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1. Introduction. In mathematical biology, reaction-diffusion equations have been
of great interest as a model describing spatial pattern formations. One of the most
powerful approaches to the existence of spatially inhomogeneous solutions is a singular
perturbation method. In fact, this method enables us to construct solutions with sharp
spatial transition layers [5], [6], [12], [13]. It is the purpose of this paper to present a
method to construct solutions with internal transition layers in the context of singular
perturbation problems. We also emphasize the stability analysis of the solutions so
obtained as above. Our method is slightly different from those in [5], [6], [12], [13] in
that existence and stability analysis are carried out simultaneously.

For dh i= 1,2, positive parameters, consider the following pair of reaction-diffusion
equations

(PDE)
e + 0(tt,l?)

under the homogeneous Neumann boundary conditions

(BC) ux = Q = vx x = 0, 1 , t>0.

The problem (PDE)-h(BC) has been studied rather extensively for the case in which
both diffusion coefficients dί9 d2 are very large by, among others, Conway, Hoff and
Smoller [3], Hale [9] and Hale and Rocha [10]. Roughly speaking, the asymptotic
dynamics of (PDE) + (BC) is qualitatively the same as that of

(ODE) ut = /(M, v)9 vt = g(u, v)

when min (dl9 d2) is sufficiently large.
On the other hand, there has been a series of works by Nishiura, Mimura, et al.

[6], [7], [8], [12], [13], [14], [15] on (PDE) + (BC) from a viewpoint of pattern formation
when dί>Q is very small with d2 remaining large. These authors have established the
existence of equilibrium solutions with interior transition layers [13] as well as their
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stability when the nonlinearity (/, g) satisfies such conditions as stated below. The latter
result seems to be the first satisfactory one on the stability of large amplitude equilibrium
states of a system of nonlinear parabolic equations, and is based on the so called

"SLEP-Method" due to Fujii and Nishiura [8].
In order to show the existence of interior transition layers, Mimura, et al. [13] used

the earlier work of Fife [5] (see also Ito [12]) on Dirichlet boundary layers. They first
split the interval [0, 1] into two subintervals [0, x*] and [**, 1], construct, on each
subinterval, a solution with a Dirichlet boundary layer at x* so that the boundary
values of each solution coincide at x = x*, and then adjust x* so that the resulting
solution be of class C2 on [0, 1]. The stablity analysis of the transition layer solution
requires subtle estimates on small eigenvalues which go to zero when the first diffusion
coefficient d± tends to zero. Fujii and Nishiura [8] succeeded in reducing the original
eigenvalue problem to a second order differential equation involving Dirac's (5-functions

and determine the behavior of the small (or, critical) eigenvalues.
In this paper, we will present an alternative approach to the construction and the

stability analysis of transition layer solutions of the following problem:

(1.1) , 1),

in which ε and σ are positive constants and / and g satisfy the conditions (A.O)-(A.5)

below (see Figure 1).

-> u

FIGURE 1.
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(A.O) The functions / and g are C3-functions defined on some open set O<=:R2.

(A.I) The nullcline {(u, v) e 0; f(u, v) = 0} of / contains at least two curves

Ci = {(u9 v)eO; u = ht(v)9 veli} where h£v) is a C3-function defined on a closed interval
/ . , /=—, +? and satisfies

h_(v)<h+(v) for

(A.2) If J(υ) is defined by J(v) = $h

h

+(^f(s9v)ds9veI9 then there exists v*9v<v*<ϋ

such that J(ι;*) = 0, J'(ι?*)^0 and

Jh-(
/(s,t/)ds<0, for ue(Λ_(ι;*), Λ +(»*)).

(A.3) /tt<0 on C* u Ct where C± are defined by

C*={(w,ι;)eC_;t;<ι;*}, C* ={(M, ι;)eC+; t;>ι;*} .

(A.4) The following inequalities hold true: 0|C !<0<0|c:> Lfav ~ fv9u] \ c ! u c * > 0.
(A. 5) The following inequality holds true: gυ \ c* u c* <0.

Under these conditions, the following is the main theorem to be proved in this paper.

THEOREM A. (i) If the conditions (A.I) through (A.4) are satisfied, then there

exist ε*>0, σ%>0, a C^-function x*(σ)9 and a family of equilibrium solutions (tφc, ε, σ),

φc, ε, σ)) of (I Λ) for (ε, σ)E(0, εj x (0, σj such that

I tφc, ε, σ) — Λ_(φc, ε, σ))|->0 uniformly on every compact subinterval 0/[0, **(σ))

I w(x, ε, σ) — h + (v(x9 ε, σ)) |->0 uniformly on every compact subinterval of(x*(σ)9 1]

as ε-»0, wA/fe ι;(x, ε, σ) converges to a C^-function V(x9 σ), wA/cΛ ώ monotone increasing

in x (see Theorem 2.1), as ε->0 /Λ C1^, \\-norm.

Moreover 9 for each δ > 0 //ze ,seί

{XE [0, 1]; I M(X, ε, σ)- A_(t;(x, ε, σ)) | ><5, | u(x9 ε, σ)- A+(ι;(x, ε, σ)) | ><5}

w α« op^/ι interval around a uniquely determined (see Theorem 2.1) point x*(σ)e(0, 1)

with width ofO(ε) as ε->0.

(ii) If the condition (A.5) is satisfied in addition to (A.O)-(A.4), then there is a

positive constant p * such that the eigenvalue problem:

has a unique, simple, real eigenvalue px(ε, σ) in the region {peC; Rep> — p*} for

(ε, σ)e(0, ε J x (0, σj, wλere Γε'σ M /A^ linearization, under the homogeneous Neumann

boundary conditions, of the right hand side of (1.1) around the equilibrium solution
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(iφc, ε, σ), v(x, ε, σ)). Moreover, the eigenvalue p^ε, σ) w a continuous function 0/(ε, σ)

and satisfies p1(ε, σ) = εp1(ε, σ) αwί/liπig^op^ε, σ) = y(σ)J'(t; *), w/zere y(σ) is a continuous

function with y(σ)>0, σe(0, σj 0ttdlimσ_0y(σ)>0 (see Figure 2).

M(X, ε, σ) φc, ε, σ)

h_(v*)

u(x, 0, σ) x, 0, σ)

h-(v*)

x*(σ)

FIGURE 2.

COROLLARY. IfJ'(υ *) < 0 (r^/?. > 0) in (A.2) ίλew /Λ^ equilibrium solution in Theorem
A is stable (resp. unstable) relative to the parabolic equations (1.1).

Our strategy for the proof of Theorem A is as follows. We start with a family of

smooth (i.e. C2) approximate solutions which is constructed in Section 2, and reduce
the problem to finding a fixed point of an operator equation on appropriate function
spaces. It should be noted that an idea in Ito [12] plays an important role to obtain a
variational equation suitable for the subsequent analysis of the operator equation. In
Section 3, we examine some spectral properties of the linear differential operator. The
method of Liapunov-Schmidt applied to the linear differential operator singles out the
unique small eigenvalue which goes to zero as ε tends to zero. It turns out that a scaled
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version of the small eigenvalue is a solution of a Singular Limit Eigenvalue Problem

due to Fujii and Nishiura [8]. Theorem A is proved in Section 4. Section 5 is devoted
to the stability analysis of multiple transition layer solutions.

