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0. Introduction. The moduli space for marked polarized KS surfaces
or equivalently the moduli space for marked KS surfaces with a Ricci-flat
Einstein-Kahler metric is constructed in [Tl] and [L]. This moduli space
is isomorphic to an open dense subset KΩ° of

KΩ := SO0(S, 19)/SO(2)xSO(19) .

So, it is natural to ask what geometric objects correspond to the "hole"
KΩ\KΩ° of the moduli space. The purpose of the present paper is to
make some contribution to this question from differential geometric point
of view. Namely we consider the polarized period map for KS surfaces
with simple singular points. The flavor of our main result is most
typical in the following:

THEOREM 7. The moduli space of all Einstein metrics on a KS
surface, including Einstein-orbifold-metrics along simple singular points,
is isomorphic to

Γ\ (SO0(3, 19)/SO(3) x SO(19)) ,

where Γ is the full group of isometries of the KS lattice

/0 lϊ

\1

For the proof of this theorem we need two main ingredients, one
from algebraic geometry and the other from differential geometry. The
algebro-geometric ingredient is the contribution due mainly to Todorov
[Tl], Looijenga [L], and the generalization of their arguments by Morrison
[Mrl] which is very important in the present paper. The differential
geometric ingredient is the solution of Calabi's conjecture due to Yau
[Yal] and the equivariant version of it which asserts the existence of
a Ricci-flat Einstein-Kahler orbifold-metric on certain complex orbifolds.
The existence of a Ricci-flat Einstein-Kahler orbifold-metric makes it
possible to use the "isometric deformation" of Kahler structures on
generalized KS surfaces.
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Einstein-Kahler orbifold-metrics were also used to characterize the
ball quotients of finite volume in terms of numerical invariants of orbifolds
[CY] and [Kb]. In differential geometric words, that is the criterion for
the vanishing of the anti-self-dual Weyl tensor of the Einstein-Kahler
orbifold-metric under consideration. In exactly the same spirit, we will
obtain the criterion for the vanishing of the full curvature tensor of a
Ricci-flat Einstein-Kahler orbifold-metric in terms of the numerical in-
variants of the orbifold:

THEOREM 9. Let X be a complex surface with at worst simple
singularities whose minimal resolution is a KS surface. Then,

2 4 - Σ

where Ep and \ Gp | are the exceptional divisor for the minimal resolution
for peSingX and the order of the corresponding local fundamental
group Gp, respectively. The equality holds if and only if X is obtained
as the quotient of a complex two torus with respect to the discrete group
of Euclidean motions.

The first author would like to express his gratitude to Professor
David R. Morrison for directing his interest to this subject and sending
him his paper [Mrl]. The reference [Va] was also pointed out to him by
Morrison. Both authors would like to express their thanks to the Max-
Planck-Insitut fur Mathematik for support and hospitality. Finally both
authors thank referees for pointing out to them errors contained in the
first version of this paper.

1. Review on the moduli of KS surfaces and the formulation of the
problem. A KS surface is a compact complex surface X which is connected
and simply connected and has trivial canonical bundle Kx, i.e., Xhas a unique
(up to constant) nowhere vanishing holomorphic 2-form ωx. The notion
of a KS surface is invariant under deformation, i.e., any deformation of
a KS surface is a KS surface [Kd]. Moreover any two KS surfaces are
deformations of each other [Kd]. So, there exists a unique underlying
differentiable manifold of KS surfaces which turns out to be a smooth
quartic surface in P3(C). Hence the lattice H\X; Z) with the cup bilinear
form is the same for all KS surfaces X and can be called the KS lattice.
KS lattice L is the unique even unimodular lattice of rank 22 and index
^16, i.e.,
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where EQ is the even unimodular positive definite lattice associated with
the Dynkin diagram of type EQ.

DEFINITION. A choice of an isometry

a: H2(X; Z)^L

is called a marking for X. A pair (X, α) of a KS surface X and a
marking a is called a marked KS surface.

Let (X, a) be a marked KS surface. H2'\X) is a C-vector subspace
of H\X) C) = Lc of dimension one generated by ωXj which satisfies

(ωx, ωx) = 0 and (ωx, ώx} > 0 .

We can thus associate to (X, a) a point [ac{o)x)\ in the classical period
domain

Ω = {ω 6 Lc; <ω,α>> = 0 , <α>, ώ> > 0}/C*

which is an open subset of a hyperquadric in P21(C).
The classical period map for marked iί3 surfaces is the map sending

a marked KS surface (X, α) to the point [ac((θx)] in Ω.
Another description for Ω which we will use later is the following:

Ω = {all oriented two-planes EczLR such that < , }\E is positive definite}.
In this description for Ω the classical period map for marked KS surfaces
(X, a) is expressed as

"αΛ-image of the two-plane Ex in H\X; R) spanned by"

(X, a) i Reωx and lmωXf where ωx is a generator of H2>\X)

and the orientation of Ex is given by (Reωx, Im%)._

The classical period domain parametrizes effectively the local universal
deformation (Kuranishi family) for any KS surface X. If p: (X, X)-»(S, 0)
is the Kuranishi family for X, we then have a diffeomorphism t: XxS—>X
such that pot = pr2. Once we choose a marking a: H\X; Z) —>L, we get
a marking for the family by setting

as:=aot*:H2(Xs;Z) >L
\ /

TJ2/ V. ^ \

We thus get a marked Kuranishi family (X—>S, α), which has a period
map τs:S—>Ω, defined by

S 9 s H* τs(s) = [αβc(α)Zβ)] .

Now the local Torelli theorem due to Andreotti-Weil and Kodaira [Kd]
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states that the map τs is holomorphic and a local isomorphism at 0.
Every point xeΩ determines a Hodge structre of weight 2 on L in the
following way: If ωeLc is a representative for x, we define

H2'\x) =

H°>\x) =

H^(x) = (H2'\x) + H°>\x))L(zLc .

