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1. Introduction. If S is a compact Riemann surface, the universal
covering of S is biholomorphic to the unit disk if and only if the genus
of S is greater than one. This is equivalent to saying that S admits a
Kaehler metric with negative constant Gaussian curvature. The following
result due to T. Aubin [1] and S. T. Yau [23] is a generalization of the
above fact to higher dimensions from the differential geometric viewpoint.

Fact A ([1], [23]). If M is a compact complex manifold with negative
first Chern class, then M admits an Einstein-Kaehler metric which is
unique up to multiplication by positive numbers.

As an application of Fact A, Yau [22] obtained the following unifor-
mization theorem.

Fact B ([22]). Let M be a complex m-dimensional compact complex
manifold with negative first Chern class. Then the inequality (—1)"2(n +
De (M) " %c,(M) = (—1)"ne,(M)" holds and the equality occurs if and only
if the universal covering of M is biholomorphic to the open unit ball B"
in C".

The above inequality measures the integrated deviation of the can-
onical Einstein-Kaehler metric in Fact A from the ball-metric.

In dimension two, a much stronger result is known. Miyaoka [14]
obtained the inequality 8¢, = ¢? for the class of compact complex surfaces
of general type, which includes all surfaces with negative first Chern
class. Recently Miyaoka [15] proved the following more general result:
if M is a compact complex surface of general type, then the inequality
3c,(M) — ¢,(M)? = k(M) holds, where k(M) is a nonnegative rational number
which is universally determined by the configuration of all (—2)-curves
(i.e., rational curve with self-intersection number —2) and equal to zero
if and only if there is no (—2)-curve on M (see p. 77).

Generalizing Yau’s method in [23], the author [10] independently
proved the inequality 3c,(M) — ¢,(M)* = k(M) = 0. To state our previous
result precisely, we need some definitions. A compact complex space
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X is called a V-manifold if it has at worst isolated quotient singularities
(cf. [19]). Let X be a V-manifold and G a Riemannian metric defined in
the smooth part of X. G is called a V-metric if we obtain G by pushing
down a smooth metric of local unifomizations. Let M be a compact
complex surface of general type and @, the m-canonical map. Then
M = @,(M) is independent of m if m is sufficiently large (ef. [12]), and
is called the canonical model of M. We obtain M’ by contraction of all
(—2)-curves on M (ef. [12]). M’ is a V-manifold with only rational double
points as its singularities. M has negative Chern class if there is no
(—2)-curve on M. We proved in [10] the following:

Fact C ([10]). Let M be a compact complex minimal surface of
general type and M’ the canonical model of M. Then M’ admits an
Einstein-Kaehler V-metric with negative Ricci curvature, which is unique
up to multiplication by positive numbers.

Computing the Chern forms in terms of the above canonical Einstein-
Kaehler V-metric, we have the following uniformization theorem.

Fact D ([10]). Let M be as above. Then the inequality 3c,(M) —
¢,(M)* = k(M) holds. The equality occurs if and only if the universal
covering of M minus all (—2)-curves is biholomorphic to the open unit
ball minus a discrete set of points. In other words, we obtain M’ by
dividing the open unit ball B? with respect to a discrete group I' of
automorphisms acting on B® properly discontinuously and with only
isolated fixed points.

The following example is due to F. Hirzebruch. Consider a surface
in P* defined by Z;+Z: + Z+ Z3+ Z: =0 and ZP + Z® + ZY + Z37 +
Z?® = 0. This has 50 singularities each of which is resolved in a smooth
curve of genus 6 with self-intersection number —5 and 1875 rational
double points of type A,. The resolution gives a smooth minimal surface
of general type M. M satisfies the extremal equality 8¢, (M) — ¢,(M)* =
k(M) = 27000. By Fact D, M is the minimal resolution of some I'\B®.

On the other hand, if p,, - -, », are distinet points in P*, the universal
covering of P* — {p,, -+, p,} is biholomorphic to the disk if and only if
k is greater than two. This is equivariant to saying P! — {p, -, Du}
admits a complete Kaehler metric with negative constant Gaussian curva-
ture with finite volume. In this paper, we shall obtain a two-dimensional
analogue of the above fact on punctured Riemann surfaces. To state
our results, we fix some notations. Let M be a compact complex surface
and D a reduced divisor with normal crossings. We assume (M, D)
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satisfies the following conditions:

(1.1) (i) Let L = Kz ®[D] then L* > 0 and L-C = 0 for all irreducible
curves C on M,
(ii) the divisor determined by curves C such that CcD and L-C >
0 has only simple normal crossings as its singularities.

(When D = @, (1.1) is equivalent to saying that M is a minimal surface
of general type by the Kodaira classification.) Let @,,; be the logarithmic
m-canonical map. Then @,,(M — D) is independent of m if m is large
enough [18], and called the logarithmic canonical model of M — D, denoted
by M’. We obtain M’ by contraction of all (—2)-curves contained in
M — D, [18]. M’ is a V-manifold with only rational double points as its
singularities. We shall prove the following existence and uniformization
theorems.

THEOREM 1. Let (M, D) be as above. Then the logarithmic canonical
model M' of M — D admits a complete Einstein-Kaehler V-metric with
negative Ricct curvature, which is unique up to multiplication by positive
numbers. Moreover, the total volume is finite and equal to L* if the Ricct
temsor is —(2m)~' times the metric.

THEOREM 2. Letﬁ(M, D) be as above. Write &, for the i-th logarith-
mic Chern class of (M, D). Then the inequality

1.2) 3¢, —:= k(M —D)=0

holds. The equality occurs if and only if the universal covering of M —
D minus (—2)-curves ts biholomorphic to the open wunit ball minus a
discrete set of points. In other words, we obtain M’ by dividing B* with
respect to a discrete group I’ of automorphisms acting on B* properly
discontinuously and with only isolated fixed points. In this case the
canonical metric in Theorem 1 is the ball-metric.

Here, the logarithmic Chern classes are defined as follows. Let M
be a compact complex manifold of dimension #» and D a reduced divisor
with normal crossings. £2'(log D) is the bundle on M whose section in a
polydisk 4" in M with 4N D = U%, (coordinate hyperplanes z, = 0) are
given by >k, a,(2)dz/z; + X}-i+1 b;(2)dz; where a,(2)’s and b;(2)'s are
holomorphic in 2. ¢; is defined to be (—1)%,(2'(log D)).

Let I'\B? be the noncompact quotient of B* with respect to I" such
that I is a discrete group of automorphisms acting freely on B? and the
volume of I'\B® is finite. Let M = (I'\B®)UD be the minimal smooth
compactification of I'\B®. It is shown that (M, D) satisfies (1.1). Mum-
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ford [16] has proved that 3¢, = ¢}. As a direct consequence of Theorem
2, the converse is also true in the following sense:

COROLLARY. Let (M, D) as in Theorem 2. The equality 3¢, = &: holds
if and only if the universal covering of M — D is biholomorphic to B.

Now we shall show that Theorem 2 is a generalization of Fact D.
Let M be a compact complex surface of general type. Let D = UD, be a
union of mutually disjoint nonsingular elliptic curves D, on M. It is easy
to see that (M, D) satisfies (1.1). From (1.2), we obtain the inequality

1.3) 8¢y(M) — (M) =z k(M — D) — 3 D} .

Since D? < 0, (1.3) is an estimate better than (1.2). The right hand side
of (1.3) represents an obstruction for the universal covering of M from
being the ball, since any compact quotient of the ball has negative first
Chern class and admits no elliptic curves. The inequality (1.3) is sharp.
In fact, Hirzebruch [8] constructed a sequence X,(n = 2, 3, -+ -) of minimal
surfaces of general type with the following properties: ¢,(X,) = n',
3c,(X,) — ¢.(X,)* = 4n’. There are 4n* smooth disjoint elliptic curves on
X, with self-intersection number —n. So, we have the equality sign in
(1.3). By Theorem 2, the universal covering of X, — (4n’ elliptic curves)
is the ball.

This paper is organized as follows.

In Section 2, we shall construct a V-volume form (whose definition is
similar to that of a V-metric) ¥ on M’ whose Ricei form is the —1 times
a complete Kaehler V-metric on M’. In Section 3, we shall show that
—Ric¥ is of quasi-bounded geometry (i.e., of bounded geometry in terms
of quasi-coordinates) in the sense similar to [4]. In Section 4, we shall
follow the arguments developed in [4] to solve the Monge-Ampére equation
(@ + 1V —160u)* = exp(u)¥, where @ = —Ric¥. Then @ + 1 —100u is a
desired Einstein-Kaehler V-metric in Theorem 1. In Section 5, Theorem
2 will be proved. Examples of Theorem 1 will be given in Section 6.
Section 7 contains miscellaneous remarks.

Finally, the author would like to thank Professor Hajime Sato for
valuable discussions and the referee for helpful comments.

2. Singular Volume Form with Negative Ricci Curvature. In this
section, let (M, D) be as in Theorem 1. Set L = Kz ® [D]. Denote by
& the union of all irreducible curves C with L-C =0. By the Hodge
index theorem [6], we have C* < 0. By (i) in (1.1), there exist no (—1)-
curves (exceptional curves of the first kind) in M — D. If E is a (—1)-
curve with L. E =0, then E is one of the following: (a) E is a component
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of D such that E intersects the other components of D in exactly two
points, (b) E is not a component of D and E intersects D in exactly one
point. It is easy to see that if & contains a (—1)-curve E, the pair
(M’, D') we obtain by blowing down E also satisfies the condition (1.1)
and contains no (—1)-curves E’ with L’- E’ = 0 passing through the point
coming from E. So, we may and do assume that & has no (—1)-curves,
i.e., there exist no (—1)-curves with (a) and (b). We begin with the
classification of the curves C on M with L-C = 0.

LEMMA 1. Let (M, D) and & be as above. Write & = 3, &, for the
decomposition of & into connected components. Then each &£, is of one
of the following five types:

If &, coincides with a connected component of D, then it is of one
of the followings:

(2.1) a nomsingular ellipitic curve with negative self-intersection
number,

(2.2) a cycle of nomsingular rational curves with self-intersection
number <—2 and some of them = -3,

(2.83) a rational curve with a mnode with megative self-intersection
number.

If &, 18 properly contained in some connected component of D, &, is

(2.4) a chain of monsingular rational curves with selfintersection
number <—2.

If &, is contained in M — D, &, is one of the followings:

2.5) A,, D,(m = 4), E,, E,, E;, i.e., the Dynkin diagrams consisting
of (—2)-curves.

