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Abstract. This paper is concerned with Cesaro summability and Marcinkiewicz
multipliers for the H-dimensional case of Laguerre expansions of a different kind. The
results are obtained from the corresponding results for the ^-dimensional Hermite
expansions by appealing to a transplantation theorem which is also proved here.

1. Introduction. The aim of this paper is to study the mean summability of
multiple Laguerre expansions. There are at least four types of Laguerre expansions on
the half line studied in the literature. The fourth type studied by Markett [7] and the
author [15] seems to behave better than the other types with respect to the Riesz or
Cesaro summability. In this paper we consider the ^-dimensional version of this fourth
type of expansions. Before describing the results, some comparison between the Hermite
and Laguerre expansions on the real line are in order.

In the case of the Hermite series there are only two possibilities: one can either
consider the Hermite polynomials Hk forming an orthogonal system in L2(R, e~χ2dx)
or consider the Hermite functions hk forming an orthogonal system in L2(R, dx). In the
former case we expand / in LP(R, e~χ2dx) in terms of Hk. For this series it has been
proved by Pollard [9] and Askey-Hirschman [1] that no Cesaro means of any order
whatsoever will converge to the function in the norm for p Φ 2. On the other hand for
expansions in terms of hk even the partial sums SNf converge to / in the norm provided
4/3 <p<4. This fundamental result concerning the summability of Hermite series is due
to Askey-Wainger [2]. Later several authors studied the Riesz and Cesaro means for
the Hermite series. (See [12] and the references thereof)- The author has proved in [12]
that the critical index for the Riesz summability is 1/6.

As we have mentioned in the beginning, there are four types of Laguerre expansions
on the half line /?+ = (0, oo). The Laguerre polynomials Ll(x) form an orthogonal system
in L2(R + , xae~xdx). As in the case of Hermite polynomials the series in terms of L£
turns out to be nonconvergent for pφl. Therefore, we define the following three
families of Laguerre functions:

(i-i)
Γ(k + a+\)
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(1-2) W) = *i(±t*\

(1.3) φ%i) = 5£l{t2

The functions 5£l and φ£ form orthonormal systems in L2(R+, di), whereas the func-
tions φl form an orthonormal system in L2(R+, t2<x+1dt). Consequently, we have three
types of Laguerre expansions. Let us call them expansions of type II, type III and
type IV, respectively.

For type III expansions with α > 0 it has been proved by Gόrlich-Markett [4] that
the critical index for the Cesaro summability is (α-h 1/2). On the other hand the critical
index for type II expansions is 1/2 (see Markett [6]). When α = 0 these two types coincide.
Thus, we see that there is a basic difference between the Hermite and Laguerre expansions
in that they have different critical indices of summability. This difference is well explained
by the fact that the Laguerre expansions of type III with α = 0 arise as a particular case
of special Hermite expansions on C, see [18]. Thus Laguerre expansions of type III
are to be treated as some two-dimensional expansions even though they are on the half
line. Therefore, the critical index is 1/2 which is only to be expected.

In [7] Markett initiated the study of the fourth type of expansions. He made the
interesting observation that the ZΛnorms of the partial sum operators SN for type IV
expansions grow slower than that for type III expansions. This indicated a smaller
critical index and in [15] the author proved that it is 1/6 for the type IV expansions.
Thus the type IV expansions is similar in nature to the Hermite expansions. We expect,
therefore, that the ^-dimensional version of this Laguerre expansion will behave just
like the ^-dimensional Hermite expansions. This claim is proved to be correct in this
paper.

We conclude this introduction with some words about the organisation of this
paper. In the next section we set the notation and state the main theorems. We reduce
everything to the Hermite case by appealing to a transplantation theorem to be proved
in the following sections. Section 3 consists of the sketch of the proof of the
transplantation theorem. Section 4 proves a multiplier theorem needed to prove the
transplantation theorem. Section 5 gives the proof of the transplantation theorem.

Finally, we wish to thank Professor Yuichi Kanjin for sending us the preprint [5]
which inspired this work.