The method employed in this paper seems to have several advantages. In terms of

constructing approximate solutions, our approach is more natural than the matching

method employed in [5], [13]. It enables us to make the accuracy of the approximation

of internal transition layers as high as we wish under generic conditions. It also clarifies

the obstruction of constructing approximations of higher accuracy (see [17] in this

regard). Another advantage of smooth approximations is that we have the approximate
solutions residing in the same space as the true solutions. This fact renders us a dynamic

approach to the parabolic equations (1.1). The way in which we construct approximate

solution also simplifies the stability analysis considerably. The method of

Liapunov-Schmidt reveals in a natural way the equations which determine the small

eigenvalues, as well as the order of magnitude of these eigenvalues.

Throughout this paper, the following function spaces are frequently referred to.

H2(Q, 1): the usual Sobolev space on [0, 1].

N l 2 = I M I o + l l w Ί l o + l | w Ί l o the usual Sobolev H2-norm.

I " \2 = I " lo + 1 w ' lo + 1 u" lo : the usual C2-norm.

H2

>ε = H2 with the weighted norm \\u\\2,ε=\\u\\0 + s\\u'\\0 + ε2\\u"\\0.

CN,S = CN with the weighted norm | u \2>ε = \ u\0 + ε\ u1 10 + ε2| u" |0.

Throughout this paper, prime "'" is used to indicate differentiation with respect

to the spatial variable x as well as derivatives of a function of a single variable.

ACKNOWLEDGEMENT. The author is very grateful to Professor Jack K. Hale for

his continuous encouragement and his inspiring conversation throughout the course of

this work. Many thanks also go to Professor Y. Nishiura for stimulation through a
series of publications as well as personal communication. Finally, but not least, the

author would like to give utmost appreciation to the referee who carefully read the

manuscript and pointed out many mistakes, typographical and otherwise.

2. Construction of approximate solutions. In this section, we construct a family

of smooth approximate solutions of the problem:
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The accuracy of approximations is measured relative to the magnitude of the small
parameter ε>0.

2.1 Outer approximations. If one puts ε = 0 in (2.1), then there results the following

reduced problem:

(2 l)o..

/(ιι,ι;) = 0, xe(0,l)

xe(0,

t/ = 0, at x = 0, 1.

The first equation /(w, ι;) = 0 has a continuum of solutions. Not all of them are of interest

to us here, namely, not all of them can be extended to ε > 0 small. For each vel, the
condition (A.I) gives u = h±(v) as a solution of /(M, t;) = 0. For vel, they are stable

equilibria of the kinetic equation ut = f(u, υ). According to the condition (A.2), we choose

u = h-(v) for Ό<V* , u = h+(v) for v>v*

as a solution of/(w, t;) = 0. We would like to substitute this function into the second of

(2.1)0σ and to solve the resulting equation. For this purpose, define G(υ) for vel, by

, if v<v*

.G+(v), if v>v*

where G±(υ) = g(h±(υ)9 v) for vel. The problem (2.1)0 σ now reduces to

O v /— Γf\ 1Π /-v-Ίe/'>τΛ\, xe\_(j9 i j — |x \G)}

By a solution F of (RP)σ, we mean a function V belonging to C^O, l]uC2([0, 1]-
(x*(σ)}) and satisfying the relations in (RP)σ. It should be noted that the determination

of the "transition point" x*(σ) is a part of the problem. We have the following theorem

available.

THEOREM 2.1. ([13, Theorem 1], [8, Lemma A.I]) Under the conditions (A.O), (A.I),

and (A.4), there exist a uniquely determined constant σ0 and a C1 -function jc*(σ) such

that for σe(0, σ0] the problem (RP)σ has a unique solution V(x,σ), which is C1 in

(x, σ)e[0, 1] x [0, σ0]. Moreover, V( ,σ) is continuous in σe[0, σ0] with respect to

C^O, ΐ]-topology and jc*(0) = G+(i

By using the functions V(x, σ) and Λ±, our outer approximation is given by the

pair (U(x, σ), V(x, σj) where C/(x, σ) is defined by

_ , , xe[0,x*(σ))
U(x,σ) =

2.2 Inner approximation. The functions U(x, σ) and F"(x, σ) have a jump

discontinuity at the transition point x*(σ). This can be smoothed out by adding inner
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approximations in a neighborhood of x = x*(σ).
For this purpose, we first review the procedure of obtaining inner approximations

for the following scalar problem:

(IP, "«

where the function A(u, x) satisfies:
(a.l) A : R x [0, !]-># is of C2-class, and there are two functions u = b±(x) of C2-class

such that

x),x) = 0, xe[0, 1]

(a.2) Au(b±(x), x)< -3β2<0 xe[0, 1] for some constant j5>0.

(a.3) If we define j(x) = $b

b

+(£}A(s,x)ds, then there exists a point x*e(0, 1) such that

1 A(s,x*Xs<0 for ue(b-(x*)9b+(x*)).
b-(x)

Transition layer phenomena for (IP) under the conditions (a.l)-(a.3) are studied
rather extensively by [1], [4], [11]. Here, we follow the method in [11].

Let us introduce the fast variable η around x*byx = x* + ε^ and the transformation
« = b(x)z + b_(x) in (IP), where b(x) = b+(x) — b_(x). The equation for z reads:

(2.2) 6z + 2ε6'z + ε2(i"z + 6"_) + >l(bz + & _ , x* + εη) = Q

where all the functions are evaluated at x = x* + εη, and the dot designates the
differentiation with respect to the fast variable η, while the prime stands for differentiation
with respect to x. Formally substituting the expression z = z0(η) + εzί(η) + o(ε) in (2.2)
and equating the coefficient of each power of ε separately to zero, the relation (2.2)
gives rise to the equations for z0 and zx:

(2.3) b(x*)z0 + A(b(x*)z0 + b-(x*),x*) = 09 ηεR

(2.4) b(x *)z\ + Au(#)b(x *)zt + {Au(Jf)[b'(x *>o(>?) + &'-(**)]

+ Ax(jf)}η + b'(x *)ηz0(η) + 2b'(x *)z0(if) = 0

where Au(jf) and Ax(jf) are evaluated at (u,x) = (b(x*)z0(η) + b_(x*),x*). For each
constant ye(0, 1), the equation (2.3) has a unique solution z0(η, γ) such that z0(0, 7) = γ
and lim^ ̂  z0(η) = 1 , lim^ _ „ z0(η) = 0 exponentially. Moreover max {| zQ(ή) |, | z0(η) \} =
O(e~2fi\n\\ as \η\-*ao. Once z0(η) is specified as above, the equation (2.4) takes the
following form

= 0, with \q(η, z0(η)\<const.e-
2β^ , ηεR.

By using theorems based on exponential dichotomies and Fredholm alternatives
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(see Chow and Hale [2]), it is easy to see that (2.4) has a solution bounded on R if and
only if the condition (2.5) below is satisfied.

ΓJ - c

.(2.5) q(η, z0(η, y))z0(η, γ)dη = 0 .
J - oo

Following the procedure in [11], one can verify that there exists a unique ye(0, 1) for
which (2.5) is fulfilled. For such a choice of y, the equation (2.4) has a unique family
of bounded solutions (which decay exponentially as | η \ -> co)z^) = cz0(η) + zΊ(η), where

z1(0) = z1(0) = 0, ceR. We choose the coefficient c of z0 so that

ί: + 2Aux(#)ηz,(η) + Axx(tf)n2¥Mdη = 0

is satisfied. This condition can be written as I2c
2 + Iίc + I0 = Q. It turns out that /2 = 0,

/! = — /(x*)τέO. Therefore, we can determine the coefficient c such that the condition
above is satisfied. This choice of c is best possible in the sense that only for this choice
of c can we determine the second order approximation. See [11] for more detail.

