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1. Introduction. In [3], Johnson and Whitt studied Killing fields on
complete Riemannian manifolds admitting codimension-one totally geodesic
foliations by compact leaves. They observed that any Killing field pre-
serves the foliation. In general, the conclusion does not hold if we remove
the assumption that the foliation consists of compact leaves (see [3, Remark
following Theorem (3.1)]). However, if we assume the compactness of
M, we have the same conclusion. That is, we prove the following.

THEOREM. Let (M, g) be a closed connected Riemamnian manifold
and F be a codimension-one totally geodesic foliation of (M, g). Then
any Killing field Z on (M, g) preserves Z, that is, the flow of Z maps
each leaf of F to a leaf of F.

As a corollary, we have the following (cf. [3, Theorem (3.1)]).

COROLLARY. Let (M, Z, g9) and Z be as in Theorem. If & has a
compact leaf L, and Z is transverse to L, at some point, then all leaves
of F are isometric to (L, g|L,) and Z is transverse to F everywhere
on M.

The proofs are given in §38. As applications, in §4, we study
some properties of codimension-one totally geodesic foliations of closed
Riemannian manifolds admitting Killing fields.

2. Preliminaries. Let (M, g) be a complete connected Riemannian
manifold and & be a codimension-one totally geodesic foliation of (M, g).
Let I be the universal covering of M and p: i — M be the covering
projection. We denote by (M, % @) the canonical lifting (1, p*.F, p*9)
of (M, ,g) to the universal covering I of M. Then the following
theorem is known.

THEOREM (Kashiwabara [4], Rummler [7]). The foliated Riemannian
manifold (M, ﬁN”, 9) is isometric to a trivially foliated Riemannian mani-
fold (£ x R, {L X ®)}en, 3), where L is a leaf of & and the metric §
18 of the form ds® = ds%: + f'dt*. Here, f is a smooth positive function
on M and ds% is the metric of L induced by the inclusion L — M, and
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dt* is the camonical metric of R'.

Let m: i = L x R* — L and 7: M — R' be the natural projections.
We identify a vector field X on L with the one X on /1 that is tangent
to & and is rm-related to X. We identify a vector field V on R* with

the one ¥ on I that is orthogonal to & and is y-related to V. We
also call X (resp. V) the canonical lifting of X (resp. V). Let N be a
unit vector field on M perpendicular to &#. We also denote by N the
canonical lifting of N to 1.

LEMMA 1. Set G = grad f. Then VyN = —SZ(Q)/f, where 57, is the

orthogonal projection of T,M onto T, %. Equivalently, we have f0 +

df =0on T.Z; %here 0 is the dual one-form of VyN and d s the exterior
differential of M.

Proor. Let V and W be the canonical liftings of vector fields on
R'. Then we have £V, W) = —(V, W)S#(G)/f by the same computa-
tion as in [1, Lemma 7.3]. This formula is tensorial and S#(F,N) = Iy N.
Hence we have VyN = —S2(G)/f.

LEMMA 2. Let E be a unit vector of T,%. Then
K(E, N) = —("'f)(&, E)/f ,
where Vf is the Hesstan of f defined by (VF*f) (X, Y) = X(Y(f)) —VxY(f)
and K(E, N) is the sectional curvature of the plane spanned by E and N.

ProoF. Extend E to a section of T.%. Then, by definition and
Lemma 1, we have
K(E, N) = {Fi/yN, E) — VsV N, E) — {Viz,mN, E)
= F (=2 (@), E) + FyE, N)FyN, E)
= —EQ/f)E(f) — Fz22(G), E)[f — FyN, E)*
= E(f)If* — BEXF(G), E)[f + {2Z(Q), V:E)[f — E(f)|f*
= —EEf + VENf = —f)E, E)[f .
LEMMA 3. A wector field Z on M is a Killing field if and only if
(1) ZFZ(-,t) is a Killing field on L for each teR,
(2) N{Z,N) =0(2),
(8) N{Z,EY = —fE(Z, NY|f) for all vector fields E on L.

We omit the proof, because we can prove this lemma by the same
computation as in [1, Lemma 7.11].

3. Proof of Theorem. We may assume that the foliation is trans-
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versely oriented. We use the same notations as in § 2. In the following,
we assume that M is compact. Let Z be a Killing field on (M, g). We
also denote by Z the canonical lifting of Z to M. Let L be a leaf of

% and 7: R— L be a geodesic on I with ¥(0) = p and |7'| =1. Then
Z is a Jacobi field along 7. Set ¢ = (Z, N). We also denote the restric-
tion of ¢ (resp. f) to ¥ by ¢ (resp. f). By the Jacobi differential equa-
tion and the fact that & is totally geodesic, we have the following
differential equation

¢" + K(T, N)p =0,
where T = 7/, the differentiation of v with respect to the parameter ¢.
By Lemma 2, we also have

"+ KT, N)f=0.
Thus we get f’¢ — f¢”" = 0. Hence we have the following linear differen-
tial equation
(1) ¢’ = (log f)'¢ + C/f for a constant C.

We may assume f(0) = f(7(0)) = fip) = 1. Then the solution of (1) with
the initial condition 7(0) = A is given by
t
(2) 6(t) = Afte) + Cf) | f)ds
LEMMA 4. For the function f, we have

lim sup f(t) S Fs)ds = +oo .
t—-f o0 0
ProorF. By Lemma 1, we have f' = —f0(T). As M is compact, the
function |#| is bounded. Thus we have

(3) |f'| £ Lf for a constant L .