2. Notation and the main results. For α > — 1 the Laguerre polynomials of type
α are denned by

(2.1) L%t) ^eΓ^k

k\ dtk

Then the Laguerre functions ψl, t£\ and φ\ are denned as in Section 1. The Hermite
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polynomials and the Hermite functions are defined by the formulas

(2.2) i/t(0 = (-l)V24r(β-'2),
at

(2.3) hk(ή=(2kk\J^r1'2Hk(ήe-'2i2.

In the H-dimensional case we define the Hermite functions Φm(x) on R" by

(2.4) Φm(x)=f\hmj(xj).

Here x = (xx,..., xn)eRn, and m = (mu . . . , mn) is a multi-index. The functions Φm form

a complete orthonormal system in L2(Rn) and one has the Hermite series

,ΦJ=ί(2.5) f = Σ(f>*m)Φm With (/
m

In [12], [13] and [17] we have studied the Riesz summability of this series.

We now define the ̂ -dimensional Laguerre functions. Let Rn+ = {xeRn: Xj>0} and

let α = ( α 1 ? . . . , απ) where α,> - 1 for all/ We define &*m(x) and Φ*m(x) by

(2.6) J?*m(x)=fl<?*ij(xj),

(2.7) ΦiW^rtft).

Associated to the families S£a

m(x) and Φί,(x), we have the following two types of

expansions:

(2-8) /

(2-9) /
m

In (2.8) and (2.9), (/, g) stands for the inner product in the Hubert space L2(/? + , dx).

We then define the projections

(2.10) Qif= Σ (f,#aJ&Λ

m9
\m\=k

(2.100 Pίf= Σ (AΦ'JK
\m\=k

In the same way we define

(2-11) PJ= Σ (f,*JΦm
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to be the projection for the Hermite series.

Riesz means of order δ > — 1 for the Hermite series is defined by

(2.12) st/.f Λ_2̂ ϋY PJ,

where a+ =a for a>0 and a+ = 0 for α<0. Riesz means for the series (2.8) denoted by

sδύaf is defined in a similar way. For the series (2.9) we define the Riesz means S^f

with a slight change, namely,

(2.13) S^=Σ
k = o \ / +

We have used 4/c + rc instead of 2/c -f n because it will enable us to deduce results from

the Hermite expansions. This change does not affect the behaviour of the Riesz means

in any way. We define the critical index for the Riesz summability to be the smallest

δ0 for which δ > δ0 implies that the Riesz means of order δ are uniformly bounded on

L\Rn) or LX(R\) as the case may be.

For the Hermite expansions the critical index is 1/6 for n = 1 [12] and (n—\)/2 for

n>2 [13], [17]. On the other hand, for the series (2.8) with α ^ O for ally, the critical

index is n—1/2 as proved in [20]. In the case of (2.9) with n=\ and α> 1/2 we have

proved in [15] that the critical index is 1/6. In the ^-dimensional case of (2.9) we expect

the critical index to be (n —1)/2. Our first theorem shows that this is indeed the case.

THEOREM 2.1. Assume that α, > —1/2 for allj.

(i) When n=l the uniform estimates

\\sδAaf\\P<c\\f\\p, feLp(R+)

hold for all 1 <p<co provided δ>\ 16.

(ii) When n>2, the uniform estimates hold for 1 <p < αo provided δ>(n— l)/2.

In both cases S^f converges to f in the norm for 1 <p< oo.

We also study Marcinkiewicz multiplier theorem for the Laguerre series (2.9). Given

a bounded function λ on R+ we consider the operator M\ defined by

(2.14) M\f=
fc = O

" 2 /Since λ is a bounded function, M\ is evidently a bounded operator on L2(Rn

+). But

they are bounded on Lp(Rn

+) for/7Φ2 only under some conditions on λ. Such a condi-

tion is given in the next theorem.

THEOREM 2.2. Assume that α7 > —1/2 as before. Let λ be a Ck-function for some

k>n/2 and let λ satisfy the estimates
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(2.15) ^
r>0

fory=0, 1, 2, . . . , k. Then the operator M\ is bounded on LP{R\) for 1 <p< oo.

