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1. Introduction. In a given Riemannian manifold M", a soap bubble is a closed
hypersurface of constant mean curvature; an isoperimetric region is a compact region
which achieves the minimal (n— l)-dimensional Hausdorff measure of the boundary
among all compact regions of the same ^-dimensional Hausdorff measure. The former
is a type of distinguished global geometric object characterized by one of the simplest
local condition and the latter is a solution to one of the most fundamental geometric
variation problems. Moreover, they are conceptually closely related in such a way that
the regular part of the boundary of an isoperimetric region is a hypersurface of
constant mean curvature.

In the simplest basic case of the Euclidean spaces, En, «>3, the existence of
homothety transformations enable us to normalize the constant of mean curvature to
be equal to 1, i.e. tr II = w — 1, and the spheres of unit radius are obvious examples of
such soap bubbles in En. In fact, up to 1981, the round spheres were the only known
examples of soap bubbles in En and the hyperbolic spaces Hn; and the beautiful
uniqueness theorems of Hopf [Ho] and Alexandrov [Al-1], [Al-2] had, somehow,
misled many geometers to believe that they are most likely the only possible ones (cf.
the remark of Alexandrov in [Al-2]). The discovery of infinitely many congruent
classes of spherical soap bubbles of mean curvature 1 in En for all n>4 in 1982
[HTY-1], [HTY-2], [Hs-1] and the recent examples of Wente [We], Abresh [Ab],
Kapouleas [Ka-1], [Ka-2] and Pinkall-Sterling [PS] on soap bubbles in E3 with
non-zero genus clearly indicate that there are abundant varieties of soap bubbles in
En, «>3, for us to discover and to understand. On the other hand, the situation of
isoperimetric regions in En is quite different. Namely, it has already been neatly
settled by the unique-existence theorem of Dinghas-Schmidt in the 1940's [DS].

Of course, the Euclidean spaces are just natural starting testing spaces for the
study of both the soap bubbles and the isoperimetric regions. Therefore, it is rather
natural to broaden the scope to include other fundamental Riemannian manifolds as
the ambient spaces. For example, those simply connected, non-posίtively curved
symmetric spaces are natural generalizations of En and Hn and they form an interesting
family of testing spaces for the study of soap bubbles and isoperimetric regions. This
family consists of those symmetric spaces of non-compact type and the products of
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such spaces with Euclidean spaces. We shall simply call them non-compact symmetric

spaces.

In this paper we shall mainly concern ourselves with the existence aspect of soap

bubbles and the isoperimetric profiles of non-compact symmetric spaces. Notice that,

in spaces other than the Euclidean spaces, one no longer has the homothety

transformation to normalize the values of the mean curvature of soap bubbles and the

"distance spheres" are not soap bubbles in symmetric spaces of ranks > 2 . Therefore,

the actual range of values of the constant of mean curvatures of all soap bubbles in a

given ambient space becomes a basic issue on the existence aspect and, moreover, "easy

examples" of soap bubbles are no longer readily available for non-compact symmetric

spaces of ranks > 2 . In the following discussions, it is slightly more convenient to use

the sum of the principal curvatures, i.e. tr II, instead of their mean value. Therefore,

from now on, the mean curvature of a hypersurface is redefined to be just the trace of

its second fundamental form. We state the main results of this paper as the following

theorems:

THEOREM 1. To each given non-compact symmetric space M, there exists a lower

bound b{M) such that

(i) the mean curvature of any soap bubble in M is strictly greater than b(M).

(ii) The mean curvature of the (regular part) boundary of any isoperimetric region

in M is strictly greater than b(M).

(iii) In the case that M is irreducible and equipped with the normalized metric

(cf §2),

μeA(M)

where Δ(M) is the root system of M and m(α) is the multiplicity of a (cf. Table I at the

end of §2 for the actual value of b(M) for each irreducible non-compact symmetric space

of rank 2).

(iv) b(λM) = λ~1b(M), where λM denotes the magnification of M by a factor λ

THEOREM 2. If the rank of the non-compact symmetric space M is less than or

equal to 2, then every value h>b(M) can be realized as the mean curvature of an

imbedded, spherical soap bubble in M.

THEOREM 3. Ifvk(M) = 2 and the dimension of its euclidean factor is not equal to

1, then there exist infinitely many congruence classes of immersed, spherical soap bubbles

in M with each h>b(M) as the constant of mean curvature.

THEOREM 4. If M=Y\ι

j=ίMj and rk(Af /)=l, then to each given value of v>0,

there always exists an imbedded, spherical K-invariant soap bubble in M which bounds a

region of volume equal to v.
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CONJECTURE 1. Every value h > b(M) can always be realized as the mean curvature
of an imbedded, spherical, stable soap bubble in M\ namely, the actual range of the
mean curvatures of soap bubbles in M should be exactly the open interval (b(M), GO).

CONJECTURE 2. Let Ω be an isoperimetric region in M and h(dΩ) be the (constant)
mean curvature ofdΩ at its regular points. We conjecture that h(dΩ)^b(M) as vol(Ω)—• oo.

REMARKS, (i) The generalization of the uniqueness theorem of A. D. Alexandrov
on imbedded soap bubbles in En and Hn to the realm of non-compact symmetric spaces
is, indeed, a rather attractive prospect and a challenging task. Of course one should
first establish the existence of such objects before one proceeds to prove their
uniqueness.

(ii) If isoperimetric regions in a given non-compact symmetric space M can be
proved to be always regular, then the boundary of isoperimetric regions provides a
natural source of imbedded soap bubbles. Such a regularity theorem has already been
established for products of euclidean and hyperbolic spaces in [Hs-2] and we believe
that it should hold for all non-compact symmetric spaces.

(iii) The isoperimetric profile of a given space M is, by definition, the function
which records the "areas" of the boundaries of isoperimetric regions in M as a
function of their "volumes". It is actually the generalization of "optimal isoperimetric
inequality for the given space M (cf. §5).