ProoF. There are no irreducible curves C with L-C = 0 which is
not a component of D and intersects D. Indeed, if C is such a curve,
we have 0 = L-C= K-C+ D-C > K-C. By the Hodge index theorem,
we see C* < 0. By the adjunction formula ([11, p. 118]), we have 2z(C) —
2=K.C+C*< —2. Hence C is a (—1)-curve with the property (b),
which has been excluded by our assumption. If C is an irreducible curve
with L:C =0 and CcM — D, then K-C=L-C=0. Since C* <0, we
have by the adjunction formula that C is a (—2)-curve. By the Hodge
index theorem and classification of Cartan matrices, each connected com-
ponent of &, disjoint from D forms a Dynkin diagram. Next, Suppose
¢, coincides with a connected component of D. Write &, = >, C; for
the decomposition into irreducible components. Then we have 0 = L-C; =
K-C, +C:+ 3,;:Ci-C; = 29(C)) — 2 + deg (c.) + 3,4 C;-C;, where C,is a
normalization of C, and ¢, is the conducter of C; which is an effective
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divisor on CN’t of even degree. C, is nonsingular if and only if ¢, is zero.
So, the following three cases are possible:

(i) 9(C) =1, deg() =0, ;. Ci-C; =0,

(ii) ¢(C) =0, deg(c,) =0, Zj:ei Ci‘cj =2,

(iii) ¢(C) =0, deg(,) =0, Dt CLCJ = 0.
These curves with L-C, = 0 have negative self-intersection numbers and
some C;-C; = —3 in the case of (ii), by the Hodge index theorem. Finally,
let &, be of type (2.4) and C; an irreducible component of &,. By the
same argument as above, we see that the possibility is g(C,) = 0, deg(c,) =
0 and X ;. C;:-C; = 2, i.e., the case (2.4). q.e.d.

LEMMA 2 (See [18]). Let (M, D) be as in Theorem 2. Then there is
a positive integer my(M, D) with the following properties: for any integer
m = my(M, D), (i) the complete linear system |mL| has nmo base points,
(i) if N+ 1=dim H(M, Z(mL)) and {py, ¢, -+ +, éx} is a C-basis for
H(M, 2(mL)), then the logarithmic m-canonical map @,,: M — PY; z+—

(Bo(2): $,(2): ++ + Hx(2)) is @ holomorphic map whose restriction to M — &
P of zeM— &

18 biholomorphic onto its tmage and 9,:(0,(z)) = {g, if ze &,
Proor. Sakai [18] proved this fact under the assumption that D is
semi-stable with some minimality condition and (M, D) = 2. These
assumptions are satisfied under our condition (1.1) and the minimality
condition. Indeed, if C is a nonsingular rational component of D, we
have 0 S L-C=K-C+C*+ (D —-C)-C= -2+ (D — C)-C, hence C inter-
sects the other components of D in more than one points, i.e., D is
semi-stable. Sakai’s minimality condition follows from ours. By the
Riemann-Roch formula [11], X%, (—1)‘dim H'(M, & (mL)) = (m*L* —
mL-K)2 + X(M, ). By (i) in (1.1), we see H*(M, &#(mL)) = 0. Indeed,
HXM, #(mL)) = H(M, #(—(m — 1)L — D)) by the Serre duality. If
—(m — 1)L — D contains an effective divisor A, we have 0= L-4 =
—(m — 1)L* — L-D < 0 which is absurd. Since L* is positive, we have
lim,, ;» m~* dim H(M, Z(mL)) > 0, i.e., (M, D) = 2. q.e.d.

LEMMA 3. Let (M, D) and L be as in Theorem 1. Then ¢, (L) (in
the de Rham cohomology) is represented by a real closed (1,1) form 7
with the following properties: (1) Y 1s positive definite outside of &, (ii)
for amy irreducible component C of &, 147 wvanishes, where i, is the
inclusion C — M.

ProOF. Pick m sufficiently large so that the map @,, of M to P¥

satisfies the properties in Lemma 2. The Fubini-Study metric form of
PV is given by 1V —1(27)"'99 log . | Z,) where Z = (Z,) is the homo-
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geneous coordinate. This represents the first Chern class of the hyperplane
bundle over P¥. Let 7 be defined by m7 = v/ —1(27)~'93 log (- | :(2) %),
which is the pull back of the Fubini-Study metric form by @,,,. Then ¥
represents ¢,(L). Clearly 7 has the desired properties. g.e.d.

The rest of this section is devoted to the construction of a singular
volume form ¥ on M. First, we shall determine the complex structure
around each connected component &, of &

LEMMA 4. Let & = 3, &, be the decomposition of & into comnected
components. Then there exist mutually disjoint open neighborhoods U,
of &, with the following properties: for each ¥, there exists an open set
D, in C* and a discrete group I', of automorphisms of D, such that the
deleted neighborhood U, — &, is biholomorphic to ' \D,. More precisely,
D, and ', are defined as follows:

(1) When &, is of type (2.1), i.e., &, = A, a smooth elliptic curve
with self-intersection number —b(b > 0), there exist a positive number a,
real numbers a, B, and a lattice & in C defined by {m + nw; m, ne Z,
Im(w) = a} such that

1 2¢% 2|7 —2h(")\ Y rumns over &, and for each ¥ = m +
r,=40 1 v ; nw, h(7) runs over the class of ma + |,
0 0 1 nB — mna modulo (2a/b)Z

D, is defined by {(u, v) € C*; Im(u) — |v|* > k} for some positive number k.
I, acts on D, from the left by
L2y slyf =2\ w + 267w + i|7]E — 2h(7)
o1 7 ' ( ) N ( v )
0 0 1 o/ W+
(ii) When &, is of type (2.2), t.e., &, = Dzt B(r =2) a cycle of
smooth rational curves with —B,-B, = b, = 2 (some b; = 3), we introduce
an irrational quadratic number w, as the infinitely cyclic continued
Sfraction [[qu @iy + 11 = limg e { — (Qous — +++ — (@oy — @)™+ )D)7Y,
where {q,} is a periodic sequence with period r defined by q, = b, for 0 <
E<r—1. Let {R)i.z be a sequence defined by R_, = w,, B, =1, ¢,R, =
R, + R, for ke Z. Using these, let M be a free Z-module of rank 2
generated by 1 and w, V the infinite cyclic multiplicative group generated
by R,. Then
E p
Ir'=GM, V)= {(0 1); €€ V,/xeM} ,

D, = {(z,, ) € C*; Im(z) > 0, Im(z,) > 0, Im(z,)-Im(2,) > k}
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Jor some positive number k, and I', acts on D, from the left by

01

where ' means to take the conjugate over Q.

(iili) When &, is of type (2.4), i.e., &, 18 a rational curve with a
node with self-intersection number —b, (b, > 0), D, is the same as that in
(ii) and I', is also the same as that in (ii) provided we let q, = b, + 2
for all k and r = 1.

(iv) When &, is of type (2.4), t.e., &, =i E(r=1) a chain of
smooth rational curves with —E,-E, = b, = 2, we let n/q the irreducible
fraction representing b, — (b, — (+++ —(b,_, — b;) - )™, Then we have

=6 ..

the group generated by (8 gq), where & = exp(@ri/n), and D, = B — {0},
where B 1s a small ball centered at the origin in C:.

(v) When &, is of type (2.5), D, i3 B — {0}, where B is a small
ball centered at the origin in C* and

(vi) of &, = A,, then

<(0 )> en.
E g

(vil) of &, = D, (m = 4), then I', = the binary dihedral group 552(,,,_2),
(v-iil) +f &, = E,, then I', = the binary tetrahedral group fL,
(v-iv) if &, = K, then I', = the binary octakedral group S, and
(v-v) if &, = E;, then I', = the binary icosahedral group i[,,.

€
( ”) (21 2,) = (e2, + p, €'2, + '),

Secondly we shall construct a singular volume form ¥ on M. If we
contract all connected components of & lying outside of D, we get a V-
manifold M’.

DEFINITION. A continuous function % on M’ is called V-smooth if (i)
h is smooth in the smooth part of M’, (ii) 7*h is smooth where 7 denotes
a local uniformization.

In the following lemma, we shall use the notations in Lemmas 2 and 4.

LEMMA 5. Let &' =3 &, be the union of all the connected com-
ponents of & lying in D. Write D = >, D, for the decomposition in_t_o
1rreducible components. Then there exists a smooth volume form 2 on M,
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Hermitian metrics || - || for [D], mutually disjoint open neighborhoods U,
of &, c¥’, functions f, which are V-smooth outside of &, and a V-
smooth function h on M such that ¥ = k2] ||s:|I> II' f, I1"(log(c]| s:||™»*
is a V-volume form on M — D with megative Ricci curvature, where
II' means to take the product over v such that &, is contained in
supp (D), TI” to take the product over | such that D, is disjoint from &
and ¢ a suitably chosen positive mumber. Moreover, ® = —Ric ¥ has the
Sfollowing properties: ® is a complete Kaehler V-metric on M — D with
finite total volume and the imequality C* < ¥/(w?) < C holds in M — D
Jor some positive number C. Here, f, is a function going to o at &,,
written as follows:

Case i) &, =A is of type (1.1): f, = {log| o] 2 * for some Her-
mitian norm | - || for [A] and o € I'(M, [A]) such that (¢ = 0) = A. More
precisely, f,|U, = [log {c(exp(—]|z[»))>™*|w|?}]™® for some positive constant
¢, f, = constant in a meighborhood of & — &,, where w = exp(bmwiu/2a),
z = .

Case (ii) and (iii) &, = 3=t B,(r = 1) s of type (1.2) or (1.8): let C
be a copy of C* with natural coordinate (u,, v,). We put an identification
Wy = UL Vpy, U = Upl: ON the disjoint union [[,.zCi. Then (u,, v.) 18
a local coordinate in a neighborhood of B,_,NB, for 0 < k < r — 1 where
B_, = B,_,. f, is written in terms of (u, v.) as

(Ry_ log |w, ™ + Ry log v, |™) ™ (R log |u, | + R log | v, ™),

in a neighborhood of B,_,N By, f, = constant in a neighborhood of & — &,.

