THE CLASS GROUP OF Z_p -EXTENSIONS OVER TOTALLY REAL NUMBER FIELDS

Manabu Ozaki

(Received March 6, 1996, revised September 2, 1996)

Abstract. Let p be an odd prime. We shall give a criterion for p-divisibility of the class number of the n-th layer of a \mathbb{Z}_p -extension over a certain totally real number field by means of the value of the p-adic zeta function. We shall also discuss the capitulation in such a \mathbb{Z}_p -extension and a sufficient condition for the Iwasawa λ - and μ -invariants of it to vanish.

1. Introduction. Let p be an odd prime, and k a totally real number field. For any \mathbb{Z}_p -extension k_{∞}/k , we denote by k_n the n-th layer of k_{∞}/k .

In the present paper, we shall prove the following:

THEOREM 1. Let k and p be as above, and k_{∞}/k a \mathbb{Z}_p -extension in which the primes lying above p are totally ramified. We assume that the prime p splits completely in k. Then the following three statements are equivalent:

- (i) $Gal(L(k_{\infty})/k_{\infty}) \neq 0$,
- (ii) The class number of k_n is divisible by p for all $n \ge 1$,
- (iii) $p\zeta_p(0,k) \equiv 0 \pmod{p}$,

where $L(k_{\infty})/k_{\infty}$ is the maximal unramified pro-p abelian extension and $\zeta_p(s,k)$ is the p-adic zeta function of k.

One can regard the above theorem as a "totally real" analogue of classical Kummer's criterion for p-divisibility of the class number of the p-th cyclotomic field.

We shall also prove the following two theorems as an application of the argument in the proof of Theorem 1:

THEOREM 2. Let p and k_{∞}/k be as in Theorem 1. Furthermore, we assume that Leopoldt's conjecture is valid for k and p. Then the following three statements are equivalent:

- (i) The capitulation of ideals occurs in k_{∞}/k_1 ,
- (ii) The capitulation of ideals occurs in k_{∞}/k_n for some $n \ge 0$,
- (iii) $M(k_{\infty}) \neq L(k_{\infty})$.

Here $M(k_{\infty})$ is the maximal pro-p abelian extension field of k_{∞} unramified outside p.

THEOREM 3. Let p and k_{∞}/k be as in Theorem 2. We assume that the p-Sylow

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R23.

432 M. OZAKI

subgroup of the ideal class group of k_n is cyclic for all $n \ge 0$, and that $\lambda^* := \operatorname{rank}_{\mathbf{Z}_n} \operatorname{Gal}(M(k_\infty)/k_\infty) \ge 2$. Then the Iwasawa λ - and μ -invariants of k_∞/k vanish.

We shall prove the above theorems in the next section.

2. Proof of the Theorems. We fix an odd prime p once and for all. We shall use the following notation.

For a field $F \subseteq \overline{Q}$, we write L(F) and M(F) for the maximal unramified pro-p abelian extension field of F and the maximal pro-p abelian extension field of F unramified outside p, respectively. We denote by M^G and M_G the maximal submodule and the maximal quotient module of M on which G acts trivially, respectively, for any group G and a G-module M.

The following proposition is the keystone of the present paper:

PROPOSITION 1. Let k be a number field and k_{∞}/k a \mathbb{Z}_p -extension in which every prime of k above p is ramified. We assume that the prime p is completely decomposed in k. Then M(k) is the maximal subfield of $L(k_{\infty})$ which is an abelian extension over k.

PROOF. We denote by $I_p \subseteq \operatorname{Gal}(M(k)/k)$ the inertia group for a prime $\mathfrak p$ of k above p. It follows from the assumption of the proposition that the pro-p part of the local unit group of k_p is isomorphic to $\mathbb Z_p$ where k_p stands for the completion of k at $\mathfrak p$. Hence by class field theory $I_{\mathfrak p}$ is isomorphic to a quotient group of $\mathbb Z_p$. Since $\mathfrak p$ is infinitely ramified in $k_{\infty} \subseteq M(k)$, we see that $I_{\mathfrak p} \simeq \mathbb Z_p$, and that $I_{\mathfrak p} \cap \operatorname{Gal}(M(k)/k_{\infty}) = 0$. This equality implies that the primes of k_{∞} above $\mathfrak p$ are unramified in M(k). Therefore $M(k)/k_{\infty}$ is an unramified extension, and $M(k) \subseteq L(k_{\infty})$.

COROLLARY 1. Let k and k_{∞} be as in Proposition 1. Then the following two statements are equivalent:

- (i) $M(k_{\infty}) \neq k_{\infty}$,
- (ii) $L(k_{\infty}) \neq k_{\infty}$.