2. The geometry of Λ -̂orbits and the proof of Theorem 1. Let M be a simply

connected, non-positively curved symmetric space, G be the identity component of its
isometry group, and K be the isotropy subgroup of M fixing a chosen base point 0. In
this section we shall first determine the orbital geometry of (K, M) that the proof of
Theorem 1 is based upon. Let (K, T0M) be the isotropy representation of K on the
tangent space of M at 0. Then the exponential map, Exp: T0M-*M, is a ^Γ-equivariant
diffeomorphism. Therefore, the orbital geometry of (K, T0M) is a natural convenient
stepping stone in the study of the orbital geometry of (K, M).

2.1. The orbital geomery of (K, T0M). Let g and f be the Lie algebras of G and
K respectively, σ be the involution of g induced by the central symmetry of M at the
base point 0 and g = f © p be the decomposition of g into the ± 1 eigenspaces of σ. Then

(1) P , q c ϊ , [ t , p ] c p , [p,p] czf and (K9T0M)*(K,p)

where (K, p) is the restriction of Aάκ to p. Let

i
7 = 1

be the decomposition of M into the product of irreducible symmetric spaces. Then
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(2) K=t\Kj, p

is the corresponding decomposition of (K, p) into the outer direct sum of irreducible
components. Therefore, it is straightforward to reduce the orbital geometry of (K9 p)
to that of its irreducible components (Kp p7). Hence, for the discussion of ΛΓ-orbits,
one may assume that M=G/K is itself an irreducible symmetric space to begin with.

Let α be a maximal abelian subalgebra of p. An element xoea is called regular
(resp. singular) if

(3) 3(*0, p) = {xe p; [x0, *] = 0} = α(resp. Φ α).

α intersects all ^Γ-orbits perpendicularly and K(x0), x0 e α, is a principal K-oτbit if and
only if x0 is a regular element. The singular set of α is the union of a finite collection
of hyperplanes in α. Let A be the set of such hyperplanes of singular elements, say
J={b ί ; \<i<m). To each b fe J, set

(4)
p'f: the orthogonal complement of bf in

Then it is straightforward to verify that both gf and gj are involutive subalgebras of
9> 9i = t>i θ gίi, and one has the following orthogonal decomposition of p

(5) P = αθ£p i
i=ί

where pf is the orthogonal complement of α in pf.
Geometrically, the orbits of (K, p) forms an isoparametric foliation with the

principal A -̂orbits as the isoparametric submanifolds (cf. [Te], [HPT]) and the
singular ^-orbits as the focal varieties. The associated Coxeter group W of the above
isoparametric foliation is generated by the reflections with respect to the hyperplanes
of A. In fact, the set of maximal abelian subalgebras of p can also be geometrically
characterized simply as the normal planes to a fixed principal K-orbit, and hence they
are clearly ^Γ-conjugate to each other. Let Co (resp. Co) be an open (resp. closed)
Weyl chamber of (W, α) and Kt be the connected subgroup of K with ϊf as its Lie
algebra. Then

(i) the orbit space p/K, equipped with the orbital distance metric, can be
identified with Co isometrically, namely, p/K^a/W^C0,

(ii) to each point x0 e Co, K^XQ) is a sphere of radius rt = d(x0, bt) in p'ί?
(iii) the tangent space of K(x0) at x0 splits into the orthogonal direct sum of
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that of Ki(x0).

2.2. The orbital geometry of (K, M). The exponential map at the base point

OeM is a ^-equivariant diffeomorphism, Exp: (K, p)^(K, M). Moreover, one has the

following clean-cut correspondence between (K, p) and (K, M):

(i) A = Exp(α) is a maximal flat totally geodesic submanifold which intersects

all Λ^orbits in M perpendicularly.

(ii) M/K=A/W^C0 isometrically, namely, the orbital distance metric of M/K

is a flat cone Co.

(iii) Let Gi9 G[ and Kh 1 <i<m, be subgroups of G with gf, g'f and If as their Lie

algebras respectively. Then

Mt = Exp(Pί) = GJKt, Ml = Exp(p ) = G[\K{

are non flat totally geodesic submanifolds of M and, moreover,

rk(M/)=l and Mt = MlxBi9 Bt = Έxp(bd •

(iv) Identifying Exp(C0) with Co, then, to each xeC0, K(x) is a principal orbit

if and only if x is an interior point of Co, namely, xeC0.

(v) To each ;coeCo, K^XQ) is a "distance sphere" in the rank one symmetric

space M[ with d(x0, Bt) as its "radius". The tangent space of K(x0) at x0 is

the orthogonal direct sum of that of K^XQ) at x0.

Next let us proceed to determine the volume function, v: M/K^C0 ^R+, which

records the volumes of pincipal A^orbits in M (the volumes of singular orbits are

defined to be zero because they are of lower dimensions). Recall that M is assumed to

be an irreducible symmetric space of non-compact type. We refer to §2, Ch. VII of

[He] for the definition of the root system of M, denoted by Δ(M). It is easy to check

that Δ{M) is the disjoint union of Δ{M'i), \<i<m, as sets with multiplicities, namely

(6) Δ{M)={]Δ{M'i).
i = l

In the special case of rank one symmetric spaces of non-compact type, one

usually normalizes the metrics so that the sectional curvature is equal to — 1 for Hn

and lies between - 4 and - 1 for HCPn, HQPn, n>2, and HCaP2. It is not difficult

to show that the volumes of the "distance spheres" of radius r in the above spaces

are as follows:

HCPn\ v(r) = c'n sinh2" " 2r sinh 2r

HQPn: v(r) = <£ • sinh 4 w" 4r sinh3 2r

HCaP2: υ(r) = c sinh8 r sinh7 2r .
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It follows from (v) that

(8) VO1(*(JC 0)) = cM • Π vol(Kt(x0))

where cM is a positive constant depending only on M. Hence it follows from (6), (7)

and (8) that, for a suitably normalized metric on Λf, the volume of principal ΛΓ-orbits

in M can be given as follows, namely,

(9) v(x) = vo\(K(Έxpx)) = c'M- Π sinh"<β)|<α,jc>|, χeC0

aeA(M)

where m(cή is the multiplicity of α in Δ{M) and c'M is a positive constant depending

only on M.

