THE CLASS GROUP OF \boldsymbol{Z}_{p}-EXTENSIONS OVER TOTALLY REAL NUMBER FIELDS

Manabu Ozaki

(Received March 6, 1996, revised September 2, 1996)

Abstract

Let p be an odd prime. We shall give a criterion for p-divisibility of the class number of the n-th layer of a \boldsymbol{Z}_{p}-extension over a certain totally real number field by means of the value of the p-adic zeta function. We shall also discuss the capitulation in such a \boldsymbol{Z}_{p}-extension and a sufficient condition for the Iwasawa λ - and μ-invariants of it to vanish.

1. Introduction. Let p be an odd prime, and k a totally real number field. For any \boldsymbol{Z}_{p}-extension k_{∞} / k, we denote by k_{n} the n-th layer of k_{∞} / k.

In the present paper, we shall prove the following:
Theorem 1. Let k and p be as above, and k_{∞} / k a Z_{p}-extension in which the primes lying above p are totally ramified. We assume that the prime p splits completely in k. Then the following three statements are equivalent:
(i) $\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right) \neq 0$,
(ii) The class number of k_{n} is divisible by p for all $n \geq 1$,
(iii) $p \zeta_{p}(0, k) \equiv 0(\bmod p)$,
where $L\left(k_{\infty}\right) / k_{\infty}$ is the maximal unramified pro-p abelian extension and $\zeta_{p}(s, k)$ is the p-adic zeta function of k.

One can regard the above theorem as a "totally real" analogue of classical Kummer's criterion for p-divisibility of the class number of the p-th cyclotomic field.

We shall also prove the following two theorems as an application of the argument in the proof of Theorem 1:

Theorem 2. Let p and k_{∞} / k be as in Theorem 1. Furthermore, we assume that Leopoldt's conjecture is valid for k and p. Then the following three statements are equivalent:
(i) The capitulation of ideals occurs in k_{∞} / k_{1},
(ii) The capitulation of ideals occurs in k_{∞} / k_{n} for some $n \geq 0$,
(iii) $M\left(k_{\infty}\right) \neq L\left(k_{\infty}\right)$.

Here $M\left(k_{\infty}\right)$ is the maximal pro-p abelian extension field of k_{∞} unramified outside p.
Theorem 3. Let p and k_{∞} / k be as in Theorem 2. We assume that the p-Sylow

[^0]subgroup of the ideal class group of k_{n} is cyclic for all $n \geq 0$, and that $\lambda^{*}:=$ $\operatorname{rank}_{\boldsymbol{z}_{p}} \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right) \geq 2$. Then the Iwasawa λ - and μ-invariants of k_{∞} / k vanish.

We shall prove the above theorems in the next section.
2. Proof of the Theorems. We fix an odd prime p once and for all. We shall use the following notation.

For a field $F \subseteq \bar{Q}$, we write $L(F)$ and $M(F)$ for the maximal unramified pro- p abelian extension field of F and the maximal pro- p abelian extension field of F unramified outside p, respectively. We denote by M^{G} and M_{G} the maximal submodule and the maximal quotient module of M on which G acts trivially, respectively, for any group G and a G-module M.

The following proposition is the keystone of the present paper:
Proposition 1. Let k be a number field and k_{∞} / k a Z_{p}-extension in which every prime of k above p is ramified. We assume that the prime p is completely decomposed in k. Then $M(k)$ is the maximal subfield of $L\left(k_{\infty}\right)$ which is an abelian extension over k.

Proof. We denote by $I_{\mathfrak{p}} \subseteq \operatorname{Gal}(M(k) / k)$ the inertia group for a prime \mathfrak{p} of k above p. It follows from the assumption of the proposition that the pro- p part of the local unit group of $k_{\mathfrak{p}}$ is isomorphic to \boldsymbol{Z}_{p} where $k_{\mathfrak{p}}$ stands for the completion of k at \mathfrak{p}. Hence by class field theory $I_{\mathfrak{p}}$ is isomorphic to a quotient group of \boldsymbol{Z}_{p}. Since \mathfrak{p} is infinitely ramified in $k_{\infty} \subseteq M(k)$, we see that $I_{p} \simeq Z_{p}$, and that $I_{p} \cap \operatorname{Gal}\left(M(k) / k_{\infty}\right)=0$. This equality implies that the primes of k_{∞} above \mathfrak{p} are unramified in $M(k)$. Therefore $M(k) / k_{\infty}$ is an unramified extension, and $M(k) \subseteq L\left(k_{\infty}\right)$.