PROOF. (ii) \Rightarrow (i) is obvious. We assume that $M(k_{\infty}) \neq k_{\infty}$. It is known that $Gal(M(k_{\infty})/k_{\infty})$ is a finitely generated $Z_p[\Gamma]$ -module, where $\Gamma = Gal(k_{\infty}/k)$ (cf. [4, Theorem 4]). Since $Gal(M(k)/k_{\infty}) \simeq Gal(M(k_{\infty})/k_{\infty})_{\Gamma} = Gal(M(k_{\infty})/k_{\infty})/(\gamma - 1) Gal(M(k_{\infty})/k_{\infty})$, where γ is a topological generator of Γ , we have $M(k) \neq k_{\infty}$ by Nakayama's lemma. Since $M(k) \subseteq L(k_{\infty})$ from Proposition 1, we have $L(k_{\infty}) \neq k_{\infty}$.

Now we shall give a proof of Theorem 1.

PROOF OF THEOREM 1. Let $X = \operatorname{Gal}(L(k_{\infty})/k_{\infty})$, $Y = \operatorname{Gal}(L(k_{\infty})/k_{\infty}L(k)) \subseteq X$ and $v_n = (\gamma^{p^n} - 1)/(\gamma - 1) \in \mathbb{Z}_p[\![\Gamma]\!]$ for $n \ge 0$, where $\Gamma = \operatorname{Gal}(k_{\infty}/k)$ and γ is a fixed topological generator of Γ . It is known that X is a finitely generated $\mathbb{Z}_p[\![\Gamma]\!]$ -module and $\operatorname{Gal}(L(k_n)/k_n) \simeq X/v_n Y$ for all $n \ge 0$ (cf. [4, Theorems 5 and 6]). So (ii) \Rightarrow (i) is obvious. By Nakayama's lemma, (i) implies $X/v_n X \ne 0$ for all $n \ge 1$. Hence we see that (i) \Rightarrow (ii). To show (i) \Rightarrow (iii), we recall the following. We denote by k_{∞}^c/k the cyclotomic

 Z_p -extension, and we fix a topological generator γ_0 of $\operatorname{Gal}(k_\infty^c/k)$. Let $\kappa \in 1+pZ_p$ be the number such that $\zeta^{\tilde{\gamma}_0} = \zeta^{\kappa}$ for any p-power-th root of unity ζ , where $\tilde{\gamma}_0$ is the image of γ_0 under the natural isomorphism $\operatorname{Gal}(k_\infty^c/k) \simeq \operatorname{Gal}(k_\infty^c(\zeta_p)/k(\zeta_p))$, ζ_p being a primitive p-th root of unity. Since p is unramified in k/Q, we have $v_p(\kappa-1)=v_p(p)$, where v_p stands for the p-adic valuation. It is known that there exists a power series $F(T) \in Z_p[T]$ such that $\zeta_p(s,k) = F(\kappa^s-1)/(\kappa^s-\kappa)$ for $s \in Z_p$ (cf. [1]). Iwasawa's main conjecture proved by Wiles [8] asserts that $F(\kappa(1+T)^{-1}-1) \in Z_p[T]$ is a generator of the characteristic ideal of the finitely generated torsion $Z_p[T]$ -module $\operatorname{Gal}(M(k_\infty^c)/k_\infty^c)$, where we identify $Z_p[\operatorname{Gal}(k_\infty^c/k)]$ with $Z_p[T]$ by sending γ_0-1 to T as usual (cf. [7, Theorem 7.1]).

Now we shall prove (i) \Leftrightarrow (iii). From Corollary 1 we obtain (i) \Leftrightarrow Gal $(M(k_{\infty})/k_{\infty}) \neq 0$. First we assume that Leopoldt's conjecture is valid for k and p. Then k_{∞}/k must be the cyclotomic Z_p -extension k_{∞}^c/k . Since Gal $(M(k_{\infty}^c)/k_{\infty}^c)$ has no non-trivial finite $Z_p[\Gamma]$ -submodule (cf. [3]), we find from Iwasawa's main conjecture that Gal $(M(k_{\infty}^c)/k_{\infty}^c) = 0$ is equivalent to $F(\kappa(1+T)^{-1}-1) \in Z_p[\Gamma]^{\times}$. This in turn is equivalent to $F(0) = (1-\kappa)\zeta_p(0,k) \in Z_p^{\times}$. Thus we have proved (i) \Leftrightarrow (iii) under the validity of Leopoldt's conjecture for k and p. If Leopoldt's conjecture is not valid for k and k, Gal $(M(k)/k_{\infty})$ is infinite, hence especially Gal $(M(k_{\infty})/k_{\infty}) \neq 0$. Thus statement (i) holds in this case by Corollary 1. On the other hand, since Gal $(M(k_{\infty}^c)/k_{\infty}^c)$ is also infinite, $F(\kappa(1+T)^{-1}-1)$ is not a unit in $Z_p[\Gamma]$ by Iwasawa's main conjecture. Hence $(1-\kappa)\zeta_p(0,k) \equiv 0 \pmod{p}$ as in the above argument, namely, statement (iii) holds. This completes the proof of Theorem 1.

