
Tόhoku Math. J.
47 (1995), 271-296

SHIMURA CURVES AS INTERSECTIONS OF HUMBERT
SURFACES AND DEFINING EQUATIONS OF

QM-CURVES OF GENUS TWO

KI-ICHIRO HASHIMOTO AND NAOKI MURABAYASHI

(Received January 17, 1994, revised November 25, 1994)

Abstract. Shimura curves classify isomorphism classes of abelian surfaces with
quaternion multiplication. In this paper, we are concerned with a fibre space, the base
space of which is a Shimura curve and fibres are curves of genus two whose jacobian
varieties are abelian surfaces of the above type. We shall give an explicit defining equation
for such a fibre space when the discriminant of the quaternion algebra is 6 or 10.

Introduction. Let A be a simple principally polarized abelian variety of dimension
two over the complex number field C, and End(̂ 4) the ring of endomorphisms of A.
Then, as is well-known, the β-algebra End°(^): = End(̂ 4) ® z Q is of one of the following
types:

(i) a CM-field of degree four, (ii) an indefinite quaternion algebra,
(iii) a real quadratic field, or (iv) the rational number field Q.

Let s/2,i be the moduli space of the isomorphism classes of abelian surfaces with
principal polarization. The locus of each type in s/2Λ has dimension 0, 1, 2, 3, respec-
tively, whose irreducible components in the first three cases are called (i) CM-points,
(ii) Shimura curves, and (iii) Humbert surfaces. On the other hand, it is also well-
known that the Torelli map gives a birational morphism from s/2,i to t n e moduli
space M2 of curves of genus two.

In this paper we are concerned with constructing, in a concrete way, an algebraic
family of curves of genus two whose jacobian varieties belong to the case (ii) above.
Namely, we wish to find out an equation for a fibre space, the base space of which is
a Shimura curve and fibres are curves of genus two whose jacobian varieties have
quaternion multiplications. Call such curves simply "QM-curves". We shall give defining
equations over the rational number field Q for the algebraic family of QM-curves when
the endomorphism ring is, generically, a maximal order 0 of the indefinite quaternion
algebra B over Q which ramifies exactly at {2, 3} or {2, 5}. To the best of our knowledge,
not a single concrete example of simple QM-curves has been known before. Indeed, it
is quite difficult to show that the jacobian variety of a given curve is simple.

The method of our construction is roughly as follows: In a classical work of
Humbert [8], one can find general approach, as well as concrete solutions in some
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cases, to similar problems for the case (iii), i.e., to construct families of curves of genus
two whose jacobian varieties have real multiplication of given discriminants (cf. [1],
[18]). Especially, Humbert gives explicit form of "modular equations" for discriminants
5 and 8, in terms of the coefficients of the curves Y2 =f(X) (see (2), (3) in the text).
Our idea is to combine these two equations in a suitable way. Indeed, if one can arrange
the coordinate system in such a way that the two real multiplications, with discriminants
5 and 8, generate the order Θ, then the fibre space we are looking for will be obtained
as a component of the intersection of two Humbert's families. We determine possible
components by studying quaternion modular embeddings of the upper half plane to
the Siegel upper half plane of degree two. Although the calculations needed to find out
the components are quite complicated, they can be performed by computer symbolic
manipulation.

The main results are given as Theorems 1.3 and 1.7 in §1. As an application, we
can give an equation for the universal family of supersingular curves of genus two over
the finite field Fp2 for p = 3, 5. The proofs of the main results will be given in later
sections. In §2, we recall briefly some results of Humbert [8] which are basic for our
constructions. In §3, we study, in some detail, quaternion modular embeddings of the
upper half plane to the Siegel upper half plane of degree two, in the case of maximal
orders of the quaternion algebra which ramifies at {2, 3}, or {2, 5}. A more general
treatment is given in [4]. Finally in §4, we describe briefly how the computation will
be performed.

ACKNOWLEDGMENT. The authors thank Akira Kurihara for showing his interest
and giving continuous encouragement during the preparation of this paper. They also
thank Frans Oort and Don Zagier for valuable suggestions.

1. Statement of the main results. Let B be an indefinite division quaternion
algebra over Q, and Θ a maximal order of B. We denote by DB the product of primes
at which B ramifies, and call it the discriminant of B. Let αi—>α' be the canonical
involution on B, and let Tr(α): = α + α', Nr(α): = αα' be the reduced trace and the reduced
norm on B, respectively. Then Θ(1): = {αe Θ | Nr(α)= 1} is regarded as a Fuchsian group
of SL2(/?) and the compact Riemann surface Θ{1)\9y is identified with the set of C-
valued points of the Shimura curve SB (cf. [21], [22]). SB{C) has the following inter-
pretation. Let p be an element of & such that p2 = —DB, pΘ = (9p. The existence of such
an element can be shown by strong approximation theorem, or by direct construc-
tion of (9 (cf. [3], [4], [9]). Then the involution of B defined by αι-»α* \ = p~1oc'p is
positive, and satisfies Θ* = Θ. We have a one-to-one correspondence

SB(Q

(A, Θ): principally polarized abelian surface

(A, i, Θ) i\Θa+ Έnd(A)

Rosati involution with respect to Θ\Θ is *
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The above isomorphism can be described by the quaternion modular embedding. Indeed,

let ξ> be the upper half plane and let

ξ>2 : = {τGM2(C)\τ = % Im(τ)>0}

be the Siegel upper half space of degree two. It is known that there is an embedding

of analytic spaces Ψ: §-»$2> z\-*Ω(z\ which is compatible with the actions of G(1) and

Sp(4, Z) on each space, through an injection Θ{1) CL+ Sp(4, Z). See §3 and also [4] for

details. Now the following fact is well-known as a very special case of a result of

Shimura [22], [23]:

PROPOSITION 1.1. Let Abe a principally polarized abelian variety of dimension two

such that

2. the Rosati involution coincides with the involution * on Θ.