Although the local Torelli theorem is true, one cannot construct a uni-
versal family of KS surfaces on Ω. In fact, Atiyah [At] constructed two
non-isomorphic families of K3 surfaces with the same period map. The
reason is that the classical period domain sees only Hodge structures,
although the rational curves on a K3 surface play an essential role in
the construction of the fine moduli space. The following construction due
to Burns-Rapoport [BuR] clarified the importance of the rational curves
on a KS surface. For x eΩ, let V+(x) be one of the connected components
of V(x) = {fce Hι>\x) Π LR; <*, K) = 1}, and let Δ(x) = {δ e Hι>\x) Π L; <δ, δ> =
-2} and V/(a?) = {ιc e V+(x); </c, δ> Φ 0 for all δeJ(x)}. Since Ω is simply
connected, it is possible to make a continuous choice of V+(x) with respect
to xeΩ. For a KS surface X, we define:

Δ(X) = {3 6 ίΓ'^X) n H2(X; Z); <δ, δ> = -2}

and Λ+(X) = {all effective δeJ(X), i.e., δ corresponds to an effective di-
visor on X}. By the Riemann-Roch theorem, δ or — δ is effective for all
<5e J(X). So, Δ(X) = Δ+(X)\J{-A+(X)) and if δl9 •••, δ,6 J+(X) and δ =
Σ ^ A with Zsn^O then δeJ + (X). Let F+(X) be the connected
component of F(X) = {Λ:6flΓ1 1(-X")ΠjHΓ2(X;Λ); <£, /c> = 1} which contains a
Kahler metric on X. We define

V?(X) = {tc 6 F+(X); </c, Λ:> = 1, </r, δ> > 0 for all δ e Δ+(X)}

for a KS surface X. The half cone

= {Λ: 6 H^iX) n ίί2(X; Λ); <*, Λ:> > 0, </c, δ> > 0 for all δ e Δ+(X)}

over Vp(JΓ) is the Kahler cone for X. Note that every if3 surface admits
a Kahler metric (cf. [Si]), i.e., V$(X) Φ 0 . The Kahler cone ^V(X) for
a Kahler surface X is originally defined by

\κ 6 H^(X) n ίί2(X; Λ); </r, Λ:> > 0 and </r, δ> > 0)
( ) ^/(X) ( f o r a l l effective classes δ 6

But in the case of KS surfaces, it is sufficient to check the property
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(*) for (-2)-effective classes deΔ+(X). See, for example, [LP]. Burns-
Rapoport [BuR] defined the Burns-Rapoport period domain Ω in the
following way. Define two fiber spaces KΩ°, KΩ over Ω by

KΩ = {(*, [ω]) eLRxΩ;/ce V+(x)} , and

KΩ° = {(*, [ω]) eKΩ tce Vt(x)} , where x = [ω] .

Let π: KΩ°-»Ω = (KΩ)°/~ be the quotient map defined by (K, ω)~(/c', ωf)
if and only if ω = ω' with K and κf being in the same connected com-
ponent of the fiber prϊ\[ω]) in KΩ°. For each xeΩ, define the subgroup
W(x) of Aut(L) Π SO(H1Λ(x) Π LR) generated by the reflections

s(δ):χ\->x + (x, δ)δ ,

where δ runs over the whole Δ(x). Since jH"M(α0 ΓΊ L* has signature (1, 19),
W(x) acts properly discontinuously on the hyperbolic 19-space V+(x) (cf.
[Vn]). The set of fundamental domains in V+(x) is in one-to-one corre-
spondence with the set of the partitions of Δ(x) into Λ+(x) and — J+(x)
with the property that if δ19 , δk e Δ+(x) and δ = Σ n^i with Za ^ ^ 0,
then δ e Δ+(x). For a partition P: J(«) = J+(a;)U -(Δ+(x)), the correspond-
ing fundamental domain V?(X) is {a;e F+(x); (x, δ) > 0 for all δe J+(^)}
which turns out to be a locally finite "polyhedron" whose sides are given
by hyperplanes Hδ — {δ}1 for δeΔ(x). The Burns-Rapoport period map
associates to each marked KS surface {X, a) the point in Ω determined
by π(aR(tc), [aR(ωx)]), where tc is a Kahler class on X. For this period
map, the following is known (cf. [BuR]):

THE GLOBAL TORELLI THEOREM. Let X and X' be two X3 surfaces.
If there is an isometry φ: H2(X'; Z) —> H\X; Z) satisfying φc([(θχ]) =
c[(t)χ>] for some ceC* and φR(V£(X')) = V$(X), then there is a unique
isomorphism φ: X-+X' with φ* = φ.

This was first proved by Prateckii-Shapiro and Shafarevich [ShP] in
the algebraic case and refined in the Kahlerian case by Burns-Rapoport
[BaR], simplified by Looijenga-Peters [LP]. This theorem means that any
two marked KS surfaces having the same Burns-Rapoport periods are
isomorphic in a unique way. For the surjectivity of this period map,
Todorov [Tl] proved:

SURJECTIVITY THEOREM. For every xeΩ, there is a marked KS sur-
face whose Burns-Rapoport period is x.

For the proof, he used Yau's solution to Calabi's conjecture i.e.,
isometric deformations of Kahler structures with respect to a Calabi-Yau
metric. The same technique is used in this paper, but now for a Ricci-flat
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orbifold-metric. We can thus use the Local Torelli Theorem, the Global
Torelli Theorem, and the Surjectivity Theorem to glue up marked
Kuranishi families (which should be small enough to be embedded in Ω)
via the Burns-Rapoport period map to identify Ω with the fine moduli space
for marked K3 surfaces. As was shown by Atiyah [Atl] (see also [LP]),
the space Ω is not a Hausdorff space. Moreover, Aut(L) cannot act on Ω
in a properly discontinuous fashion. Morrison [Mrl] made a great progress
in avoiding such unsatisfactory properties of Ω by introducing the polariz-
ed period map for generalized KS surfaces instead of Burns-Rapoport
period map for smooth KS surfaces. The following definitions are due
to Morrison [Mrl].

DEFINITION. A compact complex surface X is called a generalized
KS surface if X has at worst simple singular points and its minimal
resolution Y is a KS surface.

DEFINITION. Let I b e a generalized KS surface and ρ:Y-^X its
minimal resolution. Let δ19 •• , δkeH1'\Y)f]H\Y; Z) be the classes of
all (—2)-curves contracted by p. The root system R(X) and the Weyl
group W(X) of X are defined by

R(X): = {§ = Σ aA e H\ Y; Z); a, e Z, <δ, δ) = -2} and

W(X):= the group generated by {s(δ); δ eR(X)}aIsometτy(H\Y; Z)) .

DEFINITION. We let I(X) := H\Y; Z)w(x), i.e., the set of all classes
orthogonal to R(X). Note that I(X)C contains H2>0(Y) and so determines
a Hodge structure on H\ Y; Z)

DEFINITION. A metric injection

is a marking of X if a is extendable to an isometry a of H\ Y; Z) to
L. A pair (X, a) is a marked generalized KS surface.