2.3. The proof of Theorem 1. (i) Let M be a given non-compact symmetric

space; K= ISO(M, 0) is the isotropy subgroup of the chosen base point OeM and K(x0)

is an arbitrary but fixed principal A^-orbit. Then there exists a (unique) flat, complete,

totally geodesic submanifold A which intersects K(x0) at x0 perpendicularly and

transversally, namely, TXoM= TXQA © TXoK(xo). Let NK(A) (resp. ZK(A)) be the subgroup

of K which keeps A invariant (resp. pointwise fixed) and set W=NK(A)/ZK(A). Then

(W, A) is a group generated by reflections and M/K^A/W^C0 where Co is a chosen

closed Weyl chamber of (W, A).

Let I1 be a given soap bubble in M, 0' be its center of gravity, and r = Max{d(0', x);

xeΣ}. The open Weyl chamber Co is an open cone in A^Rk, k = τk(M). To a given

ray 0a in Co, let v be the unit vector in the direction of 0a and Dv(s, t) be the normal

disc of 0a centered at the point on 0a with distance t from 0 and with radius s. Set

s = 2r and t sufficiently large so that the above Dv(s, t) is far away from the boundary

of Co. Let Pv{s, t) = K(Dv(s, ή) be the A^-invariant hypersurface in M generated by

Dv(s, i) under the action of K and Tv be the 1-parameter subgroup of transvections

along the geodesic ray 0a.

Let us first move the given soap bubble I1 by a transvection which maps 0' to 0,

and then push it by the action of Tv until it touches Pv(s, t). Suppose x'o is one of the

touching points and set xo = K(x'o)r\Dv(s, t). Then it is easy to see that the mean

curvature of Σ, h(Σ), must be greater than or equal to the mean curvature of Pv(s, t)

at x0. Let v: C0^R+ be the volume function of (K, M). By (9),

(9')
<xeA(M)

where cM and λa are constants solely depending on the metric of M and oceΔ(M).

Since the mean curvature of Pv(s, t) at x0 with respect to the inward normal is equal

to (d/dv) In v(x)\Xo, one has
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(10) h(Σ)>~lnv(x)\Xΰ= Σ m(αμβ |<α,v>| cothλ. |<α,x0>l
CIV αeJ(M)

Σ V
aeΔ(M)

because the values of coth are always > 1. Therefore,

(11) h(Σ)>Mnx\ Σ m(αWα |<α,v>|; veα and |v| = l l =

(cf. §2.4 for the computation of the above b{M)).
(ii) Next let Ω be an isoperimetric region in M, dΩ be its boundary and 0' be its

center of gravity. Then the singular set of dΩ (may be empty) is of codimension at
least 7 in dΩ and the regular set, denoted by R(dΩ), is a connected hypersurface of
constant mean curvature. Again, one may move Ω by suitable transvections to have a
touching contact with Pv(s, t). We claim that such a touching point cannot be singular,
because the tangent cone at a singular point cannot be confined in a half space!
Therefore, the touching point must be regular and hence the constant mean curvature
of R(dΩ) must be strictly greater than b(M).

In case M is irreducible and equipped with the normalized metric, all the above

coefficients λΛ are equal to 1. Therefore, the expression of b(M) is simplified to that

of (iii).
Finally, suppose Λf =f^['.= 1Af/. Then

(.2)
(W, 4)= φ Σ (WP Aj) > [orthogonal direct sum] ,

Δ{M)= U {A(Mj)} , [orthogonal disjoint union] .

Let Vj be the component of v in Aj. Then

(13) Σ w χ Σ
<xeΔ(M)

and hence it follows that

(14) 6(M) = Ma{
LcceΣ(M)

C I Ί

= MaxJΣ|v , | Z>(M, ); Σ\ Vj\
2 = 1 j = |

This completes the proof of Theorem 1.
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REMARK. The orbital geometry of (K, M) enables us to construct the large
/^-invariant hypersurface Pv(s, i) whose mean curvature function is easily computable
and very close to a constant. Moreover, the transvections of M enable us to produce
a touching contact point between a given soap bubble Σ and the above Px(s, t), thus
providing a lower bound estimate on h(Σ).

2.4. The computation of b{M) for irreducible symmetric spaces of non-compact
type with normalized metrics. The lower bound, b{M), of a general non-compact
symmetric space can easily be expressed in terms of that of irreducible non-compact
symmetric spaces with normalized metrics (cf. (iv) and (v) of Theorem 1). Therefore it
is useful to work out a table of b(M) for those irreducible normalized ones.

Let M be a given irreducible non-compact symmetric space with normalized
metric, Δ{M) be its root system and Co be a chosen Weyl chamber of (W, α). Then

(15) F(v)= Σ m(α) |<α,v>|

aeA(M)

is clearly a W-invariant function defined on the unit sphere of α and hence

(16) Max{F(v)} = Max{F(v); v e C 0 and |v | = 1} .
Let Δ+{M) (resp. Δ~(M)) be the system of positive (resp. negative) roots of M with
respect to Co and v be a unit vector in Co. Then

(17) F(v)= Σ m(α)<α,v>- £ m(β)-<β,v}
aeA + (M) βeA~(M)

Σ «(«)•«- Σ m(β)-β,v), veC 0.