Corollary 1. Let k and k_{∞} be as in Proposition 1. Then the following two statements are equivalent:
(i) $M\left(k_{\infty}\right) \neq k_{\infty}$,
(ii) $L\left(k_{\infty}\right) \neq k_{\infty}$.

Proof. (ii) \Rightarrow (i) is obvious. We assume that $M\left(k_{\infty}\right) \neq k_{\infty}$. It is known that $\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)$ is a finitely generated $\boldsymbol{Z}_{\boldsymbol{p}} \llbracket \Gamma \rrbracket$-module, where $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$ (cf. [4, Theorem 4]). Since $\operatorname{Gal}\left(M(k) / k_{\infty}\right) \simeq \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)_{\Gamma}=\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right) /(\gamma-1) \operatorname{Gal}\left(M\left(k_{\infty}\right) /\right.$ k_{∞}), where γ is a topological generator of Γ, we have $M(k) \neq k_{\infty}$ by Nakayama's lemma. Since $M(k) \subseteq L\left(k_{\infty}\right)$ from Proposition 1, we have $L\left(k_{\infty}\right) \neq k_{\infty}$.

Now we shall give a proof of Theorem 1.
Proof of Theorem 1. Let $X=\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right), Y=\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty} L(k)\right) \subseteq X$ and $v_{n}=\left(\gamma^{p^{n}}-1\right) /(\gamma-1) \in Z_{p} \llbracket \Gamma \rrbracket$ for $n \geq 0$, where $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$ and γ is a fixed topological generator of Γ. It is known that X is a finitely generated $Z_{p}\lfloor\Gamma \rrbracket$-module and $\operatorname{Gal}\left(L\left(k_{n}\right) / k_{n}\right) \simeq X / v_{n} Y$ for all $n \geq 0$ (cf. [4, Theorems 5 and 6]). So (ii) $\Rightarrow(\mathrm{i})$ is obvious. By Nakayama's lemma, (i) implies $X / v_{n} X \neq 0$ for all $n \geq 1$. Hence we see that (i) \Rightarrow (ii).

To show (i) \Leftrightarrow (iii), we recall the following. We denote by k_{∞}^{c} / k the cyclotomic
\boldsymbol{Z}_{p}-extension, and we fix a topological generator γ_{0} of $\operatorname{Gal}\left(\boldsymbol{k}_{\infty}^{c} / k\right)$. Let $\kappa \in 1+p \boldsymbol{Z}_{\boldsymbol{p}}$ be the number such that $\zeta^{\tilde{\gamma_{0}}}=\zeta^{\kappa}$ for any p-power-th root of unity ζ, where $\tilde{\gamma}_{0}$ is the image of γ_{0} under the natural isomorphism $\operatorname{Gal}\left(k_{\infty}^{c} / k\right) \simeq \operatorname{Gal}\left(k_{\infty}^{c}\left(\zeta_{p}\right) / k\left(\zeta_{p}\right)\right)$, ζ_{p} being a primitive p-th root of unity. Since p is unramified in k / \boldsymbol{Q}, we have $v_{p}(\kappa-1)=v_{p}(p)$, where v_{p} stands for the p-adic valuation. It is known that there exists a power series $F(T) \in \boldsymbol{Z}_{p} \llbracket T \rrbracket$ such that $\zeta_{p}(s, k)=F\left(\kappa^{s}-1\right) /\left(\kappa^{s}-\kappa\right)$ for $s \in Z_{p}$ (cf. [1]). Iwasawa's main conjecture proved by Wiles [8] asserts that $F\left(\kappa(1+T)^{-1}-1\right) \in Z_{p} \llbracket T \rrbracket$ is a generator of the characteristic ideal of the finitely generated torsion $\boldsymbol{Z}_{p}[T]$-module $\operatorname{Gal}\left(M\left(k_{\infty}^{c}\right) / k_{\infty}^{c}\right)$, where we identify $\boldsymbol{Z}_{p} \llbracket \operatorname{Gal}\left(k_{\infty}^{c} / k\right) \rrbracket$ with $\boldsymbol{Z}_{p} \llbracket T \rrbracket$ by sending $\gamma_{0}-1$ to T as usual (cf. [7, Theorem 7.1]).