DEFINITION. For a generalized K3 surface X, we let

(rceVTϊT); for all δ e Hλ>ι{ Y) n H\ Y; Z) with)
V$(X): ^ ^ 2 ^ δ > = o . f ^ d o n l y . f

where V?(Γ) = {iceiff1^ Γ)ni ϊ 2 (Γ; Λ); </c, /c> = 1 and (/c, δ) > 0 for all
effective (—2)-classes δ on F} as before. The Kahler cone ^V(X) is
defined by

%?P

+(X):=R+xVP

+(X).
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DEFINITION. An element φ e V£(X) is called a polarization on X.
A triple {X, φ, a) is a marked polarized generalized KS surface. The
polarized period map p for marked polarized generalized KS surfaces
sends {X, φ, a) to p{X, φ, a) = {aR{φ), [ac{o)γ)] e KΩ.

For this map, Morrison [Mr] proved the Polarized Global Torelli
Theorem for marked polarized generalized KS surfaces:

THEOREM A (cf. [Mrl]). Let {X, φ) and {Xf, φf) be two polarized
generalized KS surfaces and let p: Y-^X and p': Yf'—>X' be their mini-
mal resolutions. Suppose 7: P(X')—> P(X) is an isometry such that
Ύc(H2'XY')) = H2>\Y), yR{φ') = φ, and extends to an isometry Ύ: H\Y',Z)->
H2{Y; Z). Then there is a unique isomorphim φ:X->X' such that
φ* = 7. φ comes from a unique isomorphism Φ:Y—>Y' which induces
isomorphisms of exceptional sets for p and p'.

For the surjectivity of this period map, there is a strong result due
to Looijenga [L] (see also [Tl] and [Na]):

THEOREM B (cf. [L]). For every {it, x) e KΩ\ there is a marked polar-
ized KS surface (X, φ, a) such that p{X, φ, a) = (ic, x) and the polarization
φ contains a Kdhler metric.

So it may be natural to ask what geometric objects correspond to
the hole KΩ\KΩ° of the moduli space of marked polarized generalized
KS surfaces. Morrison proved the following weak version of the Sur-
jective Theorem:

THEOREM C (cf. [Mr]). For every {it, x) e KΩ, there is a marked polar-
ized generalized KS surface {X, φ, a) such that p{X, φ, a) = {it, x).

Yau's solution to Calabi's conjecture tells us that KΩ° is the moduli
space for marked Einstein-Kahler KS surfaces. On the other hand a
point in the hole KΩ\KΩ° corresponds to a KS surface Y and a class
φ e H1A{ Y) with (φ, φ) — 1 such that the area of some effective curves
are zero. So, the problem is to find the singular Ricci-flat Einstein-Kahler
metric corresponding to φ. This question was asked by several authors
(cf. [Be], [Mrl]). We shall solve this problem in the following sections.

2. Ricci-flat orbifold-metrics on generalized KS surfaces. In [Ya2],
Yau presented some results for the existence of a sigular Ricci-flat Kahler
metric on certain complex manifolds. Since [Ya2] is not published yet as
far as the authors know, we include the proof of the equivariant version
of the Calabi-Yau theorem in this section. There may be many ways ar-
ranging the material involved in Yau's proof of Calabi's conjecture. Here,
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we shall prove the simplest version sufficient for our purposes, namely
filling the "holes" of the moduli space of Einstein metrics on a KZ
surface.

THEOREM 1. Let X be a compact complex surface with at worst
isolated quotient singularities. Let Y—>Xbethe minimal resolution and
D = Σί A its exceptional sets decomposed into irreducible components.
Choose non-negative rational numbers μt less than one such that Kγ +
ΣiJ"iA~0 near D {such μ/s are uniquely determined). Assume that
some tensor power of Kγ + Σ* ̂  A is a trivial line bundle over Y. Then
for any Kdhler form φ in the sense of Fujiki-Moisezon (if exists) on X,
we can find a unique real-valued orbifold-smooth function U on X up to
additive constants such that φ + i/ — iddU is a Ricci-fiat Einstein-Kdhler
orbif old-metric form on X. Moreover φ + V^ΛddU defines a closed
current on Y cohomologous to φ in H\Y; R).

For the proof, we follow Yau's proof [Ya] of Calabi's conjecture
partially simplified by Bourguignon [Bo2], namely the simple proof for the
C°-estimate. It is easy to see that there exists a real valued orbif old-
smooth function Uo such that φ + V^ϊdd U0=:φQ is an orbifold-Kahler
form. Since the resolution of quotient singularities involve only poly-
nomial functions and there exist nonnegative rational numbers μi such
that Kγ + Σ* AA is trivial near D, the following estimates hold:

dz p* έ?{γ~ι), dw *

where ε is a small positive number, (z, w) are holomorphic local coordinates
near D and 7 = (|λ|2 4- |μ|2)1/2 is the distance function on the local uni-
formization B2: (λ, μ) of the quotient singularity corresponding to D.
It follows that for any orbifold-smooth function U on X the current
φ + V—133 U defines the same cohomology class as φeH\Y; R). Indeed,
we have only to show that

( ddcu A Ψ = 0 ,
JY

for any smooth closed 2-form Ψ on Y. This is equivalent to showing
that

limim ( dcu A t = 0 ,
-»0 JSs(r)

where ~ means form the lifting to the local uniformization and S\r) is
the sphere of radius r centered at the origin. But this is clear from
the above estimates. Since some tensor power of Kγ + Σ i f t A is trivial
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on Γ, there exists a Ricci-flat volume form V on X which is orbifold-
smooth. Thus we have

for some orbifold-smooth function / on X. To find ?7in Theorem 1, we
solve the following Monge-Ampere equation:

(1) (φ0+ 1/^38 U)2 = efφl on X.

The proof for the uniqueness of the orbifold-smooth U is exactly the
same as in [Ya] and [Bo2]. To solve the equation (1) we use the con-
tinuity method.

