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Abstract. The aim of this paper is to study the behaviour of the ergodic Hubert

transform associated to a flow which is Cesaro bounded in the space of integrable

functions. In particular we see that if the flow is Cesaro bounded in this space, and /

and its ergodic Hubert transform are integrable functions then the ergodic Hubert

transform is not only defined as an a.e. limit or a limit in measure, but it is also defined

as a limit in the norm of the space of integrable functions. In order to prove this result,

we show that the ergodic Hubert transform and the ergodic maximal operator are of

weak type (1, 1) if the flow is Cesaro bounded in the space of integrable functions. It

is also shown that the ergodic Hubert transform and the ergodic maximal operator are

of strong type (p, p), with p greater than one and finite, if the flow is Cesaro bounded

in the space of measurable functions with integrable /?th-power. The last section of the

paper is devoted to providing nontrivial examples of Cesaro bounded flows. The proofs

use ideas of the theory of Muckenhoupt's weights.

1. Introduction. Let (X, Jt, v) be a finite measure space. By a flow \τt: t eR] we
mean a group of measurable transformations τt: X -+ X with τ 0 the identity and
τt + s = τt°τs, (t,seR). The flow is said to be measure preserving if the τt are measure
preserving, i.e., if v(τ_tE) = v(E) for all EeJt. The flow is said to be nonsingular if
v(τ_tE) = 0 for all teR and all EeJt with v(£) = 0. Finally, the flow is said to be
measurable if the map(x, t) -• τtx from X x R into X is ,jf-^-measurable where Jt is
the completion of the product-σ-algebra Jt®M of Jt with the Borel sets, and the
completion is taken with respect to the product measure of v on Jί and the Lebesgue
measure on $.

Let/: X-+R be a measurable function. The ergodic averages Aεf, ε>0, and the
ergodic maximal operator Mf associated to a measurable flow are defined by

and

-ϊ- Γ f(τtx)dt
2s J
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x) = supAε\f\(x).
ε>0

We also consider the maximal ergodic Hubert transform

) = sup \HJ(x)\
ε>0

where

HJ(x)
J ε < | ί | < 1

Assume now that the measurable flow {τf: teR} is measure preserving. Then M and
H* are of weak type (1, 1) and of strong type (p,p\ l<p<co, i.e., the following
inequalities hold, where 0ί is either M or H*:

v({xeX:\mx)\>λ})<^[ \f\dv
* JX

and

\0tf\pdv<c\ \f\pdv, l</7<oo.
JX JX

It follows from these results that AJ converges a.e. as ε goes to 0 for a\\feL1(dv). In
the same way it is seen that the ergodic Hubert transform

Hf(x) = limHJ(x)
£-•0

exists a.e. (the limit is understood in the pointwise sense). An immediate consequence
of the above inequalities is that iffeLp(dv), 1 </?<oo, then AJ converges in the Lp-
norm. We also have that if fe Lp(dv), \<p<cc, then HJ converges to Hf in the LP-
norm and \ϊfel}(ώϊ) then HJ converges to Hf in measure (see [P] for these results).
This leaves open the following question: iffeLx(dv) and HfeL1{dv) does HJ^converge
to Hf'm the //-norm as ε goes to 0? This question was answered in the affirmative
in [ABG] (in fact the setting of this paper is about power-bounded operators not just
measure preserving flows).

Our aim is to study the behaviour of the ergodic Hubert transform associated to
a nonsingular measurable flow which need not preserve the measure v but which is a
Cesaro-bounded flow, i.e.,

ε > 0

for some fixed/?, 1 <p< oo. Observe that this case is not included in [ABG]. The results
on Lp(dv), 1 <p< oo, are easier and their discrete versions can be found in [MT] and
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[S]. We include them because we use them to study the ergodic Hubert transform in

Lι(dv). Our main results are collected in the following theorems.

THEOREM 1. Let 1 < /? < oo. Assume that (X, M, v) is a finite measure space and

let {τt\ teR} be a nonsingular measurable flow on X such that

^V\\ΛJ\\Lndx)<C\\f\\LP{dx)
ε>0

for some positive constant C and all feLp(dv). Let us denote by 01 either M or H*.

(a) If p= 1 then there exists C>0 such that

\>λ})<^-[ \f\dv
λ Jx

for all λ>0 and all functions fe Lλ{dv).