We shall apply the procedure described above to the problem:

, , xe(0,

In order to do so, we simply set A(u, x)=/(w, V(x, σ)), b± = /z±(F(x, σ), and x* = x*(σ).
Although the functions /(M, F(x, σ)) and Λ±(F(x, σ) are not twice continuously
diίferentiable in x at x = x*(σ), the procedure above still works, since the equations
(2.3) and (2.4) involves at most the first x-derivatives of the functions b(x\ b±(x) and
A(u, x). It is easy to verify that the condition (a.3) is satisfied with;(x) = J(F(x, σ)) (see
the condition (A.2)).

Now let Z(η, ε) = z0(η)-\-εz1(η) be constructed from (IP)σ through the procedure
described for (IP) above. Let ζ0(x)e C°°(K) be such that

C 0(x)=l, for | x | < l / 4 , ζ0(x) = Q , for | x | > l / 2 , 0<ζ0(*)<l

and ζ+(x)=l-CoW for x>0 and C+(x) = 0 for x<0, </=min{x*(σ), l-x*(σ);
σe[0, σ0]} and H(v) = h+(v) — h-(v). Now our tentative approximation for the
M-component is given by

(2.6) U(x, ε, σ) = H(ΐ(x, σ))[Z(ιj, fi)C0([^-x*W]/d) + C+([^-^*W]/d)] + A-(^(x, σ))

where η = [x — x*(σ)]/ε is the stretched variable. The function U(x9 ε, σ) is a C1 -function
of x, but its second derivative has a jump discontinuity at x = x*(σ). In order to smooth
this out, let us first observe the influence of substituting (Ό, V) in (RP)σ instead of

((/, Ϋ), namely the difference

) = g(U, V}-g(U, V) .
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Although the difference goes to zero as fast as ε2 uniformly outside a fixed neighborhood
of x = x*(σ), it remains "large", i.e., of the order of one in the fixed neighborhood of
the same point. This could be overcome by adding an "inner correction" to V, which
simultaneously balances the jump discontinuity of V" at x = x*(σ). In order to do so,

let us put (C7, F+ε2σΓ) into (RP), to obtain

ε2F" + 0(f7, F)-0((7, F) + [0(£7, V+σε

2Y)-g(U9 F)] = 0.

The difference [0(£7, F+σε2Γ)-0(E7, F)] on the left side is of order <9(ε2) provided

sup I y|<oo.
Let us solve:

)-g(U, F) = 0,

or equivalently

Ϋ+g(U, ΐ)-

in terms of the fast variable η = (x — x*(σ))/ε9 where the tilde "~" indicates that the fast
variable η is considered as an independent variable. This equation is easily solved on

each one of the half intervals [ — x *(σ)/ε,0] and [0, (1 — x *(σ))/ε] in the following manner.

ί
[l-**(σ)l/ε Πl-*V)]/ε ~

lg(U(s\V(s))-g(U(s\V(sWsdτ, for η>0
1 Jτ

fH fτ ± ^

Ϋ-(n)= ~ lg(U(s), V(s))-g(U(s\ V(s))-]dsdτ , for η<0 .
J -x*(σ)/ε J -χ*(σ)/ε

Now let us define Ϋ(η) by:

) for

^), for

LEMMA 2.2. The function Ϋ is ofC1 on [ — x*(σ)/ε, (1 — x*(σ))/ε] and has a finite
C3-uniform norm on [ — x*(σ)/ε, (1— **(σ))/ε] — {0}, which is bounded uniformly with
respect to (ε, σ)e(0, ε0] x (0, σ0], where ε0 is any fixed positive number.

The proof of this lemma follows immediately from the construction.
Now define Y(x) and F(x, ε, σ) by

Y(x)= ?([x-x*(<τ)]/ε) K(x, ε, σ)= F(x, σ) + σε2F(x) .

LEMMA 2.3. The function F(x, ε, σ) belongs to Cj^O, l]/or (ε, σ)e(0, ε0] x (0, σ0],

and I F( , ε, σ) |2 is bounded uniformly in (ε, σ) e(0, ε0] x (0, σ0].

PROOF. We only show that F"(x, ε, σ) is continuous at x = x*(σ). The remaining

part of the lemma follows immediately from the construction.

Let us define
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V\= lim F"(x,ε,σ), and V". = lim F"(x,ε,σ).
x I x*(σ) x t * V)

Then, from the construction we have

V"± = lim F"(x*(σ), <τ) + σ?±(0) = -σ0(fc±(»*)> t;*)
jc-jc*(σ)±0

-σ[0(ί7(x*((j), ε, σ), ι;*)-0(/t±(»*), t;*)] = -σg(Ό(x*(σ\ ε, σ), t;*) ,

hence F+ = Fl, proving the continuity of F"(x, ε, σ) at x = x*(σ). q.e.d.

We are now in a position to define a C2 approximation of the w-component by

(2.7) U(x9 ε, σ) = H (F(x, ε, σ))[Z(if , ε)C0(l> - x *(σ)]/d)

Compare this with the one in (2.6). The pair (17 (x, ε, σ), F(x, ε, σ)) is the family of
approximate solutions to (2.1)ε<y from which we will find a family of genuine solutions
as a perturbation.

2.3. Perturbation from the curve C* uC^. We look for a family of solutions
of (2.1)ε<r in the following type of perturbation from the approximate solutions
(ί/( ,ε,σ), F( ,ε,<τ))

(2.8)
v =

rather than the usual type of perturbation

f u=l/ + r
(2.9) \

[v=V + s

where r, 5 will belong to C# with small norms. The transformation (2.8) means that we
are looking for a solution (M, v) whose graph is a perturbation from the curve C* u C"$..

The Taylor expansion in (r, s) of the right hand side of the first equation in (2.8) read

r»o I C I —kOdo I o |θ^^^

where t/1=///(F)[ZC0 + C+]H-Λ /_(F). It turns out that the linear transformation
u= l7 + r+171j, v= V+s is as effective as the nonlinear one (2.8) for our purpose. We
therefore transform the problem (2.1)ε σ in terms of the following change of variables

ί/ιV«

into the equations for the new functions (w, t;)
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Lε'σu + Nε'σv + Λι(ε, σ) + F^u, υ, ε, σ) = 0
(2.11). σ <} ' "''I? + Λί J7, K)ιι + Λ2(e, σ) + F2(w,ι;, ε, σ) = 0

where Lε'σ, ,/Vε'<r, Mε'σ: C^C° (or H2

N^L2) are given by

7, F)w

and

, F)

-/(l7, V)-fu(U9 V)u

F2(u, v, ε, σ) = g(U + u+ U& V+v)-g(U, V)-gu(U, V}u

It is easy to verify the following (see [11, Lemma 2.1]):

LEMMA 2.4. For each ί= 1, 2

I ̂  fo σ) lo = ̂ (ε2) as ε^0 uniformly in σ € (0, σ0] ,

I Ffμ, v, ε, σ) |o = O(| ii I o + 1 v lo) ΛS I « lo + 1 ϋ lo^0 uniformly in (ε, σ) e (0, ε0] x (0, σ0] .

REMARK 2.5. It was Ito [12] who first pointed out the superiority of the
transformation (2.8) over (2.9) in the context of boundary layer phenomena.

