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Abstract. Unlike an integrable function on the unit circle which has the nonnegative
Fourier coefficients and is square-integrable near the origin, an integrable function on
the real line which has the nonnegative Fourier transform and is square-integrable near
the origin is not always square-integrable on the real line. We give some examples, and
consider an additional condition which guarantees the global square-integrability.
Moreover, we treat an analogous problem for an integrable function on the real line
which has non-negative wavelet coefficients of the Fourier transform and is square-
integrable near the origin.

1. Introduction. In this paper we consider the following:

QUESTION.  Let fe L*(R) with the Fourier transform f>0 and f restricted to a
neighborhood (— 6, 8) of x=0 belongs to L*(R). Then, does f belong to L*(R)?

A similar question in which we replace the Euclidean space R by a compact
group G has an affirmative answer. For example, when G is a compact abelian group,
fe€L'(G) with the nonnegative Fourier coefficients which is p-th (1<p<2) power
integrable near the identity of G has the Fourier coefficients in /? (g=p/(p—1)). For
p=2 this conclusion is equivalent to f € L%*(G), and was obtained by N. Wiener for
G=T (cf. Boas [2] and Shapiro [8]) and by Rains [7] for arbitrary compact abelian
groups. For 1 <p<2 it was proved by Ash, Rains and Vagi [1]. Moreover, when G
is a compact semisimple Lie group, an analogue of this result for central and zonal
functions on G was obtained by the first author and Miyazaki [5].

The answer to our question is unfortunately negative on the Euclidean space R.
In §2 we shall give two counterexamples: one is constructed by using step functions
and the other by applying wavelets. Therefore, for a function f satisfying the assumption
of the Question to be in L%(R), we need an additional condition of f. In §3 we replace
the condition f'e L?>(—J, &) by a stronger one, under which we can deduce the global
square-integrability of f. In the last section we treat an analogue of the Question in
which the assumption f >0 is replaced by the nonnegativity of the wavelet coefficients
of f. The second counterexample in §2 and the last section were announced by the first
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author in [4].

2. Counterexamples.
COUNTEREXAMPLE 1. Let 0<y<1/2 and a, f positive numbers satisfying
1) a<p-—1, 2 a=3(—1)/4, and (3) a<p/2.

For each ne N we define

a

n if n—yn f<x<n+ynF,

9"(x) =gg.p,/(x) = {

0 otherwise ,

and we put g(x)=Y_, g"(x). Since supp(g‘)nsupp(g’)= (i#j), it follows that
lglly=2yY>  n*"F<oo by (1) and ||gll,=2yY." , n** #=c0, because 20— > (f—3)/
2>0/2—1> —1 by (1) and (2). We put

f(x)= a,ﬂ,y(x)=g*g(x) ’

where g(x) =g(—x). It is easy to see that

C)) I/l <lglli <o
and
(5) fN=14HP=0  (LeR).

We define A(x)=(2y/| x|)!’%. Looking at the support of g", we see that g"(* )g"(+ —x)=0
for n and x satisfying n>[A(x)] + 1, where [a] denotes the greatest integer not exceeding
ae R, and moreover, g"(-)g"(+ —x)=0 (n#m), if | x|<d<1—2y. Therefore, we can
deduce that

[A(x)] [A(x)]
f< ) 2vn2“"‘3j 29y bdy + 2y <cy| x| 7@ B VB4 ¢,
n=1 1

by (3). Since 20—+ 1< /2 by (1) and (3), it follows that
© j | S0 s <o

We next obtain an estimate for f on the neighborhood I,=[/—c;I"#, I+ c;/7#] of Ie N,
where ¢;=y((f—20)/B)?*!. For xel, we put By(x)=y"E+*Y()|x—-1|)/E+D_]
Obviously, Bj(x)>2al/(B—2a) on I, and the inequality n< B,(x) (/>1) implies that
|x=1<yln+ 1) <yln " (n+1) P <y{n P —(n+1)"#}, because f>1 by (1). There-
fore, supp(g"*'(+ +x)) =supp(g"(+)) for n, x satisfying n< B,(x) (/>1), so we obtain
that if xe [,
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=Y g0 +xdy=> Y r g"(»)g" (v + x)dy

nmy — o n<Bi(x) J -

(By(x)]
>2y Y nin+10)F.
n=1

We note that the function y*(y+/)*"# is monotone decreasing on y> B,=al/(f — 2a)
and, since « and f—2a are positive (see (3)), there exists an ¢>0 such that o> ¢g(f—20).
Then, for large /> L= (a/(f—20)—¢)~ ! and xe1,, we have B(x)—(B,+1)>al/(f—20)
—1>e¢l, and thus, the last summation is estimated below as