Let Ck>a(X) be the Banach space of all Ck functions on X whose fc-th
derivative are Holder continuous of exponent a. This means that any
element / in Ck>a(X) is of class Ck'a on local uniformations. The norm
on Ck'a(X) is defined in a completely analogous way as in the usual Holder
space. Consider the one-parameter family of equations:

(l)o has a solution 0 and (IX is what we want to solve. We show that
the non-empty set A = {t 11 e [0, 1] and (1), has a solution in Ck'a(X)} is

open and closed. Let E be defined by J57 = \u\ueCk'a(X) and I uφ\ = θ | ,
a closed subspace of Ck>a(X). Suppose ueCk>a(X) is a solution of (1) and
let φ : = φ0 + x/^ϊdd U. Define

H:= \h\heCk-2>a(X) and ^hφ2 = θ} .

The openness of A follows from:

LEMMA. Δ-;:E->H is an isomorphism.

PROOF. Since I vΔφV = 1 \dv\\ is true in the orbifold category, the
map Δφ'.E-^H is injective. To show the surjectivity it suffices to
construct the Green function on the Riemannian orbifold (X, φ). The
standard technique to construct the Green functions works in our case.
See, for example, [Au]. q.e.d.

The closedness follows from the a-priori C°-estimate for U. For the
complex Monge-Ampere equation (φ + V — lddU)n = eFφn on the compact
Kahler manifold, where ω and F are given, a C°-bound for £7 is obtained
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in terms of the C°-bound for F. The main ingredients are: (a) the
construction of the Green function, and (b) the Sobolev inequality for

L\-ίunction / with I / = 0

G (n-2)/2n /f \l/2

on a compact Riemannian manifold. But (a) is carried out without dif-
ficulty in our case (see [Au]) and (b) is clearly true for some constant
e > 0. We thus get:

LEMMA. There is a C^-bound for U in terms of the C"-bound for F.

Since C2 and C2>oc estimates are carried out by local calculations and
the classical maximum principle, exactly the same arguments as those in
[Yal] gives us the C2 and O α bounds for U in our case, i.e., in the
orbifold category. Now the proof of Theorem 1 is complete.

In particular, any generalized K3 surface X with a Fujiki-Moisezon-
Kahler form <f> admits a unique Einstein-Kahler orbifold-metric form φ
such that [φ] = [φ] in H2(Y; R).

3. Isometric deformations.

THEOREM 2. Suppose that X is a generalized KS surface and ga-β is
an Einstein-Kahler orbifold-metric (necessarily Ricci-flat) on X. Then

(1) XxS2 has a complex structure X such that
(a) the projection π: X —> S2 = Pλ(C) is a holomorphic map and fibers

are generalized KS surfaces. From X —> P^iC) we can obtain a family
of non-singular K3 surfaces X—>P1(C);

(b) if (X, a) is a marked generalized K3 surface, then a induces
an isomorphism of local systems (in fact trivial systems) a: R2π*Zχ 2$
P1(C)xL;

(c) for each t e PX(C) the period in Ω of Xt = π~ι(t) is an oriented
two-plane in the three dimensional space EczLR spanned by (Reωx, Imα)j,
Im ga-β) or more intrinsicaly three linearly independent parallel self-dual
2-forms with respect to the Ricci-flat orbifold metric.

(2) For each t e Pλ(C) the Ricci-flat Riemannian orbifold-metric
(determined by gaj) on Xt is orbifold-Kdhlerian with respect to the cor-
responding complex structure.

(3) The base space Pλ(C) parametrizes all complex structures with
respect to which g is Kahler.

PROOF. The proof is based on the following two lemmas and the
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Andreotti-Weil remark.

LEMMA 1. The Kahler orbifold-metric ga-β is Ricci-flat if and only
if for a positive constant cGR+ we have an equality

φ A φ = cωx A ώx

of differentiate 4-/orms, where φ = Imgaj is the Kahler form of g and
ωx is the holomorphic 2-form on X without zeros and poles.

Its proof is clear.

LEMMA 2. Let (X, g) be as in Theorem 2. Let p be a (closed) 2-form
written as

p = aωx + bώx + eφ

where a, b, e e C. Then p A p = 0 as a form if and only if [p] A [p] = 0
as a cohomology class in H\X; C) where [p] denotes the cohomology class
of p in H\X; C).

PROOF. Since p A p - (2ab + e2c)ωx A ώx, p A p = 0 <— 2ab + e2c = 0

*-+ [|θ]Λ[jθ] = 0. The last equivalence is because of \ ωx A ώx> 0. q.e.d.
J X

ANDREOTTI-WEIL REMARK [W]. Let Y be an oriented (possibly non-
compact) differentiable manifold of dimension 4. If there is a C-valued
2-form p on X such that (a) p A p = 0, (b) p A p > 0 everywhere, and
(c) dp = 0, then Y admits a unique complex structure such that p is a
holomorphic 2-form.

PROOF OF THEOREM 2. S2 parametrizes all oriented two-planes in the
three dimensional space EaLR spanned by {Reωz, Imω x , Imgr^}. We
may assume that {Reωx, lmωx, I m ^ } is an orthonormal basis with re-
spect to < , >U Let Et be any oriented 2-plane in E and let α, β be an
orthonormal basis in Et. Then we define

ωt = a + iβ .

Clearly ωt A ωt = 0 and ωt A ωt > 0, since {a, β} is an orthonormal basis
in Et. So ωt = aωx + bώx + e Im ga-β and it defines a new complex struc-
ture on X. It is known that if x is a simple singular point on X and [ί
is a pseudo-convex neighborhood of x then Z7= F/G, where F c C 2 and
G(zSU(2). Let r: F\{0}^F\{0}/G = U\{x}. Then π*(ωt|FNίa?}) can be
prolonged to a 2-form on V invariant under the action of G. So in such
a way we get a complex analytic family H = {jteS2Xt. Here, we have
used the Andreotti-Weil remark twice: first on X\SingX to show that
ωt defines a complex structure there: then on V (where U = V/G) to show
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that this extends to an orbifold-complex structure at the singular point
of X. In fact the complex structure X is nothing but the orbifold-twistor
space for a half-conformally flat Riemannian 4-manifold [AtHS]. (Recall
that any Kahler metric with vanishing Ricci tensor is anti-self-dual.)
Now let /t be a vector orthogonal to Et in E. Let a, β, 7 eR be such
that /% = a Re ωx + β Im ωx + 7 Im ga-β. Suppose that {Re ωt, Im ωt, st)
defines the same orientation on EaΓ(X, Λ+) as {Recy ,̂ lmωx, Imga-β}.
st is a closed form of type (1, 1). det(/t) vanishes nowhere on X\SingX
and det(<) = cωt A ώt = cωx A ώx. On the other hand, for each x e X\
Sing X we can find A e SO(4) such that