Therefore it is easy to see that

(18) 6(M) = Max{F(v); veC0 and |v | = 1} = Σ m(α) α - Σ rn{β) β
aeA+{M) βeA-(M)

For example, straightforward actual computation of (18) for each irreducible non-
compact symmetric space of rank 2 will produce Table I.

3. /f-Invariant soap bubbles and the proofs of Theorems 2 and 3. As it was

already pointed out in §1, one of the basic issues in the existence aspect of soap
bubbles in a given ambient space M is the determination of the actual range of values
of their mean curvatures. For the family of non-compact symmetric spaces, we believe
that the lower bound, b(M), of Theorem 1 should be exactly the greatest lower bound
and, moreover, the whole open interval (b(M), oo) should be the actual range of mean
curvatures of soap bubbles in M. The rank one case is rather easy to varify because
the "distance spheres'" provide a family of simple examples of soap bubbles in a rank
one symmetric space. However, such simple examples of soap bubbles are no longer
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TABLE I

Diagram with multi. Isotropy subgroup K dimM b{M)

o o SOQ) 5 4

o o SU(3) 8 8

o o Sp(2) 14 16

o o F 4 26 32

o = o S0(5) 10 27TΪΓ

SO(2) x SO(m) 2m J 2m2-4m+ 4

S(U(2)xU(m)) 4m 2

Sp(2) x z2Sp(m) 8m

U(5) 20

i/(l)xZaipi>i(10) 32

G2 14

SO(4) 8

available for non-compact symmetric spaces of ranks > 2.
In this section we shall prove the existence of spherical soap bubbles for every

given value of mean curvature h>b(M) for all cases of rank two non-compact
symmetric spaces, namely, Theorems 2 and 3 stated in § 1. The basic idea of the proof
is to exploit the orbital geometry of ^-orbits to construct those K-invariant soap
bubbles.

3.1. Λ>invariant hypersurfaces of constant mean curvature in a rank two
symmetric space. Let Σ be a AΓ-invariant hypersurface of constant mean curvature in
a given non-compact symmetric space M of rank two. Then the orbit space, M/K,
equipped with the orbital distance metric is a flat, two-dimensional linear cone of
angle π/g, g = 2, 3, 4 or 6, and Σ/K is a curve in M/K which we shall call it the
generating curve of Σ. [In the special case of E1 xM 2 , we shall take A^=O(l)x^2

instead of K=K2 thus making g = 2 instead of g=\ for this special case.] It is
convenient to parametrize M/K by the following coordinate system, namely,

M/K={(x,y); x>0, 0<y<x tenπ/g} .

Then the generating curves of those X-invariant hypersurfaces in M of constant mean
curvature h can be neatly characterized by the following ODE [HsHu], namely

(19) ^ _ A

where σ is the directional angle, d/dn = { — sinσ(d/dx) + cosσ(d/dy)) and v(x, y) is the
volume function which records the volume of the principal A -̂orbits (cf. Figure 1).
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M/K

FIGURE 1

REMARKS, (i) The boundary points represent singular Λ -̂orbits, i.e. orbits of
dimensions lower than that of the principal Λ>orbits and hence the volume function,
υ(x9 y), vanishes at all the boundary points. Therefore, the above ODE becomes
singular at the boundary.

(ii) The singularities of the above ODE are of regular type. To each boundary
point 5#(0, 0), there exists a unique solution curve of (19) which terminates (resp.
starts) at such a singular point and, moreover, it is automatically perpendicular to the
boundary line and necessarily analytic (we refer to Proposition 1 of [HH-1] for a proof
of the above fact).

(iii) Σ is a ^Γ-invariant soap bubble if and only if its generating curves both start
and terminate at the boundary lines, and Σ is of the diffeomorphism type of sphere if
and only if it starts and terminates at different boundary lines. Therefore, the proof of
Theorem 2 (resp. 3) amounts to showing the existence of an imbedded (resp. infinitely
many immersed) solution curves of the ODE (19) of the above geometric type.

3.2. The proof of Theorems 2 and 3 for the reducible cases. Let M be a given
reducible non-compact symmetric space of rank 2, namely, M=Λ/1 x M2 and

E\ n>\

Hn, n>2

HCPn, n>2

HQP\ n>2

HCaP2 .

ί=l,2)

Then K=Kλ x K2, M/K=(MJKι)x(M2/K2) = R2

+ and the volume function v(x,y)-
ViW'Viiy)- Therefore, the ODE (19) is of the following simple form, namely
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dσ . v'Λx) i/,(y) .

ds v^x) v2(y)

where the lower bound of h is given by

(21)

Set

0i(*)= v^ήdt, g2{y)=\ v2{f)dt

(22) J° J°

7=y1(x) sinσ — hgx{x), J=v2(y) cosσ + hg2(y).

Then, along an arbitrary solution curve y = {(x(s),y(s))}9 one has

dl , λ (dσ v\(x) . Ί x υ'2(y) 2

— = t;x(x)cosa< + smσ-h> = υ1(x) cos2σ>0
ds lds vi(χ) J Vi(y)

dσ
ds v2(y)

A global solution curve is, by definition, a solution curve of (20) which is infinitely

extendable in both directions, i.e. γ = {(x(s),y(s)), —co<s< +00}. If a solution curve

y has a boundary point, then it is quite natural to continue it in the reverse direction

with a cusp point. Therefore it is not difficult to show that every solution curve of (20)

can be uniquely extended to a global one, possibly with cusp points on the singular

boundary. Moreover, it follows from the monotonicity of / and J that a global

solution curve can have at most one cusp on the y-axis and the x-axis respectively.

The analysis and the geometry of global solution curves of ODE of the above

type had already been quite thoroughly discussed in [Hs-1] and [HH-2], namely, that

of the special case of Ep x Eq in [Hs-1] and that of the special cases of Ep x Hq and

HpxHq in [HH-2]. In fact, the following basic facts on the geometry of global

solution curves of (20) can be shown by essentially the same proofs as that of [Hs-1]

and [HH-2]:

(i) There are exactly two straight line solutions (i.e. solution curves with dσ/ds = 0),

namely

the horizontal line y=y0 with Vl = h

the vertical line x — x0 with ——^— = h .