Bi(x) Bi(x)
22?J y“(y+l)°“”dy22vBl(x)"(B,(x)+l)“"’J dy

Bi+1 Bi+1
204l°‘+ 1([/| x—1/ |)(a—ﬂ)/(ﬂ+ D

Taking the square of this inequality and integrating it over /,(/> L), we can deduce that

c3l—B
J |f(X)|2 dx226212a+2+2(a—ﬂ)/(ﬂ+1)J‘ x—2(a—ﬂ)/(ﬂ+1)dx=csl4a—3ﬁ+2 ,
xelp 0

and

@) ‘lfl\%ZIZJ |f(x)|2dxzcleLl4a—3p+2=OO

>L

by (2). Therefore, (4)(7) imply that f, ;, € L'(R) with fa 5., =0 and the restriction of
Sopyt0 (=0, 8) belongs to L*(R) for 6 <1—2y. However, f, 5 , does not belong to L*(R).

COUNTEREXAMPLE 2. Let b=(b,),-; be a sequence satisfying

®) 0<b,<1 forall n,
© Y by<oo,
n=1
(10) Y 27", <00
n=1

We let d,=(1—b?)'/? (Ie N), and for je 2N, ke Z,

b, k=0, j=2I (leN),
(11) a§= 27 pdy |k|=n2/, j=2I (I, neN),
0 otherwise .

We now put
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fP)= ), diyhx+279Y),
je2N
keZ
where Y4(x)=2/2y(2’x—k) (j, ke Z) are wavelets constructed by Meyer [6, p. 74].
We see from (8)—(11) that

(12) ||f"||1<c22 lak|2~ "2<c2 b2~ +cZ Z bd;27!
je2N I=1n=1
keZ

<cY b+2cY 27 1<,
I=1 1=1

where c= |y, andweuse )", df =d(1—d) ' =d(1+d)(1 —d})~* <2b; 2. Moreover,
we can deduce that

<r lf”(x)lzdx>llzs Yl |2f/2( J ’ [Yy(Qix+2"1—k) |2dx>1/2
i s

je2N
keZ
245—(k—1/2) 1/2
<C, Y, Iajflq (1+|x|)-2'"dx>~
JkeeZQ’ —2J6—(k—1/2)

for m>1 (see [6, Théoréme 1 in p. 70]). We here recall that a¢=0 unless k=0 or
| k|=n2/, especially, a%=0 if je2N and 0<|k|<2’ (see (11)). Therefore, if 6<1/4, the
last expression is bounded by

2 b2 (14 k| =277

(13) C,
1

Ms
||M8

1 l

<C, Y b+C,2%m Y 20-2mip Y i< oo
=1 =1 n=1

as in (12). We next note that J/5(+ +27U+D)(&)=2"92(27i¢)e 127 keei2" "M and
Y(E)=0,(&)e™ "/ for 6, >0 (see [6, p. 74]). Therefore, we have

(14) &)= % di(- +2790) &)= ¥ 279%6,279%) Z die™ 27K

jkEZéV je2N
€

. . 1—d, cos ¢
=y 27929,27%)b : >
jeZZN 1270 h 1—2d, cos & +d?

Since je2N and the support of 6,(277¢) is contained in [—2/*37/3, —2/*1 /3]y
[2/*'r/3,27*37/3] (see [6, p. 74]), it is easy to see that Yy*(x+27Y*Y) (je2N, ke Z)
are orthonormal in L%(R). Then it follows that
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(15) IfP13= 2 1d5P=271 Y ¥ bfdi"=2""} di=0,
jkeezg I=1n=1 1=1

because d? = 1—b?—1 (I- ). Therefore, (12)—(15) imply that f®e L'(R) with /*>0 and
the restriction of f® to (—6, 6) belongs to L?(R) for §<1/4. However, f® does not
belong to L%(R).

3. Some criteria for square-integrability. As an application of C1-summability
and Riemann-Lebesgue’s lemma, we obtain the following theorem, which can be
regarded as a special case of [3, Lemma 4.3].

THEOREM 3.1. Let f e L'(R) and f(£)>0 for all £ € R. Suppose that there is a 5>0
such that feL*(—é, ). Then f(£)e L*(R) and in particular, f € L*(R).

Let feL'(R). We note that fxfe L (R), and (f* /)" =(f)*>0 is equivalent to
the fact that £ is real-valued. Therefore, applying Theorem 3.1 to f*f, we can deduce
the following:

THEOREM 3.2. Let f € L'(R) with the real-valued Fourier transform f. Suppose that
there is a 6>0 such that f*feL®(—¥é,0). Then feL*(R).

Since the convolution of two functions with supports far from the origin may have
its support near the orign, this theorem suggests that to obtain the global square-
integrability of f a local one may not be sufficient. From this point of view we prove
the following:

THEOREM 3.3. Let fe L' (R) and f(£)>0 for all € R. We suppose that
(16) S+ kZz 1(2Tk—6,2Tk+J)(x)EL2(R)
for some T and 6 with 0<6<T, where 1,(x) denotes the characteristic function of a

measurable set A. Then f e L*(R).