Case (iv) &, = Dy E, 1s of type 1.4): let 7: D, = B — {0} -»U, — &,
be the projection and (\, ) the natural coordinate of B. Denote by E,
and E,,, the irreducible components of D intersecting E, and E,, respec-
tively. Then there are continuous functions g,, 9, defined in a neighbor-
hood of 3\ E, such that (i) n*g,|(U, — &,) = | ¢, n*g.|(U, — &,) = [\ [, (iD)
the zero-locus of g, (resp. g,) is £, UE, (resp. & UE,,), (ii) g, = |0,/
(resp. g, = |0,4.1") near E, (resp. mear E,.), where o, (resp. d,.,) 18 @
holomorphic section of [E,] (resp. [E,..]) with (6, = 0) = E, (resp. (6,4, =
0) = E,,,) and ||-|| is a certain Hermitian metric for [E,] (resp. [E,..)),
(iv) log(g,) and log(g,) is smooth outside of >t E,. Finally, f, has the
Sfollowing properties: f, = (log(c/g,))*(og(c/g,))* near >t E,, where ¢ is a
positive constant, f=constant in a neighborhood of & — &£,.

ProOF OF LEMMAS 4 AND 5. Step 1. Substep 1-1: Let A be a non-
singular elliptic curve with self-intersection number —b (b > 0) on M which
is an isolated component of &¢. We analyse a small neighborhood of A.
We use the following theorem due to Grauert [5]: “Let =: (X, C) — (X,
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2) be the minimal resolution of the normal two-dimensional singularity
(X, x) such that 7~'(x) = C is a nonsingular curve of genus g. Let N
denote the normal bundle of C in X. If C? < 4 — 4g, there are a neigh-
borhood U of C in X, a neighborhood V of the zero-section (=C) of N
and a biholomorphic map ¢:U —V such that ¢|, is the identity of C”.
Combining this theorem with our assumption, we may assume that
there is a neighborhood V of 4 in M which is biholomorphic to a neigh-
borhood of the zero-section of the normal bundle N of A in M. Since
A?= —b (b > 0), N is a negative line bundle of degree —b. We set A =
C# F ={Z + Zw; Im w > 0}, and denote the projection C— A by =.
Let a be the area of the fundamental domain of & measured by the
usual flat metric |dz[* of C. There is a real closed (1,1)-form » on A
such that 7*7 = i(2a)~'dz A dzZ. By the definition of a, [7] is a generator
of H*(A; R). Let o be the Hermitian metric of the line bundle N— A
whose Chern form is given by —bnp = —b(2a)'dz A dzZ. The curvature
form of the induced Hermitian line bundle #*N —C is given by
—ibra~'-dz A dZ. Since HYC, ~°*) = {1}, there is an isomorphism C*>
7*N between holomorphic line bundles over C where C* is the trivial line
bundle over C. In particular, we may regard o as a positive function
on C. There is an entire holomorphic function {(z) such that z*p(z) is
equal to {exp(—|z[")| expl(2) [}}**”*. The biholomorphic map of C*? into itself
defined by (w, z)— (exp{—bnl(z)/a}-w, z) is an isomorphism of trivial line
bundles over C and the Hermitian metric (exp (—|z[*)**/* is pulled back
to the Hermitian metric (exp(—|z|*)| exp{(2)|)*”*. We may assume that
7*N = C% n*p(z) = (exp(—|z|*))**. Let U be an open subset of C such
that U is contained in a fundamental domain of <. Let 7 be an arbi-
trarily fixed element of & Since Cx U and Cx (U + 7) are local triv-
ializations of N|.y,, there exists a non-vanishing holomorphic function
g(z) defined in (z€)U such that (w,2)eCxU and (W', 2)eCx(U + 7)
represent the same point of N|.y if and only if 22 =2+ 7 and w' =
9(z)-w. g(z) must satisfy the following equality:

|w*(exp(—|2z[*)** = |w'[*(exp(—|2’[*))~**
= |9(2) [*|w[*(exp(—|z + Y[?))™*

for all ze U and weC. Therefore g(z) must be written as
= exp |y 1 E o
(2.6) g(z) = exp { p <27 + 2 + w(v))} s

where 6(7) is a real number determined by ¥ €. modulo (2a/b)Z. Now
we look at 6(v) more closely. If 22 =2+ 7 and 2" =2+ 7'(v, 7 €.&¥),
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then (w, 2), (w’, 2’) and (w”, 2”’) represent the same point if and only if
the following three equalities hold:

w" = exp {——ﬁg—(zm + Ilizl’f +6(y + "/’))} ‘w
w' = exp{—b—;—(z'ﬁ’ —+ "YT’IZ + i0(7’)>} ‘w',
w = exp{—%—(z? + -172—,2 + i&(’)’))} W .

Hence (7 + 7)) = 60(v) + 6(7") — Im(77") modulo (2a/b)Z. Recall that & =
{Z + Zw; Imw = a > 0}. It follows that 8(m + nw) = ma + nB — mna
modulo (2a/b)Z, where a and B are fixed representatives of (1) and 6(w),
respectively. Using this 0(7) (v e€.%), we define a group I' of 3x3
matrices as follows:

1 2% 2|7 —2h(Y) Y €% h(m + nw) is an element
(O 1 0 ), of 6(m + nw) = ma + nB — mna
0 0 1 modulo (2a/b)Z

Let B be the unit ball in C* and S the domain in C*® defined by
{(u, v) € C* Im (u) — |v|* > 0}. Thenz, = (u — i)(u + %) and z, = (2v)(u +
t)™' give a biholomorphic map of B to &/ For a positive integer k, we
consider the subdomain W of & defined by W = {(u, v) e &:Im (u) —
|v|* > k}. W corresponds to the horoball at (1, 0) of B with the Bergman
metric. I' is a discrete subgroup of the group of the analytic automor-
phisms of & acting on & properly discontinuously and without fixed
points. W is invariant under the action of I". This action is described

as follows:

I =

, 1 217 2|7 — 2h(Y) L —
2.7 (u’) = (o 1 y ) <u> _ <u + 217v + 1|7 2h(7)> .
v v v+
0 O 1

The map F: W — C* defined by (u, v) — (exp (bwiu/2a), v) maps W onto
the set V' = F(W) = {(w, 2) € C? 0 < |w|*/(exp(—]|z|»))****}. If we define
V={weN;0< plw, w) < exp (—brk/a)}, then V' = z7*(V). Vis a deleted
neighborhood of the zero-section of N and a punctured disk bundle over
an elliptic curve A. Now we show that I'\W is biholomorphic to V.
By (2.6) and (2.7), wo F(u, v) = wo F(u/, v") if and only if ‘(w’, v") = 7'(u, v)
for some veI'. So, there is a unique biholomorphic map F:I'\W —V
with woF = Fop, where p is the projection W— I''W. The Kaehler
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form of the Bergman metric of B is written in terms of the coordinate
(u, v) of & as

dv A dv + (—idu — 27dv) A (idid — 2vdD)
Im(u) — [vf 4(Im (u) — [v )

This projects down to a Kaehler metric of V, whose Kaehler form is given
by
dz N\ dz n ((a/bm)(dw/w) + zdz) A\ ((a/bm)(dw/w) + 2dZ)
(a/br) log |w|™ — |2 [* ((afbm)log |w|™* — |2 )
where (w, z) = F(u, v) = (exp (briu/2a), v), i.e., a local trivialization of
V—A. If we define a function f of V to R* by exp(f(w)) = o(w, w)™,

then (Fop)*(—10d log f) is equal to the restriction to W of the Kaehler
metric coming from the Bergman metric of B.

REMARK 1. Let (X, A) be a pair of a complex surface X and a
nonsingular elliptic curve A holomorphically embedded into X with A% <
0. Then K, ® [A] is analytically trivial near A.

Substep 1-2: Let B be a component of D of type (2.2) in Lemma 1,
i.e., B is a cycle of P"s with the decomposition B = >i=: B,(r = 2) into
irreducible components. For 0 < ¢ =< r — 1, we define a positive number
b, by —b, = B,+B,. By our assumption, b, = 2 for all 7,5, =3 for some
1. Let q, for k€ Z be the periodic sequence of period » with ¢, = b,
with 0 <k <r —1. From now on, we choose an open neighborhood X
of B in M and analyse the differential geometric structure of (X', B). By
[6], B can be contracted to a normal singular point x. We review Hirze-
bruch’s theory (cf. [8]) of the construction of the minimal resolution
z: (X, B) — (X, ) in a manner suitable to our purpose. Let E — P! be
the ¢-th tensor power of the tautological line bundle. Then F is covered
by U, = C*t = 1, 2) with conrdinates (u;, v,) with the transition rules
Uy = uit, v, = ufv, on U N{u, # 0} =U,N{u, # 0}. Combining Grauert’s
theorem [5] cited above with this fact, we can naturally construct a
complex manifold containing a cycle of P"s with the same intersection
matrix as B. This is done as follows. For a integer k, let C} be the copy
of C* with the coordinate (u,, v;). We put the identifications defined by

oy Ul— -
(2.8) Up = WS Vhoy , Vi = Uiy

on the disjoint union [[,.,C:. Let the resulting manifold be denoted by
Y’. It follows that the curve in Y’ defined by v, =0 in C? and %, = 0
in C},, is a nonsingular rational curve with self-intersection number —gq,.
We denote this by S,. UiczS: forms a chain of infinitely many P's.
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The identification (2.8) is written as

Qer — 1)
1 0,

03 -1 q, -1 Qi1 -1
= (log u, log v, ,
(log u. °g”)<1 0><1 0) (1 0>

<Pk '_Pk—-1> _ <QO —1><Q1 —1> o <Qk—1 —1>

Q —Q./ \1 o\t o0 1 0) "

Then q,P,= P, + Py, Pob=1, P, =¢q, and ¢,Q; = @, + Qi+, @ =0,
Q. =1. {P}i=: and {Q.},>»; are determined by the continued fractions
[[QO’ qy, Qk]] = q, — (q1 - (qz — = (Qk—z - ql:-]:l)_l . ‘)_1)—1 = Pk/Qky
where P, and @, are mutually prime for positive integers (k= 1). We
have assumed that all ¢, =2 and some ¢, =3. The infinite periodic
continued fraction [[qo @i, -, q, +++]] > 1 represents a real quadratic
irrational number w,. Let w,: = [[¢,, .+, *+-]] > 1. The sequences {P};s,
and {Q,},=, are strictly increasing and lim,_. P,/Q. = w,. Now we define
a sequence {R.}.», by B, = P, — Qw, (k = 1). Then R,’s satisfy q.R, =
R, , + R,,,. Using this, we can define R, for any integer k. From the
definitions, R, = 1, B, = wi%, + -+, B, = wiw;* + - - w3, B_, = w,, B_, = w,w_,,
oo, Bpo= wow, e W_pyy. S0, {P/Qi}r=, approximates w, and lim, .. (P, —
Qw,) =0. M=2Z+ Zw, is a free Z-module of rank 2 and {R,_,, R.}, for
any integer k, is a Z-basis of M. Since w, = w,,, for any integer k, R, R, =
R,.. holds. So, R,M = M. By the Hamilton-Cayley theorem, R, and
R_, = R;* are both algebraic integers, in particular, R, = R;', where ’
means to take the conjugate over Q. Let V = {R"},.z = Z under the
correspondence R —mn. Then G(M, V) = {(8 ﬁ‘), eeV,pe M} acts on C*

properly discontinuously and without fixed points as follows:

(log u; log v,) = (log u,_, log v, _,) (

Set

(6 %) Gum = ea+ g ot g
0 1 RiyR). = (82 T 14, €2, T ).

