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Abstract. Shimura curves classify isomorphism classes of abelian surfaces with
quaternion multiplication. In this paper, we are concerned with a fibre space, the base
space of which is a Shimura curve and fibres are curves of genus two whose jacobian
varieties are abelian surfaces of the above type. We shall give an explicit defining equation
for such a fibre space when the discriminant of the quaternion algebra is 6 or 10.

Introduction. Let 4 be a simple principally polarized abelian variety of dimension
two over the complex number field C, and End(A4) the ring of endomorphisms of A.
Then, as is well-known, the @-algebra End°(4): =End(4) ®  Q is of one of the following
types:

(i) a CM-field of degree four, (ii) an indefinite quaternion algebra,

(iii) a real quadratic field, or (iv) the rational number field Q.

Let o/, be the moduli space of the isomorphism classes of abelian surfaces with
principal polarization. The locus of each type in &, ; has dimension 0, 1, 2, 3, respec-
tively, whose irreducible components in the first three cases are called (i) CM-points,
(ii) Shimura curves, and (iii) Humbert surfaces. On the other hand, it is also well-
known that the Torelli map gives a birational morphism from ./, ; to the moduli
space . , of curves of genus two.

In this paper we are concerned with constructing, in a concrete way, an algebraic
family of curves of genus two whose jacobian varieties belong to the case (ii) above.
Namely, we wish to find out an equation for a fibre space, the base space of which is
a Shimura curve and fibres are curves of genus two whose jacobian varieties have
quaternion multiplications. Call such curves simply ‘“QM-curves”. We shall give defining
equations over the rational number field Q for the algebraic family of QM-curves when
the endomorphism ring is, generically, a maximal order @ of the indefinite quaternion
algebra B over Q which ramifies exactly at {2, 3} or {2, 5}. To the best of our knowledge,
not a single concrete example of simple QM-curves has been known before. Indeed, it
is quite difficult to show that the jacobian variety of a given curve is simple.

The method of our construction is roughly as follows: In a classical work of
Humbert [8], one can find general approach, as well as concrete solutions in some
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cases, to similar problems for the case (iii), i.e., to construct families of curves of genus
two whose jacobian varieties have real multiplication of given discriminants (cf. [1],
[18]). Especially, Humbert gives explicit form of “‘modular equations” for discriminants
5 and 8, in terms of the coefficients of the curves Y2=f(X) (see (2), (3) in the text).
Our idea is to combine these two equations in a suitable way. Indeed, if one can arrange
the coordinate system in such a way that the two real multiplications, with discriminants
5 and 8, generate the order @, then the fibre space we are looking for will be obtained
as a component of the intersection of two Humbert’s families. We determine possible
components by studying quaternion modular embeddings of the upper half plane to
the Siegel upper half plane of degree two. Although the calculations needed to find out
the components are quite complicated, they can be performed by computer symbolic
manipulation.

The main results are given as Theorems 1.3 and 1.7 in §1. As an application, we
can give an equation for the universal family of supersingular curves of genus two over
the finite field F,. for p=3, 5. The proofs of the main results will be given in later
sections. In §2, we recall briefly some results of Humbert [8] which are basic for our
constructions. In §3, we study, in some detail, quaternion modular embeddings of the
upper half plane to the Siegel upper half plane of degree two, in the case of maximal
orders of the quaternion algebra which ramifies at {2, 3}, or {2, 5}. A more general
treatment is given in [4]. Finally in §4, we describe briefly how the computation will
be performed.

ACKNOWLEDGMENT. The authors thank Akira Kurihara for showing his interest
and giving continuous encouragement during the preparation of this paper. They also
thank Frans Oort and Don Zagier for valuable suggestions.

1. Statement of the main results. Let B be an indefinite division quaternion
algebra over O, and ¢ a maximal order of B. We denote by Dy the product of primes
at which B ramifies, and call it the discriminant of B. Let a+—a’ be the canonical
involution on B, and let Tr(x): =oa+ o', Nr(x) : = aa’ be the reduced trace and the reduced
norm on B, respectively. Then OV = {o.e 0| Nr(x)=1} is regarded as a Fuchsian group
of SL,(R) and the compact Riemann surface 0'V\ § is identified with the set of C-
valued points of the Shimura curve Sy (cf. [21], [22]). S5(C) has the following inter-
pretation. Let p be an element of ¢ such that p?= — Dy, p0 = 0p. The existence of such
an element can be shown by strong approximation theorem, or by direct construc-
tion of O (cf. [3], [4], [9]). Then the involution of B defined by ars>a*:=p~ la'p is
positive, and satisfies 0* =(©. We have a one-to-one correspondence

. (4, ©): principally polarized abelian surface
Sp(C) «——— { (4,1, O) i:0 <, End(A)
Rosati involution with respect to @), is *
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The above isomorphism can be described by the quaternion modular embedding. Indeed,
let $ be the upper half plane and let

9, :={re M,(C)|1="1, Im(1)> 0}
be the Siegel upper half space of degree two. It is known that there is an embedding
of analytic spaces ¥ : $—$9,, z+> Q(z), which is compatible with the actions of ¢V and
Sp(4, Z) on each space, through an injection 0V =, Sp(4, Z). See §3 and also [4] for

details. Now the following fact is well-known as a very special case of a result of
Shimura [22], [23]:

PROPOSITION 1.1. Let A be a principally polarized abelian variety of dimension two
such that

1. End(4)20

2. the Rosati involution coincides with the involution * on 0.
Then there exists an element z€$ such that A is isomorphic to Ag, as a principally
polarized abelian variety.

DEerFINITON 1.2. Notation being as above, A4 is said to have Quaternion
Multiplication by (0, *), or simply of type QM. A curve C of genus two is called a
QM-curve with respect to (0, *), if its jacobian variety is of tyep QM.

Combining this with Torelli’s theorem, we have a rational map
Sp— 5 1(C)=Sp(4, Z)\H, ~ M,(C) .

