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Abstract. Let p be an odd prime. We shall give a criterion for p-divisibility of the
class number of the n-th layer of a Z,-extension over a certain totally real number field
by means of the value of the p-adic zeta function. We shall also discuss the capitulation
in such a Z,-extension and a sufficient condition for the Iwasawa A- and p-invariants
of it to vanish.

1. Introduction. Let p be an odd prime, and & a totally real number field. For
any Z,-extension k,/k, we denote by k, the n-th layer of k/k.
In the present paper, we shall prove the following:

THEOREM 1. Let k and p be as above, and k [k a Z -extension in which the primes
lying above p are totally ramified. We assume that the prime p splits completely in k.
Then the following three statements are equivalent:

(1) Gal(L(ky)/ky)#0,

(ii) The class number of k, is divisible by p for all n>1,

(i) pl,(0, k)=0 (mod p),
where L(k)/k,, is the maximal unramified pro-p abelian extension and (s, k) is the
p-adic zeta function of k.

One can regard the above theorem as a “totally real”” analogue of classical Kummer’s
criterion for p-divisibility of the class number of the p-th cyclotomic field.

We shall also prove the following two theorems as an application of the argument
in the proof of Theorem 1:

THEOREM 2. Let p and k |k be as in Theorem 1. Furthermore, we assume that
Leopoldt’s conjecture is valid for k and p. Then the following three statements are equiv-
alent:

(i) The capitulation of ideals occurs in k [k,

(ii) The capitulation of ideals occurs in k [k, for some n>0,

(i) M(k,)# L(ky)-

Here M(k,) is the maximal pro-p abelian extension field of k., unramified outside p.

THEOREM 3. Let p and k/k be as in Theorem 2. We assume that the p-Sylow
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subgroup of the ideal class group of k, is cyclic for all n>0, and that i*:=
rank; Gal(M(k,)/k,,)>2. Then the Iwasawa A- and p-invariants of k /k vanish.

We shall prove the above theorems in the next section.

2. Proof of the Theorems. We fix an odd prime p once and for all. We shall use
the following notation.

For a field F< @, we write L(F) and M(F) for the maximal unramified pro-p abelian
extension field of F and the maximal pro-p abelian extension field of F unramified
outside p, respectively. We denote by M¢ and M, the maximal submodule and the
maximal quotient module of M on which G acts trivially, respectively, for any group
G and a G-module M.

The following proposition is the keystone of the present paper:

PROPOSITION 1. Let k be a number field and k |k a Z,-extension in which every
prime of k above p is ramified. We assume that the prime p is completely decomposed in
k. Then M(k) is the maximal subfield of L(k,) which is an abelian extension over k.

ProOF. We denote by I, = Gal(M(k)/k) the inertia group for a prime p of k above
p. It follows from the assumption of the proposition that the pro-p part of the local
unit group of k, is isomorphic to Z, where k, stands for the completion of k at p.
Hence by class field theory I, is isomorphic to a quotient group of Z,. Since p is
infinitely ramified in k, < M(k), we see that I,~Z,, and that I,nGal(M(k)/k,)=0.
This equality implies that the primes of k,, above p are unramified in M(k). Therefore
M(k)/k, is an unramified extension, and M(k)< L(k ). d

COROLLARY 1. Let k and k,, be as in Proposition 1. Then the following two
statements are equivalent:

(1) Mky)#kq,

(i) L(ky)#ky.

ProOOF. (ii) = (i) is obvious. We assume that M(k,)#k,. It is known that
Gal(M(k)/k,,) is a finitely generated Z,[I']-module, where I'=Gal(k,/k) (cf. [4,
Theorem 4]). Since Gal(M(k)/k,)~Gal(M(k,)/k.,)r=Gal(M(k)/k,)/(y—1)Gal(M(k)/
k), where y is a topological generator of I', we have M(k)#k_,, by Nakayama’s lemma.
Since M(k)< L(k,,) from Proposition 1, we have L(k,)#k. O

Now we shall give a proof of Theorem 1.

PROOF OF THEOREM 1. Let X=Gal(L(k)/k,), Y=Gal(L(k,)/k,L(k))<X and
Va=("" = 1)/(y—1)e Z,[I'] for n>0, where I' =Gal(k,/k) and y is a fixed topological
generator of I'. It is known that X is a finitely generated Z,[I']-module and
Gal(L(k,)/k,)~X/v,Y for all n>0 (cf. [4, Theorems 5 and 6]). So (ii)=(i) is obvious.
By Nakayama’s lemma, (i) implies X/v,X#0 for all n>1. Hence we see that (i) = (ii).

To show (i) <> (iii), we recall the following. We denote by k¢ /k the cyclotomic
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Z ,-extension, and we fix a topological generator y, of Gal(k /k). Let k€ 1+pZ, be the
number such that {?°={* for any p-power-th root of unity {, where ¥, is the image of
7o under the natural isomorphism Gal(kg /k) ~Gal(k((,)/k((,)), {, being a primitive
p-th root of unity. Since p is unramified in k/Q, we have v,(x — 1) =v,(p), where v, stands
for the p-adic valuation. It is known that there exists a power series F(T)e Z,[T]
such that {,(s, k)= F(k*—1)/(x*—xk) for seZ, (cf. [1]). Iwasawa’s main conjecture
proved by Wiles [8] asserts that F(k(1+T)~'—1)eZ,[T] is a generator of the
characteristic ideal of the finitely generated torsion Z,[T]-module Gal(M(kS)/kS,),
where we identify Z,[Gal(k(,/k)] with Z,[T] by sending y,—1 to T as usual (cf. [7,
Theorem 7.1]).