REMARK 1. In the case of $k = Q(\zeta_q + \zeta_q^{-1})$ where q is an odd prime satisfying $p \equiv 1 \pmod{q}$, Kim [5, Theorem 2] proved "(iii) \Rightarrow (ii)" part of the above Theorem 1. (Note that $p\zeta_p(0,k) \equiv \pm \prod_{1 \neq \chi \in \operatorname{Gal}(k/\mathbb{Q})^{\wedge}} B_{1,\chi\omega^{-1}} \pmod{p}$ in this case, where ω is the Teichmüller character for p.) His method of proof is different from ours and based on the theory of cyclotomic units.

To prove Theorems 2 and 3, we need the following proposition which may be of interest by itself:

PROPOSITION 2. Let k and k_{∞}/k be as in Theorem 1. We assume that Leopoldt's conjecture is valid for k and p. Then

$$\operatorname{Gal}(M(k_{\infty})/L(k_{\infty}))_{\Gamma} \simeq \operatorname{Gal}(L(k_{\infty})/k_{\infty})^{\Gamma} = (\operatorname{Gal}(L(k_{\infty})/k_{\infty})_{\text{finite}})^{\Gamma},$$

where $\Gamma = \operatorname{Gal}(k_{\infty}/k)$ and $\operatorname{Gal}(L(k_{\infty})/k_{\infty})_{\text{finite}}$ is the maximal finite $\mathbf{Z}_p[\![\Gamma]\!]$ -submodule of $\operatorname{Gal}(L(k_{\infty})/k_{\infty})$.

PROOF. From the exact sequence

$$0 \longrightarrow \operatorname{Gal}(M(k_{\infty})/L(k_{\infty})) \longrightarrow \operatorname{Gal}(M(k_{\infty})/k_{\infty}) \longrightarrow \operatorname{Gal}(L(k_{\infty})/k_{\infty}) \longrightarrow 0$$

we get the exact sequence

434 M. OZAKI

$$\operatorname{Gal}(M(k_{\infty})/k_{\infty})^{\Gamma} \longrightarrow \operatorname{Gal}(L(k_{\infty})/k_{\infty})^{\Gamma} \longrightarrow \operatorname{Gal}(M(k_{\infty})/L(k_{\infty}))_{\Gamma}$$

$$\longrightarrow \operatorname{Gal}(M(k_{\infty})/k_{\infty})_{\Gamma} \xrightarrow{f} \operatorname{Gal}(L(k_{\infty})/k_{\infty})_{\Gamma} \longrightarrow 0.$$

Let $L(k_{\infty})^{ab}$ be the maximal abelian extension field over k which is contained in $L(k_{\infty})$. Then $\operatorname{Gal}(L(k_{\infty})^{ab}/k_{\infty}) \simeq \operatorname{Gal}(L(k_{\infty})/k_{\infty})_{\Gamma}$. By Proposition 1, we have $L(k_{\infty})^{ab} = M(k)$. Since $\operatorname{Gal}(M(k)/k_{\infty}) \simeq \operatorname{Gal}(M(k_{\infty})/k_{\infty})_{\Gamma}$, the homomorphism f in the above exact sequence is an isomorphism. On the other hand, it follows from the validity of Leopoldt's conjecture for k and p that $\operatorname{Gal}(M(k)/k_{\infty}) \simeq \operatorname{Gal}(M(k_{\infty})/k_{\infty})_{\Gamma}$ is finite, and hence a generator of the characteristic ideal of the $\mathbf{Z}_p[\![\Gamma]\!]$ -module $\operatorname{Gal}(M(k_{\infty})/k_{\infty})$ is prime to $\gamma-1$. Therefore $\operatorname{Gal}(M(k_{\infty})/k_{\infty})^{\Gamma}=0$ since $\operatorname{Gal}(M(k_{\infty})/k_{\infty})$ has no non-trivial finite $\mathbf{Z}_p[\![\Gamma]\!]$ -submodule (cf. [3]). Thus we have

$$\operatorname{Gal}(M(k_{\infty})/L(k_{\infty}))_{\Gamma} \simeq \operatorname{Gal}(L(k_{\infty})/k_{\infty})^{\Gamma}$$
.

