CERTAIN ALGEBRAIC SURFACES OF GENERAL TYPE WITH IRREGULARITY ONE AND THEIR CANONICAL MAPPINGS

Tomokuni Takahashi
(Received October 8, 1996, revised May 12, 1997)

Abstract

In this paper, we show the existence of certain algebraic surfaces of general type with irregularity one, and investigate the canonical mappings of these surfaces. Such a surface has a pencil of non-hyperelliptic curves of genus 3 over an elliptic curve, and is obtained as the minimal resolution of a relative quartic hypersurface with at most rational double points as singularities, of the projective plane bundle over an elliptic curve. We use some results on locally free sheaves over elliptic curves by Atiyah and Oda to prove the existence.

1. Introduction. Let S be a minimal nonsingular projective surface defined over C. S is said to be canonical if the rational mapping $\Phi_{\left|K_{s}\right|}$ defined by the canonical linear system $\left|K_{S}\right|$ is birational.

In this paper, we show for all values of $p_{g}(S) \geq 2$ the existence of minimal algebraic surfaces of general type with $K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$, and study their canonical mappings. Note that the case $p_{g}(S)=1$ was studied by Catanese and Ciliberto [7].
(I) (Castelnuovo-Horikawa's inequality, cf. [5, Théorème 5.5], [12, Lemma 1.1]). If S is a canonical surface, then

$$
K_{S}^{2} \geq 3 p_{g}(S)-7
$$

(II) Castelnuovo obtained canonical surfaces with $K_{S}^{2}=3 p_{g}(S)-7$ (cf. [6]). Such a surface S satisfies $q(S)=0$, and with a few exceptions S is birational to a relative quartic hypersurface of a \boldsymbol{P}^{2}-bundle over \boldsymbol{P}^{1} which has at most rational double points as singularities.

In general, a nonsingular relative quartic hypersurface in a \boldsymbol{P}^{2}-bundle over a nonsingular curve C of genus b satisfies

$$
K_{S}^{2}=3 p_{g}(S)+7(b-1), \quad q(S)=b .
$$

We may ask whether a canonical surface S satisfying these equalities is obtained as the minimal resolution of a relative quartic hypersurface with at most rational double points, of a \boldsymbol{P}^{2}-bundle over a nonsingular curve C of genus b. Konno [15, Lemma 3.1, Theorem 3.2] proved that it is the case if $b=1$. Namely, if S is a canonical surface satisfying $K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$, then S is the minimal resolution of a relative quartic

[^0]hypersurface in a \boldsymbol{P}^{2}-boundle over an elliptic curve.
More precisely, S has a pencil $f: S \rightarrow C=\operatorname{Alb}(S)$ whose general fiber is a non-hyperelliptic curve of genus 3 . Hence, the direct image $f_{*} \omega_{S / C}$ of the relative dualizing sheaf $\omega_{S / C}:=\omega_{S} \otimes f^{*} \omega_{C}^{-1}$ is a locally free sheaf of rank 3 over C. If we let π : $W:=\boldsymbol{P}\left(f_{*} \omega_{S / C}\right) \rightarrow C$ to be the \boldsymbol{P}^{2}-bundle associated to $f_{*} \omega_{S / C}, T \in \operatorname{Pic}(W)$ a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong f_{*} \omega_{S / C}$, and $D \in \operatorname{Pic}(C)$ a divisor with $\mathscr{O}_{C}(D) \cong \operatorname{det} f_{*} \omega_{S / C}$, then there exists a member $S^{\prime} \in\left|4 T-\pi^{*} D\right|$ which has at most rational double points as singularities, and S is the minimal resolution of S^{\prime} (cf. [15]).

Not all the irreducible relative quartic hypersurfaces in the \boldsymbol{P}^{2}-bundles over elliptic curves which have at most rational double points as singularities have canonical surfaces as the minimal resolutions of singularities. For example, we have the possibilities $p_{g}(S)=1,2,3$, and S is not canonical in these cases.

In this paper, we study whether a complete linear system of $\mathcal{O}_{W}(4 T) \otimes \pi^{*} \operatorname{det} E^{\vee}$ has members which have at most rational double points as singularities for every locally free sheaf E of rank three over an elliptic curve C, where $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ is the \boldsymbol{P}^{2}-bundle associated to E and T is a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$. In particular, we check for all values of $p_{g}(S) \geq 2$ the existence of minimal algebraic surfaces of general type satisfying $K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$. We then study their canonical mappings $\Phi_{\left|K_{s}\right|}$ including the cases $p_{g}(S) \leq 3$.