Assume that there is a constant a with
t
(4) | fe)ds S @ < oo
By the inequality (3), we have —L/f* < f'/f* < L/f*. It follows that

~L{ s < —[12f% = L [ 7@ds .
By the inequality (4), we have
—oLaf(t) <1 — f(t) < 2Laf™() -

It follows that 0 < a < f(t) < b < + « for some constants @ and b. Then
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we have
az )| feds z v | ds,
0 0
which is a contradiction.
LEMMA 5. On each Eeﬁj we have
6 =<4, N) =af for a constant a .

ProOF. In the formula (2), if C + 0, then ¢(¢) is not bounded on R
by Lemma 4. In fact, if A-C = 0, then

lim sup ¢(t) = o,
t—+oo

while if A-C < 0, then

lim sup ¢(t) = oo .

t——o0

As M is compact, the function ¢ is bounded. Thus we have C = 0.

Hence ¢(t) = Af(t) on each geodesic 7, and we have ¢ = af on L for a
constant a.

PROOF OF THEOREM. Set ¢ = (N, Z). By Lemma 5, oneach Le. g
we have ¢ = af for a constant a. Thus, we have

d¢ +¢0 =0 on TS,
by Lemma 1. For EcI(T.%), we have

([Z, N}, E) = V;N, E) — Vv, E) = {Z, N)§(E) + EX{Z, N)
= (¢60 + dg)(E) =0 .

Hence, we have [Z, Ele ['(T.%") for EcI'(T.%).

PROOF OF COROLLARY. Let A be the union of all compact leaves of
Z. Then A is a closed set in M (cf. [6]). By [6, Theorem 3], the
Killing field Z is transverse to & everywhere on A. As Z preserves
&, the set A is also open in M. Hence we have A = M by the con-

nectedness of M. The rest of the statement follows from [3, Theorem
3.1].

4. Applications. First note that the assumption on the compactness
of M cannot be removed. In fact, let (R", &, g,) be a totally geodesic
foliation by hyperplanes on the n-dimensional Euclidean space (R, g,).
Then a Killing field generating a rotation does not preserve .#.

Let (M, &, g) and Z be as in Theorem. In this section, we always
assume that & is transversely orientable. We also use the same nota-
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tions as in §2. Thus N is a unit vector field on M perpendicular to .-

LEMMA 6. The korizontal part SAZ) of Z on M is the canonical
lifting of o Killing field on L to 1.

PrROOF. Let E be a vector field on L. Then, by Lemma 3, (3), we
have N{Z, E) = —fE({Z, N)/f). By Lemma 5, the function {Z, N)/f is
constant on each leaf of . Thus we have E(KZ, N)/f) = 0. This shows
that 5#(Z) is the canonical lifting of a Killing field on I by Lemma
3, (D).

The following proposition imposes a strong restriction on the hori-
zontal part S#Z(Z) of a Killing field Z.

PROPOSITION 1. If there is a point p with S#,(Z)=0, then Ze I'(T.Z")
or & 18 without holonomy.

Proor. We denote the flow of Z (resp. N) on M by z, (resp. n,).
Note that [N, Z] = 0. Thus we have n,(z,(p)) = z,(n,(p)). Suppose Z, = 0.
Then, for all s and e R, we have n,(p) = z,(n,(p)). This implies that
Z,,» =0. As the set {n,(p)|se R} intersects all leaves of & (see [3,
Lemma 1.9]), the Killing field Z has zeros on each leaf of &#. By
Theorem, the Killing field Z preserves .#. Thus Z must be tangent to
& everywhere on M. Now suppose Z, = 0. Then Z is perpendicular
to &# at p. By Lemma 6, the vector field 5#(Z) is zero on the set
{n.(p)|seR}. If Z=0 at n,(p) for some s, then, by the above argument,
the Killing field Z is tangent to % everywhere on M. This contradicts
the fact that Z is perpendicular to & at ». Thus Z # 0 on {n,(p)|s € R}.
Hence Z is perpendicular to & on {n,(p)|s € R} by Lemma 6. As {n,(p)|se
R}NL # @ for all L e #, we have z,(L) # L for some tc R. This shows
that & is without holonomy.

Now we consider the relation between & and the identity compo-
nent I(M, g), of the isometry group of the closed Riemannian manifold
(M, g). The following is a direct consequence of Corollary (cf. [5, Pro-
position]).

PROPOSITION 2. Let (M, %#,9) and L, be as in Corollary. If
dim I(M, g), = dim I(L,, ¢|L,), + 1, then all leaves of ZF are isometric to
(L, 9|L,), hence, in particular, all leaves of & are compact.

In fact, if we choose a Killing field Z on M corresponding to the
term “+1”, then Z satisfies the assumptions of Corollary.

Finally we prove the following (cf. [3, Proposition 3.2]).
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ProOPOSITION 3. Let (M, Z, g, N) be a codimension-one totally geodesic
foliation of a closed manifold. Suppose that there is a Killing field Z
with {N, Z) >0o0n M. Then, for any Killing field Y on M, there is a
constant C with (N, Y) = C{N, Z).

ProOF. By Theorem and the assumption on Z, the foliation & is
defined by a non-vanishing smooth closed one-form. Thus, by [2], the
following two cases occur:

(i) All leaves of & are compact.

(ii) All leaves of & are dense in M.

Case (i). Proposition 3 follows from [3, Proposition 3.2].

Case (ii). Fix a point p of M. Then there is a constant ¢ with
(N, Y), =¢{N, Z),. Denote by L, the leaf of & through p. Then
Y — ¢Z is tangent to . on L,, because Y — ¢Z preserves .# by Theo-
rem. Thus (Y —¢Z, N) =0 on L,. As L, is dense in M, the smooth
function (Y — ¢Z, N) =0 on M.

REMARK. The foliations appearing in Proposition 3 are Riemannian
foliations (cf. Kamber and Tondeur [8]).
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