Now we shall prove (i) <> (iii). From Corollary 1 we obtain (i) < Gal(M(k,)/k,) #0.
First we assume that Leopoldt’s conjecture is valid for k and p. Then k/k must be the
cyclotomic Z,-extension k¢ /k. Since Gal(M(kS,)/kS,) has no non-trivial finite Z,[I']-
submodule (cf. [3]), we find from Iwasawa’s main conjecture that Gal(M(k<)/k<,)=
0 is equivalent to F(xk(1+T)"'—1)eZ,[T]*. This in turn is equivalent to F(0)=
(1—-K),,(0, k)e Z, . Thus we have proved (i) <> (iii) under the validity of Leopoldt’s con-
jecture for k and p. If Leopoldt’s conjecture is not valid for k and p, Gal(M(k)/k ) is in-
finite, hence especially Gal(M(k)/k,)#0. Thus statement (i) holds in this case by
Corollary 1. On the other hand, since Gal(M(k$,)/kS,) is also infinite, F(k(1+T)"*—1)
is not a unit in Z,[T] by Iwasawa’s main conjecture. Hence (1 —x)(,(0, k) =0 (mod p)
as in the above argument, namely, statement (iii) holds. This completes the proof
of Theorem 1.

REMARK 1. In the case of k=Q({,+{; ) where g is an odd prime satisfying p=1
(mod ¢), Kim [S, Theorem 2] proved “(iii) = (ii)” part of the above Theorem 1. (Note
that p{,(0, k)= £]1, +,ccawgr B1.g0-1 (Modp) in this case, where o is the Teichmiiller
character for p.) His method of proof is different from ours and based on the theory
of cyclotomic units.

To prove Theorems 2 and 3, we need the following proposition which may be of
interest by itself:

PROPOSITION 2. Let k and k/k be as in Theorem 1. We assume that Leopoldt’s
conjecture is valid for k and p. Then

Gal(M(k )/ L(k))r = Gal(L(k ) k )" = (Gal(L(k o)/k o Jeinite)" >

where I' =Gal(k ,/k) and Gal(L(k ;,)/k  )inite i the maximal finite Z,[I']-submodule of
Gal(L(k )k )-

Proor. From the exact sequence
0 — Gal(M(k,)/L(k ) — Gal(M(k ) k) — Gal(L(k)/k ) — 0,

we get the exact sequence
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Gal(M(k,,) k) — Gal(L(k )k )" —» Gal(M(k..)/L(k..))r
— Gal(M(k )k )y L+ Gal(L(k )k o)y — 0 .

Let L(k,)* be the maximal abelian extension field over k which is contained in L(k,,).
Then Gal(L(k,)*/k,)~Gal(L(k,)/k,)r.- By Proposition 1, we have L(k,)*®= M(k).
Since Gal(M(k)/k,)=~Gal(M(k,)/k)r, the homomorphism f in the above exact se-
quence is an isomorphism. On the other hand, it follows from the validity of Leopoldt’s
conjecture for k and p that Gal(M(k)/k,)~Gal(M(k,)/k,)r is finite, and hence a
generator of the characteristic ideal of the Z,[I']-module Gal(M(k,)/k,,) is prime to
y—1. Therefore Gal(M(k,)/k,) =0 since Gal(M(k,)/k,) has no non-trivial finite
Z,[I']-submodule (cf. [3]). Thus we have

Gal(M(k )/ L(k,))r ~ Gal(L(ko,) k)" .

Since a generator of the characteristic ideal of the Z,[I']-module Gal(L(k,)/k,) is prime
to y—1 for the same reason for Gal(M(k)/k,), we obtain

(c}al(L(koo)/kao)/Gal(L(kao)/kao)finite)r =0.
Hence Gal(L(k ,,)/k )" = (Gal(L(k )/k o Jeinite)"- O

PROOF OF THEOREM 2. Let X and Y be as in the proof of Theorem 1. We first
note that every ideal class of k, which capitulates in k, is contained in the p-Sylow
subgroup of the ideal class group of k,. From [6, Corollary], (ii) is equivalent to
Xiinite 70 which in turn is equivalent to (Xjn.)” #0. Hence we have (ii) <> (iii) by
Proposition 2 and Nakayama’s lemma. Furthermore, the subgroup of the ideal class
group of k, consisting of all ideal classes which capitulate in k,, is isomorphic to
Im(Xy0e— X/v,Y) by [6, Proposition]. As in the proof of [6, Proposition], the
multiplication-by-v, map X/ Xinice L x / Xtinite 18 injective. Hence we see that the natural
map Xiinie/V1 Xsinite— X/v1 X is injective. Therefore if no ideals in k, capitulate in k,
namely Xginie S V1 Y SV, X, then Xginie/ViXinie =0, Which is equivalent to X, =0 by
Nakayama’s lemma. Thus we have (ii) = (i). Since (i) = (ii) is obvious, this conclude
the proof of Theorem 2.

Proor oF THEOREM 3. Let A4, be the p-Sylow subgroup of the ideal class group
of k,. Then X=Gal(L(k,)/k,)~projlim 4,, where the projective limit is taken with
respect to the norm maps. Since X is cyclic over Z,, we have Gal(M(k,)/L(k))#0 by
the assumption A*>2. Hence Xi;,;. #0 by Proposition 2. If X is infinite, then X~Z,
a contradiction to Xj,;,.7#0. Therefore X is finite, namely, the Iwasawa A- and
p-invariants of k/k vanish. O

REMARK 2. The cyclicity of 4, guarantees the cyclicity of all 4, (cf. [2, Theorem
1(2)]). If k is a real abelian number field, one knows A* by computing the Iwasawa
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power series attached to the Kubota-Leopoldt p-adic L-function. Therefore one can
effectively verify whether the assumptions of Theorem 3 hold, at least, for real abelian
number fields.
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