ds+(A)(ga-βyds+(A) = /% in TXX ,

where / + is the homomorphism of SO(4) to SO(3) determined by the de-
composition of the second exterior representation of SO(4) into irreducible
subspaces. So s% is positive definite and is an Einstein-Kahler metric on
XxSingX Riemannian equivalent to ga-β. Since Reω x, Imω x and I m ^
are smooth differential forms on X in the sense of orbif olds, /t defines an
Einstein-Kahler orbifold-metric with respect to the new complex structure
corresponding to ωt. Notice that in the family %-*S2=P1(C) we can resolve
the singularities and get a family of non-singular KS surfaces S—>P1(C).
The desingularization can be done by successive blow ups. Although there
is no isomorphism 36 = Px(C)x Y of C°°-manifolds where Y is the minimal
resolution of X, 36 has the same additive cohomology as P^C)* Y (cf.
[At2]). Hence a marking exists on dc^P^C). See also the arguments
in Section 5. q.e.d.

In [Va], Varouchas proved the following:

FACT. Let X be an analytic variety admitting an open covering {£7J
and a family of functions ψs\ U5 —> R which are continuous and strictly
plurisubharmonic such that ψs — ̂  is pluriharmonic on Uά Π Uk. Then X
is Kahlerian in the sense of Fujiki-Moisezon.

Let (X, φ) be a generalized KS surface with a Ricci-flat Kahler orbifold-
metric form φ. In this situation the proof of Varouchas shows that we
can find a Fujiki-Moisezon-Kahler form φ in the same cohomology class
as φ.

4. Surjectivity of the polarized period map for generalized KS
surfaces. In this section, we prove the strong version of Morrison's
Surjectivity Theorem (Theorem C). Namely, we show that every polariza-
tion φ in Theorem C contains a Kahler form on X in the sense of Fujiki-
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Moisezon ([F], [Mo]). Let ^t be the set of all isomorphic classes of
marked polarized generalized KS surfaces under the following equivalence:
{X, φ, a)~(X', φ\ a!) if and only if there is an isomorphism/: Y'-+Ywhich
induces isomorphisms on the exceptional sets, such that f*(φ) = φf and
the diagram

H\Y;Z)

/* y*

H\Y'\Z)

L

is commutative. Thus Theorems A and C are unified in the following:

THEOREM A+C. The polarized period map p(X, φ, a) = (aR(φ), [ac((oz)])
descends to a bijection τ: ^ —> KΩ.

Now we define a subset ^j?x of ^t in the following way: the equiva-
lence class of (X, φ, a) is an element of ^£r

1 if and only if φ is a Kahler
class on X in the sense of Fujiki-Moisezon. The main result in this
paper is:

STRONG SURJECTIVITY THEOREM. The map τ: ^ -> KΩ is surjective.

Combining this with Theorem A, we have:

THEOREM 3. ^ — ̂ ^ i.e., every polarization φ for any generalized
KS surfaces contains a Kahler metric in the sense of Fujiki-Moisezon,
and the map τ\ ̂ C = Λ? —> KΩ is bijective.

PROOF OF STRONG SURJECTIVITY THEOREM. Let

π:KΩ-+Gt(LR)

be defined by π(ιc, [ω]) — Pω + R tc> where Pω is an oriented positive 2-
plane in LR whose oriented basis is {Reω, Imω}. Gt(LR) is the moduli
space for oriented positive definite 3-planes in LR which turns out to be
the Riemannian symmetric space

SO0(3, 19)/SO(3)xSO(19) .

Using the isometric deformation of generalized KS structures with respect
to the Ricci-flat orbifold metric, we get the following:

LEMMA. The image of τ: ^ C -* KΩ consists of fibers of π: KΩ ->
Gt(LR).

PROOF OF LEMMA. Let (ιc, [ω]) e KΩ be in the image of τ. We find
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a generalized KS surface X and a Kahler form φ such that αΛ([^]) = tc
and [ac(cύx)] = [ω] for some marking a. From Theorem 1, we can find
a unique Ricci-flat Einstein-Kahler orbifold-metric in the form of φ +
\/ — lddU for an orbif old-smooth function U. The cohomology class of
φ + i/^TddZ7 (in the sense of currents) is the same as [φ]. Now by
Theorem 2, there is an isometric family of generalized if 3 structures
parametrized by PX(C) and the period of these structures is exactly the
fiber π~\π(/c, [ω])) = P^C). By Varouchas [Va], the cohomology class of
each Einstein-Kahler orbifold-metric form contains a Kahler form in the
sense of Fujiki-Moisezon. This completes the proof of Lemma.

Just as in the proof of the Surjectivity Theorem for smooth Einstein-
Kahler JKΓ3 surfaces in [L], the remaining part of Theorem 1 is divided
into three steps.

Step 1. Suppose (tc, [ω]) e KΩ is such that (Pω + R-κ)f)L contains
a primitive rank two lattice M. By Lemma, we may replace (/c, [α>]) by
any other element in π~γπ(κ, [ω]). We may thus assume that MdPω. By
the weak version of the Sur jectivity Theorem due to Morrison, we can
find a marked polarized generalized if 3 surface {X, φ, a) such that aR(φ) = K
and [ac(o)x)] = [ω]. Since I\X) is the orthogonal complement of integral
classes, I\X)®ZR — I(X)R is a linear subspace of H\Y; R) defined over
Q. Since M(cP ω c/ 2 ( I ) B ) is defined over Z, the orthogonal complement
of Pω in P(X)R is defined over Q. So the elements / which are defined
over Q are dense in <gV"(X). By the theorem of Mayer [Ma], such /
contains a Kahler metric on X in the sense of Fujiki-Moisezon. Since

is a convex cone, φ is a linear combination of rational points in
with positive coefficients. So, φ is a Kahler class on X in the

sense of Fujiki-Moisezon.
Step 2. Suppose (/c, [ω]) e KΩ is such that (Pω + R K) Π L contains

a primitive rank one lattice L. P([ω]) = Lΐ(ίωV is defined over Q. V+([ω])
is partitioned into chambers by reflection hypersurfaces Hδ for δ 6 z/([t£>]).
Let K be the chamber containing ΛΓ. If η e K is such that (Pω + 2J ^) ΠL
contains a primitive rank two lattice, then (77, [α)])elmτ, i.e., there is a
CX,, ^, aη) with α9Λ(^) = 57 and [aηC((0Xη)] = [ώ\. It is shown in the proof
of the weak version of the Sur jectivity Theorem (see pp. 326-327 of
[Mrl]) that the isomorphism class of Xv is independent of η e K. Such
Ύ] with the property as above are dense in an open convex subcone K of
Vr+([ft)]). So, we can find a marked polarized generalized K3 surface
(X, φ, a) such that aR(φ) = it, [ac(cox)] = [ω] and φ contains a Kahler metric
in the sense of Fujiki-Moisezon.