3. Spectral analysis of linear operator. In the last section, the problem (2.1)ε σ

was reduced to the operator equation (2.11) on appropriate function spaces. The main
subject of this section is the eigenvalue problem of the linear operator
Γ(ε, σ) : C£,ε x Cj->C° x C° (or H^ε x H^L2 x L2\

where the operator Γ(ε, σ) is defined as the linearization of left side of (2.1)ε>σ around
the approximate solution (l/(x,ε, <τ), V(x, ε, σ)) constructed in the previous section.

THEOREM B. There exist a constant p0>0 and a unique, real, simple eigenvalue
p = p(ε,σ) of the problem (EP)εσ for (ε, σ) e (0, ε0] x (0, σ0] in the region {peC;

Re p > — PQ} . Moreover, p(e, σ) = ερ(ε, σ) is a continuous function of (ε, σ) e
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(0, ε0] x (0, <TO] and

limp(ε,σ)/'(ι;*)>0.
ε->0

In order to prove Theorem B we first analyse the operators Lε><τ, Mε'σ separately.

3.1. The operator Lε'σ:H%^>L2. Let us denote by {φn(ε, σ), λn(ε, σ)}^°=1 a
complete orthonormal system of eigenfunctions and eigenvalues of Lε'σ arranged so

that A 1 >λ 2 > , λn-» — oo as n-+ao.

LEMMA 3.1. (i) There exists a constant λ0>0 such that Λ2(ε, σ)<— λ0 for
(ε, σ)e(0, ε0]x(0, σ0].

(ii) linig^o/l^ε, σ) = 0 uniformly in σe(0, σ0].
(iii) There are constants k>0 and β>Q such that

I ΦΛ*, ε, )̂ I </rI φ^x^σ), ε, σ) | exp[-β\ x-x*(σ) l/ε] -

(iv) ε 1/2φι(εη + x*(σ), ε, σ)^^z0(^/) as ε->0 /« Cfoc(Λ) uniformly in σ e (0, σ0],
/Λβ constant K is given by

Γ Λoo -11/2

K~l: = \ I \έo(η)\2dη\ =||z0

(v) The following limit exists

Λx*(<τ)

! (ε, σ)/ε = — K\ J'(v *) F'(x *(σ), σ) = σKί J'(v *) I g(h _(F(x, <
Jo

= -σΛΓί/'(»*)

where K^

PROOF. For the detail of proof, refer to [11, Theorem 3.1, Lemma 3.4]. We only

exhibit a computation which leads us to the formula in (v).
Multiply the relation Lε'σφί=λί(ε,σ)φ1 by the function z0((x — x*(σ))/ε) and

integrate the result by parts over the interval [x*(σ) — rf/4, x*(σ) + d/4] to obtain

pd/4ε Λd/4ε

AI Φ(nVMdη = LΦ(η)έ0(η)-Φ(η)z0(ηm'J4ε+ [f.
J -d/4ε J -d/4ε

where z^ = z0 and

σε9σ^Kz) as ε^O in

with K(ιj) = K(ει/ + x*(σ), ε, σ).
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It follows from (iii) of Lemma 3.1 and the estimate on |z0(ι/)| and \z0(η)\ that

[Φ(f/)zo(^)-ΦWfo(^)]^ = 0(exp[-Mβ]) as ε^O .

Therefore, by Lebesgue's dominated convergence theorem, one obtains

(3.1) lim^σyε \z0(η)\2dη
β-0

]=Γ
/ J-o

V'(x*(σ\ σ)L/ttu(##)(tf X»^

where /„„(##) and /„„(##) are evaluated at (H(v*)z0(η) + h_(v*), ι?*). By using integration

by parts as well as —/(##) = /f(ι?*)z0, one continues (3.1) as follows:

K-2(\imλl(e,σ)/ε}=-H(ϋ*r1 Γ
\«->° / J-α

+ Uu(##}(H'(v *)z0 + *'_(

°° (σ), σ) .+ Πx*(σ),σ)///(t;*)[//fo + 2z0]}f0^-H(ι;*)-1 ϊ°
«/ —

The quantity {---} in the first term under integral sign is identically equal to zero, in

view of the relation (2.4), while the integral in the second term reduces to

Γ fv(H(v*)zQ(η) + h_(v*\ v*)z0(η)dη = H(v*Γl Γ^ /Λ*, v*)ds = H(v*Γ1 J'(v*) .
J-oo Jh-(v*)

Therefore the relation (3.1) gives

lim/l^e, σ)/fi= -Jf2/'(ι;*)^(x*(σX υ*)H(Ό*Γ2=-KlJ'(v*)Ϋ'(x*(σ), t?*) .
ε-*0

The second and the third expressions in (v) can be obtained from

Πx*(σ), σ)= -σ Γ ̂ ^-(^ σ)λ ^ ,̂ σ))ώc = σ f ' g(h+(Ϋ(x9 σ)\ V(x, σ))dx .
JO J x*(σ)

q.e.d.

COROLLARY 3.2. (i) The statements (i), (ii), (iii) and (iv) ι>ι Lemma 3.1 are

•sfrV/ vα//ί/ when the potential function fu(U( , ε, σ), F( , ε, σ)) w perturbed to

fu(U( ,ε, σ) + o(\\ K( ,ε, σ) + o(l)), w/zere o(l)->0 α^ ε^O. (9« /Λe o/Aer tewrf,

/Ae formula in (v) remains the same as long as the potential function is perturbed to

fu(U( , ε, σ) + /?( , ε, σ), Γ( , ε, σ) 4- 0(ε)), wλere p(x, ε, σ) w α continuous function

such that ε~1p(εη + x*(σ), ε, σ)-> const. z007) as ε-+Q in C?OC(R) and o(ε)/ε->Q as ε^O.

(ii) Let β(ε, σ): L2-+L2 be the orthogonal projection onto the span{ψπ(ε, σ)}π>2.
Then

(L^Γ1 : QL2^H2^ (or
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is bounded uniformly in (ε, σ) e (0, ε0] x (0, σ0].

3.2. The operator Mε'σ : H^L2. Let us denote by ^n(ε, σ), μn(ε, σ) «= 1, 2, ,
a complete orthonormal system of eigenfunctions and eigenvalues of M ε'σ arranged so

that: μι>μ2> ' ' ,μπ-> — oo as /I-KXD.

LEMMA 3.3. (i) There exists a constant μ0>0

μ^ε, σ) < - μ0 , /or (ε, σ) e (0, ε0] x (0, σ0] .

(ii) sup{| ψn(ε, σ) |0; n = 1, 2, , (ε, σ) e (0, ε0] x (0, σ0]} is finite.

PROOF. Let us define the limiting operator M°'σ by

where B(x, σ} = gu(U(x, σ), V(x, ά^O^x, σ) + gv(U(x, σ), V(x, σ)) and

^^AK^σ)) for jce[0,jc*(σ)), U^h'+(V(x,σ}) for jce[jc*(σ), 1] .

Since h'±(v)= —fv(h±(v), v)/fu(h±(v), v), the conditions (A.3) and (A.4) imply the existence

of a constant μ0

>^ suc^ Λat sup{.β(Λ:, σ); 0<;c< 1} < — μ0.
Therefore, (Af°'σ — μ)"1 : L2-»L2 exists and is bounded uniformly for Reμ> — μ0.

By a standard bootstrap argument, (M0>σ — μ)-1 : L2->//# is also bounded uniformly
for Reμ> — μ0. On the other hand, one has

gv(U9V-B(',σ)\\0 = 0(ε) as

and hence

is invertible uniformly with respect to μ, Re μ > — μ0, and (ε, σ) e (0, ε0] x (0, σ] for some
small ε0>0. This in particular implies that μ1(ε, σ)< — μ0.