Now the problem we are interested in solving is to describe the image of the
Shimura curve Sy in ., in terms of suitable coordinates on it. More precisely, we look
for an equation of the following form:

S Y2 =f(X;t,5)e O, s)[X]

where f is separable of degree 5 or 6 in X, and Q(t, s)= Q(Sp) is the function field of
Sy over the algebraic closure @ of @, so that for each point (¢, so)€Sg(Q) the
corresponding curve

C(to,so): Y? =f(X; to, So)

is a QM-curve for @ define over Q.
Here is an answer to this problem in the two cases where Dg=6, 10.

THEOREM 1.3. The case Dg=6. The following equations give a family of QM-
curves of discriminant 6.

Fe: Y2=X(X*—PX*+QX*-RX+1),

with
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g(t, s)=4s*t*—s2+1>+2=0,

(1+262)(11—2812+81%)

P=—2s+t), R=-2As—1), Q= 3(1—12)(1—41?)

The discriminant of the right hand side of ¢ is
24142172
3 —1+0)* 1+ 04— 1+2)* 1 +20)*
Our family & is over the affine curve E4: ¢(t, s)=0 of genus one, while the genus
of the Shimura curve Sg, is zero. This is only to keep the formula in reasonable size.

Indeed, our family can be reduced to that over P, since we have the isomorphisms of
fibres

1y
C(r,s)gc(-t, —s);C(—t,s) > (x, y) < (—x, Vv < 1y) & (;, ?) .

It is interesting to observe that the base curve E¢ of & has (generic) real points. Recall
that the Shimura curves have no real point.

By specializing (t, s) to those points (¢, so)€ 0% such that g(t, 5o)=0, one can
obtain as many QM-curves defined over Q as one wishes. However, as shown in the
following examples, the curve C, ,, may be degenerate, or may be a split curve, i.e.,
the jacobian variety is isogenous to the product E x E of an elliptic curve E with com-
plex multiplication. We note that the existence of curves of genus two on the product
E x E’ of two elliptic curves was studied by Hayashida [5], Hayashida-Nishi [6].

ExaMPLE 1.4. The fibre of &¢ over (t, s)=(y/—2/2, /2 /2) is a degenerate curve

1+/—1 1+/—-1)\3
Cig)fi/z,JT/z):}ﬂ:X(X_ J2 ><X+ J2 )

ExaMpLE 1.5. The fibre of & over (t, 5)=(0,/2) is the curve
11
CIST‘/E): Y2=X<X4+2~/ 2x3+TX2+2./ 2x+1>,

which splits via a morphism ¢ of degree two

¢: C® —»E:y2=x(1—x)<l—%l/'6—x>,

0,V2)

$*(0)= SENEES PPN (RN e N R 1 & el I8
X432 -/ 3)x+3 3X2+(32 —J3)X+3 ;

where E is the elliptic curve with complex multiplication by Z[,/—6], whose invariant
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is j(y/—6)=1728(1399+988,/2 ).

ExampLE 1.6. The fibres of %4 over (1, 5)=(1/4, /11/2), (5/2, \/—22/8), and
(3/2, \/—34/8) are the curves

1+2,/11 99 —1+2/11
(6) . y2— 4 3 2
(1/4,v11/2) " ¥ -X<X + 2 X'+ 20 X+ 2 X+1>’
20+./—22 297 —20+.,/-22
co _ yr=x{xt+ 2T x3+ Ly 707 X+1),
(5/2,v=22/8) 4 56 4
12+, /—34 253 —12+./—-34
c® . yl_x|x*+ il 3 X3— X2+ + X+1).
(3/2,V=34/8) 4 120 4
One can show that the jacobian varieties of C$), 7. CO), =554, C9. =524

are all simple, by calculating congruence zeta functions for their reduction modulo
some primes. Let C be one of them, and put C,,:=C mod g, with a prime ideal g of

K over p such that (£>= +1, where K=0(./11), &/ —22), O/ —34), respectively.
o

Then C,, is defined over F,. Let N,, (m=1, 2, . ..) be the number of F, m-rational points of
C,. The congruence zeta function of C,, is expressed as

Z(C,/F,, u)=eXp< 3 _Nlum>= (1 —agu+pu?)1 —byu+pu?)
N m=1 M (1_u)(1 _pu)

a,+b,=14p—N,, al+b},=1+4p+p>*—N,,

b

where Ny, N,, a,, b, are as given in Table 1.

Now suppose that 4 :=Jac(C) were not simple. Then, since End°(4) contains B as
a Q-subalgebra, we see that 4 must be isogenous to the product E x E of an elliptic
curve E with itself which has complex multiplication corresponding to an imaginary
quadratic field, say, K. Thus End°(4) = M,(K), and it is mapped injectively to End°(4, o)
where A4, is the (good) reduction of 4 mod g (cf. [24]). On the other hand, from Table
1 and Tate’s theorem (cf. [25], [19]), one can show that End°(4,)=M,(K(g)) with
distinct imaginary quadratic fields K(p)= 0\, /aZ —4p) as g varies among the primes
such that a,=b, and that 4, is not isogenous to a product of supersingular elliptic
curves. When a, = —b,,, we can make similar argument replacing the ground field by
F,. so that K(p)= 0, /aZ(aj,—4p)). We conclude that 4 must be simple.

THEOREM 1.7. The case Dg=10. The following equations give a family of QM-
curves of discriminant 10.

F10: Y2=X(P2X*+P>(1+RX3*+PQX*+ P(1—R)X+1),

with
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TaBLE 1. The congruence zeta functions of C' :f;4 Jﬁm’ C:g;z =338 and
(6) 1
12,38 for a small prime gp.

p N, N, a, b, a}—4p

7 8 62 22 -2/2 -20

19 20 374 4/2 -4/2 —44

37 46 1486 -4 -4 —-132

Co, i 43 44 2006 2/2 -2/2 —164
53 46 2990 4 4 —196

79 80 6302 82 -8/2 —188

83 84 6822 10/2 —-10/2 —132

13 14 158 4/2 -4/2 —-20

19 20 422 22 -2J2 —68

23 16 590 4 4 —176

CQ, 10 29 30 894 4/2 -4/2 -84
31 28 1078 2 2 -120

43 44 1958 4/2 -4/2 —140

47 52 2390 -2 -2 —184

7 8 62 22 -2J2 —-20

23 32 590 -4 -4 ~76

29 38 926 —4 -4 —100

6.