Step 3. Let (/c, [co])eKΩ be an arbitrary point, and K the chamber
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of F+([α>]) with respect to the action of the Weyl group W([ft)]) containing
K. Since I\[ω\) is defined over Q, the η'a such that (Pω + R-η)Γ\L
contains a primitive rank one lattice form a dense subset in K. For such
an Ύ], we can find a (Xψ φψ aη) such t h a t aηR(φη) = η, [aηc((0Xη)] = [ω] and

φη contains a Kahler metric, by Step 2. The isomorphism class of Xη is
independent of the choice of η eK. Since K is a convex cone, K contains
a Kahler metric in the sense of Fujiki-Moisezen. q.e.d.

It is shown in [Vn] that the action of the automorphism group Γ of
L on KΩ = SO0(3, 19)/SO(2) x SO(19) is discrete and properly discontinuous.
We thus have a moduli space for the isomorphism classes of polarized
generalized KS surfaces:

COROLLARY 4. The coarse moduli space for the following objects are
all isomorphic to

Γ\KΩ = Γ\(SO0(3, 19)/SO(2)xSO(19))

under the correspondence induced by the polarized period map:
( i ) The isomorphism classes of polarized generalized KS surfaces.
(ii) The isomorphism classes of polarized generalized K3 surfaces

whose polarization comes from a Kahler form in the sense of Fujiki-
Moisezon.

(iii) The isomorphism classes of Einstein-Kahler generalized KS
surfaces with volume 1.

PROOF. The bijection (ii) ^t (iii) is given by Theorem. There is a
natural injection (ii) —> (i). Theorem A means that there is an injection
(i) —• Γ\KΩ induced from the period map. Theorem 1 means (ii) —> Γ\KΩ
is surjective. q.e.d.

REMARK. Einstein-Kahler generalized KS surfaces with simple sin-
gularities correspond to points in the fixed point set Fix(W) of the group
WaΓ generated by all reflections

sδ(v) = v + (v, d)d , where δ e L and (δ, δ) = - 2 .

Pix( W) is a countable union of submanifolds of real codimension 3 ([Mrl]).

5. Moduli of Einstein metrics on a K3 surface. In this section
we define the period map for Ricci-flat orbifolds diffeomorphic to gener-
alized KS surfaces and study its properties. We begin with some standard
facts on 4-dimensional Riemannian geometry [AtHS]. Let (Λf, g) be a
4-dimensional Riemannian manifold with a metric g and Λ2 = Λ+ 0 Λ~ the
decomposition of 2-forms into self-dual and anti-self-dual parts. The
Riemannian curvature tensor defines a self-adjoint transformation R: A2-+Λ2
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expressed as R(et A e3) = (1/2) Σu.t.i ^/M^* A eu where {ej is a local ortho-
normal basis of 1-forms. If we write

*)
* C)

relative to the decomposition Λ2 = Λ+ φ A~, the decomposition of the
curvature tensor into irreducible pieces under SO(4) is given by

R->(tτA,B,W+,WJ)

where tr A = tr C = (1/4) scalar curvature, B = the traceless Ricci tensor,
and W+ = -(l/3)tr A, W_ = C-(l/3)tr C, the Weyl tensors. If the metric
is Kahlerian with vanishing Ricci-tensor, then R A (0 = 0, where ω is the
Kέίhler form. This means that R is anti-self-dual with vanishing Ricci
tensor:

H:
t r C = 0. For any Einstein metric over 4-manifolds, Hitchin [H] showed
an inequality 2e(g) ̂  —P^g) between the Euler form e(g) and the
Pontrjagin form Px(g). The equality occurs if and only if the curvature
R is anti-self-dual and Ricci-flat. In particular any Ricci-flat Riemannian
metric on a K2> surface is anti-self-dual.

Let X be a real four dimensional differentiate orbifold which is
orbifold-diffeomorphic to a generalized KS surface X'. Suppose X admits
a Ricci-flat-metric g. Then we have:

THEOREM 5. Let {X, g) be as above. Then the bundle of self-dual
2-forms {in the sense of orbifolds) is a flat trivial bundle with respect
to the Levi-Civita connection.

PROOF. AS in the proof of Lemma 12 in [Kb] we get

- Σ (e(Ep)~
\Gp

where e{X, g) is the Euler form for the Levi-Civita connection of g, e(Ep)
is the Euler number of the exceptional set Ep for the simple singularity
peX and \GP\ is the order of the corresponding finite subgroup Gp of
SU(2). Let gx and g2 be two Riemannian orbifold metrics on X and
Pi(βi)f Pi(9z) ^he corresponding Pontrjagin forms, respectively. Then
Piiΰi) — -Pi(ft) — dη, where η is an orbifold-3-form on X. So, we have
\ Piisd — \ Piiΰz) = \ dv = 0. Now in a small neighborhood of simple
Jx Jx Jx
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singularities of X we can introduce a canonical orbifold-complex structure,
such as B2/G where G is a finite subgroup of SΪ7(2) and B2 is an open
ball in C2. We can thus deform g to be Kahler-orbifold metric around
simple singularities with respect to the above complex structure. If the
metric g is Kahlerian then Px(g) = cλ{gf — 2c2(g). Just as in the proof
of Lemma 12 in [Kb] we have

(**) -l-t P1(ff) = sign(Γ) + |- Σ
3 J 3 Si
3 JX 3 peSingX \ \Gp\

Formulas (*) and (**) are valid for any Riemannian orbifold metric. Now
we assume that g is an orbifold-metric with vanishing Ricci tensor. From
(*) and (**) we have

\ ) )
JX

Applying the same argument as in [H] we see that the Ricci-flat orbifold-
metric g is anti-self-dual:

/0 0\
R = ί with tr C = 0 .