Then there exists an element zeξ) such that A is isomorphic to AΩ(z) as a principally

polarized abelian variety.

DEFINITON 1.2. Notation being as above, A is said to have Quaternion

Multiplication by (Θ, *), or simply of type QM. A curve C of genus two is called a

QM-curve with respect to (Θ, *), if its jacobian variety is of tyep QM.

Combining this with Torelli's theorem, we have a rational map

Now the problem we are interested in solving is to describe the image of the

Shimura curve SB in M2 in terms of suitable coordinates on it. More precisely, we look

for an equation of the following form:

where / is separable of degree 5 or 6 in X, and Q{t, s) = Q{SB) is the function field of

SB over the algebraic closure Q of Q, so that for each point (to,so) e SB(Q) the

corresponding curve

is a QM-curve for G define over Q.

Here is an answer to this problem in the two cases where DB = β, 10.

THEOREM 1.3. The case DB = 6. The following equations give a family of QM-

curve s of discriminant 6.

with
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The discriminant of the right hand side of £f6 is

2 4 ( l+2ί 2 ) 1 2

Our family Sf\ is over the affine curve E6: g(t, s) = 0 of genus one, while the genus
of the Shimura curve SBβ is zero. This is only to keep the formula in reasonable size.
Indeed, our family can be reduced to that over P\ since we have the isomorphisms of
fibres

χ9 x3

It is interesting to observe that the base curve E6 of S?6 has (generic) real points. Recall
that the Shimura curves have no real point.

By specializing (ί, s) to those points (to,so)eQ2 such that g(to,so) = 0, one can
obtain as many QM-curves defined over Q as one wishes. However, as shown in the
following examples, the curve C(fOtSo) may be degenerate, or may be a split curve, i.e.,
the jacobian variety is isogenous to the product E x E of an elliptic curve E with com-
plex multiplication. We note that the existence of curves of genus two on the product
ExE' of two elliptic curves was studied by Hayashida [5], Hayashida-Nishi [6].

EXAMPLE 1.4. The fibre of ^6 over (ί, s) = (yf^2/2, -yJΎ/2) is a degenerate curve

EXAMPLE 1.5. The fibre of ^ 6 over (ί, s) = (0, yfl) is the curve

which splits via a morphism φ of degree two

where E is the elliptic curve with complex multiplication by Z\_J— 6], whose invariant
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is G / ^ H 1728(1399 + 988^2").

EXAMPLE 1.6. The fibres of ^ 6 over (ί,s) = (l/4, ^/ΪT/2), (5/2, ^TΪβX and

(3/2, ŷ— 34/8) are the curves

One can show that the jacobian varieties of C ^ , - 2 ) , y

are all simple, by calculating congruence zeta functions for their reduction modulo

some primes. Let C be one of them, and put Cp: = C mod.p, with a prime ideal φ of

Koverp such that (—) = + 1, where K=QL/\\)9 QU-Ύl\ GU/-34), respectively.

Then C p is defined over Fp. Let Nm (m = 1, 2,...) be the number of Fpm-rational points of

Cp. The congruence zeta function of Cp is expressed as

(1 -apu+pu2)(l -bpu+pu2)

= i m ) {\-u\\-pu)

where Nl9 N29 ap, bp are as given in Table 1.

Now suppose that A : = Jac(C) were not simple. Then, since End°(v4) contains B as

a β-subalgebra, we see that A must be isogenous to the product E x E of an elliptic

curve E with itself which has complex multiplication corresponding to an imaginary

quadratic field, say, K. Thus End°(v4)^M2(Ar), and it is mapped injectively to End°(Jϊp),

where Ap is the (good) reduction of A modp (cf. [24]). On the other hand, from Table

1 and Tate's theorem (cf. [25], [19]), one can show that Έnd°(Ap)^M2(K(p)) with

distinct imaginary quadratic fields K(p) = Qiy/a^ — 4p) as p varies among the primes

such that ap = bp and that Άp is not isogenous to a product of supersingular elliptic

curves. When ap= —bp, we can make similar argument replacing the ground field by

Fp2 so that K(p) = Qiyja^a^ — 4p)). We conclude that A must be simple.

THEOREM 1.7. The case DB=l0. The following equations give a family o/QM-

curves of discriminant 10.

with
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TABLE 1. The congruence zeta functions of C<«4 v - 2 ) , C | « 2 > v — 8 ) and

^ . v ^ ΰ w f o r a s m a 1 1 P r i m e P

c
( 6 )

(1/4, VI1/2)

(5/2.V-22/8)

(3/2, V-34/8)

P

1

19

37

43

53

79

83

13

19

23

29

31

43

47

7

23

29

31

37
43

59

N,

8

20

46

44

46

80

84

14

20

16

30

28

44

52

8

32

38

32

38

32

60

N
2

62

374

1486

2006

2990

6302

6822

158

422

590

894

1078

1958

2390

62

590

926

1022

1262

1950

3574

a.