C8, v=sam) 31 32 1022 4/2 -4/2 —-92
37 38 1262 8/2 -8/2 —-20

43 32 1950 6 6 —136

59 60 3574 62 -62 —164

glt, s)=s2—t(t—2)(2t+1)=0,
pe 42t +1)t2—t—1) , R (t—1)s ’
(t—1)? tt+1)2t+1)
(t2+1)(t*+8t3—10t2—8t+1)
Ht—1)%(t+1)2

0=

The discriminant of the right hand side of &, is
2412 =2t —1)*?
tHe—1)8+1)°
As for #, our ¥, is given as a family over the elliptic curve E,,: g(t, s)=0, while

the genus of the Shimura curve Sy, is also zero. &, can be reduced to that over P,
since the two fibres on (t, + s) are easily shown to be isomorphic.
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ExampLE 1.8. The fibre of &, over (t,s)=(1+,/2,1+,/2) is a degenerate

curve
/ _a/ 3
Cclo Y2=2%1+./2 )6X<X+ 22 ><X— 4 32 2 > .

(1+¢7,1+~/7):

ExampLE 1.9. The fibre of &, over (t, s)=(2, 0) is the curve
1
Cithy: Y? =y X(30X2+20X+3)(120X2+40X +3),

which splits via a morphism ¢ of degree two

1— 2 -3/1
b: City By == 122 ZNA0 ),

—~2./10x 3V =14+ /10(X—/5/10)Y
P*(x)= s P*»)= ,
60X2+(30—./10)X +3 60X2+(30—./10)X+3

where E is the elliptic curve with complex multiplication by Z[,/— 10], whose invariant
is j(y/—10)=212846400 + 95178240,/5 .

ExaMPLE 1.10. The fibres of &, over (¢, s)=(—1/3, \/21/9), (-3, 5,/—3), and
(2++/—5, 3,/—95) are the curves

1
. y2_ 4 3 2
€% vz’ Y2y XCSX +(25+50/21)X 3+ 575X

+(—60+4+120./21)X+144),

1
) qympy V=g XOUTSX* 43025342/~ 3)X° - 6875X

+220(—3+2,/—3)X+48),

12100+ 12580,/ —
cun i yie X<(580 480 /3 x4 12100+ 21580 5 4

2+
+(96200 + 5200,/ _5>X2+ 550+12016~/ -5 X+l>.

441 49
(10) (10) (10)
One can show as example 1.6 that C(—1/3,Jﬁ/9)’ C(_3,5\/_—3), C(z+~/—_5,3¢—_5) are

simple, by using the results on congruence zeta functions given in Table 2.

Finally, we note that the reduction of a Shimura curve at the prime where B ramifies
gives the moduli of supersingular abelian surfaces (cf. [20]). Moreover, it is known that
the number of irreducible components of the moduli of such curves is one for p<11
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TABLE 2. The congruence zeta functi ao L cao
g a functions of C(—x/a.m/m’ C(_MJ_S) and
(10)

24V =F.3VE) for a small prime gp.

p N, N, a, b, aZ,—4p

17 10 326 4 4 -52

37 38 1358 4./5 -4./5 —68

41 42 1806 2/5 -2/5 —144

C% . v3im) 43 44 1982 2/5 -2/5 —-152
47 60 2326 -6 -6 —152

59 60 3558 4./5 -4./5 —156

67 68 4718 2/5 -2/5 —248

13 14 182 2/5 -2J5 -32

19 20 398 2/5 -2/5 —56

31 40 1054 -4 —4 —108

' = 37 30 1486 4 4 —132
43 44 1862 4./5 -4/5 —92

61 62 3806 4/5 -4/5 —164

67 56 4686 6 6 —-232

23 24 582 2/5 -2/5 -72

29 30 918 2/5 -2/5 —-96

41 42 1806 2/5 -2/5 —144

CU% =5 v, 43 44 1862 45 -4/5 -92
47 40 2366 4 4 —-172

61 78 3838 -8 -8 —180

67 48 4558 10 10 —168

(cf. [12]). Thus as a corollary to the above theorems, we obtain the following:

CoROLLARY 1.11. For p=3, 5, a one-parameter family of supersingular curves of
genus two over the field F,. with p* elements is given by the following equation:
(i) Forp=3

Fo: YV2=XX*-(1—/—-1)X3+gX*+(1 -/ —1)X+1),
with a variable

_ (t4+1)3
q_tz(tz—l)z(t2+l)2 :

(ii)) For p=5
Fio: Y2 =X(P2X*+ P 1+ RX3*+POX*+P(1—RX+1),

with
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_ —QRe2+ 1) —12-1)

d (*=1) ’
R (t2=1) ()20 4207 +1)
CJ2d2+)] T B =D)H+1)?

REMARK 1.12. One can check the above result also by showing the vanishing of
the Hasse-Witt matrices for these equations (cf. [17], [26], [12]).

Ty T2
T=

be a point of the Siegel upper half plane §, of degree two. Put 4,=C?/L, with L, the
lattice generated by the columns of the matrix (z 1,). Put

a=<1/2> and b=< ! >
1/2 1/2

For z in C?, the 2-dimensional holomorphic theta function with the characteristic
determined by a and b is defined by

0(z)= Y exp(ny/—1'(n+a)yt(n+a)+2n/—1'(n+a)z+b)),

neZ?