In particular, the action of V= Z is given by n-(z, 2,) = (Rz,, R;"2,).
Proper discontinuity follows from lim,.. R, = 0. The action of G(M, V)
on C? restricts to H*?, where H is the upper half plane. Since both R»
and R;™ are algebraic integers, the function Im(z,)-Im(z,) is invariant
under the action of G(M, V). We shall show that there is a neighborhood
Y, of UiezS: in Y’ such that Y, — U,z S:. is biholomorphic to H?/ M.
The equation
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R,_, R,',_1>
R, R

determines the class of (z, 2,) in C*/M. This is well-defined, since if (2.9),
holds, then so does (2.9),,, by the definitions of (u,, v,) and R,. Hence
CIM=Y"— UezS:. Y, is by definition the closure of the image of
H?* M under this isomorphism, which is given by

Y, = {(u, i) €C}; o0 = By, log |u,|™ + Ry log |v,|™* > 0
oo 2 R,_,log |u,|™ + R, log |v,|™* > 0} .

(2.9) 2ri(2,, 2,) = (log uy, log vk)(

It follows that
(2.10) H/M=Y* —kU S, .
€Z

To make a cycle B of P"s from the chain of P"s, we need to put a
periodic identification on Y,. We consider the following Z-action on Y’.
For ne Z and (a, B) in the coordinate neighborhood CZ, n-(a, B) is defined
by (a, B) in terms of the (k + m7)-th coordinate. This Z-action restricts
to the action on Y, — U,z S: and is compatible with the V(= Z)-action
on H?)/M via isomorphism (2.10). Indeed, the point of Y’ — Ukez Sk
expressed as («, B) in the (k + nr)-th coordinate is written as (a*3®, a~°B37%)
in the k-th coordinate, where

RS (I Y e

’

Rk—nr—l Rk—nr—1>
’

Rk—nr Rk—-nr

So,

R,, R.,
= (1 1
R R;) (log a ogB)<

R._, R;,_1> <Rz, o>
R, R, /\0 R-)°

Since ¢ >d > 0, if |a| < e and |B| < 1/¢ then the cardinality of n such
that |a—°87¢| <1 is finite. It follows that this Z-action on Y, is properly
discontinuous and without fixed points. We define ¥ =Y,/Z by this
action. The image of S,’s forms a cycle B = >i-{ B, of P"s such that
B, B, = —q,. Summing up the above arguments, there is a canonical
biholomorphic map H*/G(M, V) =Y — B, and the correspondence is given
by (2.9), in the k-th coordinate of Y’ and the Euclidean one of H*. The
open set W, of H* defined by {(z,, 2,) € H*; Im (2,) XxIm (z,) > L} is invariant
under the action of G(M, V) and its image in Y — B is a deleted neigh-
borhood of B. By Laufer [13], (g, qi, -+, 9,_,) determines the complex

(log a*B® log a~°B~%) <

= (log a log B)<
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structure of the neighborhood of B. Hence there is neighborhood V|
of B in M such that V, — B is biholomorphic to W,/G(M, V) for some
large L. {4z*-Im (z,) Im(2,)}~* defined in H*® projects down to a function
f defined near B which is given by

Sy, vi) = (By_,log [u,|™ + Ry log |v,|™)*(Ry_, log |w, ™ + Rj log [v,|™)*

in terms of the k-th coordinate. The Poincaré metric |dz,[*/(y.)? +
|dz, */(y,)? projects down to a Kaehler metric 100 log f.

REMARK 2. If YD B is as above, then K; Q [B] is analytically trivial
in a neighborhood of B.

Substep 1-3. Let C be an isolated component of D of type (2.3) in
Lemma 1, i.e., a rational curve with a node. If C*= —b, (b, > 0), then
we can reproduce a complex surface Y containing a rational curve with
a node of self-intersection number —b, by the construction in the pre-
ceeding Substep 1-2 provided we let q,=0b, + 2 for all & and » = 1.
Hence there is the same function f as above which comes from
Im (2)2Im (2,)"%(27)"® and whose “i9dlog” is the Kaehler form coming
from the Poincaré metric of H*.

Substep 1-4. Let E be a connected component of D containing
connected components of . For brevity, we assume that the number
of such components of & is one. The following arguments will be easily
extended to the general case. Let &, = >\i_, E, be the component of &
contained in £. By Lemma 1, &, is a chain of P"s withb, = —E} = 2.
Let E,and E,,, be the irreducible components of E — & which meets E,
and E,, respectively. We cover the chain &, of P"s by r + 1 coordinate
neighborhoods (U,; ux, v:), 0 < k < r, with the following transition rules:

(2.11) U, = upY, v, = ur-v, in U,NU, = {u, # 0},
U, = w0, v, = vyt in U'NU* = {v, # 0},
Uy = U, v, = uB-v, in UNU® = {u? +0},

------

E, is given by {v,_., = v, =0} if s is odd and by {w,_, = u, =0} if s is
even. We may assume that E| is given by {#’ = 0} and E,, by {u, = 0},
if » is odd or by {v, = 0} if » is even. Let n/q be the irreducible repre-
sentation of the continued fraction b, — (b, — (+++ (b, — b)) )7L
Let I" be the cyclic group of order » generated by & = exp(2ri/n). The
P'-configuration &, appears as the minimal resolution of the quotient
singularity I'\B, where the action of I on B is defined by
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ot -1
ernmi= (0 (M) = ()

The minimal resolution is described in terms of (A, &) and (u, vi) as
follows: Let us assume that r is odd. Then

L — b Bl — oo — npl2s, g Ho8+1 . ) F2842 0 F2841 L, = yTnd’
(2.12) N' = v, = w2 vft = c o0 = UV, = Ugst1 *Vosy1 = = UrVr ,
n—qp; — e ee — Y28, 02841 . o Y2842 W28+ ., ., — 9 "—0p0 —a
AT = UG, = = Ugs *Vos ' = Ugstr *Vost1 — = Ur "Vr ’
2 P! 2 2
(— Npgd — 444 — 28 28+1 2542 | 2841 ., , —
K= UV = = Ugs * Vs = Ugs+1 *Vos+1 — =,

where \;, #;, and v; are determined by
N =By N = ¢, b:i)\':i = Njo1 t Mjn

to =0, oty =1, b;pt; = pt; , + i,
l)o = 1, Dl == 1, bjl)j = v]'__l + ”j+1

for 1 <7 <r. Here, we set ¢, =¢, andna =qq' —1,s0, A, = 1, Ny, =
0, ty,=nv.=9¢ —a,v,,=n—gq. If r is even, we have only to
interchange v, and %,. The curves E, (4, =0) and E,,, (4, = 0) corre-
spond to the coordinate lines (¢ = 0) and (A = 0), respectively. With
these in mind, we consider the function f’ defined in neighborhood of &,
by

S (thzyy v2,) = {lOZ [y, |72 |y, [543/ {lOg |1y, |78/ |y, | TR0t}

which is well-defined, since the transition rules of (u,, v:)’s are given by
(2.12). Since the function (log |\ |™2)*(log | 1|7 projects down to f’, the
Kaehler metric |d\F/|N[E (log N[22 + |dpe?/| £]*log | £]7%)* defined in B —
(» = 0)U (¢ = 0) also projects down to an Einstein-Kaehler metric 793 log f’
in a neighborhood of &,. The functions |u,|*|v,|*" and |u,|*|v,|*’" are
well-defined near £,. So, we extend these to nonnegative functions g,
and g, defined near E with the following properties: (i) g, and g, restri-
cted to a neighborhood of &, are |u,[*|v,[*’" and |u,[*|v,[**’", (ii) the
restriction of g, (resp. g,) near E, (resp. E,,,) is written as || a,||* (resp.
lo,+.1), where o, (resp. o,.,) is a holomorphic section of [E,] (resp. [E,,])
and |- || denotes the norm with respect to a certain Hermitian metric of
[E,] (resp. [E,..]), (iii) the zero-locus of g, (resp. g, is &, U E, (resp.
“£,UE,,). Weset f = (log 1/g9,)*(log1/g,)*>. Finally we introduce a singular
volume form

v =0 [T o511 Aiel-Qog 1/l

where 2 is a smooth volume form of M, z’s are local equations of irre-
ducible components of D — (E,U &£, UE,,)), o, is a local equation of E,, and
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II-]| is a certain Hermitian norm of these line bundles. The —1 times
the Ricci form of ¥” is written as

—Ric{@ /I llo,I* TLliII} — 03 log £ — i % 83 loglog ||,

where the first term represents ¢,(Ki ® [D]) = 0 near E, the second term
is Einstein-Kaehler near %, complete toward &, U E,U E,,,, the third term
gives the “Poincaré metric” in the direction transversal to D — (E,U
& UE,,). By an appropriate choice of ||:-| and by changing f by
(log ¢/g,)*(log ¢/g,)* for a small positive number ¢ if necessary, we may
assume that —Ric ¥’ is a Kaehler metric in a deleted neighborhood of E
complete toward FE.

Substep 1-5. Let D’ be a connected component of D which does not
contain any curve of . Let D; denote an irreducible component of D’'.
Then as in [9], we consider the singular volume form

7 = 0 | T0 o0 Gog 1/

near D’. We may assume that —Ric ¥ is a Kaehler metric in a deleted
neighborhood of D’ complete toward D’'.

REMARK 3. In the preceding substeps, we constructed the canonical
Kaehler metrics in small deleted neighborhoods of the connected com-
ponents of D. These metrics are complete toward D. The restriction of
each of these metrics to a disk transversal to D is equivalent to the
Poincaré metric of the punctured disk near the intersection point with D.

Step 2. Let &, be a connected component of & of type (2.5) in
Lemma 1. By [10, §1], there is a smooth volume form 2 on M and a
V-smooth function % such that A2 is a V-volume form whose Riceci form
is the —1 times of a Kaehler V-metric in a neighborhood of &,.