2y
f2

— 4

2^2"

4

8^2"

10^/T

VT
2^2"

4

4^2"

2

4^2"

-2

ly
j2

-4

-4

V^
8^2

6

6>/2~

K

-4yy
-4

-2VT
4

-8yT
-IOΛ/2"

-4^T

-2yτ
4

-4^y
2

-4^τ
-2

-2VT
-4

-4

-4^2"

-8^2"

6

-20

-44

-132

-164

-196

-188

-132

-20

-68

-76

-84

-120

-140

-184

-20

-76

-100

-92

-20

-136

-164

) = s2-t(t-2)(2t+l) =

4(2ί+:

ί(t-l) 2(ί + l)2

The discriminant of the right hand side of ίf 10 is

22\t2-2t-\

t\t-\f(t + \f '

As for ίfβ, our y 1 0 is given as a family over the elliptic curve E10: g(t, s) = 0, while
the genus of the Shimura curve SBl0 is also zero. £f10 can be reduced to that over P1,
since the two fibres on (t, ±s) are easily shown to be isomorphic.
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EXAMPLE 1.8. The fibre of Sf10 over (ί,s) = ( l + > / T , X+yfϊ) is a degenerate

curve

EXAMPLE 1.9. The fibre of Sfί0 over (ί, s) = (2, 0) is the curve

^10) . γ l _ YC\C\Y2 Λ-ΊftY-L. IV1 ΊOY2

(2 0)* ^JυΛ Π̂  ΔSJΛ. π^ J ^ 1 ίΛJΛ.

9

which splits via a morphism </> of degree two

' ) ,

where E is the elliptic curve with complex multiplication by Z[^/—10], whose invariant

is jiyf^ϊό) = 212846400 + 95178240/5".

EXAMPLE 1.10. The fibres of £fί0 over (ί,s) = (-l/3, y/2Ϊ/9\ (-3, 5 / ^ ) , and

—5, 3,7—5) are the curves

+ (-60+120^/21)^+144),

1-°3 5V^3): ^ 2 = —^(9075JT4 +3025(3+ 2 v

+ 220( -

| / 96200 5 2 0 0 y ^ 5 \ 5 5 0 + 1 0 6 ^ 5

V 441 49 / 21

One can show as example 1.6 that C ^ - g ) , C ^ - , C ^ - ^ - are

simple, by using the results on congruence zeta functions given in Table 2.

Finally, we note that the reduction of a Shimura curve at the prime where B ramifies

gives the moduli of supersingular abelian surfaces (cf. [20]). Moreover, it is known that

the number of irreducible components of the moduli of such curves is one for p < 11
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TABLE 2. The congruence zeta functions of C ( l o

i

)

 3 vΉg> Cil0)

3 5 — and

C\\0) r— , r— for a small prime p.

c
( 1 0 )

(-1/3.V21/9)

£(10)

£(10)

(2 + V-5.3V-5)

p

17

37

41

43

47
59

67

13

19

31

37

43

61

67

23

29

41

43

47

61

67

10

38

42

44

60
60

68

14

20

40

30

44

62

56

24

30

42

44

40

78

48

N
2

326

1358

1806

1982

2326

3558

4718

182

398

1054

1486

1862

3806

4686

582

918

1806

1862

2366

3838

4558

«,

4

4 ^

VT
2 ^

-6
4>/5~

2^5"

2^5"

2jΎ
-4

4

4^5"

4^/T

6

2y
fj

2^/y
2^/Ύ

4

-8

10

K

4

-V5-

-2yfJ

-6

- 4 Λ / 5 ~

-2yτ

-2^5-

-2^5"

-4

4

-4yy

-4^5"
6

-2,/y

—2yy

-4^5"

4

-8

10

-52

-68

-144

-152

-152
-156

-248

-32

-56

-108

-132

-92

-164

-232

-72

-96

-144

-92

-172

-180

-168

(cf. [12]). Thus as a corollary to the above theorems, we obtain the following:

COROLLARY 1.11. For p — 3, 5, a one-parameter family of supersingular curves of

genus two over the field Fp2 with p2 elements is given by the following equation:

(i) For p = 3

with a variable

(ii) For p = 5

ί2(ί2-l)2(/

with
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(t2-ιf

REMARK 1.12. One can check the above result also by showing the vanishing of
the Hasse-Witt matrices for these equations (cf. [17], [26], [12]).

2. A work of Humbert. Let

τ =
\ τ 3

be a point of the Siegel upper half plane ξ>2 of degree two. Put Aτ = C2/Lτ with Lτ the
lattice generated by the columns of the matrix (τ 12). Put

. and b=
1/2

For z in C2, the 2-dimensional holomorphic theta function with the characteristic
determined by a and b is defined by

$( z ) = Σ e x P( π v ~~ 1 \n + # M« + «) + 2πN/ — 1'(« + α)(z + b)),
neZ 2

where « is written as a column vector and *v denotes the transpose of a column vector
υ. The following lemma is well-known:

LEMMA 2.1. Let p, q be column vectors in Z2. Then

θ(z + τp-\-q) = exp( — π+J — 1 tpxp — 2πΛv/ — 1 tp(z 4- b) + 2π^/ — 1 taq)θ(z).

Moreover, θ(z) is an odd function.