(b) Ifp>\ then there exists C>0 such that

\®f\pdv<C
Jx Jx

\0ίf\pdv<C \f\pdv
Jx Jx

for all functions fe Lp(dv).

(c) For every fe Lp(dv), the limits ofAεf(x) as ε goes to oo and of Hεf(x) as ε goes

to 0 exist a.e.

A straightforward consequence of Theorem 1 is the following:

COROLLARY 1. Under the same assumptions as that in Theorem 1, we have:

(a) If\<p<oo and fe Lp(dv) then AJ converges in the LP(dv)-norm as ε goes to

oo and HEf converges in the Lp(dv)-norm as ε goes to 0.

(b) Ifp=\ and feL1(dv) then AJ converges in the L1(dv)-norm as ε goes to oo

and Hεf converges in measure as ε goes to 0.

THEOREM 2. Assume that (X, Ji, v) is a finite measure space and let {τt: teR} be

a nonsingular measurable flow defined on X such that

^\\AJ\\LHdv)<C\\f\\LHdv)
ε>0

for some C>0 and all functions fe Lx(dv). IffeL1(dv) andHfeL1(dv) then HJconverges

to Hf in the Lί(dv)-norm as ε goes to 0.

The proof of this theorem appears in Sections 4 and 5 and follows the ideas in

[ABG], [CC] and [CS]. The latter papers study the behaviour of the (classical) Hubert

transform on the real line. Section 2 will be devoted to some results we shall use about

the Hubert transform and the Hardy-Littlewood maximal operator while the proof of

Theorem 1 is in Section 3. Finally, Section 6 gives examples of nontrivial Cesaro-

bounded flows.
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Throughout this paper, the letter C will always mean a positive constant not

necessarily the same at each occurrence and if 1 <p < oo then p' will denote its conjugate

exponent, i.e., the number p' such that p + p' = pp'.

2. Results in harmonic analysis. In order to prove the theorems we will need

some results on the Hardy-Littlewood maximal operator and the Hubert transform

in R. We recall that for a locally integrable function / on the real line, the Hardy-

Littlewood maximal function, the maximal Hubert transform and the Hubert trans-

form are defined respectively by

= sup J - f'
ε>o 2ε J_£

ε>0

and

\f(x-t)\dt,

f(χ-t)
dt

Kf(x)= lim f f(x ή dt
ε^0+ Jε<\t\<l/ε t

if the limit exists a.e. We observe that they are, respectively, the ergodic maximal

operator, the maximal ergodic Hubert transform and the ergodic Hubert transform

associated to the flow τt(x) = x — t on the real line. The next result will be useful in what

follows and you could find its proof in [HMuW] and [CF] (see also [GR]). In order

to state the result, we introduce the following definition.

DEFINITION 1. Let ω be a positive measurable function on the real line. We say that

ω satisfies Ap9 1 <p<oo, if there exists a constant C>0 such that

l Cb ί l Cb V " 1

sup ω(t)dt( ω 1"^)^) <C if \<p<oo

a<b b-a Ja \b-a Ja J

and

ω*(x) < Cω(x) a.e. if p = 1 .

Now we can state the results we shall use.

THEOREM A. Let ω be a positive measurable function on R. Let 1 <p< oo and let

e either /*, K*f or Kf The following are equivalent.

(a) ω satisfies Ap.

(b) There exists C>0 such that

Γ
J —

\f(t)\'Ό)(t)dt
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for all functions feLp(ω(ήdt).

(c) There exists C > 0 such that

I ω(t)dt<~ f
J{t:\Λf(t)\>λ} λ J -

I/(OIJ

all λ>0 and all functions fe Lp(ω(t)dt).

THEOREM B. Le/ ω be a positive measurable function and let Mf be either f*, K*f

or Kf. The following are equivalent.

(a) ω satisfies A1.

(b) There exists C > 0 such that

j ω(t)dt<jΓ \f(t)\ω(t)dt

all λ>0 and all functions fe Lι(

3. Proof of Theorem 1. In order to prove Theorem 1, we first claim that there

exists a measure μ equivalent to v such that the flow preserves the measure μ, i.e.,

μ(E) = 0 if and only if v(E) = 0 and μ(τtE) = μ(E) for all sets EeJί.