Both theorems will be deduced from the corresponding results for the Hermite

expansions which are already proved elsewhere. The deduction is made possible by a

transplantation theorem which we are going to describe now. For each pair of w-tuples

α and β with ocp βj> — 1 we define an operator Wβ formally by

For this operator Wβ we prove the following theorem which is in fact the main result

of this paper.

THEOREM 2.3. Assume that ocp βj> — 1/2 for all j. Then for \<p<oo the operator

Wβ is bounded on LP{R\).

The operator Wβ

a is called a transplantation operator for the following reason. It

is easy to check that

(2.17) W%M\WβJ = MβJ.

In view of this relation and Theorem 2.3 it follows that Mβ

λ is bounded on LP(Rn+)

whenever M\ is bounded. Therefore, we can transplant any norm inequality for

expansions in terms of Φ*m from the same for expansions in terms of Φβ

m and vice versa.

Hence in order to prove Theorems 2.1 and 2.2 it is enough to prove them in the particular

case α = (—1/2, —1/2,..., —1/2). The rest of this section is devoted to showing how the

particular case α = (—1/2,..., — 1/2) of the two theorems follow from the corresponding

results for the Hermite expansions.

The relation between the Hermite and Laguerre polynomials is given by (see [11])

(2.18)

(2.19)

From this it follows that h2k is even and Λ2*+i is odd. From the definition of φ\12 and

Ψk 1 / 2 w e a l s o observe that

(2.20) M 0 = ( - l

(2.21) h2k+ί(t) = (-\)k~'—

Therefore, if / is a function on R" which is even in each variable separately, then
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(2-22) Plk+J= Σ (f,ΦJΦm = O
|m|=2fc+l

and

(2.23) p2kf= Σ (/,φJφm= Σ (f^im)Φim= Σ (/,Φtr 1 / 2 ))Φlr 1 / 2 )=n- 1 / 2 )/,
|m|=2fc \m\=k \m\=k

where (-l/2) = ( - 1/2,..., -1/2).

Therefore, if Mλ is the multiplier operator

(2.24) MJ= Σ M2k + ή)Pkf
k = 0

for the Hermite series, then for / even in each variable we get

(2.25) MJ= £ λ(4k + n)Pί~1/2>/ .
k = 0

Hence Theorem 2.2 for α = (-l/2) follows from the multiplier theorem (see [14]) for

the Hermite expansions. Since the Riesz means are also multiplier transforms, Theorem

2.1 for α = (—1/2) also follows from the results in [12], [13] for the Hermite expansions.

In the next section we sketch a proof of the transplantation Theorem 2.3.

3. The transplantation theorem. In order to establish the transplantation theorem

it is enough to consider the one-dimensional case. So, let α and β be real numbers both

greater than — 1. Our operator Wβ

Λ is related to the operator Tβ studied by Kanjin [5].

In fact, as we will see presently, our theorem is equivalent to a weighted norm inequality

for Tβ

a. Recall from [5] that the operator T{ is defined by

(3.1) Tβf=Σ {f9Xt)Xί
fc = O

For this operator Kanjin has proved the following result:

THEOREM 3.1 (Kanjin). Let v = min{α, β}. Ifv>0, then T{ is bounded on LP(R+)

for \<p<co. If — l < v < 0 , it is bounded on LP(R+) for p lying in the interval

We now bring out the relation between W{ and Tβ. Since φk\t) = ̂ k\t2){2t)112 it is

easy to see that

(3.2) (/,φ£) U

where g(t) = f(yj t)t~1/4r. Therefore, one has
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(3.3)

In view (3.3) it is clear that the boundedness of Wβ is equivalent to

(3.4) f°° I Tβg(t)\ptp/4~1/2dt<C P\g(t)\ptp/*~1/2dt.

Hence, Theorem 2.3 follows once we prove:

THEOREM 3.2. Assume that α, β> — 1/2. Then for \<p<oo the inequality (3.4) is
valid.