2. A work of Humbert. Let

where n is written as a column vector and ‘v denotes the transpose of a column vector
v. The following lemma is well-known:

LEMMA 2.1. Let p, q be column vectors in Z*. Then

0z+1p+q)=exp(—n/ —1'ptp—2n./ — 1'p(z+ b)+ 27/ — 1'aq)d(z) .
Moreover, 0(z) is an odd function.

We denote by @ the divisor of zeros of 6(z) on A,. Then (4,, @) is a principally
polarized abelian surface. From now on, we assume that @ is isomorphic to a curve C
of genus two. We recall Humbert’s notation for 2-torsion points of A4, (cf. [8]). Let

1 <8+/lrl+/1’12

=— ) (mod L,)
e +At,+ Aty

2

be a 2-torsion point of A4, with ¢, ¢’, 4, '€ {0, 1}. Then Humbert’s notation is given in
Table 3.
The next lemma follows from Lemma 2.1:



280 K. HASHIMOTO AND N. MURABAYASHI

TABLE 3. Humbert’s notation.

Notation € € A A
(11) 0 0 0 0
(12) 0 1 0 0
@20 1 0 0 0
22) 1 1 0 0
31 0 0 1 0
(32) 0 1 1 0
41) 1 0 1 0
(42) 1 1 1 0
(13) 0 0 0 1
(14) 0 1 0 1
(23) 1 0 0 1
(24) 1 1 0 1
(33) 0 0 1 1
(34) 0 1 1 1
(43) 1 0 1 1
(44) 1 1 1 1

LEMMA 2.2.
OnA[2]={(11), (22), 31), (41), (23), (24)} ,
where A[2] is the set of 2-torsion points of A,.

Let ¢: A,—P? be a morphism corresponding to the complete linear system |20 |.
The image of ¢ is a quartic surface in P3 and can be identified with the quotient space
A,/<1), where 1 is the involution of 4, given by £+ — £. This image is called the Kummer
surface of A4, and is denoted by Kum(4,). For every &€ 4,[2], we put

0::=T(O) and 6/ :=¢(TL0O)),

where T, denotes the translation by ¢.

Since 2T(@)€|20 |, there exists a unique hyperplane H, in P3 such that the
intersection divisor of H, and Kum(4,) is equal to the divisor 203 . H, is called the
singular plane of Kum(4,). From now on, we denote ¢((if)) (1 <i, j<4) by the same
notation (ij) and call them double points of Kum(4,). Then singular planes can be
uniquely represented by sixteen symbols k/ (1 <k, /<4) such that the following condi-
tions are satisfied:

1. The set of the six double points lying on the singular plane k/ is {(ij) | i=k, j#!
or i#k, j=1}.

2. The set of the six singular planes passing through the double point (i) is
{kl|k=i,1#j or k#i,I=j}.

We choose and fix a hyperplane IT in P3 which does not contain (11). Figure 1 represents
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(14)

(12) (13) 14
(44) 0

21

FIGURE 1. The section of singular planes.

the section by II of the six singular planes of Kum(4,) passing through (11). On each
line in Figure 1 we mark the symbol of the corresponding singular plane: 12, 13, 14,
21, 31, 41; on the intersection of two lines we mark the symbol of the double point,
different from (11), lying on the two corresponding singular planes. Therefore, the
point (§7) in Figure 1 is the projection of the double point (if) from the double point

(11) on 11.

REMARK 2.3. Let D be a curve on Kum(4,). Then the projection of D from (11)
on IT intersects the six lines in Figure 1 at points (i) or touches them because the
singular plane H, touches Kum(4,) along the conic @ .

PROPOSITION 2.4. There exists a conic I in I1 which touches the six lines in Figure 1.

Proor. Consider the tangent cone to Kum(4,)<= P? at the double point (11) and
let I be its section by II. Then I satisfies the above condition. O

We can take a homogeneous coordinate (x: y: z) of IT=~ P2 such that I is given by
the equation yz=x2 and that any three among the six contact points are given by

(x:y:2)=(0:0:1),(—=1:1:1),(0:1:0).
So it may be assumed that the lines 14, 21, 12, 13, 31, 41 are given by the equations
y+2ax+aiz=0, y+2a,x+a%z=0, y+2ayx+a3z=0,
y=0, y+2x+z=0, z=0,

respectively. It is convenient to denote the lines 14, 21, 12, 13, 31, 41 by /,, 1,, I3, L,
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Is, g, respectively.
ProposITION 2.5. C is isomorphic to the curve given by the equation
M Y2=X(X—1)X—a)(X—a)(X—ay).

PrOOF. Let @ﬁ 2) be the projection of @ ], from the double point (11) to IT. Then
00, is a conic in IT and the degree of the canonical map p: C=0-03,, is two. By
Lemma 2.2, Q(Alzy passes through the points (12), (21), (32), (42), (24), (23) in Figure
1 and the coordinates of these points are

(—a;/2:0:1), (1:=2:0), (—(az+1)2:a5:1),
(1: =2a5:0), (—(a;+ay)2:a1a,:1), (—a,/2:0:1),

respectively. It is convenient to change the coordinate by

x’' 1 0 a2 x
M)
z' 0 0 1 z

Then the above coordinates are replaced by
0:0:1), (1:-2:0), ((a;j—as;—1)/2:a5:1),
(1: =2a5:0), (—ay/2:a,a,:1), ((a,—ay)/2:0:1),
respectively. Therefore @}, is given by the equation
day(x)?+(y)? +2as+ 1)x'y’ +(aay—a,a, + a, —as3)y’z' +2a3(a, —a,)z'x'=0.