We denote by Θ the divisor of zeros of θ(z) on ^4τ. Then (Aτ9 Θ) is a principally
polarized abelian surface. From now on, we assume that Θ is isomorphic to a curve C
of genus two. We recall Humbert's notation for 2-torsion points of Aτ (cf. [8]). Let

£ = y ( , . , . ,, I (modLτ)

be a 2-torsion point of Aτ with ε, ε', A, A' e {0, 1}. Then Humbert's notation is given in
Table 3.

The next lemma follows from Lemma 2.1:
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Notation

(Π)
(12)

(21)

(22)

(31)

(32)

(41)

(42)

(13)

(14)

(23)

(24)

(33)

(34)

(43)

(44)

TABLE 3.

ε

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

Humbert

ε'

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

's notation.

λ λ

0 (

0 (

0 (

0 (

1 (

1 (

1 (

1 (

0

0

0

0

1

1

1

1

)

)

)

)

)

)

)

)

ί

I

LEMMA 2.2.

Θ n All] = {(11), (22), (31), (41), (23), (24)} ,

where Aτ[2] is the set ofl-torsion points of Aτ.

Let φ: Aτ-+P3 be a morphism corresponding to the complete linear system 12Θ |.

The image of φ is a quartic surface in P 3 and can be identified with the quotient space

AJ(ι}, where i is the involution of Aτ given by ξ\-+ —ξ. This image is called the Kummer

surface of Aτ and is denoted by Kum(^4τ). For every ξeAτ[2], we put

Θξ: = Tξ(Θ) and Θ£ : = φ(Tξ(Θ)),

where Tξ denotes the translation by ξ.

Since 2Tξ(Θ)e\2Θ\, there exists a unique hyperplane Hξ in P 3 such that the

intersection divisor of Hξ and Kum(^4τ) is equal to the divisor 20£. Hξ is called the

singular plane of Kum(^fτ). From now on, we denote φ((ij)) (l<i,7<4) by the same

notation (ij) and call them double points of Kum(^4τ). Then singular planes can be

uniquely represented by sixteen symbols kl (1 <k, l<4) such that the following condi-

tions are satisfied:

1. The set of the six double points lying on the singular plane kl is {(ij) \i = kjφl

or ίφkj=l}.

2. The set of the six singular planes passing through the double point (ij) is

{kl\k = i,lΦj or kΦiJ=j}:

We choose and fix a hyperplane Π in P 3 which does not contain (11). Figure 1 represents
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(14)

281

(23)

FIGURE 1. The section of singular planes.

the section by 77 of the six singular planes of Kum(^4τ) passing through (11). On each

line in Figure 1 we mark the symbol of the corresponding singular plane: 12, 13, 14,

21, 31, 41; on the intersection of two lines we mark the symbol of the double point,

different from (11), lying on the two corresponding singular planes. Therefore, the

point (ij) in Figure 1 is the projection of the double point (ij) from the double point

(11) on 77.

REMARK 2.3. Let D be a curve on Kum(^ t). Then the projection of D from (11)

on 77 intersects the six lines in Figure 1 at points (ij) or touches them because the

singular plane Hξ touches Kum(,4τ) along the conic Θ£.

PROPOSITION 2.4. There exists a conic Γ in 77 which touches the six lines in Figure 1.

PROOF. Consider the tangent cone to Kum(Aτ)czP3 at the double point (11) and

let Γ be its section by 77. Then Γ satisfies the above condition. •

We can take a homogeneous coordinate (x: y: z) of 77 ̂  P2 such that Γ is given by

the equation yz = x2 and that any three among the six contact points are given by

( x : j : z ) = ( 0 : 0 : l ) , ( - l : l : l ) , ( 0 : 1 : 0 ) .

So it may be assumed that the lines 14, 21, 12, 13, 31, 41 are given by the equations

iZ = 0

0, z = 0,

respectively. It is convenient to denote the lines 14, 21, 12, 13, 31, 41 by lu /2, /3,
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/5, /6, respectively.

PROPOSITION 2.5. C is ίsomorphic to the curve given by the equation

(1) Y^

PROOF. Let Θ*ί2) be the projection of Θ({2) from the double point (11) to Π. Then

Θ(i2) i s a conic in Π and the degree of the canonical map p: C=Θ-+Θ^12) is two. By

Lemma 2.2, Θ([2) passes through the points (12), (21), (32), (42), (24), (23) in Figure

1 and the coordinates of these points are

(-aί/2:0Λ), (1: - 2 : 0 ) , (-(a3+l)/2:a3:

respectively. It is convenient to change the coordinate by

/ x'\ / \ 0 aJ2\/ x \

I / = 0 1 0 U 1.
\ z ' / \ 0 0 l / \ z /

Then the above coordinates are replaced by

(0 :0 :1) , ( l : - 2 : 0 ) , ( ( ^ - 0 3 -

( l : - 2 α 3 : 0 ) , {-a2β:axaτ : 1), ((t

respectively. Therefore Θ*ί2) is given by the equation

By mapping a point Q of <9(*2) to t/seP1, where the line passing through (12) and Q

is given by the equation sx' + ty' = 0, we get

(»,«,,„ {(12), (21), (32), (42), (24), (23)})

2 2α 3 2α 3 2α x 2a3(a2 — a1)

By the linear fractional transformation induced by the matrix

the latter is isomorphic to

( P 1 , {0, 1, oo, al9 a2, a3}).