In proving Theorem 3.2 we closely follow the proof of Theorem 3.1 given in [5].
Here we give a sketch of the proof. Let us define

(3.5) 11/115.*= \f(χ)\pχpl*-ll2dχ.-Γ
"W J o

We claim that Theorem 3.2 follows from the next proposition. A function M(θ) defined
on R is said to be admissible if it satisfies the growth condition

(3.6) sup*r f lle |logM(0)<oo with a<π.
θeR

PROPOSITION 3.1. (i) For α = 0, 1, 2,... one has

for 1 <p< oo and k = 0,2 where M(θ) is admissible.
(ii) If α > - 1/2, then for \<p<co

\\Ta

a

 + 2f\\p,w<C\\f\\p,w.

We now briefly indicate how Theorem 3.2 follows from this proposition. Since
(Γf/, g) = (f, Ta

βg) it is enough to consider ~\/2<a<β. Choose an integer N so that
2N<β<2(N+l). Then it follows that if - l / 2 < α < 0

(3.7) T * = T * Λ

+ 2 o T 0

a + 2 o T 2

0 o ---oTβ

2N.

(If α>0 we can get a similar expression). Therefore it is enough to prove the following
two things:

(a) r 2

(b)
Since (a) is simply Part (ii) of the proposition we only need to prove (b).

To prove (b) we use analytic interpolation. We consider the analytic family T%+2z

of operators where 0 < Re z < 1. T2 + 2z is an admissible family of operators in our
situation (cf. [5]). Since Tn

n

+iθ and τn

n

+2 + iθ are bounded on Lp it follows that Tβ

n with
n<β<n + 2 satisfies | |7^/ | | p w < C | | / | | p w. Hence (b) is proved. Therefore, it remains to
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establish the proposition.
In order to prove the proposition it is necessary to study the ZΛmapping properties

of a multiplier operator m\ which is interesting in itself. This operator m\ is defined by
setting

where A is a bounded function. We first establish the following theorem

THEOREM 3.3. Assume that α = n — 1, where n = 1, 2, Let λ satisfy the estimates

(3.9)
f>0

for 7 = 0, 1, . . . , (n -f 2). Then for 1 <p < oo we have

(3-10) IW/||p,w

To apply this multiplier theorem to proof of the proposition we consider the
function λ defined by

(3.11) A(2ί)=

r μ + α + , ,

Then as in [5] we can prove that this function λ satisfies the conditions (3.9) for any
α = / !- l . Take φ{k) = λ{2k + I ) " 1 and define

(3.12) T£t

Then it is clear that

(3.13)

Hence in view of the multiplier theorem, Proposition 3.1 would follow immediately
once we have the following estimates.

PROPOSITION 3.2. (i) When α >0 one has

(3.14) || η

for \<p<cc, k = 0,2 where M(θ) is admissible,
(ii) When α> —1/2 one has for 1 <p< oo

(3.15) φ p

Thus the crux of the matter lies in proving the multiplier theorem and the above
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proposition. First we will take up the multiplier theorem.

4. The multiplier theorem. In this section our aim is to establish the multiplier
theorem for the Laguerre expansions. To this end we first study multipliers for the
special Hermite expansions on Cn. By the term special Hermite expansion we mean an
expansion of the form

(4.1) f = (2πΓnΣfxφk.

Here / is a function on Cn, φk is the function

(4.2)

and f xg stands for the twisted convolution

(4.3)

For facts about the twisted convolution and special Hermite expansions we refer to
[16] and [18] and the references thereof.

For the special Hermite expansion (4.1) we define a multiplier transform Tλ by the
prescription

(4.4) TJ(z) = (2π)"" Σ λ(2k + n)(/ x φk)(z).
k = 0

For this operator we establish the following.

THEOREM 4.1. Assume that the function λ satisfies the conditions of Theorem 3.3
(with (x = n—\). Then for 1</?<OO,

(4.5) I \TλF{z)\p\z\in-ί/2)p-i2n-1)dz<C I \F{z)\p\z\{n-ll2)p-(2n-l)dz\ \TλF{z)\p\z\in-ί/2)p-i2n-1)dz<c\

whenever Fe Lp(Cn) is radial.

