, (i) <=> (ii), we obtain the desired assertion (**).

6. Examples. In the category of starlike circular domains D in Cn,
we have seen that

(H. 1) ~ (H. 2) ~ (H. 3) <=> (H. 4) =* (H. 5) => (H. 6) => (H. 7)

(cf. § 2). For the sake of completeness, we give counterexamples to the
converse of the last three implications as follows: Denoting L^\ — {(z, 0);
zsC, \z\ ̂  1}, L2: = {(0, w}\ weC, \w\ ^ l}cC2, we consider the domains

DQ: = {(z, w) e C2; | zw \ < 1} - (L, U L2) and

in C2. It can be seen that each Dt satisfies (H. ί) but not (H. ί — 1) for
i = 5, 6, 7. We note that the above three domains are not pseudoconvex
(cf. Remark in the last paragraph of this section).

Next, modifying the example in Earth [2] which asserts (B2) in §2,
we shall give a pseudoconvex circular domain in C2 which satisfies (H. 5)
but not (H. 4). For this, we set for λ e C,

v(λ): = max {log | λ |, Σ &~2 log | λ - 1/fc |} ,
fc=2

and set for (z, w) e C2 - {0},

1 , w = 0 .
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Then D: = {(z, w) e C2 - {0}; | (z, w) \ < R°π(z, w)} U {0} satisfies the desired
properties. We shall show this in several steps.

LEMMA 6.1. (a) v is subharmonic on C.
(b) v(l/k) = -log k(k = 2, 3, - ), v(0) = ~Σ£=2 A'2 log keR.
(c) j? is positive real valued and lower semicontinuous on P\C).

Moreover, R°π(l, •) is continuous in a neighborhood of 0 in C.

PROOF. For λ e C, let ^(λ): = Σ*U Ar2 log | λ -
(a) Fixing r, with 0 < r < 1, we can select a number &0 so that

for each k ̂  k0, log | λ — 1/fc | is harmonic on r <; | λ | ̂  1/r and the series
Σ&UO ^~2 log I λ — 1/fc I converges uniformly there. Hence vl is subharmonic
on C — {0}. On the other hand, since |λ| < 1/2 implies |λ — l/fc| < 1, vt

is the limit of a decreasing sequence consisting of subharmonic function
on |λ| < 1/2. Therefore vλ is subharmonic on |λ| < 1/2.

(b) The first is seen straightforwards and the second follows from
the integrability of the function λ~2logλ.

(c) By part (a), logR°π( , 1) = -v + log(l + | |2)1/2 is lower semi-
continuous on C and so is R°π( , 1). On the other hand, since v^l/w) =
ΣΓ=2 Ar2 log 1 1 - w/k I - (ττ2/6 - 1) x log | w \ for weC- {0}, it follows that
for w Φ 0,

log jβo;r(l, w) = -max JO, Σ ^~2 log 1 1 - w/k\ + (2 - ττ2/6) log | w \\
( k=2 )

Thereby, R<>π(L9 •) coincides with (1 + | |2)1/2 in some deleted neighbor-
hood of 0 in (7, because 2 > τr2/6. Hence R<>π(L9 ) is continuous in a
neighborhood of 0, as desired.

LEMMA 6.2. D is a pseudoconvex circular domain in C2.

PROOF. By Lemma 6.1, (c), D is a starlike circular domain with
defining function R. Let Φ and φ be the functions given by (5.1) and in
Theorem 5.4, respectively. Then φ — v on C, so φ is subharmonic, by
Lemma 6.1, (a). To show the condition (#) in Theorem 5.4 to hold, fix
20 e C - {0}. For (z, w} e C2 with z Φ 0, we have

) = -log j

Since -Roτr(l, ) is continuous in a neighborhood of 0, by Lemma 6.1, (c),
it follows that lim(z>w)_Uθ)0)Φ(z, w) = Φ(z0, 0), so (#) holds. By Theorem
5.4, we obtain the pseudoconvexity of D.

LEMMA 6.3. D contains no entire holomorphic curve.
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PROOF. Let / = (f\ /2) be an arbitrary holomorphic mapping from
C into D. We shall show that / is constant. Since v ̂  log | |, D is
contained in the cylinder {zeC; \z\ < 1} x C, so I/1! < 1 on C. Hence f1

is constant, say fl = α, |α | < 1. Set Da: = {λ 6 C; (α, λ) 6 D}. Then

(6.1) /2(C)cDα.

First suppose a = 0. Since D0 = {λeC; |λ| < β"*(0)} and since
Λ by Lemma 6.1, (b), /2 is bounded (cf. (6.1)), so /2 is constant.

Next suppose a Φ 0. If λ e Dα, then

(6.2) |λ |< e~υ(a/λ) ^ exp (-Σλr2 log I α/λ - l/k\) .
\ k=2 /

We consider the balls {λeC; |α/λ — l/fc| < Iβfc8}^^,..., which are mutually
disjoint. If λeC lies outside all the balls, i.e., if

(6.3) |α/λ - l/fc| ^ l/2fc3 for all k = 2, 3, - ,

then

-Σ fc-2 log I α/λ - 1/fc I ̂  Σ fc~2(log 2 + 3 log fc) .
k=2 k=2

Hence, if this λ moreover satisfies an additional condition

(6.4) I λ I ̂  exp ( Σ λr2(log 2 + 3 log fe)) ,
\fc=2 /

then λ does not satisfy the condition (6.2). Therefore we have

jD.cjλeC; |λ| < exp (g^~2(log2 + Slog fc))J

U (U (λ e C; I α/λ - l/ fc |< l/2k5}] .
\k=2 /

This asserts that every connected component of Da is a bounded subset
in C. Since /2(C) lies in a connected component of Da (cf . (6.1)), /2 must
be constant, as desired.

LEMMA 6.4. D is not K-hyperbolίc.

PROOF. By virtue of (K) in §2, the assertion is equivalent to the
unboundedness of D. But since R(π(l/k9 1)) = (1 + &2)1/2 for k = 2, 3,
by Lemma 6.1, (b), D is not bounded. q.e.d.

Hence we have shown the following:

PROPOSITION 6.5. There exists a pseudoconvex circular domain in
C2 which contains no entire holomorphic curve and is not K-hyperbolic.

REMARK. For a pseudoconvex circular domain D in Cn, (H. 6) is
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equivalent to (H. 7). Indeed, if n — 1 the assertion is trivial. Suppose
n ̂  2 and assume (H. 6) does not hold. We shall show (H. 7) does not
hold, either. By assumption there exists an affine line /(λ) = λα + 6,
λ e C(a eCn - {0}, b e Cn] such that /(C) c D, i.e., Ca + b c D. Here we
may assume without loss of generality that

(6.5) {α, 6} is linearly independent over C .

Since D is starlike circular, we obtain

(6.6) Cα + {μeC;0< \μ\ <l}δcZ>.

Moreover, since the origin is an interior point of J9, we have

(6.7) {λeC; |λ| <ε}a + {μeC; \μ\ <ε}bdD

for some ε > 0. By (6.5), (6.6) and (6.7) we obtain

Ca + {μeC; \μ\ < !}6cJ5,

because D is a domain of holomorphy. It follows that R(π(a)) = + °°,
hence (H. 7) does not hold, as desired.
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