(ii) An arbitrary global solution curve of (21) must tend to the above horizontal
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(resp. vertical) line asymptotically as s tends to — oo (resp. + oo).
(iii) On each given global solution curve y there exists a unique "direction

function", σy(s), such that lims_+_0O(jy(1s) = π and σy(s) is continuous except having a
jump of π at each cusp point. It follows from (ii) that lims_ + „ σy(s) exists and is equal
to π/2 modulo an integral multiple of2π, namely

(24) lim σy(s) = N(γ)'2π + —
s-+ + 00 2

where N(y) is a non-negative integer that we shall call the winding number of y.
(iv) There exist global solution curves of (20) with arbitrarily large winding

numbers.
It is natural to classify the global solution curves of (20) into the following five

types according to the cusp points they contain, namely:

Type A: without cusp point
Type B: with exactly one cusp point on the x-axis
Type C: with exactly one cusp point on the >>-axis
Type D: with two cusp points (must have one on each axis)
Type E: with one cusp point at the origin.

Following the same kind of arguments as that of [Hs-1], it is not difficult to prove the
following basic existence result.

THEOREM 5. Let y be a global solution curve of (20) with h>b{M). Then the
winding number of y

N(y) =1 if y is of type E

N(y)> if y is of type
A

B or C.

D

Conversely, any integer k satisfying the above inequality can always be realized as the
winding number of a global solution curve of the respective type.

It is then easy to deduce both Theorems 2 and 3 for the reducible cases from the
above existence of global solution curves of type D of arbitrary winding number k>2.
In fact, the middle segments between the two cusp points of those type D curves are
exactly the generating curves of those ^-invariant spherical soap bubbles in M.

3.3. The proof of Theorems 2 and 3 for the irreducible cases. Let M be an
irreducible, rank two, symmetric space of non-compact type equipped with the
normalized metric. Then the orbit space M/K equipped with the orbital distance metric
is aflat two-dimensional linear cone of angle π/g, g = 3, 4 or 6, and the volume function
is given in terms of its root system as follows, namely
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(25)
αeJ(M)

In terms of the cartesian coordinate system of Co (cf. §3.1), the modified root systems,
i.e., the set with multiplicities A=A+(M)u { — β, βeA~(M)}, of the irreducible rank
two cases can be listed as follows:

(i) § § , fc=l,2,4,8:

A = < y, cos —x ± sin —y, multi. = k >
1 6 6 J

- f π . π x l / π . π \ , . Λ]
zl=< !y,cos—x±sm—y\ —•—,——- cos— c + sin—y multi. = 1,2>

I 6 6 χ / 3 χ / 3 V 3 3 / J

(ϋ)

(in) 0 = 0 , 7̂

J={x, y, x+j, multi. = 2}

(iv) m sL=( l ) 5

A = {x, y, multi. = (m — 2); x±}>, multi. = 1}

(v) 0 ^ = 0 , K=S(U(2)xU(m)):

A = {x, y, multi. = 2(m - 2); 2x, 2y9 multi. = 1 x ± j , multi. = 2}

(vi) 4 m c ί L 4 , K=Sp(2)xZ2Sp(m):

A = {JC, j , multi. = 4(m-2); 2JC, 2^, multi. = 3; x±y, multi. = 4}

(vii) o _ o , K=U(5):

A = {x, y, multi. = 4, 2x, 2y9 multi. = 1; x±y, multi. =4}

(viii) σ — o , K=U(\)xZ2Spin(l0):

A = {x, y, multi. = 8; 2x, 2y, multi. = 1; x±y, multi. = 6} .

The generating curves of those K-invarίant hypersurfaces in M with constant
mean curvature h > b{M) are characterized by the following ODE, namely
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(26) h = ^ ^ Σ
as dn ds αeJ(M) dn

where σ is the directional angle, d/dn = — sin σ(d/dx) + cos σ(d/dy) and ξ e Co which is

the region defined by ocί=y>0 and α 2 >0. The proof of Theorems 2 and 3 in the

above cases can again be reduced to that of the existence of infinitely many global

solution curves of type D for each of the above ODE (26).

Notice that the value of cothr is already very close to 1 for r>20, namely

(27) c o t h r = l + 2 ^ - 2 r ( l - ^ - 2 r ) " 1 .

Therefore, in a region sufficiently bounded away from the boundary dC0, the ODE

(27) is, in fact, closely approximated by the following ODE, namely

(28) h =—- X τw(α) α(ξ) = + A
ds αel(M) dn ds

where A, B are constants and yj A2 + B2 =b(M). Hence, the same proof as that of

Lemma 2 in § 5 of [HH-2] will show the existence of global solution curves of (26)

with arbitrarily large winding numbers.

Let d1 (resp. d2) be the unique positive constant determined by the following

equation, namely

h = m((x1) cothd1+ £ w(α) a(ξ)
aeZ(M) Sy

(29) α * α i

( , x i , V-Ϊ , x ( 71 δα π δα \ \
resp. /2 = m(α2) cothα 2+ 2- w ( α ) * sin cos

«eZ(M) \ ^ Sx Q dy
ct.Φa.2

Let Qx (resp. Ω2) ^e the following region along the boundary line ocι =0 (resp. α2 = 0),

(cf. Figure 2)

o; 151^40 + 6 ^ and *ί(ξ)=y<3d1}

(resp. Ω2 = {ξGC0; | ξ | > 4 0 + 6^2 and oc2(ξ)<3d2}).