We claim that Theorem 3.3 follows from the above theorem. To prove the claim
we use the fact that when F is radial

(4-6) {F

which shows that Fx φk is a radial function. With r = |z | we have

(4.7) (Fx Ψ^) = Cn^~^^I" F{r)Ll~^1
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which can be written as

(4.8) (Fx φ

where / and F are related by

(4.9)

Thus TλF becomes

(4.10) TιF(z)=C, £

S. THANGAVELU

4.11) f°°

Therefore, Theorem 4.1 gives

(4.

which after a change of variables becomes

Γ 00 Γ 00

(4.12) \mn

λ-
1f(ή\prp//'-1/2dr<C \f(r)\prp/4~1/2dr.

Jo Jo

Hence we obtain Theorem 3.3.

In the paper [16] on Weyl multipliers we have established the inequality

(4.13) f \TλF{z)\"dz<c[
J cn J c

TλF(z)\pdz<C\ \F[z)\pdz

for all functions F in Lp(Cn), 1 <p< oo. Let us briefly recall how this was proved. We

consider the semigroup V defined by

(4.14) Ttf = (2πyn X e-(2k+n)tfxφk
fc = 0

and define Littlewood-Paley-Stein g functions

(4.15) (g(f,z))2=Γ\dtrf(z)\2tdt,
J

(4.16)

,z))2=Γ\dt
Jo

to?(/,z))2=f°° ί t^
Jo Jcn

where A: is a nonnegative integer. For these functions we established the following bounds:

(4.17) Ql l /II^H^/ί l l^C^I/ l l^ l<p<co,

(4.18) II^*(/)IIP<C||/||P, p>2 and k>n.

Then under the hypotheses on λ we established
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(4.19)

where k = n+ 1. In view of (4.17) and (4.18) we obtain (4.13) for/?>2 from (4.19). Then
a duality argument proves (4.13) for/?<2.

Since (4.19) is true, in order to prove Theorem 4.1 we only need to establish the
following proposition. By slightly abusing the notation we denote by | | F | | p w the norm

JCn

PROPOSITION 4.1. (i) There are constants Cx and C2 such that for \<p<co one has

for all radial functions F in Lp(Cn),
(ii) Ifp>2 and k>n9 then for all radial F in Lp(Cn) one also has

(4.21) ll^*(^)llp,w^C||̂ ΊIpfw

PROOF. We first claim that (i) implies (ii). To see this let h be a non-negative
function. Then for k>n it is clear that

(4.22) (g*(F,z))2h(z)dz<C\ (g(F, z))2(Mh)(z)dz ,

where Mh is the Hardy-Littlewood maximal function of h. For p>2 let q=p/2 and
define

Then, it follows that

(4.23) f {gt{F,z))2\zϊ2n-w-2lp)h{z)dz<c[
Jcn Jc

Now we write

(4.24) ί (g(F,z))2(Mh1)(z)dz= ί {g{F,z))2\z\^n-^ι

where q' is the conjugate index of q. By applying Holder's inequality we obtain

(4.25) f (giF^nMh^dzJi (g(F,
Jcn \J cn

Since q'>\, -2n<-2n+l<2n(q'—l) so that the function \z\~i2n~l) is in
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Muckenhoupt's Aq> class and consequently

(4.26) ([ \z\-(ln-χ\Mhx(z)Yd^\'q <c([ (hJzψlzΓW-VdzX"1 <C\\h\\q,.

On the other hand, for F radial the right hand side inequality of (4.20) gives

I \g(F,z)\p\z\(n-ll2)p-(2n-1)dz<C\
JC" JC"

Hence in view of this (4.26) and (4.25) we get

(gϊ(F, z))2\z\^-^LJcn

Now taking supremum over all h with ||A||β,= 1 we obtain

| | 0 ? ( F ) | | p , w < C | | F | | p , w , F radial.

Therefore, it remains to prove Part (i).

In order to establish Part (i) we first observe that g(F) is radial whenever F is. In

fact, an easy calculation shows that

(4.27) (Fxφk)(z) = Cn(K ΦΓ'ίφΓ

where F and h are related by

(4.28)

Therefore,

(4.29) TtF(z) = Cnf
th(-^

where f* is the semigroup defined by

00

(4.30) TVW= Σ e~i2k+n)t(f, Ψl

This gives the relation

(4.31)

- π + l / 2
I'

2.