We obtain the following results on the existence of minimal algebraic surfaces with $K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$, using the results about vector bundles over an elliptic curve C by Atiyah [4] and Oda [19].
(1) The case where $f_{*} \omega_{S / C}$ is isomorphic to the direct sum of three invertible sheaves over C (§3.1): $p_{g}(S) \geq 3$ is necessary, and conversely, for every integer $N \geq 3$, there exists minimal algebraic surfaces of general type with $p_{g}(S)=N, K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$. (See Theorem 3.1.)
(2) The case where $f_{*} \omega_{S / C}$ is isomorphic to the direct sum of an invertible sheaf and an indecomposable locally free sheaf of rank 2 over $C(\S 3.2): p_{g}(S) \geq 2$ is necessary, and conversely, for every integer $N \geq 2$, there exist minimal algebraic surfaces of general type with $p_{g}(S)=N, K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$. (See Theorems 3.9 and 3.10.)
(3) The case where $f_{*} \omega_{S / C}$ is indecomposable (§3.3): $p_{g}(S) \geq 2$ is necessary, and conversely, for every integer $N \geq 2$, there exist minimal algebraic surfaces of general type with $p_{g}(S)=N, K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$. (See Theorem 3.19.)

As for the canonical mappings of the above surfaces, we obtain the following results:
(1) In the case where $f_{*} \omega_{S / C}$ is the direct sum of three invertible sheaves, if $p_{g}(S) \geq 6$ holds, then $\Phi_{\left|K_{s}\right|}$ is always birational onto its image with the exception of only one case $f_{*} \omega_{S / C} \cong L_{0}^{\oplus 3}$ where L_{0} is an invertible sheaf of degree 2 over C.

If $p_{g}(S)=5$ and if $f_{*} \omega_{S / C}$ is not some special locally free sheaf, then $\Phi_{\left|K_{S}\right|}$ is always birational onto its image, too.

If $p_{g}(S)=5$ and $f_{*} \omega_{S / C}$ is some special locally free sheaf, or if $p_{g}(S)=4$, then $\Phi_{\left|K_{s}\right|}$ is birational onto its image in most cases. Although there is a possibility of the existence
of a surface whose canonical mapping is not birational onto its image, we have not obtained an example of such a surface.

If $p_{g}(S)=3$, then $\Phi_{\left|K_{s}\right|}$ is a generically finite mapping onto the projective plane whose degree varies according to the isomorphism class of $f_{*} \omega_{S / C}$. In most cases, the degree of the canonical mapping is 6,8 or 9 .
(2) In the case where $f_{*} \omega_{S / C}$ is the direct sum of an invertible sheaf and an indecomposable locally free sheaf of rank 2 , if $p_{g}(S) \geq 5$ holds, then $\Phi_{\left|K_{s}\right|}$ is always birational onto its image.

If $p_{g}(S)=4$, then $\Phi_{\left|K_{s}\right|}$ is birational onto its image in most cases. Although there is a possibility of the existence of a surface whose canonical mapping is not birational onto its image, we have not obtained an example of such a surface.

If $p_{g}(S)=3$, then $\Phi_{\left|K_{s}\right|}$ is a generically finite mapping onto the projective plane whose degree varies according to the isomorphism class of $f_{*} \omega_{s / C}$. In most cases, the degree of the canonical mapping is 4,8 or 9 .

If $p_{g}(S)=2$, then $\left|K_{S}\right|$ is a linear pencil and the genus of a general member is 7 .
(3) In the case where $f_{*} \omega_{S / C}$ is indecomposable, if $p_{g}(S) \geq 5$ holds, then $\Phi_{\left|K_{s}\right|}$ is always holomorphic and birational onto its image.

If $p_{g}(S)=4$, then $\Phi_{\left|K_{s}\right|}$ is birational onto its image in most cases. Although there is a possibility of the existence of a surface whose canonical mapping is not birational onto its image, we have not obtained an example of such a surface.

If $p_{g}(S)=3$, then $\Phi_{\left|K_{s}\right|}$ is a generically finite mapping of degree 8 onto the projective plane in most cases.

If $p_{g}(S)=2$, then $\left|K_{S}\right|$ is a linear pencil and the genus of a general member is 7 .
We obtain some examples of canonical surfaces whose canonical mappings are not holomorphic. Such surfaces do not appear in the cases treated by Ashikaga [2] and Konno [16].

This paper is a revised version of the author's thesis [22].
Acknowledgement. The author would like to thank Professor Tadao Oda for constant encouragement and advice. Thanks are also due to Professors Tadashi Ashikaga and Kazuhiro Konno who suggested the problem to the author and provided valuable information over the years. The author is grateful to the refree for valuable comments and suggestions.
2. Preliminaries. Let us mention some results which we need later.