For the proof we use the following lemma, which is a simple modification of
Theorem in [1].

LemMa 3.4. Let feL'(—T, T). Suppose that c,=(2T) "' " f(x)e™ ™ T *dx >0
for all ne Z and fe L*(— 6, 6) for some §,0<8<T. Then fe L*(—T, T), in particular,

T 4T% [0 s
J | f(x) Pdx <—; j [ f(x)|*dx .
-7 o _s
ProoF OF THEOREM 3.3. Define

G(x, )= Y, fx+ 2TU)einT ™ tstx+2T1)

leZ
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for x with —T<x<T and s with-0<s< 1. Then, for a fixed s

a7n r |G(x, 5)|dx< ). r |f(x+2Tl)|dxsfw [ f(x)|dx <o
-T

leZ J—-T — o0

and the Fourier coefficients of G(x, s) are given as follows: for ne Z,

T T
(18) (2T)‘1J G(x,s)e_"""T_l"dx=(2T)‘1Zf f(x+2T)e T 6+mx+2TD gy

-T leZ J-T

=211 jw f(x)e "I 6 mx gy — (2T) 1 f(aT (s +n))>0.

On the other hand the assumption (16) on f implies that

s 1
19) o0 > Y. If(x+2Tl)|2an=J“s <j | G(x, s)lzds>dx
-5 \Jo

—oleZ
1/ (s
=J (f | G(x, s)|2dx)ds.
o \J-s

Therefore, (17)-(19) imply that G(x, s) satisfies the assumption of Lemma 3.4 for almost
all s. Then, Lemma 3.4 yields that the last integral is estimated as

1 52 T 52 T .
Zj < 2 J l G(X, S) |2dx>ds= 5 J (J l G()C, S) |2ds>dx
o \4T" J 1 ar ).\ J,

62 T 5 62 ) )
= +2TD) |*dx= dx .
aT? _T’eZzlf(x )|Fdx 4szmlf(X)l x

4. An analogue of the Question. We now give a modification of the Question.
We lety =y{ (see [6, p. 74]) and for a real valued e L®(R) we define the ¥-coefficients
of h by

(202) Yo (h)= j |9(2) Ph(2)e™* dA
R
and
(20b) Pih=2 J FWQDA(A)edA

for ne Z. We say that A has nonnegative ¥-coefficients if ¥i(h)>0 for all ne Z and i=0,
1. Moreover, we say that h is dyadically invariant if h(x)=h(2x). We now fix a dyadical-
ly invariant L*-function 4 on R with nonnegative ¥Y-coefficients and ¥3(k)>0. Then,
looking at the support of y, we deduce that
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@h  EE=0h, h&?:)=2‘“‘+h>“f P23 (A2 h(d)e™ 2™ ka2 g
R
tpl?;—kl(h) J1=J2
Vi) ji=i+1
q’l%z—2k,(h) Ji=72—1
0 lji—/21>1.
As an application of this property, we obtain the following:

THEOREM 4.1. Let h be a real valued, even, piecewise-differentiable, dyadically
invariant L*-function on R with nonnegative ¥Y-coefficients and Y3(h)>0. Let f e L'(R)
with (f, *)>0 for all j, ke Z and f(x)- h(x)e L*(R). Then f belongs to L*(R).

PrOOF. We note that f =Y i xez @V} with @§>0, as a wavelet decomposition of
functions in BMO (see [6, p. 150]), and ((fh)", y*2)=(fh, V=Y kiez GiH5S2, where
f(x)=f(—x). Since h is piecewise-differentiable, we easily see that (A3~ is a
(1, 2, 0)-molecule on R and thus, it is in H*(R). Therefore, the above calculation makes
sense, because f is in BMO. Since {l//f; J,k€Z} is a complete orthonormal system of

L*(R), we see that

2

e VU (VOR FE N (GORN 7 TEED)

j2.k2eZ Jj2.k2eZ

k1 pliko
Z aj, hjnjz
j1kieZ

Since a¥>0, A%%2>0 and A% =PJ(h)>0 (see (20)), the last summation is estimated as
0> Y |dHEP=PIR>?IS13=LIW>IS3 .

j.keZ

Let 0<6<2n/3 and for a measurable set S in R let 1.5 be the characteristic func-
tion of (—S)uS. Then we see the following:

COROLLARY 4.2. Let feL'(R) with (f,y*)>0 for all j, ke Z. If
(22) f(x)- Zz 1, ((2n—8)24,22n +a)2i)(x) € LZ(R) ,
JE

then f e L*(R).