(ii) This is a well-known result from the Sturm-Liouville theory.

REMARK 3.4. Asymptotic behaviors of eigenvalues μπ(ε, σ) as σ->0 are given by

σμπ(ε, σ) = - π\n - I)2 + <9(σ) , /i > 2 ,

forany(5e[0, 1). Recall here that: G± =g(h±(υ\ ι;),andjc*(0) = G+(t?*)/(G+(ι?*)-G-(!?*)).

3.3. Combined operators. In order to analyze the eigenvalue problem for Γ(ε, σ),
it is necessary to consider combined operators of M ε'σ, Nε'σ and Lε'σ.

LEMMA 3.5. (i) ||Λ^ε <τ(Mε'<τ-μ)-1||L2_L2 = (9(ε1/2) as ε->0 uniformly in σe(0, σ0]
Reμ> — μ0.
(ii) ||(Mε'σ-μ)~ 1fif l lψ1 ||Lao = O(ε1/2) as ε^O uniformly in σe (0, σ0] andReμ> — μ0,
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where gu = gu(U, V).
(iii) \\Nε'σ(Mε'σ-μΓ1guφί\\0 = O(ε)asε-+Quniformlyinσe(Q, σ0]αm/Reμ> -μ0.
(iv) \\(M' -μΓlNϊσ\\H^H* = 0(ε112) as ε->0 uniformly in σe(0,σ0] and

Reμ> -μ0, where Nε'σ is the adjoint operator ofNε'σ, i.e., Nl'σv=UlL
ε*σv + fv(U, V)υ.

PROOF, (i) By a direct computation, one has

where h = (Mε>σ - μ) ' lw and Bε>σ = gu(U, V) Uί + gv(U, V\ It then follows from this that

||7^(Mε *-μ)-ι^^

^
= [0(ε)+||(M^-μ)-||L2.Hl||L

ε'^1+/f;(ί/, F)||0]||w||0 .

By using the integration in terms of the fast variable η = [x — x*(σ)]/ε and the fact that
fu(h±(v\ υ)h'±(v) + fv(h±(v\ ι;) = 0, one can easily show that \\L^UV +/,(£/, K)||0 = O(ε1/2)
as ε^ O. This proves the statement (i).. proves the statement (i).

(ii) By using the eigenfunction expansion

' -μrl9uΦι= Σ Ψn(*> *K0uΦι(*, <*\ ψm(e,
π = l

and Lemma 3.3 (ii), one obtains

\\(M^^μΓlguΦι\\L^ Σ \\ΨΛ\\L-\<9uΦι,Ψn>\l\μn-μ\ίc Σ \<9uΦι,Ψn>\n-2

n=l n=l

where the constant c>0 does not depend on ε, σ and μ. On the other hand, one has

ί
l Πl-*V)]/ε

Λ(f, V)φ^ndx = ̂ 2 gu(U(η),
3 J-x*(σ)/«

^ε1/2!" Γ

which completes the proof of (ii).
(iii) This follows from the proofs of part (i) and part (ii) above.
(iv) From the expression

(M^-μΓ^rH^ε^M' ̂ ^

for w e HH, it follows that
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+/Γ | |ol|w||1^0(81/2)||W | |2,

since ||/Mt/ι+/Jo = 0(εl/2) as e->0. A similar computation also shows that

'2)\M\2 . q.e.d.

3.4. The proof of Theorem B. We consider the eigenvalue problem (EP)ε σ for
Rep> — PO where p0 = min(/ί0, μ0). The problem (EP)εσ is written as

(3.3.a) (Lε'σ

(3.3.b) (Mε>

In view of Lemma 3.3 (i), (3.3.b) can be solved in z as z= — (Mε'σ — p)~1guw =
where w = αφ1 + w with αeC, <(/>1,w> = 0. Substituting

this into (3.3.a) and using the decomposition £2 = [</>ι]©[</>„; n>2\ one obtains

(3.4.a) αί/l^ε, σ)-

(3.4.b) (Lε'σ-p)w

where Di=λ1(ε, σ)U^ +fv(U, F), Q = Q(ε, σ): L2->span[</>n(ε, σ); «>2] the orthogonal
projection, and integration by parts is used for the second and the third terms of (3.4.a).

Because of Lemma 3.1 (i) and Lemma 3.5 (i), (3.4.b) can be solved in w, yielding

where

(3.6) Kε>σ>pu= Σ [(Lε'<τ-p)t

J/Vε'σ(Mε'<τ-p)~1^tt]
π + 1M

with

(L-pγu= Σ Φn(u, φny/(λn(ε, σ)-p).
n>2

COROLLARY 3.6. (i) The operator Kε'σ'p: L2^>H% ε (resp. C°-^C2

v>ε) is bounded

uniformly in (ε, σ)e(0, ε0] x (0, σ0] and Rep> — p0.
(ii) ||Λ^ε'σ'p01||0 = O(ε), ||(Mefff — p)~lguK

ε'σtpφl\\ί = O(ε) as ε-^0 uniformly in
(σ, p)e(0, σ0] x {peC; Rep> -p0}.

This corollary follows immediately from Lemmas 3.1, 3.3, and 3.5. From (3.4) and
(3.5), we obtain:
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LEMMA 3.7. Any eigenvalue p(ε, σ) of (EP)ε>σ with Rep> -p0 has to satisfy the

following equation

(3.7) (̂β, σ)-p-<(Af* -p)-1

Λ[/ + K i 1̂, ffι0ι> = 0

or equivalently written in terms of real and imaginary parts

(3.7)R 0=^(15, cO-Λt-

(3.7),

where ρ = ρR + ρ,J-l, PR, P^R, ρ=ρR-ρ^-\, Kε'a '> = K'R
a '' + J-lpIK} '' <', with

Ke

R" p, Kγ p being real operators.

From the estimates in Lemma 3.5 and Corollary 3.6, the relations in (3.7)R and
(3.7), read:

A1(ε,σ)-ps-0(ε) = 0, -p/{l + 0(β)}=0.

This immediately implies p/ = 0 for small ε>0, say εe(0, ε0], and

where peΛ. Since λ 1 (ε, σ) = O(ε) and <(Mε ff— p)~lg uφlt fvφίy = O(ε) as ε-^ O, the eigen-
value p has to be of O(ε), which in turn enables us to set p=εp. The relation (3.7) is
therefore equivalent to

(3.8) >ί1(ε,σ)-p-ε-1<(Me ff-εp)-1^1,/>1> + 0(ε1/2) = 0, ε>0

where /t (ε, σ) = ε ~ l λ 1 (ε, σ). Recall from Lemma 3 . 1 that λ t (ε, σ) is a continuous function
denned on (0, ε0] x (0, σ0] and the limit Iime_0<ί1(ε, σ) exists. By using Lemma 3.1 and
the eigenfunction expansion for Mε ", we obtain



34 K. SAKAMOTO

Let E(p, σ, ε) be the function defined by the left side of (3.8), which is a continuous
function of (p, σ, ε) on R x (0, <TO] x (0, ε0]

 and analytic in p for a fixed (ε, σ). Note that
the function E(p, σ, ε) can be extended continuously to R x [0, σ0] x [0, ε0] because of
Lemma 3.1 (ii) and Remark 3.4. Applying the implicit function theorem to E(p, σ,ε) = 0
around (p, σ, ε) = (^(0, σ) — p0(0), σ, 0), one obtains a unique solution p = p(ε, σ) of (3.8)
with p(0, σ) = X ̂ 0, σ) — p0(0), which is continuous in (ε, σ). Therefore the problem (EP)ε σ

has a unique real eigenvalue p(ε, σ) = εp(ε, σ) in the region {peC; Rep> — p0}.