Step 3. Construction of the singular volume form: Let D=3, D,
be the decomposition into irreducible components. There are a smooth
volume form 2 in M and a Hermitian metric ||- || for each [D,] such that
the real closed (1, 1)-form 7v: = —Ric{®2/Il; | s:||*}, representing 2mc,(L),
satisfies the conditions in Lemma 3, where s, is a holomorphic section of
[D,] with D, as its zero-locus.

Substep 3-1. Let A be a nonsingular elliptic curve of type (2.1) in
Lemma 1. As in Substep 1-1, there are a local coordinate (w, z) such
that A is given by w = 0 and the function

Sf(w, z) = log{(exp(—|z[»**/|w [*}
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whose —1”—105 log is a Kaehler metric complete toward A. We extend

f to a smooth positive function f in M — A such that (i) f coincides

with f near A, (ii) f is constant in a small neighborhood of other com-

ponents of . It follows that there is a positive constant ¢ such that
v — Vv =1ddlog (f+¢)>0 in M~

holds.

Substep 3-2. Let B be a cycle of P"s or a rational curve with a
node in Lemma 1. The function f: (u;, v,) — (B,_, log |uz'| + K, log |vi*])~*
X (Ry_, log |uz'| + R, log |vit]) is well-defined and 1 —10dlog f is the
canonical metric coming from the Poincaré metric of H®. Note that
log f = —co at B. We extend the function log f to the whole M in the
following manner. First, we consider the image in P¥ of M under the
logarithmic m-canonical map @ = @,,, for m large, where L = K5z & [D].
B is mapped to a singular point p. We pick a small neighborhood of p
in P" and introduce a local coordinate (z,) around p = (0, ---, 0). We set
t(z) = > 12;]>. Secondly, we pick a function z: R* — Rt for a positive
number g as follows:

7(s) =0 if 0=s=p2

(s)=p if p=<s

0=7(s)=38 forall s=0

—10=7"(s) <10 forall s=0
and consider the function F given by log (F) = (1 — zot/u)log (f).
V' —103 log (F') is positive definite in a neighborhood |t| < #¢/2 of p and
vanishes if |¢] > ¢. It may have negative direction in the domain y/2 <
|t] < ¢#. But the following computation tells us that the order of the
negativity is (g¢-log(pe ™))™ in p/2 = |t] =

53 log(F') = ——i—(r"(t)at A Bt + T (£)958) log(f) — T%at A dlog (f)
(1 -2
G

t=2>,%dz,
log (f) = 2(B_.du/u, + R dvi/vy)- (By-y log (u;?) + Ry log (vih)™

+ (a similar term).

On the other hand, we can choose a Hermitian metriec for the hyperplane
bundle over PY¥ whose curvature is nonnegative and arbitrarily concen-
trates near a hyperplane with respect to the standard metric. Indeed,
if we pull back the curvature form 1 —160log|Z|* of the hyperplane

)o3108(s)
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rveR, we have 1V —1d0log (1 + |2, " + «++ + |n2w[D((6/025) A (3]0%y)) =
MA 4+ 52+ 235 2P+ M2y )7, wherh 2, = Z,/Z, (1 =i = N).
If |zy| = ax™?, then it is equal to M1 + Y52z, HA + 2230 2z, + ad)7h
Hence there is a positive smooth function a« on PY such that
Vv =100 log{(®%,a)F} + v is positive definite in M — .

Substep 3-3. Let E be a connected component of D containing a
connected component of & properly. First, we extend the functions g,
and g, to positive smooth functions on M — 374! E, which are constant
in a neighborhood of other components of . Secondly, we note that
there is a positive number ¢ such that v + 1/ —16a{log(c/g,) log(c/g,)}* is
positive definite in the whole M — .

Substep 8-4. Let >;C; be the union of irreducible curves of D with
L-C, > 0, and s, the local equations of C;. Since >};C; has only simple

normal crossings, we see that there is a Hermitian _metrie ||-] of each
[C] and a positive number ¢ such that 7 + 35,1/ —139(log s, ||~ is
positive definite in M — &. q.e.d.

3. Good Quasi-Coordinate System on (M, —Ric (¥)). In this section,
we write &, for the union of components of & lying outside of D and
&, = >, &, the decomposition into connected components.

DEFINITION. Let V be a domain in C™. Let X be an m-dimensional
complex manifold and ¢ a holomorphic map of V into X. ¢ is called a
quasi-coordinate map if ¢ is of maximal rank everywhere. In this case,
(V, ¢) is called a quasi-coordinate of X.

LEMMA 6. Let (M, D) be as in Theorem 1. Then there exists a
system of local quasi-coordinates 7~ = {(V.; vk, v3)} of M — D, a meigh-
borhood U of D and a meighborhood U, of &, such that

(i) U.(Image of V,)uU,= M — D,

(ii) U.(Image of V)N &, = 2,

(iii) f the image of V, does not intersect U then (vi, vi) is a local
coordinate in the usual sence,

(iv) there is a positive number & independent of V, in 7~ such that
each V,(CC? contains a ball of radius e,

(v) there are positive constants ¢ and 4 (k=0,1, +-+) such that

C—l(aij) < (gai;) < 0(32.7)

and |9'?"'119g,;/0v2008 | < S, 414 JOr all multi-indices p, q, where —Ric(¥) =
w=1V—=13; 0udvi A dT5 in terms of (vi, v2),
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(vi) each conmected U, of U, is the minimal resolution of the image
of a small ball under the quotient map =, induced by the action of the
Jfinite subgroup of SU2) corresponding to &, (cf. Lemma 4).

Proor. This is proved using the method developed in [4]. Since &,
are treated in [10], it suffices to consider the neighborhood of D. First,
let A be a nonsingular elliptic curve, a component of D of type (1.1) in
Lemma 1. We define @;: (u,v) —(s,t) by s=@1 —nu/l + %) and t =
1 — /1 + ' for a real number ne(0,1). Let B(R)C.S(s, t) (&
is as in Substep 1-1 in the last section) be defined by {(s, t); [s — 1V —1* +
4|t]* < R*|s +1 =1} for a fixed Re(0,1). There is a positive constant
e such that 1/e < Im(s) < e. Let B,(R) = &;(B(R))C.¥(u,v). It follows
that for any positive number K, there exists a real number 7 € (0, 1) such
that B,(R)C Wx. Indeed,

Im(u) — [v* > (1 + /A = P)Am(s) + 47(|s + V' =1 — R*[s + V' —19) .

If we set G = {(u, v)e &; —(2ar/b) < Re(u) =< 2ar/b, v = 0, Im(u) > K},
then G is contained in WiN Uycre: B(R). In Substep 1-1 in the last
section, we defined the map F: Wy —V' by (u, v) — (exp(bxy —1u/a), v),
which was of maximal rank everywhere. G is mapped by F onto
{(w, 0)€C* 0 < |w| < exp(—brK/2a)}. Therefore, some neighborhood of
A is covered by the images of quasi-coordinate maps caused by F and 7.
Local quasi-coordinates are given by (B(R); s, t)C.S”(s, t)CC? and local
quasi-coordinate maps are given by mwoFo@;* for (1 — ) a small positive
number. So, the condition (iii) is satisfied. As for (iv), we need to
substitute 2z = v, w = exp(bay —1u/2a); v = 1 + )s/(1 —7p), v = (1 +
P/A — )t into ¥ = V' —1(a|w[*|dz [P + Bwdz A\ dw + Bwdw A dz + 6 |dw|?)
(which represents ¢,(L)) and ' —144 log f,. The results are

¥ = exp(—br(l + ) Im(s)/a(l — n)){a'(%{%)m Ty ( %rz )3/2dt A ds

+ “/(i + Z>3/2ds AdE+ 6 <%—i—g)2ldslz} ,

and
dt A dt " | -V —1ds/2 — tdt]
Im@) = [t + @A —e/A + 1) Am(s) — [EF + A — p)e/(1 + N))

for some positive constant ¢, where o', 8,7, and ¢ are C* in (w, 2).
Since (s, t) € B(R), and lim, . t?¢* = 0 for any real p, the condition (iv)
is satisfied. Second, let B be a cycle of PYs or a rational curve
with a node of type (2.2) or (2.3) of Lemma 1. Let F be the composite
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map H*(?', 2*) > H* /M —Y, — UkezS: 2 Y./Z — U;=i Si, where the second
map is (2.9), and the third map is the quotient by Z. F is of
maximal rank everywhere. Let WCH® be defined by {(z, ??) € H?
Im(z") Im(z®) > K}. F(W) is a deleted neighborhood of B. If we set
W, = {(z%, 2*) € H*; Im(2") > L, Im(2*) > K/L}, then W = U,>,W,. We define
a biholomorphic map @,, of H* by @,,(z) =9z — p) + ¢ for € R and
ne€ (0, ). Let B(a, r) denote the disk in C centered at a with radius .
Then
Wo={U U 05, B +v=1,12)}

#1€R 7327 (
<{U U 03, B + /7T, 172))
Ho€R 79275(L)

for some positive number #,(L) and %(L). By substituting ¢ =
Nz, — ) — ¢, into F*(53 log f;), where f; is one of the fz;'s in Lemma
4, we obtain X%, |dt,/Im(t)). Here, z, is in @;}, (Bl + 1 —1, 1/2))
if and only if ¢, is in B(y; +1 —1, 1/2). On the other hand, the
(1, 1)-form which is a pull back of a smooth form in P¥ under the log-
arithmic pluricanonical map consists of terms |u,[*|v.[*dt; A dE,;/9.7;
multiplied by some C>-function in (u, v;) and |u,|*|v.|* = exp[2n{(Ri_; —
Ryt Im(t,) + (By — R Im(8,)}/(Bio R — RiRi_))], where B, — R,_, <
0,R,,—R.,<0, R,_,R, — R R, , > 0. Therefore, some neighborhood of
B is covered by the images of quasi-coordinate maps given by the restric-
tion of Fo(®;:, x®;t,) to B(y, + 1V —1,1/2)x B, + 1 —1, 1/2) for p, €
R, 7,€ (0, o), and the conditions (iii) and (iv) of Lemma 5 are satisfied
by these quasi-coordinate maps. On the other hand, combining the
arguments in Substeps 1-4 in the last section with those in [10, §2], we
can show that there is a quasi-coordinate system with (iii) and (iv) around
the other components of D. q.e.d.

4. Existence of the Canonical Einstein-Kaehler V-metric, Proof of
Theorem 1. Following the arguments developed in [4] together with those
of [10], we shall show the existence of a complete Einstein-Kaehler V-
metric on M’ with negative Ricei curvature.

We use the same notations as in the preceding sections.

DEFINITION. A continuous function w on M’ is of class V-C*, where
k is a nonnegative integer possibly oo, if % is of C* in M’ — & and each
w¥u is C* in a small ball centered at the origin.