2,

where $ is defined for the semigroup f\ From the above relation it follows that

ί (0(F, z)Y\ z |<»- i/2>P-<2»- i>dz = C π I (g(fc, r))^r ,
Jcn Jo
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and also

I \F(z)\p\z\{n-1/2)p-(2n-1)dz = Cn\ \h(r)\pdr.
J o Jo

Thus, Part (i) of Proposition 4.1 is equivalent to the following.

PROPOSITION 4.2. There are constants C1 and C2 such that

CΛh\\p<\\g{h)\\P<C2\\h\\p

for h in LP(R+), 1 <p< oo.

PROOF. The ZΛestimate

(4.32) A 1 Λ

follows directly from the orthonormality of the functions φl~ι and the Plancherel
theorem. We will show that

(4.33) \\g{h)\\P<C\\h\\p for l < p < o o .

Then from this and (4.32) the reverse inequality follows by standard arguments (see
Stein [10]). The proof of (4.33) is similar to the proof of the ZΛboundedness of the g
function associated to the Hermite series. So we merely sketch the proof referring to
[14] for details.

We consider g as a singular integral operator whose kernel Kt(r, s) takes values in
the Hubert space L2(R+, tdt). The kernel is explicitly given by

(4.34) Kt(r, s)= - Σ (2fc + φ- ( 2 f c + M ) VΓ 1 WφΓ 1 (s) .

For this kernel it is not difficult to establish the following estimates:

Q \l/2

\Kt(r,s)\2tdt) KQr-sΓ1

α oo \ l / 2

\drKt(r,s)\2tdt) <C\r-sΓ2.
These estimates show that Kt is a Calderόn-Zygmund kernel taking values in L2(R+, tdt).
Hence by appealing to the theory of vector valued singular integrals we obtain (4.33).
This completes the proof of Proposition 4.2 modulo the estimates (4.35) and (4.36).

The kernel Kt(rt s) can be explicitly calculated. In fact, we have the generating
function relation
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i l -4- 7 \\Y -4- s; l \ / /1W7 \

_ u + z ΛΓ H-5 n -iiH-iyκf2j l^L\
2(i-z2) Vi-W

where Jk is the Bessel function of order k. By taking z = e~2ί in (4.37) and differentiating
with respect to t we obtain an expression for the kernel Kt(r, s). If we set Ik(z) = e~ιkπ/2Jk(iz)
then the following are well known (see [8]).

(4.38) 2Γk{z) = lk.

(4.38)'

(4.39) |J

Using these relations and estimates it is not difficult to establish the following:

(4.40) \Kt(r,s)\<CΓ3l2e-^-^ ,

(4.41) \drKt(r

where a is a positive constant.
Such estimates have been obtained for the Hermite case in [19]. The proof is not

difficult. If we use (4.38) and (4.39) it is easy to see that the same arguments go through
in our present case also. The estimates (4.35) and (4.36) are then immediate from (4.40)
and (4.41).

This completes the proof of the multiplier theorem.

5. Proof of Proposition 3.2. The two ingredients used by Kanjin [5] in
establishing the inequality

(5.1) \\T::φ

k + iθf\\P<M(θ)\\f\\p

are the following.
(i) The ZΛboundedness of Calderόn-Zygmund singular integral operators,
(ii) Hardy's inequality

(5.2) I'll
Jo J J

f{t)t~ιdt dx<C\ \f{t)\pdt.

In order to establish a weighted version of (5.1) we need to use the following.
(i) Weighted norm inequalities for the singular integral operators. When w(x) is

a weight function in Muckenhoupt's Ap class, we have

(5.3) Γ \Tf(x)\"w(x)dx<cΓ \f(x)\*w(x)dx9
J — oo J — oo

whenever T is a Calderόn-Zygmund singular integral operator. For \<p<oo, the
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function w(x) = | x | p / 4 ~ 1 / 2 is in Ap and hence (5.3) is valid for this particular weight.

(ii) The weighted version of Hardy's inequality we need is the following. If α + 1 > 0

then

(5.4) Πί
Jo J>

/(Or1 A xadx<C\ \f(x)\px"dx.

This can be proved from (5.2).