Inside the above region ί^ (resp. Ω2), the ODE (26) is closely approximated by

the following stabilized ODE, namely

(30x) h = m(α1) cothj> cosσ— X m(α) <x(ζ)
ds dn

respectively,
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FIGURE 2

do d TΓ-Λ d
= —--m(oc2) cothcc2(ξ)~Γot2(ξ)- ^ m(ot) -—-cc(ξ)

ds dn α e j ( M ) dn
(xΦa.2

(302)

because cothα(^), OLφQLγ (resp. α / α 2 ) are all closely approximated by 1 inside Ωλ

(resp. Ω2).

The following lemmas constitute the key steps in the proof of Theorems 2 and 3.

LEMMA 1. If a global solution curve of (26) γ enters (resp. backs) into Ω2 (resp.

then

lim oc2(y(s)) = d2 (resp. lim oc1(31)

i.e., y tends to the line a2(ξ) = d2 (resp. cc1(ξ) = d1) asymptotically as s tends to +oo

(resp. — oo).

PROOF OF LEMMA 1. Since the proof of the above two cases are essentially the

same, we shall only exhibit here the latter case, i.e. the case of Ωx and α x. Set

(32)

g(y)= Γsinhm ( α i ) t dt,
Jo

/ = sinhm ( α i ) y cos a + h g(y).

Then, along arbitrary solution curve y = {(x(s), y(s))}, one has

= sinhm(α ι ) y sin σ \ h m(<x1) cothy cos σ + h \
ds I ds J

(

(33)

<xeΔ{M)
a.Φa.x
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Recall that {cothα(ξ); αeJ(m), OLΦ(X1 and ζeΩ^ are all very close to 1 and the set
with multiplicity A(m)\{θLl9m(θLί)} is reflectionally symmetric with respect to the
j-axis. Therefore

(34) - Σ /ιi(α)cothα(O^-α«) = (CM + A(ξ))sinσ + μ(Ocosσ
aeΔ(M) "H

where CM is a positive constant given by

(35) C M = Σ ιw(α)-^-
αeJ(M) ^

and both | λ(£) | and | μ(ξ) | are extremely small. Hence, along a solution curve of (26)
inside Ωl9 the range of σ for which dJ/ds<0 appears only for a glimpse, and in fact it
is not difficult to modify the proof of Lemma 3.4 of [HsHu] to show that the amount
of / decreased on such a very short segment can always be adequately compensated on
a succeeding segment with the same j-level.

Observe that the auxiliary function J(y, σ) has J(du π) as its absolute minimum.
Based on the above overall monotonicity of J along a solution curve γ inside Ω l5 it is
rather straightforward to adapt the arguments of [Hs-1] and [HsHu] to show that

(36) lim Jy(y,σ) = J(du
s~* — oo

which clearly implies that

(37) lim
s-^ - o o

D

LEMMA 2. Any two global solution curves of (26), say, γλ and y29 can always be

linked by a suitable continuous deformation which is Cι-continuous except at those cusp

points.

The proof of Lemma 2 is essentially the same as that of Lemma 3.2 of [HsHu].
It follows from Lemma 1 that the above asymptoticity property is both an open

property and a closed property. Therefore, it follows from Lemma 2 that the
asymptoticity property of Lemma 1 holds for all global solution curves of (26). Hence,
one again has a winding number N(y) defined for each global solution curve by setting

Finally, on the one hand, the condition h>b{M) enables us to produce global
solution curves of arbitrarily large winding number and, on the other hand, it is easy
to produce a global solution curve of type A with zero winding number. Therefore, the
following existence theorem can again be proved by tracing the evolution geometry of
the global solution curves (cf. [Hs-1]).
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THEOREM 5'. Let ybea global solution curve of {26) with h > b(M). Then the winding

number N(y) of y satisfies

N(y)> if y is of type B or C .

D

Conversely, any integer k satisfying the above inequality can always be realized as the

winding number of a global solution curve of the respective type.

Theorems 2 and 3 for the irreducible cases follow readily from the above

Theorem 5'. This completes the proof of Theorems 2 and 3.

4. The proof of Theorem 4. Recent advances in geometric measure theory

provide a quite satisfactory proof of the general existence of isoperimetric regions

(possibly with boundary singularities) for a wide range of ambient spaces which, for

example, include all closed manifolds and all homogeneous Riemannian manifolds

(cf. [Aim]). If one can, in addition to the above existence result, prove that all

isoperimetric regions in a given family of ambient spaces are automatically everywhere

regular, then the boundaries of isoperimetric regions in such spaces certainly provide

a natural source of examples of stable soap bubbles in those ambient spaces. For

example, such a strong regularity theorem on isoperimetric regions in an arbitrary

product of euclidean spaces and hyperbolic spaces, namely En° x Hni x x H"k,

no>0; nu ..., nk>2, has already been proved in [Hs-2], thus providing a simple way

of producing examples of stable, spherical, imbedded soap bubbles in the above family

of spaces. Although such a strong regularity theorem is still beyond reach for many

other non-compact symmetric spaces, the above method can be modified to produce

spherical, imbedded soap bubbles for a broader family of spaces, namely, those

arbitrary products of rank one non-compact symmetric spaces.

THE PROOF OF THEOREM 4. Let M=Y[ι

j=1Mp rk(M, ) = 1, be a product of rank

one non-compact symmetric spaces and vj(f) be the volume of the distance sphere of

radius r in Mj. Then the orbit space M/K is isometric to the /-dimensional quadrant,

namely

(38) jj

and the volume function of Λ^orbits is given by

(39) K*i,..-,*/)=lW^/)

Let Ω be a X-invariant region in M, dΩ be its boundary, and Ω/K, dΩ/K be the

image of Ω, dΩ in Rι

+ respectively. Then the volume of Ω and the surface area of dΩ
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can be expressed by the following integrals,

(40) vol(Ω) = v(x) dxί A Λ dxt,
JΩ/K-ί.