On the other hand, the set of ramification points of p: C-^Θ^ί2) is

{(12), (21), (32), (42), (24), (23)} .
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Hence C is isomorphic to the curve Y2 =X(X- l)(A'-α1)(A'-α2)(λ'-α3). •

Now we consider the endomorphism ring End(Aτ) of Aτ. Analytically,

End(Λτ) = {αeM2(C)|3MeM4(Z) with (*) α(τ I2)=(τ 12)M} .

Let

(A BΛ

\C D,

Then we see that the above condition (*) is equivalent to

<x = τB + D,uτ = τA + C<^(**)τBτ + Dτ-τA-C=O.

Let E be the Riemann form associated to the polarization Θ. Then E defines an involu-
tion αi—xx0 on End(Λτ) called the Rosati involution, which is determined by
Έfaz, w) = E(z, α°w) (for all z, weC2). We have

- 1 2 0/ V-l2 0

-A=Ό, B-(° b ) , C-f°
V - * 0/ \-c 0.

Put

\ a3 a4

Under the assumption α° = α, it follows that

(**) <=> a1x1Jr(aAr — a^)x2

Then we have

-bτ2 + aί bτί+a3

and

So the characteristic polynomial of α is

T2-(a1+a4)T+(a1a4r-a2a3 + bc) =

and its discriminant is
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DEFINITION 2.6 (cf. [8]). An element

τ =

of § 2 is s a i d to have a singular relation with invariant A if there exist relatively prime

integers a, b, c, d, eeZ such that

1. aτ1-\- bτ2 + cτ3 + d(τ \ — τ ^ ) + e = 0,

2. J = ό 2 - 4 α c -

As we have stated above, a singular relation of τ with invariant zl corresponds to

endomorphisms of Aτ fixed by the Rosati involution which have the characteristic

polynomial with discriminant A. Let

NΔ = { τ e § 2 I τ has a singular relation with invariant A} ,

and i/j the image of NΔ under the canonical map ξ>2^>Sp(4, Z ) \ § 2 , where Sp(4, Z) is

the symplectic group over Z and 5/7(4, Z ) \ § 2 denotes the quotient space with respect to

the well-known action. HΔ is called the Humbert surface of invariant A. The following

result, which is stated explicitly in [1, p. 212] is essentially due to Humbert:

PROPOSITION 2.7. Each point of HΔ can be represented by T G § 2 satisfying an

equation aτ1+bτ2 + τ3 = 0 with b2 — 4a = A, b = 0 or 1.

PROPOSITION 2.8 (cf. [8]). If τ e § 2 satisfies the relation - τ 1 + τ 2 + τ 3 = 0, then

there exists a conic D in Π which passes through the five points (34), (14), (33), (22), (24)

and touches the line lβ (see Figure 1). Conversely, if such a conic D exists, τ has a singular

relation with A — 5.

PROOF. We shall give a proof for the first part. As we have seen above, the relation

~τi + τ 2 + τ3 = 0 gives an endomorphism α of Aτ corresponding to the matrix

/ 0 - 1 0 0 \

- 1 1 0 0

0 0 0 - 1

V o o - l l )

The characteristic polynomial of α is T2 — T— 1 = 0 . Since

α({(34), (14), (33), (22), (24), (11)}) = {(42), (44), (31), (21), (43), (11)}

and the latter set is equal to Θ(31)nAτ[2], it follows that

α * β ( 3 1 ) n Λ τ [ 2 ] = {(34), (14), (33), (22), (24), (11)} ,

where α*<9(31) denotes the inverse image of Θi31) by α. Let D' be the projection of
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φ(oι*Θ(31)) from (11) to 77 and D the closure of D'. Since

Dn {(17) in Figure 1} = {(34), (14), (33), (22), (24)} ,

D necessarily touches the line /6 by Remark 2.3. As for the intersection number we have

where K=Q(yJΎ). Therefore φ(oc*Θi31)) is a curve of degree three because the degree

of φ is two. We consider a line / in 77 such that / and D meet transversally at points

outside D \D' and the set Sing(Z>) of singular points of D. Let H be the hyperplane in

P3 which contains / and (11). Then we have

(D9l) = %{Dnl}<V{Hnφ((x*Θ(31))\{(\l)}}<2.

So D is a line or a conic. Since D is not a line, D is a conic. Hence D satisfies the

conditions in the proposition. •

Using this proposition, Humbert calculated a modular equation for H5.

THEOREM 2.9 (cf. [8]). There exists a conic in 77 which satisfies the conditions in

Proposition 2.8 if and only if the identity

holds.

PROOF. Since (24), (22), (14), (33), (34) are ltnl29 / 2 n/ 3 , / 3 n/ 4 , / 4 n/ 5 , / 5 n/ 1 ? re-

spectively, their coordinates with respect to (x: y: z) are

(-(a1+a2):2a1a2:2)9 (-(a2 + a3):2a2a3:2), ( - α 3 : 0 : 2 ) ,

( - 1 : 0 : 2 ) , ( - f o + l ) : ^ :2),

respectively. Let/71x
2+/?2j

2-l-/?3Z2+/74xj;H-/75^z+/76zx = 0 be the defining equation of

D. Then

Z) touches the line /6 if and only if the quadratic equation p^X2 +pArX+p2 = ΰ has a

multiple root, that is, pl — 4pίp2 = 0. •
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REMARK 2.10. Actually, (2) is not exactly the equation for H5, but rather that

of a component which projects to H5 under the natural map Jί\i2-^Jί2, whre M2t2, is

the moduli space of genus two curves with level two structure. Indeed, one observes

that (2) is not symmetric in the a/s. A similar assertion applies also to the equation

(3) of H8 below.