LEMMA 3.8. ρ(0, σ) /'(t? *) > 0 w true for σ e [0, σ0] .

PROOF. Let us notice that

where ί * is the Dirac point mass at x = jc*(σ), and <(M°'σ)"1δ*, 5J> is the duality
paring between /ί1 and H~l (notice that δ^eH'1 and (Af° σ)~1£?e#1). In order to
evaluate c*(σ), let us put z^ί c, σ) = (M°'σ)~1^ί. Then c*(σ) = zs|c(Λ:*(σ), σ). The function
z^ is the solution of the following

(3.9) -σ-1<z;,^> + <Λ%,^> = <^,i;> for all i^e//1

where 5σ(x) = [/αfift?-/t;fiftt]/tt"
1 evaluated at (u,ι?)=(ί/(x, σ), F(x, σ)). The function

F'(x, σ)eH1nC2 ([0, 1] - {x*(σ)}) satisfies

(3.10) σ-*Ϋ'" + BσΫ' = Q on [0, l]-{x*(σ)}

in the classical sense. Substitute ψ= V' in (3.9) and use (3.10) to obtain

By integration by parts, this gives rise to

z,(x*(σ), σ) = [σF'(x*(σ), σ)+zίl

= [- F(x*(σ), σ) + Z!|t(lMh+(F(l, σ),

, σ)), F(0,

where F'i =lim,_,.w±0 F"(x, σ)= -σG±(ι;*). ̂
Therefore, recalling ί̂ O, σ) = - A'J J'(v *) F'(x *(σ), σ) from Lemma 3.1, one obtains

p(0, σ) = (0, σ)-Λ

where gS = g(/ι_(F(0, σ)), F(0, σ))<0,flf?=β(Λ+(^(l, σ)), K(l, σ))>0. We shall show
that z,|t(l)<0, zφ(0)<0. To do so, notice that z^ satisfies σ~1zl + B"zll, = (), on
[0, 1] - (x*(σ)} in the classical sence, and that 5"<0 and z1|t(x*(σ), σ) =
ΣΓ=ι [̂ ι (χ*(σ)> σ)]2/^π(0, σ)"1 <0 from Lemma 3.3 (i). Therefore, z^ has to be concave
as long as z,,,<0. On account of the boundary conditions z'1|t(0) = 0=z'.l.(l), we obtain
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that ^(0) <0 and z^(l) <0, see Figure 3. Therefore ,

concluding the proof.

35

">0 follows,

FIGURE 3.

In order to complete the proof of Theorem B, it remains to show the simplicity

of the eigenvalue'p(ε, σ). It suffices to show an eigenfunction (</>, ψ) of Γ(ε, σ)

corresponding to p(ε, σ) does not belong to the range of Γ(ε, σ) — p(ε, σ). Now, one can

show that the adjoint operator Γ(ε, σ)* of Γ(ε, σ) has a unique real eigenvalue
p(ε, σ)* = p(ε, σ) (the same value as the unique real eigenvalue of Γ(ε, σ) above) in the

region {peC; Rep> — p0} by the same line of argument for Γ(ε, σ) and integration by

parts (here we use Lemma 3.5 (iv)). Let (φ, ψ), (</>*, ψ*) be eigenfunctions of Γ(ε, σ)
and Γ(ε, σ)* corresponding to p(ε, σ). More specifically,

where Kε^p is the counterpart of Kε>σ>p for Γ(ε, σ)*. By using the estimates [||<?||0,
* || ] = O(ε1/2), one obtainsN O ? IIVII05

This implies (0, I/O does not belong to the range of Γ(ε, σ) — p(ε, σ) because the range

of Γ(ε, σ) —p(ε, σ) is characterized as the orthogonal complement of ((/>*, ψ*).

4. Proof of Theorem A.

4.1. Existence via the Method of Liapunov-Schmidt. We will show the solvability
of (2.11) or equivalently
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(4. 1) Γ(ε, σ) W+ R(ε, σ) + F( W, ε, σ) = 0

where W=(u, Ό), R(ε, σ) = (Λ1(ε, σ), Λ2(ε, σ)), and F(^, ε, σ) = (F1(ιι, i?, ε, σ),
F2(w, z;, ε, σ)). Let Φ(ε, σ) = (Φ!(ε, σ), Φ2(ε, σ)) ^e the eigenfunction of Γ(ε, σ)
corresponding to p(ε, σ), given by

(4.2.a) Φ^ε, σ) = ε1/2[01(ε, σ) + ̂ '̂ (^)φ1(ε, σ)]

(4.2.b) Φ2(ε, σ)= -(M*'*-p(ε, σ)Γl[0JίV9 F)Φt(ε, *)] .

One should notice that

HΦife <T)||L~< l|ε1/2<Mε, ^IL. + Oίε1/2) , ||Φ2(ε, σ)||L-o = O(ε) as ε^O

with ||ε1/201(ε, σ)||Loo being bounded uniformly in (ε, σ)e(0, ε0] x (0, σ0]. We designate
by P(ε, σ) the orthogonal projection onto the span of Φ(ε, σ) in L2 x L2. The equation

(4.1) is rewritten as

(4.3.a) αp(ε, σ)Φ(ε, σ) + PR(ε, σ) + PF(αΦ + W, ε, σ) = 0

(4.3.b) Γ(ε, σ) W+ (I - P)R(ε, σ) + (/ - P)F(αΦ + ίΓ, ε, σ) = 0

where F is Γ restricted to (/-P)(L2 x L2) and W=aΦ+ W with <Φ, ϊ?> = 0, αeΛ. By

virtue of Lemma 2.4 and Lemma 3.1 (i), the second equation in (4.3) gives, via the

implicit function theorem, W= W^μ, ε, σ) with | WJ(μ9 ε, σ)|COχCo = O(|α|2 + ε2). Then
the first equation in (4.3) yields the bifurcation equation

(4.4) £(α, ε, σ) = £0(ε, σ) + ̂ (ε, σ)α + B2(ε, σ)α 2 + 0(α 3) = 0

where

B0(ε, σ) = O(ε 2) , ^^ε, σ) = εp(ε, σ) + o(ε) , B2(ε, σ) =

as ε->0 uniformly in σe(0, σ0]. (These order estimates will be proved below.) Therefore
(4.4) can be solved, via the implicit function theorem again, in α as α = α*(ε, σ) =
εά*(ε, σ) = O(ε) as ε-»0. Let us denote by W* = (u*(x, ε, σ), v*(x, ε, σ)) the solution
of (4.1), which satisfies the following:

|W*( ,ε,σ)|0 = 0(ε) as ε->0

(4.5) e-lu*(η9ε,σ)^K&*(0,σ)z0(η) as ε->0 in C2

OC(R)

|t?*( ,ε, σ)|0 = O(ε2) as ε->0 .

The desired family of solutions of our original problem (1.1) is given by

(4.6.a) w(x, ε, σ)= C/(x, ε, σ)+ t/^x, ε, σ)ι?*(x, ε, σ)-hw*(x, ε, σ)

(4.6.b) υ(x9 ε, σ) = K(x, ε, σ) + v*(x, ε, σ) .