J di

(41) Area(5Ω) = υ(x)dA
) dΩ/K

where dA is the "area element" of the hypersurface dΩ/K in /?+. It is rather natural to

consider the following "K-equivariant isoperimetric problem" on M, namely, the

variational problem of seeking those K-invariant regions in M which minimize the

above boundary integral among all ̂ -invariant regions with a given fixed value of the

above volume integral. Of course, such a Λ>equivariant isoperimetric problem is

actually the isoperimetric variational problem of regions in Rι

+ with respect to

the above two integrals with v(x) as the weight function. Therefore, it is rather

straightforward to apply the geometric measure theory (cf. [Aim], [Gi]) to establish

the existence of solutions for each given value of the volume integral.

Let Pj: Rι

+ -•/?+"1 be the orthogonal projection along they-th coordinate direction,

namely, Pj(xl9..., xi) = (xi,..., xp . . . , xt). A region ΩczRι+ is said to be ^-graphic

if there exists a suitable function φ defined on the domain D =Pj(Ω) such that

(42) Ω={xeRι

+ :pj(x)eD , 0<Xj<φ(xu . . . , xp . . . , *,)} .

Now, suppose Ω is an arbitrary solution of the above isoperimetric variational

problem with respect to the t?(x)-weighted integrals. We claim that Ω must be /7,-graphic

for j = 1, 2, . . . ,/ . Since the proofs for each j , j — 1, 2, . . . ,/ , are obviously identical, it

is notationally simpler to verify only the case oϊ j—l in the following.

Suppose the contrary, that Ω is not /?Γgraphic. Then there exists a unique function,

φ(y), defined on the domain D—p^Ώ) such that

(43) v,(t)dt=\ v,(t)dt
Jθ J Ω n px

 1 (y)

for every point yeD=pι(Ω). Set

(44) Ω' = {(y, Xι); y e D and 0 < x t < φ(y)} .

Then it is easy to check that it follows from (43) that

(45) v(x)dx1 A - - Λ dxt = v(x)dx1 A Λ dxx.
JΩ' JΩ

For a generic point j>0

G A i.e., modulo a possibly measure zero exception, there exists

a sufficiently small neighborhood U of y0 such that

(46)
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for suitable pairs of C ^functions {φt(y)l yeU}. Using the above expression of

iy), yeU, to compute the partial differentation of (43) at j>0, one gets

(47)

On the other hand, it is easy to check that

(48) »I(0OΌ)) < ΣίvMΐ (jo))+t>m (yom
i

and the equality holds only when Ωnpι~
1(yo) = [0, φ(y0)]. Therefore it follows from

(47) and (48) and the Schwarz inequality that

(49)
j=ι 0Xj j i i ;=i 0Xj

( 1 / 2

j=i dxj

and the equality holds only when Ωnpf1(yo) = [0, φ(yo)l' Hence, it follows easily that

ί υ(x)dA<\(50) I v(x)dA<\ v(x)dA
JdΩ

and the equality holds only when Ωn/?/"
1(j) = [0, φ(yj] for all generic points

yeD=pι(Ω), namely, Ω is, in fact, /?Γgraphic to begin with.

Finally, it follows from the minimizing property of Ω and the above graphic

property that dΩ must be a smooth hypersurface in J?+ perpendicular to the boundary.

Therefore the inverse image of dΩ is a smooth closed hypersurface in M with constant

mean curvature. This completes the proof of Theorem 4.

5. The mean curvature of dΩ and the isoperimetric profile. Let M be a given

non-compact symmetric space. Then, to each given positive value of volume f0,

there always exist isoperimetric regions Ω with vol(Ω) = t;0. The areas of all such

isoperimetric regions are, by definition, the unique, absolute minimal value of the

areas of all regions of volume v0 in M and hence must be solely dependent on v0.

Therefore, there is a unique function fM: R+->R+ which records the area of the

boundaries of isoperimetric regions in M as a function of their volumes; it is usually

called the isoperimetric profile of M. The following are some basic facts of the

isoperimetric profile of a non-compact symmetric space.

LEMMA 3. The isoperimetric profile, fM(v), of a noncompact symmetric space M is

a monotonίcally increasing function and hence it is almost everywhere differentiable.

PROOF. Let v0 be an arbitrarily given value of volume and Ωo be an isoperimetric
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region in M of volume v0. By Theorem 1, h(dΩo)>b(M)>0 and hence small inward
deformations in the neighborhood of regular points of Ωo will certainly decrease the
area of dΩ0. Therefore,

for v = v0 — δ and sufficiently small δ>0, namely, fM(v) is everywhere a strictly
increasing function defined on [0, oo). Now, it follows from a remarkable theorem of
Lebesgue that/M(ι;) is almost everywhere differentiable. •

LEMMA 4. Ifv0 is a differentiable point of fM and Ωo is an arbitrary isoperimetric

region in M with vol(ί20) = v0, then h(dΩ0)=f^(v0).

PROOF. Let h0 be the constant mean curvature of R(dΩ0) and {(resp. η) be an
outward (resp. inward) normal variational vector field with compact support in R{dΩ0).
Then the first variations of the volumes and the boundary areas are as follows

(51)
/ d

resp. —V(Ω
\ dt

resp

ίA(SΩ \
dt

= \ \ξ

r = 0 Jdί

.."vL
ί = 0 J

\ dA

\η\-dA^j

ξ\-dA

\η\-dA).
dΩn /

(52)

It follows from (51) and (52) that

1
h m — - lfM(v0 + Δv) -fM(v0)~] <h0

Av-+O+ ΔV

( 5 3 ) ' r '
resp. hm L/M^O + Δv) —fM(vo)l ^^o

Δv-^O- At)

and hence, by the differentiability assumption at vo,fM(vo) = ho. •

REMARK. It follows from Lemma 4 that all isoperimetric regions in M of the
same volume v0 must also have the same mean curvature if v0 is a differentiable point
of fM. In fact, the converse is also true, namely, v0 is a differentiable point of fM if all
isoparametric regions in M with volume v0 are of the same mean curvature. The
following Lemma 5 is a refinement of such a converse.