DEFINITION. Let % be of class V-C~. For a nonnegative integer k&
and a € (0, 1), the V-C**(M) norm of u is defined by || «|y . = max(4, B),
with
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A =suplsup 3 |anmu0)/ocrat|

0y CeB |pl+iglsk

+sup 3 |C - o mtu©agealt — dmsu (oot}

8,8’eB Ipl+lgl=k
T+’

B=sup{sup Sy a1ty () /ovEa vl

2eVy IPI+1gISk

+sup S |z — 2|70t (z)/ovzons — aku(z’)/avzavzl},

z,2'eVy lpltlel=k
‘a2t &

where u is locally lifted to a function in (V,; v, v2), if necessary.
DEFINITION. For a nonnegative integer %k and a € (0, 1) the function
space V-C¥*(M) is the Banach space obtained as the completion of V-
C~(M) with respect to the norm |- ||y ;.-
LEMMA 7. Let ¥ be the singular volume form defined in Lemma 5.
Then the function log(¥/w® is of class V-C**(M) for any admissible k
and «.

Proor. This comes from the arguments in §2. q.e.d.
By Lemma 5, ® = —Rie ¥ is an V-C~ Kaehler metricon M = M — D
which is complete toward D. We consider the equation
4.1) 4,4 — db@u = f(x),
where 4, is the Laplacian with respect to w and we assume that b(x)
and f(x) are of class V-C¥*(M).
LEMMA 8. If b(x) = b for some positive number b, the equation (4.1)
has a unique solution u belonging to V-C¥**(M).

Proor. Let M = |J, 2, be the exhaustion of M by an increasing
sequence of domains 2,CM with smooth boundary. We may assume that
each 2, contains &,. Consider the Dirichlet problem

du; —b@u, = f in L2,

4.2
(4.2) u, =0 on £2,.

Although the metric w is singular along &, we can use the direct method
in the calculus of variations to produce a weak solution of (4.2). Let us
consider the Hilbert space V-ﬁf(.Qi) which is the completion of the vector
space V-Cy(R,) of all V-C= functions with compact support in 2, with
respect to the norm

Ity = |, lule + | lldulzor .
2, 2;
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We find a weak solution of (4.2) in this function space by minimizing the
functional

Ji8) = |, (1dglls + b@¢* + 290" for e V-HXQ) .

Since b(x) = b in M, it is shown by the standard arguments that there
is an element & of V-HX2, which minimizes J,. $ satisfies the Euler-
Lagrange equation of J;:

[, G4t + G + f9)er = 0, for any ye V-C5(Q) -

Hence ¢ is a weak solution of (4.2) and the regularity theorem (cf. [2,
p. 85]) tells us that ¢ is of class V-C¥**(2,) with zero boundary value.
Here, the singularity of @ along &, causes no trouble, since m3¢ |y, isa
weak solution of the equation A, .,u + (7,*bly,)u = 7,,*f |y, in B (i.e.,
Ty, = B, satisfies L((dﬁop, AY)zpro + Gor + )@, * @) =0, for any
€ C2(B)) and 7, *® is a smooth metric of B. By the maximum principle,
|u;] < max, |f|/b, for the unique solution u, of (4.2). Hence wu,’s are
bounded above by a constant independent of 4. Applying the interior
Schauder estimate to u,’s in (V,; %, v2), we can show that a subsequence
of {u}, converges to a function u of class V-C¥***(M), and w is a solution
of (4.2). Uniqueness comes from the inequality | u;|ly rie0 = C(llu:llo +
Il £llv k) for any solution u, of (4.2), where C depends only on M. q.e.d.

Now we are ready to prove Theorem 1 by following the arguments
developed in [4]. By Lemma 5, there is a V-C= Kaehler metric @ on M
which is complete toward D. We claim that for all f of class V-C***=(M)
(k =5, ac(0,1), there is a unique solution u of

4.3) (@ + V' —100u)* = exp(u + f)@*

belonging to % = {ue V-Co*(M); ¢c7'w < @ + V' —1dou < cw, for some
positive constant ¢}. This is proved by the method of “bounded geome-
try” (cf. Lemma 5) provided we lift everything up to V,s by quasi-
coordinate maps near D, lift everything up to B by =,,; B — U, near each
¢, and represent everything in terms of coordinates (v}, v2) of V, or
&, & of B, respectively. To prove the claim, we consider the map
0: V-Co*(M) — V-C*>*(M), u — e “(w + V' —10ou)/w*. It suffices to show
that C = {t €[0, 1]; there is a solution u of @(u) = ¢/ belonging to Z'}>
0 is open and closed. For example, openness follows from the fact that
the Fréchet derivative @'(u): V-C#*(M)— V-C*>%(M) of @ at we % which
is given by @'(u)h = Azh — h (h € V-C**(M)), is an isomorphism by Lemma
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7. Uniqueness of the V-C> Einstein-Kaehler metric complete toward D
follows from Yau's generalized maximum principle [20]. q.e.d.

REMARK. One of the main tools in the proof of Lemma 7 and Theorem
2 is Yau’s maximum principle. We remark here that the singularity of
of w along &, causes no trouble. Indeed, let w be a function bounded
above on (M, w). If w has a maximum value in some relatively compact
domain in M, there is no trouble provided we lift everything up to B
by z,: B—U,. If sup,(u) > max,(u) for all compact subdomains 2 of M,
we can use Yau’s maximum principle provided we modify the Kaehler
metric @ near &, to a smooth complete metric of M.

5. Logarithmic Miyaoka-Yau Inequality. In this section we prove
Theorem 2. Let us begin with general remarks. Let (¥, h) be a Hermi-
tian vector bundle of rank r over a complex manifold N and e; = (e, e,
+++, e, a local holomorphic frame valid in U. Let h = (hs), hi; = h(ej, €)
be the Hermitian metric of E. The connection form and the curvature
form of (E, h) are given by 6, = h~'6h and 6, = 96, = d(h~*6h), respec-
tively. If ey = eygyy is the transition rule between local holomorphic
frames, @, and O, are related by 0, = ¢7:0,9,y.

Let (M, D) be as in Theorem 1 and @ = —Ric ¥ and & = o + V' —1dou
the canonical Einstein-Kaehler metric in Theorem 1.

LEMMA 9. %, and 7, be the Chern forms of the Hermitian wvector
bundle (TM, @), where TM denotes the holomorphic tangent bundle of M.

Then 7 and 4, are summable over M with their values S ¥ = ¢,(M, DY,
M% = ¢,(M, D) — 6. Here, c,(M, D) = €, denotes the i-th log:rithmic Chern
class of (M, D), 6 is a rational number determined by &, which is non-
positive and zero if and only if £, = Q.

Proor. Let 7v; denote the i-th Chern form of w. Since u belongs
to % for any admissible & and «, the following equalities clearly hold:

=\ "\ 79 =S v7,. Let h be a smooth Hermitian metric of E =

.Qj;,(log DSI*. V)\lfe thiri‘k of w as a Hermitian metric »’ of E with singularity
along D. The Chern forms with respect to the Hermitian connection of
the Hermitian metric &’ are v, and 7, in the complement of D, since any
local holomorphic frame for E is a local holomorphic frame for TM in
the complement of D. By [6, pp. 400-406], v, = 7.(E, k') = v, (E, h) +
d{P,(6(h) — 6(h'), O(h), O(h'))}, where -(h) and -(h') are the connection or
the curvature form of A and A/, respectively and P, is a universal
polynomial. If (4; u, v) is a coordinate polydisk in M such that 4ND
is given by the coordinate lines, the local expression with respect to
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(u, v) of the connection form and the curvature form of h’ are of order
at D described in the following table:

equation equation order of the order of the
of AND | of ANDNE connection form curvature form
2 2 -1)2
v=0 v=0 (Idofv] + |duDlog v |dvfflvlGog |vI7)
v=90 — ldvl/lv]log |v|™ + |du| [dv ¥/l v|*(log | v|™)* + [dul|?
_ _ (Idu/u| + |dv/v|)(log | u |~ (| du/ul®* + Idv/v [F)(log | u |
uww =0 w=0 + log | w|™)™ + log | v|™*
wo =0 v =0 Jdul/lul(loglul“+loglv|“‘) (ldul/|w|(log | ul™ + log | ]™))*
+ ldvl/lv]log || + | dv|*/| v [*Qog | v |))*
— _ ldul/|w| log | w]™ [ dul®/] u|*(Qog | w|™%)?
w =0 1do /1w log | v1-* B dog o1y

Let {2,} be an exhaustion of M by relatively compact domains 2,
with smooth boundary. Then lim, Sa (B, k) A P) = 0, lim, Saa,,Pl A
dP, = 0, and lim, Sag P, =0, by the estimates in the above table. Here
we have used the fact that S e Idzl’/lzl(loglzl D for 0<e<1 is

finite. Let U, be a small nelghborhood of &,. Then by [10, Proposition
4], the following equalities hold (see p. 77, Added in Proof):

Sﬂ' (E, ') — SM’YI(E, By =

S Yo(E, B) —S v(B, h)= —lim S, S P, = [, {n(n +2)/(n + 1)} x*(type

A) + >, {(dnt — 4n — 9)/4(n — 2)}><*(type D,, m = 4) + {167/24} x*(type
E,) + {383/48} x ¥(type E;) + {1079/120} x (type Ey)] = —0d, where “lim” means
to go to the limit as U, tends smaller and smaller. Then we have the

following two equalities:
S 5 = S - S ¥ (B, W) = S v (B, h)* + 2lim§ v(E, h) A P,
M M M M n 00y
i 1im§ P, A\ dP, = S v(E, h) =&,
n a2, M
S%=§vg=§vz<E,h'>=§vz<E,h>—a+nm§ P,
M M M M n a2,

- S V(B R) —b=7,—0. q.e.d.
M

PrROOF OF THEOREM 2. We begin with the following general remark
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due to Chen and Ogiue [3]. Let (X, ds? be an arbitrary Einstein-Kaehler
surface. Write s and R,;; for the scalar curvature and the Riemann
curvature tensor. We introduce the tensor 7,;; which measures the
pointwise deviation of ds* from the complex space form metric. This is
given by T3 = Ru5i — 8(0.507s + 0.305:)/6. By a direct tensor calculation,
we see 0 = > [ Tosl’ = 20 | Russ* — 8%/3. On the other hand, 3v, — 7=
(1/167*) (3 >} | Roz3F — s%, where 7; denotes the i-th Chern form formally
computed from ds®. We apply this to our case. Let (M’, ®) be the
complete Einstein-Kaehler V-manifold in Theorem 1. Then we have 3%, —
¥ = 0. We thus have the required inequality by integrating this point-
wise inequality on M’ and applying Lemma 9. Next, we consider the
case where the equality holds. In general, let (Y, g) be a V-manifold
with a complete V-metric q. The notion of geodesics on a V-manifold
was defined as follows. Let v’ be a curve in Y passing through a singular
point p. We say that 7" is a geodesic through p if 7' is a push down
of a geodesic in a local uniformization, i.e., if n: B— B’ is a local unifor-
mization near p, there is a geodesic v in B such that ' =zv. In our
case, Y = M’ and ds® is the canonical complete Einstein-Kaehler V-metric.
The equality sign holds in our inequality if and only if T,;; vanishes
identically on M’, i.e., @ is of negative constant holomorphic sectional
curvature and hence the ball-metric. There are domains U in B% U’ in
M’ and an isometry ¢:U —U’. Choose a point o in U. We define a con-
tinuous map @ of B* to M’, which is an extention of ¢, as follows:

D(exp,(v)) = eXPy(o (94 () , for wve T,B*.