Humbert also calculated a modular equation of //8.

PROPOSITION 2.11 (cf. [8]). Ifτeξ>2 satisfies the relation — 2τ1 + τ 3 = 0, then there

exists a curve of degree four and genus one in Kum(^4τ) which passes through the double

points (32), (34), (42), (44). Projecting from (11) on 77, we get a conic in 77 which passes

through the four points in 77 corresponding to the above double points and touches the lines

l2 and /4. Conversely if such a conic exists in 77, then τ satisfies a singular relation with

A=4 or 8.

THEOREM 2.12 (cf. [8]). Consider a conic y = x2 and its six tangents

lδ:y + 2δx + δ2 = 0 , <5=oo, 0, bl9 b2, b3, Z>4 .

Then there exists a conic which passes through the four points

and touches l^ and l0 if and only if the identity

(3) ( M 3 " hb*)2 x {ϊb.bφφ&b, + b3)(b2 + Z>4) - 2(M 3 + W)2

-(ft2-Wr*3)2(*A+W2)=o

holds. Moreover, the first factor corresponds to A =4 and the second corresponds to A = 8.

3. Quaternion modular embeddings for D = 6, 10. We shall describe the concrete

form of such embeddings in detail in the two cases Z) = 6, 10 which we need. A general

treatment is given in [4].

3.1. The case D = 6. Let B6 be the quaternion algebra over Q with discriminant

6 and Θ6 a maximal order of B6. One can take the model

i2=-6, j2 = 2, ji=-ij9

Put p1 = i and consider an involution α h-> α* : = pϊ 1cc'ρί on B6 where ' is the canonical

involution on B6. Then one has Θξ = Θ6. Since p\= — 6 < 0 , the involution is positive:

Tr(αα*)>0 (if α # 0 ) . We identify B6®QR with M2(R) by the isomorphism defined by

0 -1\ . (J2 0

0 -,/2
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For an element z e § , we define an /Minear isomorphism fz by

j z \ B^^QQR —• C , oί i—• oc\

287

1

Put Dz=fz(Θ6). It follows that Dz is a lattice in C 2 . Define a pairing Ez: C
2 x C2^R

by Ez(fz(oc)9 fz(β)) = Tr(pϊ1(xβ'). Then, since Θ6pt is the inverse different of Θ6, it induces
a nondegenerate pairing Ez: Z>2 x Dz-+Z. Set

2

6z-x/T

2 /

Then {©!, ω 2, ω 3, ω4} is a Z-basis of Dz and we have

(Ez(ωk, ω,))=

+ 2(1-/2")

/0 - 1 - 1 0\

1 0 0 1

1 0 0 0

\0 - 1 0 0/

We put ω\ : = — ω3, ω'2: = ω 4, ω ' 3 := —ω l s ω 4 : = ω3—co2. Then {ω'l5 ω'2, ω'3, ω4} is a
symplectic basis, i.e.,

(EJiω't,ω'j)) =
0 12

- 1 , 0

Also put (Ω1(z)Ω2(z)) = (ω'1ω'2co'3ω4), and Ω(z): = Ω2(z)~1Ω1(z). We have

Ω(z) = -
2z

2./2Z V 1 -2

2 1 ./2
z

8z

4 2 8z

3 1 1

TZ~T~~8z~
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Thus we get an embedding Ψ: ξ>->ξ>2, z\-+Ω(z). We see immediately that the complex

torus C2/Dz has a structure of an abelian variety, with the principal polarization defined

by Ez, and is isomorphic to AΩ{z). It is easy to check the following lemma:

LEMMA 3.1. Ω(z) satisfies the following singular relations parametrized by two

independent integers d, eeZ:

Especially, it satisfies the singular relations

(4) - τ 1 + 2 τ 3 + l = 0 with A=%,

(5) τ 2 - τ 3 + ( τ i - τ 1 τ 3 ) - 1 = 0 with Δ = 5 ,

(6) - τ 1 + τ 2 - h τ 3 - h ( τ | - τ 1 τ 3 ) = 0 with A = 5 .

By Lemma 3.1 and Proposition 1.1, we have:

PROPOSITION 3.2. Let A be as above. Then there exists τeξ>2

 s u c n t n a t A = Aτ and

that τ satisfies two singular relations (4), (5) of Lemma 3.1.

To combine the modular equations for A =5 and 8, we need some lemmas.

LEMMA 3.3. Let τ be an element ofξ>2 which satisfies the two singular relations (4),

(5) of Lemma 3.1. Let Mt (/= 1, 2, 3) be the matrices in 5/7(4, Z) given by

/ 0 0 - 1 0 \

0 0 0 - 1

1 0 1 0

\ 0 1 0 0 /

M2 =

I \ 1 1 2\
1 1 2 1
3 2 4 4

\ - 1 0 - 2 1/

M3 =

(\
1

1

\0

1
1

0

1

- 1
0

0

0

o >
- 1

0

0 )

and put

τ= l3 τ":=τ M2,

where τ N={τB+D)~\τA + C)for

esp{4>z)-

Then the singular relation (4) is transformed by M1 to

- 2 τ /

1 + τ /

3 = 0 (J = 8 ) ,

and (5) (resp. (6)) is transformed by M2 (resp. M3) to

- τ i ' + τi' + τ ' ^ O (A = 5), (resp. - τ ϊ ' + τ'2" + τ 3" = 0 (A = 5)).