PROOF OF THE CLAIM. Since v(X) < oo we have

sup II ΛJ\\LHdv)<C \\f\\LHdv)(v(X)y/p'<π
ε>0

Thus the sequence {\χΛnχEdv}n is bounded for all EeJί. Let L be a Banach limit. We

define

μ{E) = U\ AnχEdv
\ IJx

It is clear that μ is finitely additive and μ ( 0 ) = O. Furthermore, we get from the above

inequality

0 < μ(E) < C(v(X))1/p\v(E))1/p < Cv(X) < oo

and then μ(X) < oo. Therefore, in order to prove that μ is a countably additive measure,

we only have to show that if Ex =»E2 => * * * ̂ >En^En+ί^> and f)nEn = 0, EneJί,

then μ(En)-+0, but this follows from μ(E)<C(v(X))1/p'(v(E))1/p and the fact that v is a

measure.

Now we will see that μ(τtE) = μ(E) for all sets EeJί. By the definition of μ we have

Observe that
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lim Γ-L Γ v(τs+tE)ds-^- Γ v(τsE)ds] =

In fact,

H (v(τs+tE)-v(τsE))ds
1 f"

2" J-

t t t

n XnE ( d v ) n * τ~n v n

Therefore, by the properties of the Banach limit

μ(τ,E) = L {\±- Γ v(τsE)ds j ^ = μ{E).

The proof of the claim will be complete if we show that v and μ are equivalent. It is

obvious that v(£) = 0 implies μ(E) = 0. Assume now that μ(E) = 0. Let B=\J™= ^τkE

and let us define

v{E)=[v{τsE)ds.
Jo

It is clear that μ(B) = 0 and

If we apply this equality to B and keep in mind that B — τkB for all integers k then

we obtain

Thus v(τs£) = 0 a.e. se(0, 1), but this implies v{B) = 0 and then v(E) = 0.

In what follows, ω will be the Radon-Nikodym derivative of v with respect to μ.

It is clear that 0<α>< oo a.e.

PROOF OF THEOREM 1. Assume that p= 1. Observe that

ε>0

is equivalent to

ε>0

and this holds for all/eL^dv) if and only if

Mω(x) = sup Aεω(x) < Cω(x) a.e.
ε>0
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This means that the functions ωx: R->R, ωx(t) = ω(τtx), satisfy Aγ for almost every

xeX with the same constant. Now we will use transference arguments to establish the

weak type (1,1) inequality for if*. The proof for M follows the same pattern and we

omit it.

For fixed η > 0 we define the truncated maximal ergodic Hubert transform

//*/(*) = sup
ε>η

Γ /(v
J ε < | ί | < l / ε *•

-dt

Then, for all N > 0 we have

l CN Γ
v({xeX: H*f{x)>λ}) = —\ χ{x:H*ηfix)>λ}(τtx)ω(τtx)dμ(x)dt

N Jo Jx

= — ω(τtx)dμ(x)dt.
^ Jo J{x6^:H;/(Ttx)>A}

Since H*f(τtx) <K*(fxχ(_ 1/ηN + 1/η))(t) and ωx satisfies A1 for almost all x (with the same

constant), Theorem B implies that

ωx(t)dtdμ
1 f f

i V J X J {ί: *•(/**( - i/ n, N + iM))(r) > λ}

C iV H~ 2 / M I
< f(τtx)ω(τtx)dtdμ = C I fωdμ

ΛΓ 2 1 I \[ 2 I

«/ϊ J 1/n i\Λ »/Y

because the flow preserves the measure μ. Letting N^oo and then ^->0we have the

weak type (1,1) inequality for H*.

Now let 1 <p< oo. The proof of the strong type inequalities will follow the same

pattern of the above case, once we prove that, for almost every x e l , the functions ωx

satisfy Ap with the same constant. This can be proved as in [MT] and [S] where the

discrete case was treated in a more general setting. We shall omit the details of the

proof of the fact that ωx satisfies Ap and the transference argument.

The convergence of the averages AJ and of Hεf follows from the weak type

inequalities and the fact that the convergence holds for function feL1(dμ)πLp(ωdμ)

which is dense in Lp(ωdμ).

REMARK. It is worth noting that we only shall use the case p > 1 for flows which

are Cesaro bounded in L^ί/v), i.e., for flows such that ωx satisfies Ax for almost every

xeX with the same constant C. For these flows the condition Ap, p>l, follows from

A1 very easily and therefore the proof of the strong type (p, p) inequality is easier than

in the general case stated in Theorem 1.