Since the Hopf-Rinow theorem is true for (M’, &), ® is a continuous
surjective map. Let @ be the set of all singular points of M’'. Q is a
discrete set in M'. @7XQ) is also discrete in M’. Note that B? — 0}(Q)
is simply-connected. In the following, we shall prove that @ = @|(B* —
0~4(@)) is a locally biholomorphic universal covering map of M’ — Q. Let
7:[0, I] — B* be a broken geodesic outside of @~'(Q) starting from o, with
the break points 0 =¢,<¢ < -+ <t, <t,, =1 Write ;v for 7|[0,¢,]
and «; for the tangent vector to v|[¢t, t...] at £;. We define a broken
geodesic v’ in M’ starting from ¢(o) as follows. Define ,v': [0, t,] — M’ by
() = expyo oy (). If 7¥':]0, t,] - M’ is defined, we define ,,.,7": [0, ,,,] —
M’ by

(@) ’ if te]0, t]

exXP yr ) ((E — ti)(PiT’ °ogy o P,';l(xt))) _ if telt;, tinl,

where P, stands for the parallel transportation along a piecewise smooth
curve ¥. Using broken geodesics ¥ and 7/, we define a map ¥: B*—0}(Q) —

7' (t) =
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M’ — @ as follows. For a broken geodesic 7: [0, [] — B* outside of &7%(Q),
we define ¥(v(l)) = ¥'(I). This is well defined as a map to M’, since &7*(Q)
is discrete in B?. Suppose ¥ (7(t)) = ¥'(t) is in @, for some ¥ not passing
through @*(Q). We consider the geodesic 7, in B* from o to 7(t) and
approximate v, by broken geodesics from o to ¥(¢) disjoint from @7*(Q).
By the continuity argument, we see @(Y(t)) = 7'(t) is in Q, which is absurd.
We claim that ¥ is a local isometry. Let R and R be the Riemann
curvature tensor of B* and (M’', ®). If we set ¢, = P,¢,P;*, then we
have ¢;(R(x, ¥)z) = R(¢;(x), 6:(y))$:(2), for any broken geodesic ¥ in B® —
?7Y(Q) starting from o, since the curvature tensor is parallel for the ball-
metric. Hence the claim follows. Since any isometry between germs of
real-analytic Riemannian manifolds is real-analytic, ¥ is real-analytic on
B> — 907Y(@Q). By the continuity argument, ¥ coincides with @'. So, @’
is real-analytic. Since @' is holomorphic in U, @' is holomorphic in B? —
@4(Q) by analytic continuation. Since ¥ is of maximal rank everywhere
on B* — 7Y(Q), so is @ everywhere. Therefore ¢': B* — 0°}(Q) - M’ — @
is locally biholomorphic universal covering map. The deck transformation
group consists of biholomorphic automorphisms of B* — @*(Q). By the
Hartogs theorem, these are extended to biholomorphic automorphisms of
B2. Thus we obtain a group I" acting properly discontinuously on B?
with only isolated fixed points such that I'\B*= M. q.e.d.

6. Examples.

ExAMPLE 1. Let D’ consist of n lines in general position in P>. We
blow up n(n — 8)/2 intersection points so that there remain two points
not blown up on each line. Let M be the resulting manifold and D the
proper transform of D’. Then D is a cycle of P’s. If » = 7, then (M, D)
is an example of Theorem 1. In this case, ¢ = (n* — 9n + 18)/2, ¢, =
n? — 4n + 3.

EXAMPLE 2. Let D’ consist of three nonsingular curves of degree 3
in general position in P?. Blow up all 27 intersections. Let M be the
resulting manifold and D the proper transform of D’. Then D consists
of three nonsingular elliptic curves of negative self-intersection number.
(M, D) is an example of Theorem 1. In this case, ¢t =9, ¢, = 57.

ExAMPLE 3. Let B® be the open unit ball in C% I' a discrete group
of automorphisms acting on B without fixed points. Assume that the
volume of I'\B is finite. Then we can compactify I'\B by adding non-
singular elliptic curves to a nonsingular projective surface M. This is
verified by representing B? as the Siegel domain of the second kind and
determining the form of the parabolic automorphisms fixing the boundary
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point v = . By a simple matrix computation, we can show that they
are of the form (n, v) — (u + 2i%v + ¢|7|* + (real number), v + 7). The
resulting pair (M, D), where D is a divisor at infinity consisting of
mutually disjoint elliptic curves, is an example of Theorem 1.

ExAMPLE 4. In [17, p. 134], U. Persson gives an example of the
degenerations of Godeaux surfaces w: M — 4, where M is a smooth three-
fold, 4 an open disk, and = a proper surjective holomorphic map. A
Godeaux surface is a compact complex surface whose universal cover is
a nonsingular quintic surface in P?® and whose fundamental group is Z,.
M, = n7'(t), t #+ 0, is a nonsingular Godeaux surface, and M, = #~*(0) is a
singular surface. We obtain M, by contraction of a multisection of a
certain elliptic ruled surface as follows. There is a blown up elliptic
ruled surface M with the following structure. There is an elliptic curve
C which is a five-section in I (i.e., the restriction of the projection M —
B to C is a five fold covering over the elliptic curve B) with the nu-
merical conditions (Kz + [C])? = 1, C* = —3. There are two singular fibers
in M both of which consist of two (—1)-curves meeting transversely at
one point. C cuts these (—1)-curves as in Figure 1. E; and E; are (—1)-
curves in this figure. We shall show that (M, C) satisfies the condition
(*) in Theorem 2. In general, let X — B be a blown up elliptic ruled
surface, C an elliptic curve which is an n-section. Let 7: X — X, be the
blowing up from a minimal model X,, N the number of blow ups and E,
(t=1, ---, N) the exceptional divisors. Assume that C cuts each E, at
y; points. Then C = n*C, — D\, v,E,, K = n*K, + D\, E,, where K = Kz,
K, = Kz,, H,(X,, Z) is generated by the homology classes x of a fiber and
y of a section such that * = —e (—1=<¢). Since K,= —2y —ex and

E, Ey
c
c
c X
c
c
E, E,

FIGURE 1
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(K, + C)C, = D, v,(v; — 1) (the Pliicker relation), C, can be written as
C,=ny + ax with a = 3., v,(v; — 1)/2(n — 1) + ne/2. Since (K + C)C =
0, we get

(K+C)r=(K+ C)K = r*K, + C,) — g : — l)E'i)(fC*Ko + é Ei)
= (K, + C)K, + 15; -1
= (n —2)y + (@ — e)x)(—2y — ex)+ fi‘ @ -1
= 2e(n — 2)—2(a — e)—e(n — 2) + iﬁ:‘,l(vi -1
— _N-— iz:»i(ui 1)/ —1) + g v,
= —N+ izjlvi(n —v)/m —1).

By [17, Propositions 1.2 and 1.3], we may assume that each vy, < n/2.
Then v, (n — ;) — (n — 1) = —(, — n/2)* + (n*/4) — (mn — 1) = 0, where the
equality occurs if and only if every v, equals one. Hence if (K + C)* >
0, then N > 0 and some vy, = 2, in particular n = 2v, = 4. In Persson’s
example, (K+Cy=1,C*= -8, N=2 and v, =y, =2. Namely, one
obtains X, by blowing down E, and E; in Figure 1, and C, has ordinary
double points at the images of E, and E;. Now we try to find necessary
additional conditions for K + C to be ample outside of C (i.e., K + C
satisfies the numerical conditions (K + C)* > 0, (K + C)Z = 0 for all irre-
ducible curves Z in X and (K+ C)Z =0 if and only if Z=C). If Z is
a curve contained in E;, then (K + C)Z = (z*( K, + C,)) — 2 X, (v, — 1)E)Z =
(v, — 1)(E.Z). So, if (K + C)Z > 0, then every v, = 2. If Z is a general
fiber, then (K + C)Z = (K, + C)x =n — 2. If Z is an irreducible curve
which is not a fiber and cuts each E,; p,-times, then Z is written as Z =
qy + px, where p = (eq/2) + (0L, vits — 23, vi(v; — 1)g/2(n — 1)}/n, because
C,Z, = (ny + ax)(qy + px) = >, v,¢t;. Therefore,

(K + OV = @K, + C) — 3,0 — VE)(2"Z, — X 1E,)
= (K, + C)Z, — 3, 0 — Dpty = —ge(n — 2)

+ q{g v — D2 — 1) + (n — 2)e/2} + pn — 2)

N ’)’I/—ZN N
gqévi(vi—l)/n(n—1)+ p éyi#i—g}(w—lm-
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Here, v;(v; — 1)/n(n — 1) + (i — 2y, /n — (v, — 1) =1 — 2n — vy, — 1)/n(n —
1) > 0, since 2 <y, < n/2 for every ¢. From the above arguments, we
conclude the following: If 2 <y, <n/2 and N > 0, then the pair satisfies
the condition (x) of Theorem 1. In this case, Kz ® [C] is ample outside
of C.

The logarithmic Chern numbers are given by

Gi= —N+3um—v)n—1)=—-N-Cc=N.

The inequality 3¢, = ¢? is rewritten as 4N = —C? = DX, vi(n — v)/(n — 1).
X = X — C admits a unique complete Einstein-Kaehler metric with nega-
tive Ricci curvature up to constant multiple. We do not know the
convergence of the canonical Einstein-Kaehler metric of M, to the can-

onical Einstein-Kaehler metric of X = M, — (singular point).