By mapping a point Q of @, to t/se P*, where the line passing through (12) and Q
is given by the equation sx’+ ¢y’ =0, we get

(OG2) {(12), (21), (32), (42), (24), (23)})

~<P‘ {001 1 a,—a;—1 1 a2a3—a1a2+az—a3}>
U2 248 2a,  2a,  2as(a,—a,) '

By the linear fractional transformation induced by the matrix

(—2a1a3/(1—a1) as/(1—ay) )
~2ay/(1—a;) —(a;—az—Df(1—ay) )’

the latter is isomorphic to
(P, {0, 1, 0, ay, a,, as}) .
On the other hand, the set of ramification points of p: C—8,, is

{(12), (21), (32), (42), (24), (23)} .
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Hence C is isomorphic to the curve Y2 =X(X—1)(X—a,)(X—a,)(X—a;) . O
Now we consider the endomorphism ring End(4,) of 4,. Analytically,

End(4,) = {xe M,(C)| IM e M(Z) with (x) ot 1,)=(z 1,)M} .

w2 5)

Then we see that the above condition (*) is equivalent to

Let

ao=tB+D,at=1A+C <> (**) tBt+Dt—14A—C=0.

Let E be the Riemann form associated to the polarization @. Then E defines an involu-
tion ar>a° on End(A4,) called the Rosati involution, which is determined by
E(az, w)= E(z, «°w) (for all z, we C?). We have

a’=a<—='M = M
-1, 0 -1, 0

4:A=‘D, B=(O b>’ C:(O C>.
—-b 0 —c 0
A=<a1 az).

Under the assumption a°=a, it follows that

Put

(*x) <= a,7, +(a,—a,)t,—ast3+b(t3—1,13)+c=0.

Then we have

a=rB+D=<—bTZ+a1 btl+a3)’
—bty+a, br,+a,
and
Tra=a,+a,,
deta= —b{a,t, +(a,—ay)t,—azt3+b(t3—1,13)} +a,a,—a,a,

=a,a,—a,a;+bc.
So the characteristic polynomial of « is
T?—(a, +ay)T+(a,a,—ayas+bc)=0

and its discriminant is
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(ay +a,)* —4a,a,—a,as + be)=(a,—a,)? —4a,(—as)—4bc .

DEerFINITION 2.6 (cf. [8]). An element

Ty Tz
T=
T, T3

of 9, is said to have a singular relation with invariant 4 if there exist relatively prime
integers a, b, ¢, d, ee Z such that

1. at,+br,+ct3+d(t3—1,15)+e=0,

2. A=b%*—4ac—4de.

As we have stated above, a singular relation of ¢ with invariant 4 corresponds to
endomorphisms of A4, fixed by the Rosati involution which have the characteristic
polynomial with discriminant 4. Let

N,={te 9, |t has a singular relation with invariant 4} ,

and H, the image of N, under the canonical map $,—Sp(4, Z)\9,, where Sp(4, Z) is
the symplectic group over Z and Sp(4, Z)\$H, denotes the quotient space with respect to
the well-known action. H , is called the Humbert surface of invariant 4. The following
result, which is stated explicitly in [1, p. 212] is essentially due to Humbert:

ProPOSITION 2.7. Each point of H, can be represented by t€$, satisfying an
equation at, +bt,+13=0 with b>—4a=4, b=0 or 1.

ProrosiTION 2.8 (cf. [8]). If t€$, satisfies the relation —t,+1,+13=0, then
there exists a conic D in II which passes through the five points (34), (14), (33), (22), (24)
and touches the line I¢ (see Figure 1). Conversely, if such a conic D exists, T has a singular
relation with A=35.

Proor. We shall give a proof for the first part. As we have seen above, the relation
—1,+1,+713=0 gives an endomorphism « of 4, corresponding to the matrix

0 -1 0 0
-1 1 0 O
0 0 0 -1
o o -1 1

The characteristic polynomial of « is 72— T—1=0. Since
a({(34), (14), (33), (22), (24), (11)})={(42), (44), (31), (21), (43), (11)}
and the latter set is equal to ©;;,n 4,[2], it follows that
a*0 34y N A,[2]={(34), (14), (33), (22), (24), (1))},

where a*@;,, denotes the inverse image of ©3,, by a. Let D’ be the projection of
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¢(@*O 3, from (11) to IT and D the closure of D’. Since
D n{(#) in Figure 1} ={(34), (14), (33), (22), (24)} ,

D necessarily touches the line /; by Remark 2.3. As for the intersection number we have
(20, a*031)=(203,), a*O 31) =2 Trg,5(0?) =6,

where K= Q(ﬁ ). Therefore ¢p(x*@ ) is a curve of degree three because the degree
of ¢ is two. We consider a line / in IT such that / and D meet transversally at points
outside D\ D’ and the set Sing(D) of singular points of D. Let H be the hyperplane in
P? which contains / and (11). Then we have

(D, )= #H{Dnl} <HHN$a*O5,) \{(1D}} 2.

So D is a line or a conic. Since D is not a line, D is a conic. Hence D satisfies the
conditions in the proposition. Od

Using this proposition, Humbert calculated a modular equation for H..

THEOREM 2.9 (cf. [8]). There exists a conic in Il which satisfies the conditions in
Proposition 2.8 if and only if the identity

2 4atay—al+ai(l—a,)+a,—as)ala,a,—a,a3a,)
=(aias(a, +1)—ai(a, + a3)+aa3(l—a,)+a,(a, —a,))’
holds.

ProOOF. Since (24), (22), (14), (33), (34) are I, nl,, I,nl;, I3nl,, I,nls, Isnly, re-
spectively, their coordinates with respect to (x:y:z) are

(—(ay+ay):2a,a,:2), (—(a,+ajz):2a,a3:2), (—a3:0:2),
(—1:0:2), (—(a,+1):2a,:2),

respectively. Let p;x% +p,y% +p3z2+paxy+psyz+ pezx =0 be the defining equation of
D. Then

p1=4a,a,a3(a, —a,),

pr=aiay—aaj+(aj—a3+a,—aj),

py=a,aa3(a,—ay),

Pa=2(aza3+az)ai+(—aya3—aj+a, —az)a; —aasa, —as)),
ps=(—ajas—a3+a3+ay)al+(—ajai—ada, —aas(a,—ay),
Ps=2a1aa3(a; —az)az+1).