4. Some basic facts for the proof of Theorem 2. Assume that (X, M, v) is a finite
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measure space and {τ,: t e R] is a nonsingular measurable now on X such that

™P\\Aj\\LHdv)<c\\f\\LHdv)
ε>0

for some constant C and all functions feL1{dv). Then, as we have seen in Section 3,

there exists a finite measure μ equivalent to v such that the flow preserves μ. If ω = dv/dμ

we know that the functions ωx satisfy Aί for almost every xeX with the same constant

C.

Let/be a measurable function on X and let φ :/?->/? be a measurable function.

The convolution of/and φ is defined by

J — 00

f*φ(x)= f(τtx)φ(t)dt
J — 00

if it makes sense (the convolution of functions in R will be denoted by the same symbol

*). Since the flow preserves the measure μ it is very easy to see that Ίϊ feL1{dμ) and

φeLι(R) then/*φ is defined and

11/*<p \\mdμ)< WfWmdμ) II Ψ WLHR)

We wish to show now that the convolution / * φ is also defined for functions feL1{dv)

and φeLι(R). In order to prove it, we recall that the function ω belongs to Lx(dμ) and

satisfies the following:

Λεω(x) < Cω(x) for all ε > 0 and almost every x e X .

If we let ε go to oo and keep in mind that the limit l im^^ Λεω(x) is positive and invariant

a.e. then we obtain

0 < lim Aεω(x) < C inf ω(τtx) a.e.

ε-»oo teR

Therefore if we consider for each integer n the set

Xn={xeX: 2"

we observe that the sets Xn are invariant (τtXn = Xn for all teR), pairwise disjoint and

X= \JnXn (these equalities are understood up to a set of measure zero). Furthermore,

L\Xn, dv) a L\Xn, dμ) because

ί \f\dμ=\ \f\~dv<2n + ι f \f\dv.
Jχn Jxn co JXn

Thus if fe L}(dv) and φeL1(R) we have that the convolution / * φ is defined on each

Xn, since feL1(Xn, dv)czL1(Xn, dμ). Keeping in mind that the sets Xn are invariant,

pairwise disjoint and X= \JnXn, we conclude that/*φ is defined on X.
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This decomposition of the set fallows to obtain more properties of the convolution

which are necessary for the proof of Theorem 2. More precisely:

(a) If fe L\dv), Hfe L\dv) and φ e L\R) then //(/* φ) = Hf* φ.

(b) If fe L\dv\ φ e L\R) and Kφ e L\R) then H(f* φ) =/* Kφ.

(Observe that H(f*φ) is defined since f^φeLι(Xn) for each ή). As before, these

facts can be proved by reducing them to the case of the sets Xn and the functions in

Lx(Xn, dμ). This case, the measure preserving case, was proved in [ABG] in a more

general setting.

We would like to obtain also an inequality like

but with the measure v. In the next theorem we give a result of this type under some

assumptions on φ.

THEOREM 3. Let (X,Ji,v) be a finite measure space and let {τt: teR} be a

nonsingular measurable flow on X such that

™P\\AJ\\LHdv)<C\\f\\LHdv)
ε>0

for some positive constant C and all functions feL1(dv). Assume that φeL1(R) and

^(ί) = suP|s|>|f|l<ίΦ)l ^ *'w LX(R) (ψ is the least radial decreasing majorant of φ). If

feL\dv) then

\f*Φ)\<\\Ψ\\LHR)Mf(x)

and

11/*φ llLi(dv)<C|l φ \\LHR) | | / | | L i ( d v )

where the constant C is independent of f and φ.

PROOF. For fixed xeX let us denote by fx the function fx(s) = f(τsx). Then

\f*φ(x)\<\f\*\φ\ (x)<\fx\*φ(0) where the last * stands for the convolution of func-

tions in R. By a standard result (see [GC] for instance) the last term is dominated

by II Φ lli(/T(0). But (fx)*(0) = Mf(x). This proves the first inequality.

Let μ and ω be as above. By Fubini's theorem and the fact that the flow preserves

the measure μ we obtain

ll/*<HlL>(dv)<ί \f(x)\( Γ ω(τsx)\φ(-s)\ds)dμ=\ \f(x)\ω*\φ\(x)dμ
JX \J-oo / JX

where φ(s) = φ( — s). Then by what we have already shown

11/*φ \\mdv)< II Φ WLHR) \f(x).\Mω(x)dμ .
IX
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Now, since the functions ωx satisfy A1 for almost every xeX with the same constant,

we have

)
Jx

The proof of Theorem 2 requires to approximate the functions in L1(dv) by suitable
functions. This is the next result.