For any oriented Riemannian four-manifold the curvature of the connec-
tion on the bundle Λ+ of self-dual 2-forms induced from the Levi-Civita
connection is given by A + B* e Hom(Λ+, Λ2). In fact, the bundle Λ2 of
2-forms is the adjoint bundle associated with the orthonormal frame bundle
and the second exterior power representation λ2 of SO(4) splits into two
irreducible subspaces λ2 = λ + 0 λ " . The representation λ+ defines a homo-
morphism / + : SO(4) —> SO(3) which gives rise a principal *SO(3)-bundle
whose adjoint bundle is Λ+. So, in our case, the bundle Λ+ with the
induced connection is flat. Since the metric g is an orbifold-metric and
the minimimal resolution of X is simply connected, the bundle Λ+ is fait
and trivial, i.e., Λ+ has three linearly independent parallel sections, q.e.d.

REMARK. From the above proof one sees that there exists an orbifold-
complex structure J on X such that the metric g is a Kahler orbifold-
metric. Since the metric is an Einstein-Kahler orbifold metric with
vanishing Ricci tensor and the canonical bundle on the minimal resolution
Y descends to an orbifold-holomorphic line bundle on holomorphic orbifold-
2-forms, Y must have trivial canonical bundle. So, Y is a KS surface
with the given complex structure J.

Let (X, g) be as in Theorem 5 and a:F(X)-*L a marking, i.e., a
metric injection which extends to an isometry a: H\ Y) —> L. The triple
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(X, g, a) is a marked J£3-orbifold with a Ricci-flat metric g. We define
the period map p of all equivalence classes of marked ίΓ3-orbifold with
a Ricci-flat metric to Gt(LR) s SO0(3, 19)/SO(3) x £0(19) in the following
way: p(X, g, a) is the oriented three-plane in LR generated by the aR-
image of the oriented basis (three ordered linearly independent parallel
self-dual 2-forms on X) of the space of parallel self-dual 2-forms. Here,
if {elf e2, e3, ej is an oriented basis for R\ then {ex Λ e2 + e3 A β4, e1 A e3 +
e* Λ e2, eλ A e4 + e2 A e3} gives the induced orientation on Λ[+Cβ4)Cyl2Gβ4).
Two marked Ricci-flat iΓ3-orbifolds (X, g, a) and (X', g', a9) are said to
be equivalent if there exists a diffeomorphism /: Y' -> Y which descends
to an orbifold-diffeomorphism of Xr to Xand f*g — gf', άΌ/* = cc. Write
^V for the set of all equivalence classes of marked iί3-orbifolds with a
Ricci-flat metric.

THEOREM 6. The period map p(X, g, a) 6 Gt(LR) descends to the bi-
jection σ: *Λ" —> Gt(LR).

PROOF. Suppose p(X, g, a) = p(X', g', a!) = x e Gt(LR). Pick a point
(ΛΓ, [ω]) 6 ifβ in the fiber π" 1^), where π: KΩ -> Gi(LR) is the natural
projection with the fiber S\ There are marked generalized K3 surfaces
(X, φ, a) and (X', φ', a!) such that g and #' are Einstein-Kahler orbifold-
metric. By using the isometric deformations, with respect to the Ricci-
flat orbif old-metric, we may assume that the polarized periods are the
same for (X, φ, a) and (X', φ\ a'). From Theorem A, there exists a unique
isomorphism Φ: Yr —> F which descends to a unique isomorphism Φ: X' —> X
such that Φ* = 7 = δ'oδ (Φ* = α'-^α on Γ(X) and Γ(X')) Φ, which is
an orbifold-diffeomorphism of X' to X, is an isometry with respect to g
and #'. So, (X, #, α) and (X', g\ a!) are equivalent, i.e., σ is injective.
To show the surjectivity of σ we pick a point xeG£(LR). Choose any
(K, [ω]) in the fiber π~\x)aKΩ. From the strong version of the Sur-
jectivity Theorem, there exists a marked generalized Einstein-Kahler KS
surface (X, φ, a) with its period (/c, [ω]). If we forget the complex
structure of (X, φ, a) and look at it only as a Ricci-flat marked K3-
orbifold, then its period is π(jc, [ω]) = x. q.e.d.

Γ acts on both f̂" and Gi{LR). The action of Γ on Gt(LR) is discrete
and properly discontinuous by [Vn]. The following is a generalization of
the corresponding results in [Bol] and [T2].

THEOREM 7. The set of all isomorphism classes of Ricci-flat KS-
orbifolds is isomorphic to

Γ\(SO0(3, 19)/SO(3)xSO(19)) .
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The Ricci-flat KS-orbifold with simple singularities correspond to the
points in Fix(W), which is a countable union of submanifold of codi-
mension 3.

PROOF. The last statement follows from the arguments in pp. 311-317
of [Mrl]. q.e.d.

For the convergence of non-singular Ricci-flat metrics to an orbifold-
metric we can show the following:

THEOREM 8. Let {Et} be a differentiate family of three dimensional
subspaces in LR where t runs over the unit punctured disk A* = Δ — {0}
such that

(a) < , > on each Et is positive definite,
(b) for every δeL with <<5, 3) = - 2 , sδ(Et) Φ Et,
(c) \imt^0Et = Eo in Gf(LR), where < , > on Eo is positive definite

and there exists δeL such that (δ, δ) = — 2 and sδ(E0) = Eo,
(d) let {g(t)} be a differentiate family of Einstein metrics corre-

sponding to {Et} on the underlying differentiate four-manifold M of a
K3 surface with a fixed marking a and suppose that Vol(fir0 (£)) = 1 for
all t. Then "lim^o g{t) = g(ϋ) exists" and g(ϋ) is an Einstein-Kahler
orbifold-metric with respect to any generalized K3 structure Xo corre-
sponding to a two dimensional oriented subspace FoczEo. Here, the
meaning of the existence of lim^o git) is as follows: Suppose {Ft} be a
differentiate family of two-dimensional subspaces in Et such that
lim^o Ft = Fo exists and Fo is a two-dimensional subspace in Eo. Let
Xt be a differentiate family of KS structures on (M, a) corresponding
to {Ft}, teΔ. Write D for the exceptional set for the generalized K3
structure determined by (Eo, Fo). Let (U, (x*)) be any open subset of
Xo — D with local coordinates (x1)^^. Let gtj(t) be the components of
g(t) with respect to (U, (x1)). Then lim^ogiS(t) = flr<y(O) exists.