The proof of the inequality

(5.5) φ P , p ,

is very similar to that (5.1). We only need to use (5.3) and (5.4) wherever the boundedness

of singular integrals and (5.2) are used. Therefore, we give only a sketch of the proof.

Another remark we want to make is the following. Throughout this section C(θ) stands

for an admissible function which may change from inequality to inequality. By keeping

track of them it is not difficult to check that they are admissible. As usual C will stand

for a generic constant which may change with each occurrence. We now turn to the

proof of Proposition 3.2.

We first consider the estimation of T*+φ

k + iθf where α>0 and k = 0, 2. For ε>0 we

define GΘJ as in [5] by

(5.6) Gθj(χ)= Σ φ(k)<(L &l+ε+iθ)&l.

fc = O

For this we establish the following.

PROPOSITION 5.1. For α>0, 0 < e < 1 and \<p<co one has the inequality

(5.7) l X
Before going to the proof of this proposition we observe that Gθ

Ef converges to

T^φ* a s ε->0. Therefore, in view of Fatou's lemma and the dominated convergence

Theorem (5.7) implies (5.5) with k = 0.

Coming to the proof of Proposition 5.1, proceeding as in [5] we first obtain the

following integral representation for G\f. For α> — 1, ε>0 and —oo<θ<ao

(5.8) Gtf(χ)=-^~-\ ^-id-^-i^/ί-V-W-) dv.
Γ( + θ)J \vj \j

From this one obtains by making a change of variables

(5-9)

where

1 f °° f(ή ί
= {}Ve-it-x)i2tto + u>)i2l

Γ(ε + iθ)Jx t \

1 f f(ή ί r y
(5.10) Iθ

εf(x) = {}Ve-it-x)i2tto + u>)i2lι_±_\ d t

Γ(ε + iθ)J t \ t)
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(5.11) JβJ(x) = f

Since α > 0, for Je

εf(x) we obtain

Therefore, by weighted Hardy's inequality (5.4) we get

(5.12) I °° \JθJ(x)\pxpl*-ί/2dx<C(θ) \\f(x)xε'2 \pxm~ll2dx ,
*/o

where C(θ) is independent of ε.

To obtain a similar inequality for Iθ

εf(x) we proceed as follows. Consider the operator

£/(*)= Π ?(t)Q(x-t)dt,
J — oo

where Q is the kernel

*K } Γ(ε + iθ) M " ' 0 )

Then one verifies that Pε is a Calderόn-Zygmund singular integral operator. Hence by

the weighted inequality (5.3) we have

Γ \PJ(x)\p\x\p/*-li2dx£C(θ) f°° \f(x)\p\x\pl*-1/2dx.
J — 00 v — 00

Since /£/(jc) = /?/(x) for x > 0 where/(Λ:)=/(x)x"< e + i β ) / 2χ ( 0,0 0 )(x) we obtain

(5.13) Γ IIβJ(x)ψx^-^dxKCφ) Γ | f{x)χ-ε'2 \pxm"mdx .
Jo Jo

Combining (5.12) and (5.13) we obtain (5.7).

In order to estimate T^ + ief for α> —1/2 we define pk and σk as in [5] and set

(5.14) Uθf(x)= Σ — (f, &lΣ
fe=o σk

i —
fc = o σk

Then it is easy to see that

(5.16)
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We first deal with Uθf(x). From the definition of Gθ

Ef(x) and the multiplier m\ (see

(3.8)) it follows that

(5.17) m'λG
β

2f(x)=Uθf(x)

with λ(2k+ \) = pk Therefore, in order to prove

(5.18)

it is enough to prove the following:

(5.19) \\m

(5.20) \\Gθ

2f\\p,w<C(θ)\\f\\p,w.

To establish (5.19) we require the following result of Butzer, Nessel and Trebels [3].