THEOREM 4. Let {X, JK, v) and {τt: teR] be as in Theorem 3. Let

A = {fe L\dv): f{x) = f(τtx) a.e. x for all t e R}

and

ί Γ0 0 1
B = <f = g*φ: ge Lco(dv), φ bounded with compact support and φ(s)ds = 0 > .

I J - 00 J

If B is the L1(dv)-closure of the linear manifold generated by B then A® B = Lί(dv), i.e.,
AnB={0} and L1(dv) = {f1+f2:fίeAJ2eB}.

PROOF. It is clear that A and B are contained in Lί(dv). We also have that
limε^00v4ε/ = /for a\\feA and limε^ooAε/ = 0 if/el? (these two facts give immediately
that AnB={0}). We only have to show the statement for the functions feB. By the
assumption

ε > 0

it suffices to establish that limε^oo>lε/ = 0 for all functions feB. In order to see this, we
consider/ = g*φ,ge L°°(dv), φ bounded with compact support and J " φ(s)ds = 0. Then

= ^- Γ Γ g(τt+sx)φ(s)dsdt = ̂ - ί°° φ(s) Γ g(τt+sx)dtds
2ε J-εJ- oo 2ε J-ao J - e

By the dominated convergence theorem and the fact that

1 Γε 1 fε
l i m — g(τt+sx)dt= lim _ - g(τtx)dt

ε-^oo Z ε J _ ε ε-^oo IE J _£

we obtain limε^oo^ε/(x) = 0.
Now we are going to prove that A@B = L1(dv). Let feL1(dv) and denote

F=\imε^Q0Aεf. It is clear that FeA. Then it suffices to show that f—FEB. Assume
that heL^idv) and
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hGdv = 0 for all functions GeB .
Jx

Then

ί;h(x)i g(τsx)φ(s)dsjω(x)dμ = O

for all functions geLco{dv) and all φ bounded with compact support and §™ φ(s)ds = 0.
Then it follows from Theorem 3 that the above equality holds for all functions g e L1{dv).
Applying this equality to g = f and </> = (l/2ε)χ(_εε) — (l/2η)χ{_η η) we obtain

ί h(x)ω(x)^-{£ f(τsx)dsdμ= ί h(x)ω(x)-^- P f(τsx)dsdμ.
Jx 2εJ_ ε Jx 2ηJ..η

Since (l/2τ/) \η_ f(τsx)ds converges to Fin the L^^-norm as η goes to oo (Corollary
1) and (l/2ε)\ε_εf{τsx)ds converges to/in the L^^-norm as ε goes to 0+ (by Wiener's
theorem and sup ε > 0 || i4 e/| |Li ( d v )^C | |/ | |Li ( d v )), we obtain

fhωdμ = Fhωdμ, i.e., {f-F)hdv = 0
Jx Jx Jx

for the functions heLco{dv) as above. This means that/— FeB.

In order to finish this section we are going to study the behaviour of the convolutions
f*φε where φ is continuous with compact support and φε(t) = (l/ε)φ(t/ε).

THEOREM 5. Let (X, Jf9 v), {τt: t e R}, A, B and B be as in Theorem 4. Let φ: R^>R
be continuous with compact support.

(a) IffeL1(dv) thenf*φε converges to (J^ooφ(s)ds)f in the L1(dv)-norm as ε goes
toO.

(b) IffeB thenf*φ1/ε converges to 0 in the L1(dv)-norm as ε goes to 0.

PROOF. Let μ and w be as in the proof of Theorem 4. By Theorem 4 and since

™P\\Aεf\\LHdv)<C\\f\\LHdx),
ε>0

it suffices to establish the results for functions feAuB. If feA it is clear that
f*φε(x) = f(x)§™ φ(s)ds and therefore (a) follows for functions fe A. Now let feB.
Then/ = g*φ where geL°°(dv), φ is bounded with compact support and J* φ(s)ds = 0.
In what follows if φ: R->R, we write φ to denote the function ij/(s) = ιl/( — s). Then by
Fubini's theorem and the fact that the flow preserves the measure μ we obtain

f*(pe-f\ ψ(s)ds = g*(Φ*φε)-(g*Φ) \ φ(s)ds
J-oo Lι(d\) J-oo
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(
\

(φ*φε-φ\ φ(s)ds)
\ J-oo /

*ω

<\\g\ φ*φε — φ(s)ds v(X).
LHR)

By elementary results in the real line,

lim φ*φE-φ φ(s)ds = 0

and therefore (a) is proved.
Now we shall prove (b). As before it suffices to prove it for functions fe B. Let

f=g*φ with geLco(dv), φ: R-+R bounded with compact support and J^ φ(s)ds = 0.
Since φ*φ1/ε = (φε*φ)1/ε we have

\g\*\(Φε*φ)i/ε\(θdμ.