D touches the line /g if and only if the quadratic equation p, X%+ p,X+p,=0 has a
multiple root, that is, p2—4p,p,=0. O
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REMARK 2.10. Actually, (2) is not exactly the equation for Hs, but rather that
of a component which projects to Hs under the natural map #, ,—.#,, whre 4, ,, is
the moduli space of genus two curves with level two structure. Indeed, one observes
that (2) is not symmetric in the g;’s. A similar assertion applies also to the equation
(3) of Hg below.

Humbert also calculated a modular equation of Hg.

ProrosiTiON 2.11 (cf. [8]). Ift€$, satisfies the relation —21,+13=0, then there
exists a curve of degree four and genus one in Kum(A,) which passes through the double
points (32), (34), (42), (44). Projecting from (11) on II, we get a conic in IT which passes
through the four points in II corresponding to the above double points and touches the lines
1, and 1,. Conversely if such a conic exists in II, then 1t satisfies a singular relation with
A=4 or 8.

THEOREM 2.12 (cf. [8]). Consider a conic y=x? and its six tangents
Is:y+20x+62=0, 6=00,0, by, by, by, b, .
Then there exists a conic which passes through the four points
bonly,, lL,nl,, L,nl,, L0l
and touches |, and 1, if and only if the identity
3 (b1b3—byby)* x {4b1b,b3by((by +bs)(by+by)—2(by by +byb,))
— (b2 —b4)* (b1 —b3)*(b1b3 +byb4)*} =0
holds. Moreover, the first factor corresponds to A=4 and the second corresponds to A=38.
3. Quaternion modular embeddings for D=6, 10. We shall describe the concrete
form of such embeddings in detail in the two cases D=6, 10 which we need. A general
treatment is given in [4].

3.1. Thecase D=6. Let By be the quaternion algebra over Q with discriminant
6 and O a maximal order of Bg. One can take the model

B6=Q+Q1+QI+QU9 i2='—6’ j2=2’ ]IZ—U’
i+j

i
O=2+2 5 4717 g 2FAHY
2 2 4

Put p, =i and consider an involution a+>a*:=p; 'a’p, on Bg where ' is the canonical
involution on By. Then one has OF = (%. Since p?= —6<0, the involution is positive:
Tr(ao*)>0 (if « #0). We identify Bs®¢oR with M,(R) by the isomorphism defined by

(e )= )
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For an element ze $, we define an R-linear isomorphism f, by
f:: Bs®oR ~ C?, a'—w(i).

Put D,=f,(0). It follows that D, is a lattice in C2. Define a pairing E,: C?>x C?*—>R

by E(f(®), f.(B)=Tr(p 1 'aB’). Then, since Ogp, is the inverse different of 0, it induces
a nondegenerate pairing E,: D, x D,—Z. Set

ﬁz—l
e[ ? YR YA 2
v = (1) “2 fz( 2) 62—/2 |
—
J2z-1 2A1+/2)2+2
4

.)_ 2 ° '_f<2+2j+ij)_
2 6z+/2 | T\ 4 6/2z+21—/2)
2 4

Then {w,, w,, w3, w,} is a Z-basis of D, and we have

0 -1 -1 0
1 0 0 1
E =
Eonod=| 1 o o o
0 -1 0 O
We put 0] 1= —ws3, 05 :=w,, 03:=—0, ©4:=0;—w,. Then {0}, 0y, w4, w,}isa
symplectic basis, i.e.,
0 1,
E (0}, w))= .
(B0}, @) (_12 0)

Also put (2,(2) 2,(2)) =(wwrwsw}), and Q(z): =Q,(z)~'Q,(z). We have

J2z41 204/ 2)z+2

! (ﬁ ﬁz> 2 4

2/2:\ 1 =z )| —e— /2 6/2z+21-/2)
4

2
3 3/2 12
2 4 4 2 8 | o
[ DN SV T R N 2
4 T2 8 472 82
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Thus we get an embedding ¥ : H—9,, z+ Q(z). We see immediately that the complex
torus C2/D, has a structure of an abelian variety, with the principal polarization defined
by E,, and is isomorphic to Ag,,. It is easy to check the following lemma:

LemMmA 3.1. Q(z) satisfies the following singular relations parametrized by two
independent integers d, ee Z:

—(d+e)t, +dr,+(d+2e)t5+d(t3—1,13)+e=0.

Especially, it satisfies the singular relations

(4) _Tl+2T3+1:0 Wlth A=8,
©) T,—T3+(t3—1,73)—1=0 with A=5,
6) —T +1,+ 13+ (T3 —1.73)=0 with A=5.

By Lemma 3.1 and Proposition 1.1, we have:

PROPOSITION 3.2. Let A be as above. Then there exists 1€, such that A=A, and
that t satisfies two singular relations (4), (5) of Lemma 3.1.

To combine the modular equations for 4=5 and 8, we need some lemmas.

LEMMA 3.3. Let 1 be an element of , which satisfies the two singular relations (4),
(5) of Lemma 3.1. Let M; (i=1, 2, 3) be the matrices in Sp(4, Z) given by

00 —1 0 11 1 2 11 -1 0
00 0 —1 1 2 11 0 —1
Mi=l 1o 1 o | M= 2 04 al> MT|10 0 o
01 0 0 10 -2 1 01 0 0

and put

’

’ !

Ty T2

v={ , =tM,;, t:=1M,, 1:=1-M;3€9,,
T2 T3

where 1+ N=(tB+ D)™ (tA+ C) for

A B
N=<C D)eSp(4,Z).

Then the singular relation (4) is transformed by M, to
—2t1+15=0 (4=8),
and (5) (resp. (6)) is transformed by M, (resp. M3) to
—ti+15+15=0 (4=95), (resp. —t7'+15 +15=0(4=Y5)).