This lemma can be checked by direct calculation. One has then τ/ M = τ " ,
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M=Mϊ1M2. Consider the isomorphism

induced by the matrix (τ'B + D)'1 where <(τ !2)> = Lτ and

/ 4

M=
A B

C D

6 \

LEMMA 3.4. For an element

2 \z\+λτ'

- 1 0 - 2 1

- 1 - 1 - 1 - 2

\ - l - 1 - 2 - 1 /

{moάLτ)eAτ,[l],

we put

εί? ε , λh λΊ (/= 1, 2)G {0, 1}. Then we have

' ° \ /0 1 1 1 \ /ε x

1 0 1 1

1 0 1 0

\0 1 0 1

This can be proved by direct calculation and we omit the detail.

Put

(7) FX(X, Y,Z) = 4(X2Z-Y2 + Z2(1-X) + (Y-Z))(X2YZ-XY2Z)

-(X2Z(Y+l)-Y2(X+Z)+YZ2(\-X) + X(Y-Z))2 ,

(8) F2(X, F, Z) = 4XYZ((X+ Y){Z+ \)-2XY-2Z)2-(Z- \)2{X- Y)2(XY+Z)2 .

THEOREM 3.5. Let C be a QM-curve of genus two defined over C with respect to

(Θ6, *). Then C has a model with defining equation (1) such that

(9) Fί(a1, a2, a3) = F2(a1, a2, α3) = 0 .

PROOF. Let τ', τ" be as in Lemma 3.3. By Proposition 3.2 and Lemma 3.3, we

have an isomorphism

C has a model given in Proposition 2.5 with τ" instead of τ. By Proposition 2.11 there
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exists a curve of degree four and genus one in Kum(v4t,) passing through (32), (34), (42),

(44). Using Lemma 3.4, we see that Φ induces

{(32), (34), (42), (44)} — {(34), (41), (13), (22)} .

So we have a curve of degree four and genus one in Kum(^4t-) passing through (34),

(41), (13), (22). Projecting it from (11) on Π, we obtain a conic in Π which passes through

/iΠ/ 3 , / 3 n / 2 , / 2 n / 5 , l5nlί

and touches /4 and /6. Hence the second factor on the left hand side of the equation in

Theorem 2.12 vanishes at b1=au b2 = a3, b3 — a2, b4=l. Therefore F2(a1, a2, a3) = 0.

On the other hand, by Proposition 2.8 and Theorem 2.9 we have Fγ(au a2, a3) = 0. Π

3.2. The case D= 10. We can take a model

i 2 = - 1 0 , y'2 = 13, ji=-ij

.1+7
y 10 =

13

and consider an involution on B10, αi—>a** :=p2

 1oc'ρ2, where ρ2 — i. We identify

B10®QR with M2(R) by the isomorphism defined by

0 - 1 \ . Λ / Ϊ 3 0

Define, for each Z G § , an /Minear isomorphism fz: B10®QR-+C2, and observe that

Dz: =/z(^io) is a lattice in C2. Let E: Dz x Dz-+Z be a pairing as in Section 3.1. Put

and

ω/

1: = ω 3 — 6ω4 , ω 2 := —

Then{ωΊ, ω 2, ω 3 , ω4}isasymplecticbasis. Set(Ω1(z)Ω2(z)) = (ω/

1 ω 2 ω'3 ω4). We have

: = Ω2(zΓ1Ωί(z)

1

13z

2 v 2

i-x/Ϊ3
— 360z-5(l+,/l3)z 2 - l - 6 0 z + 10z2

LEMMA 3.6. Ω(z) satisfies the following singular relations parametrized by two
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independent integers a,deZ:
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Especially, it satisfies the singular relations

(10) 5 τ 1 - 5 5 τ 2 - 1 5 τ 3 + (τ 2

1-τ 1τ 3)

(11) 4 τ 1 - 5 6 τ 2 - 1 2 τ 3 + (τ 2

ί -τ 1 τ 3 )

LEMMA 3.7. Let τ be an element of ξ>2 which satisfies the two singular relations

given in Lemma 3.6. Put

= 0 with A = 5,

= 0 with Δ = S.

/ 1 1 0 0 \

1 1 - 1 1

-15 - 1 4 30 - 2 9

\-33 -34 4 - 4 /

and

. - ;

I \ 1 0 0\

1 1 - 1 1

-11 -12 -28 29

\-34 -33 -5 5/

U
Then the first singular relation in Lemma 3.6 is transformed by Nί to

and the second is transformed by N2 to

Set

A B

C D

/ 1 2 1 - 1 \

0 - 1 - 1 1

- 3 - 3 1 0
\-3 -3 2 -1/

Consider the isomorphism

= C2K(τ'A + Cτ'B + D))^C2K(τ" 12)> = Aτ

induced by the matrix (τ'B+D)'1.

LEMMA 3.8. Let notation be as in Lemma 3.4. Then we have
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ε'2

λ2

\λ'21

(\ 0 1 1 \

0 1 1 1

1 1 1 0
V l l o i \λ\ I

PROOF. This lemma is proved similarly as Lemma 3.4, by

%A -%

-XB ι

/I 0 1 1 \

0 1 1 1

1 1 1 0

\ 1 1 0 1 /

(mod 2).