By Fubini's theorem and the fact that the flow preserves the measure μ we have

LI(<*V)< \9\(Φε*φ)nε*^dμ<\\g\\ao\\(φε*φ)ίlε*ω\\LHdμ)
Jx

< II g IIαo II (Φε*φ)i/e LHRAX)< II g I L Ψ O I I Φε*φ \\LHΛ).

Again, by elementary results φε*φ converges to φ\^ φ(s)ds = O in ^(R). Therefore

5. Proof of Theorem 2. Let μ, ω, A, B and B be as in Section 4. Let/eL^Jv)
such that HfeLι{dv). Then f=fί+f2,f1e A a n d / 2 e 5 . Since HJ1 = 11^ = 0 it is clear
that we may assume that fe B.

Let/eΐ? such that HfeL1^). Consider a function φ: R-+R, φ>0 continuous
with compact support and J " φ(ί)rfί = 1. Let /c(x) = 1/x if | x | > 1 and fc(x) = 0 if | x \ < 1.
Finally let δ = Kφ — k and hε = kε — k1/ε. Observe that Hεf = f*hε and since the dilation
commutes with the Hubert transform we get

Following the ideas in [CS] we see that the least radial decreasing majorant of δ is in
Lι{R) and therefore for Aε = δ1/ε — δε we get (Theorem 3)

\\F*Aε\\LHdv)<C\\F\\LHdv) for all FeL\dv).

Let y>0 and choose g in the linear manifold generated by B and such that
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Since K(φ1/ε — φε)eL1(R), φ1/ε — φεeL1(R) and HfeLι{dv), the properties (a) and (b)
in Section 4 give

\\HJ-Hf\\LHdv)=\\f*Aε-Hf*φ1/ε

< || Hf*φε-Hf\\LHdv)+ || (f-g)*Δε \\LHdv)

+ II 0 * 4 | | L i ( d v ) + || Hf*φ1/ε \\LHdv) .

Now, since K(φε — φι/ε)eL1(R) and HgeLι(dv),

= Hεg-Hg + Hg-Hg*(φε-φ1/ε) .

Therefore

II HJ-Hf\\LHdv)< || Hf*φε-Hf\\LHdv)+ \\ (f-g)*Δe \\LHdv)

+ || Hεg-Hg | |Li ( d v )+ || Hg-Hg*φε \\LHdv)

+ || Hg*φί/ε \\LHdv)+ \\ Hf*φί/ε \\LHdv) .

Since HfeL1(dv), Theorem 5 gives that || Hf *φε — Hf \\LHdx)+ \\ Hg — Hg*φε | |Li (dv) tends
to 0 as ε goes to 0. By one of the above inequalities

II (f-g)*Δε \\LHdv)<C\\f-g ||Li(dv)<Cy .

By Corollary 1 and the fact that the linear manifold generated by B is contain-
ed in L2(dv) we have that \\ Hεg — Hg \\L2(dv)^0 as ε goes to 0 and therefore
limε^0+ || Hεg — Hg | |Li (dv) = 0 because v(X)<oo. Finally, by Theorem 5,

lim (|| Hf*φ1/ε | |Li ( d v )+ || Hg*φ1/ε ||Li(dv)) = 0
ε-> 0 +

if we establish that ///"and Hg belong to B. This is proved in the next theorem (observe
that HfeL\dv) and HgeL\dv)).

THEOREM 6. Under the assumptions of Theorem 2, if feLγ(dv) and HfeLι{dv)
then HfeB.

PROOF. Consider as in Section 4 the sets

Xn = {xeX: 2"<supω~1(vt)<2'1 + 1} .
teR

Let feL\dv) such that HfeL\dv). Since L\Xn, dv)czL1(Xn, dμ) t h e n / e L 1 ^ , dμ) and
HfeL\Xn, dμ). Therefore, by Theorem (3.23) in [ABG] we have that for each n there
exist FneLγ{Xn, dμ) and φn: R^R bounded with compact support, J* φn(s)ds = 0, and
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such that HFneL1{Xn, dμ) and/= Fn*φn on Xn. As a consequence of the properties (a)
and (b) in Section 4

Hf=HFn*φn on Xn.