This lemma can be checked by direct calculation. One has then 7'+ M=1",
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M=M;'M,. Consider the isomorphism
®: 4, =C*{(7' 1))
— C?/((t' A+ Ct'B+ D)) - C*{(t" 1,)>=A..
induced by the matrix (t'B+ D)~ ! where {(t 1,)>=L, and
4 3 5 6
A B -1 0 -2 1
M=<c D>= —1 =1 —1 =2
-1 -1 -2 -1
LEmMA 3.4. For an element

1 (81 + AT+ AT

=— ) (mod L,)e A,.[2],
el +Ath+ A Th

2
we put
1 [(ey+ A, + %15
o=y (AT
2 \e)+ AT+ %1,
where ¢;, €, A, A: (i=1, 2)€{0, 1}. Then we have

> (mod L.)e 4..[2],

& 0111 &
e | |1 011 g
Ll [1to1o]]| A
Al 0101 1
This can be proved by direct calculation and we omit the detail.
Put
@) Fi(X,Y,Z)=4X?*Z-Y*’+Z*01-X)+(Y—-2Z)\X*YZ—-XY?*Z)

—(X2Z(Y+1)— Y X+ Z)+ YZ¥(1 - X)+ X(Y— Z))?,
(8)  FyX, Y, Z)=4XYZ(X+ YXZ+1)—2XY—2Z)* —(Z— 1)} (X— Y)AXY+Z)*.

THEOREM -3.5. Let C be a QM-curve of genus two defined over C with respect to
(Og, *). Then C has a model with defining equation (1) such that

&) Fi(ay, a5, az)=Fy(a,, a,, a3)=0.

ProOOF. Let 7/, t” be as in Lemma 3.3. By Proposition 3.2 and Lemma 3.3, we
have an isomorphism

@
Jac(C)= A, . «— A, .

C has a model given in Proposition 2.5 with t” instead of 7. By Proposition 2.11 there
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exists a curve of degree four and genus one in Kum(4,,) passing through (32), (34), (42),
(44). Using Lemma 3.4, we see that @ induces

(32), (34), (42), (44)} —2 {(39), (41), (13), (22)} .

So we have a curve of degree four and genus one in Kum(A4,..) passing through (34),
(41), (13), (22). Projecting it from (11) on II, we obtain a conic in IT which passes through

Linly, Linl,, Lnls, Isnl

and touches /, and /,. Hence the second factor on the left hand side of the equation in
Theorem 2.12 vanishes at b, =a,, b,=a,, b;=a,, by=1. Therefore F,(a,, a,, a;)=0.
On the other hand, by Proposition 2.8 and Theorem 2.9 we have F;(a,, a,, a;)=0. (]

3.2. The case D=10. We can take a model
Bi,=Q+Qi+Qj+Qij, i’=-10, j*=13, ji=—jj

07
Lzt
2 13

P
Oro=Z+2Z ;’+z’+”

and consider an involution on B,,, a—a**:=p;'a’'p,, where p,=i. We identify
B,,®4R with M,(R) by the isomorphism defined by

H(& Bj’ H<%F _3ﬁ>

Define, for each ze$, an R-linear isomorphism f,: B;(®oR—-C 2, and observe that
D,:= f(0,,) is a lattice in C2. Let E: D, x D,—Z be a pairing as in Section 3.1. Put

147 L. 30i+ii
w,:=f,1), w2:=fz(—;i>, w35=fz<l-;tj>, w45=fz< ]1'3Hj>,

and
0 i=w3—6w,, 0yi=-30w,—w,, W=, W =0,.
Then {0, ), w%, w},} isasymplectic basis. Set (2,(2) 2,(2)) = (v, @’ 05 w}). Wehave
Q2):=Q,(2)"1Q4(2)

13— -/ 13
~¥+ 180z + 5(7+/13)z? —1——T~—3602—5(1 +4/13)z?

1
13z

-1
1—2——3——-3602—5(1+,/13)z2 —1-60z+ 1027

LEMMA 3.6. Q(z) satisfies the following singular relations parametrized by two
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independent integers a, de Z:

at, +(a—60d)t, —3aty +d(t3—1,13)+830d=0.
Especially, it satisfies the singular relations
(10) 51, —55t,— 1513+ (t3—1,73)+830=0 with A=5,
(1) 41, —56T,— 121, +(123—1,75)+830=0 with A=8.

LEMMA 3.7. Let t be an element of $, which satisfies the two singular relations
given in Lemma 3.6. Put

1 1 0 0 1 1 0 0
1 1 -1 1 1 1 -1 1
Ni= —15 —14 30 —-29|° Ny = —11 —12 —28 29

—33 —34 4 -4 —34 —-33 -5 5

! ’ ” "
Ty Th Ty 1)
r'=< =1-Ny, r”=( :=1*N,.
! ’ ” ”
T2 T3 T2 T3

Then the first singular relation in Lemma 3.6 is transformed by N, to

—2t1+15=0 (4=8),

and

and the second is transformed by N, to
—t{+15+15=0 (4=9).
Set

12 1 -1
A4 B\ |0 —1 -1 1
cp)|-3-31 0

N=N1“N2=< =
-3 -3 2 -1

Consider the isomorphism
@: A, =C?*/{(1'1,)>
=C*{(t'A+Ct'B+D)y—>C?*/{(t" 1)) =A,..
induced by the matrix (t'B+ D) *.

LeEmMMA 3.8. Let notation be as in Lemma 3.4. Then we have
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& 1011 &
ey | [0 1 11 e}
Ll 111 0]]4
A 1 10 1/\}
Proofr. This lemma is proved similarly as Lemma 3.4, by

1011
4 —c\ o111
= d?2).
(_:B ,D> 111 o] med?
1101
0

THEOREM 3.9. Let C be a QM-curve of genus two defined over C with respect to
(010, **). Then C has a model with canonical equation (1) such that
Fl(al, a, a3)=F2(a1a a, a3)=0 .

PRrOOF.
{(32), (34), (42), (44)} 2, {(23), (12), (31), (44)}

Te, (34), @41), 13), 22)} .

a

REMARK 3.10. From a result in [4], it can be shown that the intersection Hsn Hg
has no components other than S¢ and S,,, except those corresponding to degenerate
curves or split ones. This can also be shown by the explicit computations in the next
section.