D

THEOREM 3.9. Let C be a QM-curve of genus two defined over C with respect to
((9ιo, **). Then C has a model with canonical equation (1) such that

{aγ, a2, a3) = F2(al9 a2, a3) =

PROOF.

Φ
{(32), (34), (42), (44)} > {(23), (12), (31), (44)}

£ ( 2 1 ) {(34), (41), (13), (22)} .

D

REMARK 3.10. From a result in [4], it can be shown that the intersection H5 n H8

has no components other than S6 and Sί0, except those corresponding to degenerate
curves or split ones. This can also be shown by the explicit computations in the next
section.

By Theorems 3.5 and 3.9, we thus see that, to construct the family of QM-curves
for Θ6 and Θ10, it suffices to solve the systems of equations (9) (cf. Remark 2.10).

4. Intersections of Humbert surfaces H5 and H8. Here we sketch briefly the
computations to find out the equations 5 6̂ and 5^10 as the components of H5nH8.

First we rewrite the equation (1) of our QM-curve in homogeneous form. Namely
we study the curves with the equation

(12) = X(X-χ)(X-y)(X-z)(X-w) .

Note that this curve is isomorphic to a similar one which satisfies xyzw = 1. Thus we
may replace x, y9 z by x/w, y/w, z/w where x, y, z, w are subject to the relation xyzw = 1,
hence by x2yz, y2zx, z2xy, respectively. This amounts to considering the curves with
the equation
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(13) Y2

with

P = x+y + z + w = x+y + z-\ ,
xyz

Q = xy + yz + zx + w(x + y + z) = xy+yz + zx +

xy+yz + zx
R = xyz + (xy+yz + zx)w = xyz-\ .

xyz

We have then

F1(x2yz, y2zx, z2xy) = x6y4z4'f1(x, y, z),

F2(x2yz, y2zx, z2xy) = x4y4z6f2a(x, y, z)f2tb(x9 y, z),

with

/i(x, y, z )=- - y 2 + 2yz + 2x>v4z-z2-2x23;2z2 + 2x>v3z2-2};4z2

- x 2 j 6 z 2 + 2x2

>yz3-4xy2z3-4x2

ίy
5z3 + 2xy6z3 + 2<y

2z4

-4xy*z5 + 2x5y4z5 + 2y5z5 -4x4y5z5 -y*z6 -2x4y4z6

+ 2x3y5zβ-2x2y6z6-x6y6z6 + 2x2y5zΊ + 2x5y6zΊ-x4y6z\

i,a(x> y> z)= — x+y — 2x2y — 2xy2 — x3y2 + x2y3 + 4xyz + 4x3y3z + x2yz2

-xy2z2-2x3y2z2-2x2y3z2 + x4y3z2-x3y4z2 ,

+ xy2z2-2x3y2z2-2x2y3z2-x4y3z2 + x3y4z2 .

Observe that fiiy/^x, V^Tj , λΓΓT^)= -/i(x, y? z), /2>β(>/-ΐ*> V - ΐ ^ λ/-Γϊ^) =
-^f^\f2,b(x' y^ z) τ ^ u s w e a r e reduced to solving the equations /i(x, y, z) = 0,
f2ta(χ> y> z) — OJ where /2?α has half the size of F 2 . This enables one to compute the resultant
Rt(x, y) of them with respect to z which factors, as we expect from Theorems 3.5 and 3.9:

Rψc, y) = χ2y6{-x+y)\-1 +x3y)2(- 1 +xy3)2 x Rt^x, y) Rt2(x, y),
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-220x6y6-4x10y6-104x5yΊ-mxΊyΊ

+ 200x8y8 + x12y8 + 64xΊy9-mx9y9-\2x11y9-4x6y10

+ 3 8 x 1 V 0 - 1 2 x V 1 + x 8 y 1 2 .

Note that R^ is symmetric in x, y. So putting x+y = 2s, xy = t, we obtain a very simple

equation

which is easily solved as

_

s

- 1 + / 2

Putting

_ /i-
= — - , b =

\-t

we thus have a parametric expression

l + £ 6 -9(ί 2

, R = 2(a-b), Q =

Here we observe that a2, b2 and Q have rational expressions in u: = t + l/t. Indded, we

easily have

2_u—\ 2 _ - ( M + 1 ) u(u2—12)

~ u + 2 ' w-2 ' u2-4

Eliminating u from these equalities, we obtain

This completes the proof of Theorem 1.3.

Next we consider the equation Rt2(x, y) = 0. Putting again x+y = 2s, xy = t, we

obtain

St 2(ί,s):---Rt 2(x,);)
lo

= s\t2-\f -4s2t{t2-\)2(t2 + t-\\t2-t-\)+4t2{t2 + \)2(t2-t-\f ,
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from which follows

_
s —

1 - ί '

Hence we have

p = 2 |V(^2)(ί2-ί-l) | J{2t+\){t2-t-\)

_(ί2 + l)(ί4 + 8ί3-lθί2-8ί+l)
Q~ t(t-l)2(ί+l)2 '

Putting s = φ{t-2){2t+\), and replacing X by 2^{2t+ \\t2-t-\)XI{t- I)2, we easily
have an equation

with

(r 2-t-l) ^ (r-l)s

which is birationally equivalent to (13). This completes the proof of Theorem 1.7.
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