Now we shall prove (i) \Leftrightarrow (iii). From Corollary 1 we obtain (i) $\Leftrightarrow \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right) \neq 0$. First we assume that Leopoldt's conjecture is valid for k and p. Then k_{∞} / k must be the cyclotomic \boldsymbol{Z}_{p}-extension k_{∞}^{c} / k. Since $\operatorname{Gal}\left(M\left(k_{\infty}^{c}\right) / k_{\infty}^{c}\right)$ has no non-trivial finite $\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$ submodule (cf. [3]), we find from Iwasawa's main conjecture that $\operatorname{Gal}\left(M\left(k_{\infty}^{c}\right) / k_{\infty}^{c}\right)=$ 0 is equivalent to $F\left(\kappa(1+T)^{-1}-1\right) \in Z_{p} \llbracket T \rrbracket^{\times}$. This in turn is equivalent to $F(0)=$ $(1-\kappa) \zeta_{p}(0, k) \in \boldsymbol{Z}_{p}^{\times}$. Thus we have proved (i) \Leftrightarrow (iii) under the validity of Leopoldt's conjecture for k and p. If Leopoldt's conjecture is not valid for k and $p, \operatorname{Gal}\left(M(k) / k_{\infty}\right)$ is infinite, hence especially $\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right) \neq 0$. Thus statement (i) holds in this case by Corollary 1. On the other hand, since $\operatorname{Gal}\left(M\left(k_{\infty}^{c}\right) / k_{\infty}^{c}\right)$ is also infinite, $F\left(\kappa(1+T)^{-1}-1\right)$ is not a unit in $\boldsymbol{Z}_{p} \llbracket T \rrbracket$ by Iwasawa's main conjecture. Hence $(1-\kappa) \zeta_{p}(0, k) \equiv 0(\bmod p)$ as in the above argument, namely, statement (iii) holds. This completes the proof of Theorem 1 .

Remark 1. In the case of $k=\boldsymbol{Q}\left(\zeta_{q}+\zeta_{q}^{-1}\right)$ where q is an odd prime satisfying $p \equiv 1$ $(\bmod q)$, Kim [5, Theorem 2] proved "(iii) \Rightarrow (ii)" part of the above Theorem 1. (Note that $p \zeta_{p}(0, k) \equiv \pm \prod_{1 \neq \chi \in \operatorname{Gal}(k / \mathbf{Q})^{\wedge}} B_{1, \chi \omega^{-1}}(\bmod p)$ in this case, where ω is the Teichmüller character for p.) His method of proof is different from ours and based on the theory of cyclotomic units.

To prove Theorems 2 and 3, we need the following proposition which may be of interest by itself:

Proposition 2. Let k and k_{∞} / k be as in Theorem 1. We assume that Leopoldt's conjecture is valid for k and p. Then

$$
\operatorname{Gal}\left(M\left(k_{\infty}\right) / L\left(k_{\infty}\right)\right)_{\Gamma} \simeq \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)^{\Gamma}=\left(\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)_{\mathrm{finite}}\right)^{\Gamma},
$$

where $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$ and $\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)_{\text {finite }}$ is the maximal finite $\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$-submodule of $\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)$.

Proof. From the exact sequence

$$
0 \longrightarrow \operatorname{Gal}\left(M\left(k_{\infty}\right) / L\left(k_{\infty}\right)\right) \longrightarrow \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right) \longrightarrow \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right) \longrightarrow 0,
$$

we get the exact sequence

$$
\begin{aligned}
\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)^{\Gamma} \longrightarrow & \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)^{\Gamma} \longrightarrow \operatorname{Gal}\left(M\left(k_{\infty}\right) / L\left(k_{\infty}\right)\right)_{\Gamma} \\
\longrightarrow & \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)_{\Gamma} \xrightarrow{f} \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)_{\Gamma} \longrightarrow 0 .
\end{aligned}
$$

Let $L\left(k_{\infty}\right)^{\text {ab }}$ be the maximal abelian extension field over k which is contained in $L\left(k_{\infty}\right)$. Then $\operatorname{Gal}\left(L\left(k_{\infty}\right)^{\mathrm{ab}} / k_{\infty}\right) \simeq \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)_{\Gamma}$. By Proposition 1, we have $L\left(k_{\infty}\right)^{\mathrm{ab}}=M(k)$. Since $\operatorname{Gal}\left(M(k) / k_{\infty}\right) \simeq \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)_{\Gamma}$, the homomorphism f in the above exact sequence is an isomorphism. On the other hand, it follows from the validity of Leopoldt's conjecture for k and p that $\operatorname{Gal}\left(M(k) / k_{\infty}\right) \simeq \operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)_{\Gamma}$ is finite, and hence a generator of the characteristic ideal of the $\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$-module $\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)$ is prime to $\gamma-1$. Therefore $\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)^{\Gamma}=0$ since $\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)$ has no non-trivial finite $\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$-submodule (cf. [3]). Thus we have

$$
\operatorname{Gal}\left(M\left(k_{\infty}\right) / L\left(k_{\infty}\right)\right)_{\Gamma} \simeq \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)^{\Gamma} .
$$