ExAMPLE 5. Let D’ be a sum of three curves C:z; + 27 + 27 = 0,
C,:2,=0, and C;: 2z, =0, where n =2, in P?. Let ¢ = exp(2ri/n), and g: P*—
P? be the automorphism defined by g(z,: 2. 2,) = (ez,: €¥2,: 2,), with (n, k) =
1. The group G generated by g is Z/nZ. Each element of G has a unique
fixed point (0: 0:1). By Fact E in the next section, there is a unique
Einstein-Kaehler metric in P? — D’ with negative Ricei curvature. It
follows that (P* — D’)/G admits a unique Einstein-Kaehler metric which
comes from that of P* — D’. On the other hand, the quotient variety
M' = P*/G has one singular point corresponding to the fixed point (0: 0: 1).
The exceptional set E of the minimal resolution M of M’ is given by
the chain of P"s with self-intersection numbers (b,, b, - -+, b,), where b,’s
are determined by the continued fraction n/k =0b, — (b, — (+++ (b,_, —
b;—1>-1 . .)~1)—1.

Let D be the sum of E and the proper transform of D’. Then (M,
D) satisfies the condition (1.1) of Theorem 1. Kz & [D] is not ample be-
cause (Kz + D)Z = 0 for any curve Z in ECD but it is not trivial near
D, because (Kz + D)Z > 0 for any curve in D — F.

7. Miscellaneous Results. I would like to take this opportunity to
state some consequenses of the following:

FacT E (cf. [9]). Let M be a compact complex manifold and D a
divisor with only simple normal crossings. Suppose that the first Chern
class of Kz ®[D] is positive. Then there is a complete Einstein-Kaehler
metric on M = M — D with negative Riceci curvature which is unique up
to multiplication of positive numbers.

We shall prove the following:
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THEOREM 3. There exists a simply-connected mnoncompact complex
manifold which admits a complete Einstein-Kaehler -metric of finite
volume with megative Riccr curvature but which admits no Riemannian
metric with nonpositive sectional curvature.

The following well-known result can also be proved using Fact E.

PROPOSITION 1. Let (M, D) be as in Fact E. Then the group of
biholomorphic automorphisms of M = M — D is a finite group.

In the proof of Proposition 1, we shall use the following:

PROPOSITION 2. Let (ML D) be as in Fact E. Then any biholomorphic
automorphism f: M — D— M — D extends to that of M preserving D.

We can prove Proposition 2 by induction using the following: (1)
There exists a complete Einstein-Kaehler metric on M — D with negative
Ricei curvature (Fact E). (2) The general Schwarz lemma of Yau [21]
tells us that any biholomorphic map between complete Einstein-Kaehler
manifolds of the same negative scalar curvature is an isometry. (3) If
4" is a coordinate polydisk of M such that (M — D) 4™ = (4%)* x 4 *, then
the canonical Einstein-Kaehler metric of M — D is equivalent to (4*, the
Poinearé metric)t x (4, the flat metric)"* in a small deleted neighborhood
of Din 4. (4) Write C, = >,; D;,nN D, for the intersection of D, with
the other D,’s, which is a redused divisor with only simple normal
crossings. Then Kz @ [D]|D; = K,, ® [C;] and ¢,(K,, ® [C,]) > 0.

The rest of this section contains proofs of Theorem 3 and Proposi-
tion 1.

PrOOF OF THEOREM 8. Let S be a nonsingular hypersurface in P~
(n=2) of degree d =n + 2. Since ¢,(Kp) = —(n + 1)k and ¢,([S]) = dk,
where h is the Poincaré dual of a hyperplane, we see c,(Kp & [S]) > 0.
By Fact E, there exists a complete Einstein-Kaehler metric with negative
Ricei curvature on P* — S. So, it suffices to prove that the universal
covering of P» — S does not admit any Riemannian metrics of nonpositive
sectional curvature. We give a proof of a classical result z,(P"— S) = Z,.

(1) Case n=8: Since P and S are simply connected and S is non-
singular, 7,(P" — S, p) is generated by a single element g represented by
a loop starting from p and linking S simply. Let I be a line through p
intersecting S transversely at p,, ---, p;. Let g, be a loop which starts
from p and goes around p, alone. Then each g, is homotopic to ¢ in
P" — S. Since [ is topologically a 2-sphere, it is clear that ¢g,g,---9, =1
in 7,(l — p,—---—p;) and hence ¢¢ =1 in 7,(P" — S). Moreover no lower
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power of g is equal to the identity. Otherwise, there are only d,-fold
coverings of P" — S where d, < d. On the other hand, if S is given by
the zero locus of a homogeneous polynomial f(x,, «,, -+, ;) of degree d,
then the zero locus of %2, — f(®@y %1, « -+, %g) in P**' is a d-fold branched
covering of P™ branched over S, a contradiction. Hence z,(P" — S) is
the cyclic group of order d.

(2) Case n =2: Note m,(S)#0. To begin with, we note that any
loop 7 in P? — S can be deformed in P* — S to a loop lying in a generic
line of P*. Let [ be a line intersecting S transversely. Then P*—1 = C?,
v can be deformed in P2 — S to a polygon ¥ with a finite number of
edges. Let K be the union of all lines determined by two vertices of
%. Pick a point x from P*— S —1 — K. Regard P®— x as the total
space of the hyperplane bundle over P!. Then each fiber contains at
most a finite number of points of ¥. After rotating 7 by the U(1)-action
on P? — g if necessary, we can deform 7 to lie in I. Let p be in I\ S,
InNS={p, -+, vs}, and g; a loop determined by [, p, p, as above. Then

,(P* — S) is generated by g¢,, ---, g;. In the homotopy exact sequence
0—7,(SY) >, (ON)—m,(S)—0, of the S™-bundle N(S)— S, every g, comes
from S'. We may assume g, = ¢,=--- =g, under suitable orientation of

g.’s. The rest goes exactly the same as in the case of n = 3.

From the above arguments, the universal cover of P" — S is the
nonsingular hypersurface «¢,, — f(x,, *++, %,) = 0 minus S. Let it be de-
noted by M and the compactification of M in P*** by M = MUS. There
is a complete Einstein-Kaehler metric on M with negative Ricei curvature.
Now we show that M admits no Riemannian metric of nonpositive curva-
ture. Suppose there is such a metric on M. The Cartan-Hadamard
theorem tells us that M = M — S is diffeomorphic to R* and therefore
there is a small tubular neighborhood N(S) such that X = M — N(S) is
homotopic to M — S~ R*. It follows that 6X = N(S) is a homology
(2n — 1)-sphere by the exact sequence

ot HHG(X) —)Hq(Xy aX) —_)Hq—1(aX) —H, —1(X) >
Ul
HZH—G(X)
Applying the Gysin exact sequence to the S'-bundle 90X — S, we obtain
the following exact sequence.
« = H(0X) — H,(S) — H,_4(S) = H,,(0X)— + - -

Since 94X is a homology (2n — 1)-sphere, S has the same Betti numbers
as P!, On the other hand, the total Chern class of S is given by
¢(S) =1 + k)" + dh)™*, where h e H*S) is the restriction to S of the
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Poincaré dual of a hyperplane in P". Hence
(=176, (S) = {(d — D™ — (=1"(n + Dd + (=1,

and
(—1)"¢(S) = SS (=1, (S) > nd/2, m =e(P™ ).

A contradiction. q.e.d.

PrROOF OF PROPOSITION 1. There exists a canonical complete Einstein-
Kaehler metric on M — D by Fact E. Any biholomorphic map of M — D
is an isometry with respect to the canonical metric. Since the volume
of M — D measured by the canonical metric is finite, the group of iso-
metries is compact with respect to the compact-open topology. Let f;
(=1 =t=<1)bea smooth one-parameter family of biholomorphic maps of
M — D. By Proposition 1, we can and do extend this family to a family
of holomorphic maps f; of M. The vector field defined by X(z) =
(d/dt),-.f.(2) in M is a Killing vector field in M — D with respect to the
canonical metric. By the same arguments as in Proposition 2, we may
assume that D is a nonsingular hypersurface. The extended f, induces
a smooth one-parameter family g, of biholomorphic maps of D. Since
¢,(Kp) >0, the group of biholomorphic maps of D is a finite group. Thus
g.= ¢,. It follows that X(z) =0 on D. Hence the length of X(2) measured
by the canonical metric goes to zero at infinity D. Indeed, if D is given
locally by 2z, = 0, the length of X is of order O(|z,|), and the canonical
metric is of order |dz,|*/|z,[*(log |2,|7%) + |dz,*+ -+ - +|dz,[>. For any Killing
vector field Y,

(L) AIYIF2) = 331195, Y| — Rie(Y, Y) ,

where A is the Laplacian, {V;} an orthonormal frame. Suppose that || X]||
is not identically zero. Thexn || X| has a relative maximum at a point 2
in M — D, since || X|| goes to zero at infinity. At 2, the left hand side
of (1.1) is nonpositive and the right hand side is strictly positive, since
the Ricei tensor of the canonical metric is negative, a contradiction.
Hence X =0 and f,=f,. The group of automorphisms of M — D is
discrete in a compact set and is a finite group. q.e.d.

REMARK 1. Yau [22] obtained the following result: There exists a
simply-connected compact complex manifold which admits an Einstein-
Kaehler metric with negative Ricci curvature. For example, consider
any smooth hypersurface of degree d = n + 2 in P" (n = 8). Then this
is a compact complex manifold satisfying the condition of Fact A. In
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particular, the above space does not admit any Riemannian metrics of
nonpositive sectional curvature. Therefore Theorem 3 is regarded as a
noncompact version of the above result of Yau.

REMARK 2. The differential geometric aspects of the results in [15]
will be treated in the forthcoming article, which contains a sufficient
condition for the simultaneous resolution of quotient singularities in terms
of “Chern classes”. This corresponds to the existence of a complete
Einstein-Kaehler V-metric with negative constant holomorphic curvature.
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Added in proof. The formula for 6 = —k(M)/3 in [10, Proposition 4]
(see [10, p. 398 and the formula (4) on p. 393]) was incorrect and should
read as follows:

k(M) = 3{zn; (n(n + 2)/(n + D) xH(type 4,) + 3 ((4m* — dm — 9)/d(m — 2)
% #(type D,, m = 4) + (167/24) % £(tpye E,) + (383/48)
x #(type B,) + (1079/120) x #(type EB)} .

As a result, the proof of the proposition was wrong from p. 398 line 14
on. However, it follows as a special case from Theorem 2 in my paper
“Einstein-Kahler metrics on open Satake V-surfaces with isolated quotient
singularities”, to appear in Math. Ann.. Thanks are due to David
Morrison, who pointed out the error.