From the construction of the functions C7, £7l5 and K, Theorem A (i) follows immediately.
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The order estimates on Bi9 ί=Q, 1, 2, are proved as follows: B0(ε,σ) =
,σ) + PF(ΪVt(Q,ε9σ),ε,σ) = O(ε2) follows from Lemma 2.4, ϊ̂ (0, ε, σ) = 0(ε2),

, ε, σ) = 0(\ w|2). Since Av^(^*(0, ε, σ), ε, σ) = 0(ε2) we immediately obtain

d
B^ε, σ) = p(ε, σ)H PF(αΦ+ W^ ε, σ)L= 0 = p(ε, σ) + O(ε ) .

δα

As for B2, notice that

~7*' ε» σ) L=o = —^^w^(^*(0, ε, σ), ε, <τ)<Φ, Φ>-h(9(ε2)

Since Φ^ε, σ) = ε1/2φί(ε, σ) + O(εί/2) and Φ2(
ε» σ) = ̂ (ε), ^2(ε5 σ) can be expressed as

9 ε, σ), F(x, ε, σ))^1 !̂̂  ε, σ
ε o

By using Lemma 3.1 (iii), (iv), the integral on the right side converges to
K3 ίϋ^/tiuί^), v*)z(η)3dη as ε-> 0. Integration by parts yields

3dη=-Γ fu(z(η)9 t>*)2z[- /(
J —

4.2. Stability. On account of the change of variables (2.10), we have to analyze
the eigenvalue problem

-CK "OO
in order to determine stability of the solution (u( , ε, σ), v( , ε, σ)) of (1 . 1), where

gu

Lε>*w = ε2w"+fu(u( ,ε, σ), t;( , ε, σ))w

N*>σz = L^(U,z) + fv(u( , ε, σ), ι;( , ε, σ))z

^« = ̂ «("( 5ε, σ), t;( ,ε, σ))

Mε'σz = σ - V + [gfu(w( , ε, σ), t;( , ε, σ)) £/! + gv(u( , ε, σ), ι?( , ε, σ))]z .

In order to indicate the linearization around the true solution (u( , ε, σ), t;( , ε, σ)), we
use in this section the same notation Lε'σ, Mε'σ, etc. as those around the approximate
solution (£/(•, ε, σ), F( , ε, σ)). No confusion should arise in this regard.

The equation (4.7) now reads
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(4.8) (Lε'σ-p)

From (4.5) and Corollary 3.2, it follows that Lemma 3.1 remains true for Lε'σ above

and that Lemmas 3.3, 3.5 and 3.6 are valid for Mε'σ and Nε'σ. Following the same line
of analysis as that applied to Γ(ε, σ), we obtain

(4.9.a) α(Λ1-p)-α<(Mβ '-p)-1

flfil01, Ό.φ^-^M^-pΓ^g^ f/1φ1> = 0 .

(4.9.b) (L^-p^-βίΛ^-pίΛXM^^

where U1=(λl—p)U1+fv(u9v). By virtue of Lemma 3.5 (i), there exists a constant
δ0 > 0, which is independent of (ε, σ) e (0, ε0] x (0, σ0], such that for | p | < <50, the operator
on the left of (4.9.b) is invertible uniformly in (ε, σ)e(0, ε0] x(0, σ0]. Therefore,
the statement in Theorem B is valid for (4.7) in the region {peC; Rep> — p0} n
{peC;|p|<<5 0}.

4.3. Eigenvalues in {peC; Rep> — p0, |p|><50}. We first cite the following
theorem.

THEOREM 4.1 ([8, Lemma 2.2]). For pe{peC; Rep> -p0, |p|><50}, any C2-
function P(u9 v) and AeL 2nL°°, we have the following convergence

ε,σ,ι; , ε , σ ^ - p - as ε^

in the ZΛsense, where fσ

u=f(U(x, σ), V(x, σ)) and Pσ = P(U(x, σ), F(x, σ)).

Fujii and Nishiura [8] proved this theorem for (Lε'σ-p)f, but their proof works
for our situation (even simpler).

The first equation of (4.8) gives

= -U1z-(U>'-pΓ1(fvz).

Then the second of (4.8) yields

Multiply this equation by the complex conjugate z of z, and integrate the result over
[0, 1] to obtain

(4.10) _σ-i||z Ί |2+ Γgv\z\2dχ- Γzgu(Lε>σ-pΓί(fvz)dx = p\\z\\2

0.
Jo Jo

Let us split this into real and imaginary parts by setting p =
pR—^—\pι,z=zR + ̂  — \zI, where pR, pjeR and ZR, zl are real-valued functions.

(4.10), -σ-Vllg+l\l*l2<fr—^-
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+ zldu[_(U'° - p) ~ 1 + (L* ° - p) - ̂ (fvzβdx + PlΓ [zRgu(U ° - p) ~ \U-° - p) - U*/)
Jo

(4.. 10), -p,Γ {zR9u(U'a - p) ~ \U " - p) - '
Jo

+ zIgJίL '-pΓ1(L«'-p)-1(fttl)}dx~ Γ
* Jo

-*/^^^
We normalize z so that ||z||0=l. Since \\(Le σ-pΓl\\->0 and p^L^-p)'1^0-
p)~1||->0 as |p|->oo inside the region {peC; Rep> — p0}, the relations (4.10)κ and
(4.10)7 imply the existence of a constant ra0>0 such that

ρR<m0, and |p/|<m 0

where the constant ra0 is independent of (ε, σ)e(0, ε0] x (0, σ0]. These relations also
imply that there is a constant mί>0 which is independent of (ε, σ), such that

Let ε tend to zero in (4.10)κ and (4.10)j. By using Theorem 4.1, we obtain

-σ-vιg+ Γ
Jo

Γ1 a"f\

-"I. (/r
where /;, gσ

u etc. are evaluated at (U(x, σ), V(κ, σ)). When p/ = 0, (4.11)Λ gives

One should notice that (/; + 0S)<0, (fΐgσ

v-fσ

vgΐ)>Q from the conditions (A.3), (A.4)
and (A. 5). It is therefore easy to find a constant p/>0 such that the integrand of the
second term in (4.12) is strictly negative for p> — px. This means that real eigenvalues
in the region {peC; Rep> — p0, |p|><50} have to satisfy ρ<—p±.

When p/^0, the relation (4.11), gives

Γ ϊV lz l 2
1J^2} dχ=-\

which together with (4.11),, gives rise to
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(4.13) 2pll+ r^Mi!!_^
L Jo (/;-P*)2+P,2 J Jo (/;-P*)2+P/2

where det°=f σ

u g σ

υ -f σ

v g σ

u . Since fσ

ug
σ

υ>Q,fσ

u detσ<0 and 0*<0 on account of the
conditions (A.3), (A.4) and (A.5), the relation (4.13) gives a constant p2 >0 independent
of σ such that pR<-p2- We complete the proof of Theorem A (ii) by taking

p*=min{p0,Pι,P2}

5. Stability analysis for multiple transition layers. Once we know the existence
of single transition layer solutions of the problem

,v) = Q 9 for xe(0,l),

= 0, 1

then the folding-up principle gives families of solutions with multiple transition layers.
To be more precise, let us assume (H(X), v(x)) is a solution of (P)^ d. For each positive
integer n, the pair of functions (HΠ(X), vn(x)) defined by

(5.1) un(x)=Tnu(x), vn(x)=Tnv(x)

solves the problem (P)ε>σ with ε = ε/«, σ = n2σ, where for xe[ί/n, (i+ l)/ri]

Tnw(x) = w(nx — i) , if i is even , Tnw(x) = w(i + 1 — nx) , if i is odd .