Since a generator of the characteristic ideal of the $Z_{p} \llbracket \Gamma \rrbracket$-module $\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)$ is prime to $\gamma-1$ for the same reason for $\operatorname{Gal}\left(M\left(k_{\infty}\right) / k_{\infty}\right)$, we obtain

$$
\left(\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right) / \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)_{\mathrm{finite}}\right)^{T}=0 .
$$

Hence $\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)^{\Gamma}=\left(\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)_{\text {finite }}\right)^{\Gamma}$.
Proof of Theorem 2. Let X and Y be as in the proof of Theorem 1. We first note that every ideal class of k_{n} which capitulates in k_{∞} is contained in the p-Sylow subgroup of the ideal class group of k_{n}. From [6, Corollary], (ii) is equivalent to $X_{\text {finite }} \neq 0$ which in turn is equivalent to $\left(X_{\text {finite }}\right)^{\Gamma} \neq 0$. Hence we have (ii) \Leftrightarrow (iii) by Proposition 2 and Nakayama's lemma. Furthermore, the subgroup of the ideal class group of k_{1} consisting of all ideal classes which capitulate in k_{∞} is isomorphic to $\operatorname{Im}\left(X_{\text {finite }} \rightarrow X / v_{1} Y\right)$ by [6, Proposition]. As in the proof of [6, Proposition], the multiplication-by- $v_{1} \operatorname{map} X / X_{\text {finite }} \xrightarrow{v_{1}} X / X_{\text {finite }}$ is injective. Hence we see that the natural $\operatorname{map} X_{\text {finite }} / v_{1} X_{\text {finite }} \rightarrow X / v_{1} X$ is injective. Therefore if no ideals in k_{1} capitulate in k_{∞}, namely $X_{\text {finite }} \subseteq v_{1} Y \subseteq v_{1} X$, then $X_{\text {finite }} / v_{1} X_{\text {finite }}=0$, which is equivalent to $X_{\text {finite }}=0$ by Nakayama's lemma. Thus we have (ii) \Rightarrow (i). Since (i) \Rightarrow (ii) is obvious, this conclude the proof of Theorem 2.

Proof of Theorem 3. Let A_{n} be the p-Sylow subgroup of the ideal class group of k_{n}. Then $X=\operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right) \simeq \operatorname{proj} \lim A_{n}$, where the projective limit is taken with respect to the norm maps. Since X is cyclic over Z_{p}, we have $\operatorname{Gal}\left(M\left(k_{\infty}\right) / L\left(k_{\infty}\right)\right) \neq 0$ by the assumption $\lambda^{*} \geq 2$. Hence $X_{\text {finite }} \neq 0$ by Proposition 2. If X is infinite, then $X \simeq Z_{p}$, a contradiction to $X_{\text {finite }} \neq 0$. Therefore X is finite, namely, the Iwasawa λ - and μ-invariants of k_{∞} / k vanish.

Remark 2. The cyclicity of A_{2} guarantees the cyclicity of all A_{n} (cf. [2, Theorem 1(2)]). If k is a real abelian number field, one knows λ^{*} by computing the Iwasawa
power series attached to the Kubota-Leopoldt p-adic L-function. Therefore one can effectively verify whether the assumptions of Theorem 3 hold, at least, for real abelian number fields.

References

[1] J. Coates, p-adic L-functions and Iwasawa's theory, Algebraic Number Fields (Durham Symposium, 1975; ed. by A. Fröhlich), 269-353. Academic Press, London, 1977.
[2] T. Fukuda, Remarks on \boldsymbol{Z}_{p}-extensions of number fields, Proc. Japan Acad. 70A (1994), 264-266.
[3] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99.
[4] K. Iwasawa, On \boldsymbol{Z}_{l}-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[5] J. M. Kim, Class numbers of certain real abelian fields, Acta. Arith. 72 (1995), 335-345.
[6] M. Ozaki, A note on the capitulation in \boldsymbol{Z}_{p}-extensions, Proc. Japan Acad. 71A (1995), 218-219.
[7] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, New York-Berlin, 1982.
[8] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493-540.
Department of Information and Computer Sciences
Waseda University
4-1, Ohkubo 3-chome, Shinjuku-ku
Tokyo 169
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 11R23.