LEMMA 5. To any given value vo>09 the left (resp. right) derivative of fM at v0

always exist, namely



dυ->0- Δv

(54)

I resp. lim -

f, moreover,
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[ / ( " O + AΌ)-

ιfM(0) = ma,x{h(dΩ); Ω isop. andvo\(Ω) = v0}

(resp. DrfM(v0) = min{h(dΩ); Ω isop. and vol(Ω) = v0}).

PROOF. Let

(56)

λ = lim sup J - [/(t,0 + Aυ) -/(t>0)]

( resp. p = lim inf—- lf(v0 + Δv)-f(vo)~] )

\ Av->0+ ΔV )

and {Ωn, neN} (resp. {Ωf

n; neri)) be a sequence of isoperimetric regions in M such that

(i) their centers of gravity are all located at the base point 0,

(ii) vol(Ωn) / v0 (resp.

(iii) lim A r e a ^ > / 0 Ό > =λ fresp. lim ^^~f^ =p

Vθl(Ω) — Vo \ Vθl(Ω )̂

It follows from the above proof of Lemma 4 that λ > h(dΩ) > p holds for an arbitrary

isoperimetric region Ω in M with vol(Ω) = t;0. Hence

; Ω isop. and vol(Ω) = ι;0} ,

; Ω isop. and

Applying the basic compactness result of geometric measure theory, there exists a

suitable subsequence of {Ωn} (resp. {Ω'n}) which converges to a region Ωo (resp. β'o). It

is clear that both Ωo and Ω'o are isoperimetric and with volume v0. For simplicity of

notation, one may assume that Ωn->Ω0 and Ω'n-+ΩQ, namely Ωn (resp. Ω'n) are, in fact,

small deformations of Ωo (resp. Ω'o) for sufficiently large n. Therefore, one may again

use the first variation formulas for both the volume and the area to show that

(57) λ = h(dΩ0) (resp. p = h(dΩ'o))

and, moreover,
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h(dΩ0) = max{h(dΩ); Ω isop. and vol(Ω) = ι;0}= lim [/M^O

(58)

h(dΩ'0) = mm{h(dΩ); Ω isop. and vol(Ω) = v0} = lim [/M(ι;0 + zlt;)—/M(f0)] .
Av-+O+ Av

D

DEFINITION. The mean curvature function of M, denoted by hM(v), is defined at
a point v if all isoperimetric regions in M with volume t; have the same mean curvature
of their boundaries and its value at v is defined to be that common value of h(dΩ) for
all isoperimetric regions Ω in M with vol(Ω) = v.

THEOREM 6. The mean curvature function ofM, hM(v), is defined almost everywhere
on [0, oo) and

(59) / M K ) = | °hM{υ)dv.
Jo

PROOF. It follows readily from the above three lemmas. •

REMARKS, (i) To an arbitrarily given continuous family of compact regions
[Ωt\ teR+} with voKΩ,)^ oo, there is an associated function a = φ(v), which records
the area of dΩt as a function of the volume of Ωt. It follows from the definition of the
isoperimetric profile that φ(v)>fM(v) for all veR+.

(ii) An "isoperimetric inequality" for regions in M usually estimates a lower
bound of the area of dΩ in terms of the volume of Ω for an arbitrary region Ω in M.
Therefore, such inequalities are, in fact, lower bound estimates of fM. For example, it
follows easily from Theorems 1 and 6 that

(60) fM(υ) > fM(v0) + b(M) -(v-v0), υ0 < v < GO .

COROLLARY, lim infyo^ ^ {h(dΩ): Ω isop. and vol(Ω) > v0} is exactly equal to b(M).

PROOF. It follows from Theorem 1 that

(61) lim inf {h(dΩ); Ω isop. and vo\(Ω)>v0}>b(M).
Vθ~> 00

Suppose the contrary that it is not equal. Then there exist a sufficiently large v0 and a
sufficiently small δ > 0 such that h(dΩ) > b(M) + δ for all isoperimetric regions Ω with
vol(Ω)>f0. Hence it follows from Theorem 6 that

(62) fjυ) > fM(v0) + (b(M) + δ)(υ - υ0)

for all v>v0.
Now we shall construct an explicit family of regions {Ωt} such that its associated

function a = φ(v) does not satisfy the inequality
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(63) φ(v) > fM(v0) + (b(M) + δ) (v-v0), v>v0.

Such a contradiction proves that

\iminί{h(dΩ); Ω isop., vol(Ω) > v0} = b(M).

Let v0 be the direction in Co such that

(64) Σ m(αμα |<α,v0>|=Z>(M)

αeJ(M)

and P(vθ9 t) be the piece of perpendicular hyperplane of v0 given by

(65) P(vo,t)
where Π is the set of simple roots defining the walls of Co. Let Ωt be the region in Co

bounded by the above linear piece P(v0, t) and k linear pieces perpendicular to the k
walls of Co. For example, in the rank 2 cases, the above Ωt is a region indicated in
Figure 3.

Finally, set Ωt = K{Ωt\ v(t) = vol(Ωt) and α(0 = area(δΩf). Let ht be the mean
curvature function of dΩt which is defined except at those corner points and can be
expressed as linear combinations of coth's (cf. (10) of §2). Moreover, for sufficiently
large /, all the coth's in the above expression are very close to 1. Observe that

(66) φ'(v(ίo)) ^

and it is rather straightforward to estimate the above quotient in terms of the average
value of ht. For sufficiently large /0, it is not difficult to show that

FIGURE 3
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(67)

and hence

(68)

for all v>v(t0). This clearly contradicts the inequality of (63).
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