Let (M(X, ε, σ), ι;(x, ε, σ)) be the family of solutions with single transition layer given
in Theorem A. Then (un(x, ε, σ), vn(x, ε, σ)) defined by (5.1) is a family of solutions of
(P)ε<τ with n internal transition layers where ε = ε/«, σ = n2σ. It is the main purpose of
this section to determine the stability property of (un, vn) as an equilibrium solution of
the parabolic equation (1.1). We prove the following:

THEOREM C. If J'(v*) is negative (positive), the solution (un( , ε, σ), vn( , ε, σ)) of
(P)ε>σ is stable (resp. unstable with index n),for εe(0, ε(σ)], σe(0, σ0], as an equilibrium
solution 0/(l.l), where ε(σ) is a continuous function such that ε(σ)->0 as σ->0.

Let Γε'σ : Hi x H2

N^L2 x L2 be given by

"
JV

where

, ε, σ), t^ , ε, σ))w , 7Vε'σz = L^(ί/πz) + /ι;(Ww> vπ)z

Π, ι;π) ί/n + ̂ (w,,, t;M)]̂

We also defined
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x i (σ) = x *(n ~ 2(*}ln 5 and * *(σ) —Jln — x ί (σ) 5 f°Γ 7 even >

*;(*) = (/- l)/w + *ί(*), for 7 odd, 3<j<n.

The function ww(x, ε, σ) exhibits an internal transition layer at each point Λr = jcjc(σ),

j= 1, , «, as ε->0.

LEMMA 5.1. L^ [<£/( ,ε, σ), Λ/ε, σ)]j°=1 6e # complete orthonormal system of

eίgenfunctions and eigenvalues of U>° such that λί> λ2> ' ' 9 λm-^ — oo as m-+cc.
(i) TTzere exists a constant λ0 > 0 .swcA /Λαί

>lπ + i(ε, σ) < - ^o , (ε, <τ) e (0, ε0/«] x (0, « 2σ0] .

(ii) linig^oΛ/ε, σ) = 0 uniformly in σe(0, n2σ0'],j= 1, •••,«.

(iii) There exist constants k>Q and /?>0 5McΛ /Λαί

I φj(x, ε, σ) I </:| 0/χ* (σ), ε, σ) | exp[-j5| x-xf(σ) |ε~ J]

forxe[(l-l)/n9l/n]9j=l, --,n.

(iv) TΆere ^xwί constants a^eR, j, 1= 1, , n,

uniformly in σe(0, «2σ0]. Moreover, the matrix A = (aίj)
n

i \j=ί is orthogonal.
(v) The following limits exist:

ϊ (p fΐ\ rr Γx*
lim ̂ î  = ̂  Λ*/'(v )
ε-o ε n Jo

forj=l, '-,n.

For the proof of this lemma we refer to [11, Lemmas 5.1, 5.2 and 5.3].

LEMMA 5.2. There exists a constant μ0>0 such that the principal eigenvalue of

Mε'σ satisfies /^(ε, σ)< —μ0for (ε, σ)e(0, ε0/Ai] x (0, «2σ0].

The proof of this lemma is nearly identical to that of Lemma 3.3, and hence omitted.
In order to determine the stability property of the solution (wπ, vπ), we examine the

eigenvalue problem

"•OK X)
which is equivalent to

(5.3) (Lε'σ-p)w + (^ε'σ-pC/π)z = 0 , (Mε σ-p)z + 0ttw = 0 .

We are interested in the eigenvalues p of (5.2) in the region Cpo: = {peC; Rep>/?0}

0 = min{Λ0, μ0}.
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For peCpo, Lemma 5.2 implies that (Mε>σ — p)"1 is bounded uniformly in p,

(ε, σ)e(0, ε0/ή] x (0, «2σ0], hence the second of (5.3) gives

*= -(M*>*-Pr
1guw= -(M' -pΓlgJ( Σ «jφj

\ j=ι

where α/eC, 7=!, ••',«, <</>;, w> = 0, y'=l, •••,«. By using decomposition L2 =

\_φί9 - , </>JθζλL2 and integration by parts, we obtain from (5.3)

(5.4) *A-P)- Σ *j

(5.5) (L*>*-p)vv-Q(N*>'-pUn)(M*><>-pΓ1guw = Σ ̂

where 0Hti = (^-p)Un + fO(um9O^9 ι=l, - - ,/ι. Since ||^ε'ff(7Vε'σ-p)-Vu HL^L> =
0(ε1/2) as ε->0 (see Lemma 3.5 (i)), there is a constant <50>0 such that for p in
{peC; |p|<<5 0}nCp o the operator on the left of (5.5) is uniformly invertible. For
eigenvalues p of (5.2) in {| p \>δ0} n Cpo, we can follow the procedure in section 4.3 to

show that there is a positive constant p0 such that Re p < — p0. We therefore concentrate
on the eigenvalues in {p e C; | p | < <50} n Cpo. For such p, the equation (5.5) can be solved

in w as a function of (αl9 •••,#„)

which together with (5.4) gives an equation for p to satisfy as an eigenvalue of (5.2):

(5.6) detCdiag^-p, , λn-p)-εΦ°(ε, σ)-8

3/2Φ1(β, <τ)] = 0

where Φ° = (Φy)"j=ι> φl = (φ6 )ΰ=ι are matrices defined by

It follows from the result in section 3 that Φ°, Φ1 = O(1) as ε^O. Since Λ,/ε, σ) = O(ε)

as ε^0,7= 1, •••,«, the equation (5.6) shows that p = 6>(ε). Let us set p(ε, σ) = εp(ε, σ),
λj(ε, σ) = ε λ j ( ε , σ),j= 1, ••-,«, which reduces (5.6) to

(5.7)

To obtain an estimate for p(0, σ), we first compute Φ^ . Notice that limε_0 ί/ε, σ) = λ(σ),

7=1, •••,«, from Lemma 5.1 (v). A computation similar to that which follows Lemma
3.7 gives
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where C* = Λ:£/y(ι;*)[G+(t;*)-G_(ι;*)] and δ% represents the Dirac <5-function at

x = x*(σ), and ((M0'")'1^, £*> is the duality pairing in H 1 x H'1. Therefore p(0, σ)

satisfies

where M(σ) = Mίj(σ))lJ=i is a matrix defined by

Since the matrix A is an orthogonal matrix, the equation for p is equivalent to

(5.8) det[I(σ) — p)\n — M(σ)] = 0 .

For the equation (5.8), Fujii and Nishiura [16] gives the following:

LEMMA 5.3. There exist n continuous functions τ"(σ),7 = 1, , n, 0/σe(0, «2σ0]

such that

τ\(σ)>τ\(σ> - - - >τj(σ)>0, \λ(σ)\<\J'(v*)τn

n(σ)\

and the solution p 0/(5.8) are given by

Moreover,

limτ"(σ) = 0, 7 = 2, -',n, \\mτ\(σ) = y^Kl[G+(υ*) — G-(v*}]
<T—*0 <7-»0

where

= **(0)[[/U01,— fvdu]/fu]v = v*,u = h-(v*) + (l— X*(ty)[Lfu9v—fv9u]/fu]v = v*,U = h + (v*) '

This completes the proof of Theorem C.
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