PROOF. Let k; be the function on [ —=, 7] defined by

1—|x|/d |x|<éo
ks(x)=

0 o<|x|<m

o 2 &

1
= + — "; — (1 —cos(nd)) cos(nx)
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and hy(x)=ks(x—2n). Then, since §<2x/3, ho(x) can be regarded as a function on
[2n/3, 8n/3] with the same Fourier series as that of k; and supported on [2n—J, 2n+J].
As a function on [2n/3, 87/3], we put h;(x) =ho(2x)+ ho(x) and we denote the Fourier
series of h,(x) as h;(x)=).,_,a, cos(nx). Then, it is easy to see that k, is supported on
[r—271, n+2"15]u[2rn—0, 2n+ 6], a,>0 for all ne Z and a,=4/n>0. We finally
put h(x)=Y . ,{h;(—2%x)+h;(2%x)}. Obviously, h is a dyadically invariant L®-
function on R. To show that 4 has nonnegative ¥-coefficients we note that

: 8n/3
Ono =0, ¥0) = f |§(A)2e" " di=2 J |(4) | cos(na)da
R

2n/3

and

0= ¥d=42 f G 2A)e " d)

/a2 [ FP(2A)e ™2 cos((n— 1/2)A)dA .

2n/3
Then, since supp(}/) n supp(k) =supp(y) nsupp(h,), these relations imply that

8n/3

¥o(h)= 2[ [(2) > hy(2) cos(nA)di

2n/3
8n/3

=) a, | (4) |2{cos((n+m)A)+cos((n—m)i)}dA

meZ 2n/3

1
=—(a,+a_,

> ( )

and

8=

/3 —
Yin=2./2 f YADY QAR (A)e™ 2 cos((n+1/2)A)dA=0 .
2n/3

Since a,>0 for all ne Z and a, >0, it follows that 4 has nonnegative ¥-coefficients and
¥9(h)>0. Furthermore, the assumption (22) on f easily yields that f(x) - h(x) € L%(R).
Therefore, the desired result follows from Theorem 4.1. [ ]

REMARK 4.3. Although the nonnegativity of the wavelet coefficients of the Fourier
transform £ of f e L'(R) looks unrelated to the other properties of f, it is deeply related
to those of the Fourier coefficients. Indeed, for f =Y, _,a,e"™ € L'([—, n]) with a,>0
(ne Z), we put g(x)= f(x) * y(—x) (x€ R), where we regard f as a 2zn-periodic function
on R. Then, since § has compact support on R (see [6, p. 74]) and g(x) = Zne z a o "(—x),
it follows that ge L'(R) and (g, y%¥)>0 for all j, ke Z. As an application of this idea
and Corollary 4.2, we can give another proof of Wiener’s result stated in §1. Let
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f=Y,.2a,6™ be in L'([—n,n]) with a,>0 for all neZ and f restricted to a
neighborhood (— 48, ) of x =0 belongs to L*([ —r, n]) for some § with 0 <& <. As stated
above, if we put g(x)= f(2x) . Y(—x), it follows that ge L(R) and (4, Y% >0 for all
J» ke Z. Since the support of ¥ is contained in [ —8n/3, —2n/3]u[2n/3, 8n/3] (see [6,
p.74])and 0 < §/2 <2x/3, the terms in the summation g(x) Zjezl +((2r—8/2)29, 2 +8/2)29)(X)
vanish except when j=0, —1. Especially, it follows from the assumption on f that

g(x)- .Zzl +(2n—6/2)29,2n +8/2)23)(X) € LZ(R) .
je

Therefore, Corollary 4.2 yields that g(x) belongs to L*(R) and thus, {* | f(x)|*dx=
2y la,|*=2nf,|g(x)|*dx < oo by the orthonormality of {y%; j, ke Z} .

REMARK 4.4. We cannot replace the condition (22) of Corollary 4.2 by a weaker
one like local square-integrability of f or square-integrability of a finite sum of j in (22).
Indeed, look at the following function:

- & (2n—DN
f(0)=(2sin(x/2))" 1 cos( i )— =3 @D ) 0<x<2n).
4 =1 (2n)!!
Obviously, f € L*(T) has nonnegative Fourier coefficients. However it does not belong

to L*(T). We now regard this function as a 2n-periodic function on R and we put for
a fixed joe Z

Qn—1)! . x
fi(x)= l//< 210) ( oo > "gl ! ( o )cos (n 27)

jo/2—1 @n—
=2 ,.; @n )n

Then, ( fjo, Y%)>0 for all j, ke Z and f;, vanishes on a neighborhood of x=0, because
the support of f;, is contained in [—2/*3x/3, —2Je+ g3 y[2/o* /3, 2io+3y/3],
However, f;, does not belong to L(R).

(%o( X)+5,"(x) -
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