PROOF. Let FtczEt be a sequence of two dimensional subspaces in

Et such that limf_0 Ft = Fo exists and Fo is a two dimensional subspace

in Eo. From Surjectivity Theorem and Global Torelli Theorem, we see

that the sequence {Ft} corresponds to a unique sequence of KS surfaces

(Xt, a) with a fixed marking a such that lim^o^ί, oί) = (XQ, a). It is

possible to choose a holomorphic 2-f orm ωt on Xt with I ωt A ωt = 1

α>0 Λ ω0 = 1. Now let F[ be the two

dimensional subspace in Et defined by RecWf and Im ga-β(t), where g^it) is
the Einstein-Kahler metric on Xt corresponding to a~\/ct), where ιct±Ft

in Et. Since we may suppose that (κt, κt} = 1 we get from Et —> Eo and
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Ft->F0 that

lim κt = tc0 e Eo and κo±Fo .
ί->0

So lim^o F[ — Fό exists and repeating the same arguments as for Ft we
see that there exists a unique family of K3 with lim^X/, a) = (Xί, a).
From the theory of isometric deformations of KZ structures with respect
to the Calabi-Yau metric (see Section 3), we see that if ω\ is a holomorphic
2-form on X[ such that I ω\ Λ ω\ = 1, then

ω't = Re ωt + i Im ga-β(t) .

Since \imt->Qω't = ωί exists, we see that limt^0Im ga-β(t) exists. Now it is
easy to see that lim^0 Im ga-β(t) is an Einstein-Kahler orbifold-metric form
on XQ. This is so because for each point x e X, vo\(gaβ(t)) = ωt A ώt and
ω'o is an orbifold-holomorphic 2-form in a neighborhood of some root
systems of (—2)-curves on Xo. Note that if we express the complex
structure tensor Jo of Xo in terms of the local coordinates (a/*, yH) where
(zH) = (xn + V — lyH) are holomorphic coordinates for Xό, then it is smooth
off the exceptional set of Xό. But it is "orbifold-smooth". q.e.d.

If Ft = Fo in Theorem 8, then {ga}(t)}tej* is a family of Einstein-
Kahler metrics on a fixed KS surface Xo corresponding to Fo. In this
case, lim^o Im ga-β(t) = Imga-β(0) exists and defines a current on Xo.

6. The number of quotient singularities. In Section 2 we have
proved the existence of a Ricci-flat Einstein-Kahler orbifold-metric on
some orbif olds. We use this metric to estimate the maximal possible
number of what occurs in case the maximal number is attained. The
following is a generalization of Theorem 1 in [Ni].

THEOREM 9. Let X be a compact complex surface with at worst
isolated quotient singularities which admits a Kdhler form in the sense
of Fujiki-Moisezon. Let X be the minimal resolution for X and D its
exceptional sets. Let μt be the nonnegative rational numbers such that
Kx + Σ< AA~0 n e a r D a s Q-divisors (such μ?s are uniquely determined),
where D = Σ i A is the decomposition into irreducible components. Sup-
pose that some tensor power of Kx + Σ* ΛA i>s a trivial line bundle.
Then we have the following inequality:

e(X)~
\Gp

where Dp is the exceptional set for the minimal resolution of p, Gp is
the corresponding local fundamental group around p. The equality
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occurs if and only if X = Γ\T2, where T2 is a complex 2-torus and Γ
is a group of Euclidean motions acting on T2 discretely and properly
discontinuously with only isolated fixed points.

PROOF. From Theorem 1, there exists a Ricci-flat Einstein-Kahler
orbifold-metric on X. Using the same arguments as in [Kb] we see that
the integral of the Euler form with respect to the Levi-Civita connection
of the orbif old-metric is equal to e(X) - Σj>esingχ(e(A>) ~ 1/|GP|). On the
other hand, since our metric is a Ricci-flat Einstein-Kahler metric, only
the anti-self-dual Weyl tensor W_ remains in the decomposition of the
curvature tensor (see Section 5). So, the Euler form is equal to (l/8τr2)
I TV_|2 * 1 and thus we get

0 ^ (1/Sτr2) \ J () Σ (
JX peSίngX

The equality occurs if and only if W_ = 0 for our Ricci-flat Einstein-
Kahler orbif old-metric. Since every compact flat orbif old is uniformized
by a torus, the equality occurs if and only if X is uniformized by a torus
with the covering transformation group consisting of Euclidean motions.

q.e.d.

COROLLARY 10. For generalized KS surfaces X, we have

2 4 - Σ (e(Dp)-(l/\Gp\))2:0,
p eSingX

where the equality occurs if and only if X — Γ\T2, with T2 a complex
2-torus and Γ a group Euclidean motions.

Theorem 9 was first proved by Miyaoka [Mi] by means of algebraic
geometry. The advantage of our method is that it gives informations
on the equality case. More recently Morrison [Mr2] proved Corollary 10
in an algebraic way. His method gives a precise description of the cor-
responding complex crystallographic groups.

The Kummer surface with the (—2)-curves collapsed is the simplest
example for the above equality: 24 — 16 x (3/2) = 0. Ivinskis [I] found a
non-trivial example which is as follows. Consider the double covering
branched over a sexitic curve in P2(C) with simple singularities. The
double covering X is a generalized K3 surface. If Σpβsingx (e(D9) -
(1/1 GpI)) = 24, then X=Γ\T2. For the sexitic curve x&xάco-xjx
(Xo — #2)(#i — x2) = 0 the double cover X has four D4 and three Ax singu-
larities. So,

Σ (e(Dp) - (1/1G,I)) = 4x(5 - 8"1) + 3x(2 - 2"1) = 24 .
peSingX
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For the dual sexitic curve of a smooth one, X has nine A2 singularities.
So,

Σ (e(A>) ~ (VI Gp I)) - 9 x (2 - 3"1) - 24 .
peSingX

The sexitics with the above property are classified in [I]. For the clas-
sification of complex crystallographic groups, see [YoKT].

These examples show that the equality case in Theorem 9 is not void.
As a final remark, we mention the degeneration of Riemannian metrics.
The convergence in Theorem 8 is the simplest example of the degenera-
tion of Riemannian metrics with bounded Ricci curvature and volume.
Namely, the following occurs: there exist certain submanifoids (( —2)-
rational curves) such that the "area" goes to zero and the Riemannian
sectional curvature concentrates along these, and the formal Euler number

I (Euler form) decreases (in a "quantized" way in our case) at the limit.

In the above examples, the curvature tensor concentrates so completely
that the limit metric is a flat orbifold-metric.
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