By Theorems 3.5 and 3.9, we thus see that, to construct the family of QM-curves
for Oy and 0, ,, it suffices to solve the systems of equations (9) (cf. Remark 2.10).

4. Intersections of Humbert surfaces Hs and Hg. Here we sketch briefly the
computations to find out the equations %, and &, as the components of Hsn Hg.

First we rewrite the equation (1) of our QM-curve in homogeneous form. Namely
we study the curves with the equation

(12) Y2=X(X—x)X—y)X—2)(X—w).

Note that this curve is isomorphic to a similar one which satisfies xyzw=1. Thus we
may replace x, y, z by x/w, y/w, z/w where x, y, z, w are subject to the relation xyzw=1,
hence by x2yz, y2zx, z2xy, respectively. This amounts to considering the curves with
the equation
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(13) Y2=X(X*—PX3+QX*—RX+1),

with

1
P=x+y+z+w=x+y+z+—,

xyz
x+y+z
O=xy+yz+zx+wx+y+z)=xy+yz+zx+———,
xyz
xXy+yz+zx
R=xyz+(xy+yz+zx)w=xyz+—y——y——.
xyz

We have then
Fy(x?yz, y2zx, 22xy)=x°y*z*fi(x, y, 2) ,
Fy(x2yz, y*2x, 22xy) = x*y*2°f; %, , 2)f2.4(%, ¥, 2) ,
with
fix, y, 2)= —y2+2yz+2xy*z— 22 —2x2y?z2 + 2xy3z% —2y*z?
—x2y%22 4 2x2yz3 —dxy?z3 —4x?ySz3 +2xy°z3 4+ 2y%z*
—x*y2z* +2x3y32% +4x 2tz + 2xy ozt — yOzt 4+ 2x*y ozt
—4xy*z3 +2x3y4z5 4 2y525 —dx*y5z5 — p4z6 —2x4y4z6
4 2x3y 526 —2x 2676 _ 56676 4 0525, L9 5,6,7_ (46,8
frdX, y,2)= —x+y—2x2y—2xy? —x>y? + x?y> +dxyz +4x3y3z + x?yz?
NNE PETID NENC LD NENCIE SUNUNC RN O
Sop(x, p, 2)=x—y—2x%y—2xy? + x3y? —x?y3 +4xyz + 4x3y3z — x?yz?

+xp222—2x3)222 _2x2p3z2 _x4p3z2 4 x3p4s2

Observe that fi(/—1x, /=1y, /= 12)=—fi(x, y, 2), fr..(/—=1% /=1y, /—12)=
—\/———_l f2.5(x, ¥, 2). Thus we are reduced to solving the equations fi(x, y, z)=0,
Sa.4dX, y, z2)=0, where f, ,hashalf the size of F,. This enables one to compute the resultant
Rt(x, y) of them with respect to z which factors, as we expect from Theorems 3.5 and 3.9:

Rt(x, y)=x2y(—x+p)* (= 1+ x%»)*(— 1+ xp%)? x Rt (x, y) Rty(x, y)
Rt, =x*+4x3y+6x2y2 —dxOp% +4xy3 +y* +72x*y* + 6x8y*
—8x 7y —4x2y®+100x°y° —4x1%y% —8x3y7 +6x*y8+72x8y8

x12y8+4x11y9_4x6y10+6x10y10+4x9yll +x8y12 ,
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Rt,=x*—12x3y +38x2y2 —4x%y2 —12xy3 + 128x3y3 + 64x3y3 + y*
+200x*y* +6x8y* +64x3y5 +128x5y5 —104x7y5 —4x2y*
—220x%y%—4x%6 —104x5y7 —128x7y7 +64x°y7 + 6x*y8
+200x8y8 + x12p® +64x7y° —128x°%y° —12x 11y —4xCy1°
+38x10y10_ 12x9y11 +x8y12 .

Note that Rt, is symmetric in x, y. So putting x+ y=2s, xy =t, we obtain a very simple
equation

Sty (t, 5): =Rty (x, y)=4s2t3(—=14+13)? + s (=1 +1H)* +4t*(1 + 172,

which is easily solved as

o J1—t+t2+ /-1 /1+t+1?)

—1+1¢2

Putting

. —J1—t+t? b =11+ t+12

141 1—¢

we thus have a parametric expression

1+t°—9(t%+t%)
t(1—t2)?

P=—-2a+b), R=2a-b), Q=

Here we observe that a2, b2 and Q have rational expressions in u:=¢+1/t¢. Indded, we
easily have

u—1 b2 —(u+1) o= uu?—12) .

2_
u+2’ u—2 u’—4

a

Eliminating u from these equalities, we obtain

- (1+2a*)(11'-28a*+8a*)

= , 4a’b*+a’—b*+2=0.
3(1—a)(1 +a)1 +2a)1 —2a)

Y

This completes the proof of Theorem 1.3.

Next we consider the equation Rt,(x, y)=0. Putting again x+y=2s, xy=t, we
obtain

1

=542 —1)* =452t — )22+t — 1) (2 —t— 1)+ 4222 + 1)’ (1> — 1= 1)%,
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from which follows

JHt2—t—1) St =2+ /12t +1))

1—1t2

Hence we have

P:_2<ma_—t:) +m>
J i+ (t—=1)
R:2<\/(t—2)(t2—t—1) B \/(2t+1)(t2—t—1)>,
Jte+1) (=1
P+t +8°— 1062 —81+1)
t(t—1)%(t+1)?

Putting s =./t(t—2)(2t + 1), and replacing X by 2,/(2t + 1)(t> —t—1)X/(1—1)?, we easily

have an equation

Q

Y2=X(A2X*+A*(1+B)X?>+ AQX*+ A1—B)X +1),
with
2._ — —
A~ 1)’ g (=Ds ’
(t—1)? tt+ 1)t +1)

which is birationally equivalent to (13). This completes the proof of Theorem 1.7.
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