Consider the series / = Σ£°= 0 (/> <Pk)<Pk a n d let the multiplier m\f and Cesaro means

σNf be defined by

(5.21) m"λf=Σ
k = O

(5.22) σ*f = -L Σ (1 ~ 4
N k = o\ N

Then one has:

THEOREM (Butzer-Nessel-Trebels). Assume that σN are uniformly bounded on

LP(R+) and (λ(k)) be a bounded quasi-convex sequence in the sense that

(5.23) μilb q c= Σ (k+ lMk +

k = O

is finite. Then mCί

λf is bounded on LP(R+):

(5.24) N α Λ / l l P q p

For the sequence λ(2k+ \) = pk it is easy to verify that ||/L||bqc<C(l + | θ\) as in [5].

For the Cesaro means σN it follows from the work of Markett [7] that they are uniformly

bounded on LP(R+), l<p<co provided α> —1/2. Therefore, the above theorem of

Butzer-Nessel-Trebels applies to m\f and we get for 1 <p< oo, α> —1/2

(5.25) I I ^ / I I P < C | | / | | P .

It is easy to see that (5.25) is equivalent to the estimate (5.19). Thus it remains to prove

(5.20).

From the expression (5.8) with ε = 2 it follows that

(5.26) I Glf(x) I < C(θ) J v * 1 -\\-υ)J'
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By applying Minkowski's integral inequality to (5.26) we get

\\Gθzf(x)\\p,w<C(θ) Γ v"i2-2(l-v)dv\ f °° f(-)e^-^2x "x^-^dxl
Jo (Jo \VJ J

Γ1 Γ Γ*
< C(θ) I yα/2 + l/2p+l/4-lQ __ y\(jlv) I fίAe^1

Jo I Jo
Since ^ ί ( t ; " 1 ) / 2 /<2^" 1 (l-ι?)" 1 for />0 and 0<t;<l it follows that

Since the last integral is finite for α > —1/2 we obtain (5.20). This takes care of the

estimation of Uθf.

Next we turn our attention towards the estimation of Vθf. We define for ε > 0

VθJ(x)= Σ —
k = o σk

and as before it is enough to prove

(5.27) l l ^ / | | p , w < C ( θ ) { | | / p

We observe that V\f is G\f with (k/σk)ωl+2 and ε + 2 in place of φkωl and ε, respectively.

Therefore, there is an integral representation for V\ also. Proceeding as in [5] we

establish the following:

(5.28) V\f(x) = DθJ(x) - EθJ(x) - FθJ(x)

with Dθ

ε, El and FΘ

E being defiend as in [5].

To estimate E\f we first observe that it is defined just like G\f with α + 2 in place

of α. Since α + 2 > 0 we can apply (5.7) to conclude that

(5.29) l l ^ / l l P , w < C ( 0 ) | | / I U .

For the term D\f we obtain the representation

Λl2l Γ 0

y \
+ιθ)JxΓ(β+l+iβ)J, VW V y

which gives

I D'J(x)\<C(Θ)Γ\ f(y)\y"2(—Y2 ^- .
Jx \y) y

The proof of this is given in [5]. Therefore, by Hardy's inequality
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(5.30) \ \DβJ(x)\pxpμ-ι/2dx<C(θ)Γ f
Jo Jo Jz

\f(y)\yie'Λ)/2y'1dy
P

< C(θ) I f(x)xεl2 \pxm~ 1/2dx ,
Jo

since p/4 + <xp/2 + 1/2>0 for α> —1/2. Hence we have taken care of Dθ

ε also.

Finally for the term Fθ

εf we can prove that

(5.31) \FθJ{x)\<Cψ)[
J X

When α > 0 it is clear that

(5.32) \FθJ{x)\<Cψ)[
J X

which is simply the convolution (K*?)(x) for x>0 where

and / W = /(x)^£/2X(o,oo]W- Since \x\p/4~1/2 is in ̂  and AΊs a regular kernel, it follows

that

This proves that for α > 0

(5.33) \\Fθ

εf\\p,w<C(θ)\\f\\p,w.

When α < 0 we can write

\Fθ

Ef{x)\<Cψ){K*f*){x)\x\*i2,

where /*W = /Wx(ε~α)/2χ(0,αo]W For - l / 2 < α < 0 , |x|«W2+P/4-i/2 i s i n ^ since ic:is

a regular kernel it follows that

for — l/2<α<0 also. Hence we have established that (5.27) is true.

This completes the proof of Proposition 3.2.
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