On the other hand, since HfeL1{dv) we have by Theorem 4 that

Hf=A+f2, fxeA9 f2eB.

Now we observe that

lim Aε(Hf)= lim Aε(HFn*φn) = 0 on Xn
ε—* oo ε—* oo

and

lim Aε(Hf)= lim (AJ1 + AJ2)= lim Λ εΛ =/ x .
e-*oo ε —• o o ε-*oo

Therefore fx=0 and #/=Λ +/ 2 = / 2 e 5 .

6. Examples of Cesaro bounded flows. This section is devoted to providing ex-
amples of Cesaro bounded flows.

We begin by considering the case X={zeC: | z | = l} with the σ-algebra of the
Borel sets and the flow τt(z) = zeit. It follows from Theorem 1 and its proof that v is a
measure such that the flow is Cesaro bounded in Lp(dv) if and only if dv = ωdμ where
the flow preserves the measure μ, ω>0 a.e. and ωz satisfies Ap for almost all zeX. In
our case this means that dv(eιt) = ω(eιt)dt for some ω > 0 a.e. which satisfies Muckenhoupt's
Ap condition. These weights ω were studied in [Mu] and [HMuW] (see also [GR]).
For instance, we have that ω(eu) = ία, 11 \ < π, is an Ap weight if and only if — \<oc<p— 1
and in this case the flow is Cesaro bounded in Lp(dv) if dv(eit) — ω(eit)dt. More examples
can be given in this setting by using the result of Coifmann and Rochberg [CR] and
the factorization of Ap weights (see [GR]).

Next, we are going to show -nontrivial examples in a more general setting.

THEOREM 7. Let (X, J(, μ) be a nonatomic finite measure space and let {τt: teR}
be a measure preserving flow such that τt is ergodic for some tεR. Then for every p> 1
and every q, \<q<p, there exists a measure dv = ωdμ, ω>0 a.e., such that the following
holds:

(1) The flow is Cesaro bounded in Lp(dv) and is not Cesaro bounded in Lq(dv).
(2) The flow is not power bounded in Lp(dv).

PROOF. We begin by proving the case p = 1. Let / > 0, fe L\dμ\ fφ L°°(dμ). De-
note by M(i) the iterations of the ergodic maximal operator associated to the flow.
We know that M is bounded in L2(dμ), more precisely,
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Let

Then ω > / > 0 , ωeL2(dμ) and

1
Mω< £ —M ( ί + 1 )/<4ω.

41

Therefore, wx satisfies Ax. Then it is clear that (1) holds for dv = ωdμ and p — 1. Let us
see now that (2) does not hold. Assume that the flow is power bounded in Lx(dv). This
implies immediately that there exists a constant C > 0 such that

ω(τtx)<Cω(x) a.e.

for all teR. Then the assumption about the ergodicity of the flow gives that ωeLco(dμ)
which is a contradiction since 0 < / < ω and/^L°°(//μ).

Let us consider now the casep> 1. Let 1 <r<(p—l)/(q—l) and let A be a positive
constant such that

for MfeU(dμ). Now choose/eL r(φ) such Xh?iϊfφUp~l)l{q-ι\dμ) and set

As before, ωx satisfies A1. Then Holder's inequality shows that if u = ωί~p then w*
satisfies Ap and therefore the flow is Cesaro bounded in Lp(dv), dv = udμ. In order to
prove the statement (1) completely, we assume that the flow is Cesaro bounded in Lq(dv),
i.e., ux satisfies Aq with the same constant for almost all xeX. This implies

for some constant C Letting N go to oo and keeping in mind that τt is ergodic for
some t, we get that u~1/iq~1)eL1(dμ), i.e., ωeL^'^^'^idμ). This is a contradiction
to the fact that ^>fφϋp~mq-γ\

Finally, observe that (2) follows from (1) since (2) implies that there exists C>0
such that for all t

u(τtx)<Cu(x) a.e.

and this would immediately imply that the flow is Cesaro bounded in Lλ(dv) and then
in L\dv) for all r, 1 < r < oo.

REMARK. The theorem and its proof follow the ideas of the theory of weights
(see [CJR] and [GR]).
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