Since a generator of the characteristic ideal of the $Z_p[\![\Gamma]\!]$ -module $\operatorname{Gal}(L(k_\infty)/k_\infty)$ is prime to $\gamma-1$ for the same reason for $\operatorname{Gal}(M(k_\infty)/k_\infty)$, we obtain

$$(\operatorname{Gal}(L(k_{\infty})/k_{\infty})/\operatorname{Gal}(L(k_{\infty})/k_{\infty})_{\text{finite}})^{\Gamma} = 0$$
.

Hence
$$\operatorname{Gal}(L(k_{\infty})/k_{\infty})^{\Gamma} = (\operatorname{Gal}(L(k_{\infty})/k_{\infty})_{\operatorname{finite}})^{\Gamma}$$
.

PROOF OF THEOREM 2. Let X and Y be as in the proof of Theorem 1. We first note that every ideal class of k_n which capitulates in k_∞ is contained in the p-Sylow subgroup of the ideal class group of k_n . From [6, Corollary], (ii) is equivalent to $X_{\text{finite}} \neq 0$ which in turn is equivalent to $(X_{\text{finite}})^{\Gamma} \neq 0$. Hence we have (ii) \Leftrightarrow (iii) by Proposition 2 and Nakayama's lemma. Furthermore, the subgroup of the ideal class group of k_1 consisting of all ideal classes which capitulate in k_∞ is isomorphic to $\text{Im}(X_{\text{finite}} \to X/v_1 Y)$ by [6, Proposition]. As in the proof of [6, Proposition], the multiplication-by- v_1 map $X/X_{\text{finite}} \stackrel{v_1}{\longrightarrow} X/X_{\text{finite}}$ is injective. Hence we see that the natural map $X_{\text{finite}}/v_1 X_{\text{finite}} \to X/v_1 X$ is injective. Therefore if no ideals in k_1 capitulate in k_∞ , namely $X_{\text{finite}} \subseteq v_1 Y \subseteq v_1 X$, then $X_{\text{finite}}/v_1 X_{\text{finite}} = 0$, which is equivalent to $X_{\text{finite}} = 0$ by Nakayama's lemma. Thus we have (ii) \Rightarrow (i). Since (i) \Rightarrow (ii) is obvious, this conclude the proof of Theorem 2.

PROOF OF THEOREM 3. Let A_n be the p-Sylow subgroup of the ideal class group of k_n . Then $X = \operatorname{Gal}(L(k_\infty)/k_\infty) \simeq \operatorname{proj}\lim A_n$, where the projective limit is taken with respect to the norm maps. Since X is cyclic over \mathbb{Z}_p , we have $\operatorname{Gal}(M(k_\infty)/L(k_\infty)) \neq 0$ by the assumption $\lambda^* \geq 2$. Hence $X_{\text{finite}} \neq 0$ by Proposition 2. If X is infinite, then $X \simeq \mathbb{Z}_p$, a contradiction to $X_{\text{finite}} \neq 0$. Therefore X is finite, namely, the Iwasawa λ - and μ -invariants of k_∞/k vanish.

REMARK 2. The cyclicity of A_2 guarantees the cyclicity of all A_n (cf. [2, Theorem 1(2)]). If k is a real abelian number field, one knows λ^* by computing the Iwasawa

power series attached to the Kubota-Leopoldt p-adic L-function. Therefore one can effectively verify whether the assumptions of Theorem 3 hold, at least, for real abelian number fields.

REFERENCES

- [1] J. Coates, p-adic L-functions and Iwasawa's theory, Algebraic Number Fields (Durham Symposium, 1975; ed. by A. Fröhlich), 269–353. Academic Press, London, 1977.
- [2] T. FUKUDA, Remarks on Z_p -extensions of number fields, Proc. Japan Acad. 70A (1994), 264–266.
- [3] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99.
- [4] K. Iwasawa, On Z₁-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
- [5] J. M. Kim, Class numbers of certain real abelian fields, Acta. Arith. 72 (1995), 335-345.
- [6] M. Ozaki, A note on the capitulation in Z_p -extensions, Proc. Japan Acad. 71A (1995), 218–219.
- [7] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, New York-Berlin, 1982.
- [8] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493-540.

Department of Information and Computer Sciences Waseda University 4–1, Ohkubo 3-chome, Shinjuku-ku Tokyo 169 Japan