Theorem 2.1 (cf. Konno [15, Corollary 6.4]). If S is a canonical surface with $q(S)=1$ and $K_{S}^{2} \leq(10 / 3) \chi\left(\mathcal{O}_{S}\right)$, then a general fiber of the Albanese mapping f : $S \rightarrow C:=\operatorname{Alb}(S)$ is a nonsingular curve of genus 3 .

Theorem 2.2 (cf. Konno [15, Lemma 3.1, and Theorem 3.2]). Let $f: S \rightarrow C$ be a relatively minimal non-hyperelliptic fibration of genus 3 , where S is a nonsingular surface,
and C is a nonsingular curve of genus b. Then

$$
\begin{equation*}
K_{S}^{2} \geq 3 \chi\left(\Theta_{S}\right)+10(b-1) \tag{*}
\end{equation*}
$$

Let $\pi: W:=\boldsymbol{P}\left(f_{*} \omega_{S / C}\right) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle over C defined by the locally free sheaf $f_{*} \omega_{S / C}$ of rank 3, T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong f_{*} \omega_{S / C}$, and $\psi: S \cdots \rightarrow W$ the rational mapping induced by the natural sheaf homomorphism $f^{*} f_{*} \omega_{S / C} \rightarrow \omega_{S / C}$. If the equality holds in $(*)$, then $S^{\prime}=\psi(S)$ has at most rational double points as singularities, and we have

$$
\mathcal{O}_{W}\left(S^{\prime}\right) \cong \mathcal{O}_{W}(4 T) \otimes \pi^{*} \operatorname{det}\left(f_{*} \omega_{S / C}\right)^{\vee},
$$

where $\left(f_{*} \omega_{S / C}\right)^{\vee}$ is the $\mathcal{O}_{C^{-}}$-module dual to $f_{*} \omega_{S / C}$.
Remark. The inequality stated in the first half of Theorem 2.2 was proved by Horikawa [13], [14, Proposition 2.1] and Reid [20] in a different way. Konno [16, Theorem 2.1] himself also gave another proof.

Proposition 2.3. Let C be a nonsingular curve of genus b, and E a locally free sheaf of rank 3 over C. Let $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle over C associated to E, T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $D \in \operatorname{Div}(C)$ a divisor on C such that $\mathcal{O}_{C}(D) \cong \operatorname{det} E$. If $\left|4 T-\pi^{*} D\right|$ has an irreducible member S^{\prime} with at most rational double points as singularities, then the following equalities hold for the minimal resolution $v: S \rightarrow S^{\prime}$ of singularities.

$$
\begin{aligned}
K_{S}^{2} & =3 \operatorname{deg} E+16(b-1), \\
p_{g}(S) & =\operatorname{deg} E+3(b-1)+\operatorname{dim} H^{0}\left(C, E^{\vee}\right), \\
q(S) & =b+\operatorname{dim} H^{0}\left(C, E^{\vee}\right) .
\end{aligned}
$$

Furthermore, if we denote $f:=\pi \circ v$, then we have $f_{*} \omega_{S / C} \cong E$.
Proof. We have $\omega_{S^{\prime}}^{2}=\omega_{S}^{2}, p_{g}\left(S^{\prime}\right)=p_{q}(S)$ and $q\left(S^{\prime}\right)=q(S)$ by the hypothesis that S^{\prime} has at most rational double points as singularities. Since $\omega_{S^{\prime}} \cong \mathcal{O}_{S^{\prime}} \otimes_{\mathcal{O}_{W}} \mathcal{O}_{W}\left(T+\pi^{*} K_{C}\right)$ by the adjunction formula, and since $T^{3}-(\operatorname{deg} E) T^{2} F=0$, we have $\omega_{S^{\prime}}^{2}=3 \operatorname{deg} E+$ $16(b-1)$.

By considering the cohomology long exact sequence induced by the exact sequence

$$
0 \rightarrow \omega_{W} \rightarrow \mathcal{O}_{W}\left(T+\pi^{*} K_{C}\right) \rightarrow \omega_{S^{\prime}} \rightarrow 0,
$$

we obtain the equality for $p_{g}(S)$ and $q(S)$.
Since S^{\prime} has at most rational double points as singularities, $v^{*} \omega_{S^{\prime} / C} \cong \omega_{S / C}$ and $v_{*} \mathcal{O}_{S} \cong \mathcal{O}_{S^{\prime}}$ hold. Since $\omega_{S^{\prime} / C} \cong \mathcal{O}_{W}(T) \otimes_{\mathscr{O}_{W}} \mathcal{O}_{S^{\prime}}$ by the adjunction formula, we have

$$
f_{*} \omega_{S / C} \cong \pi_{*} v_{*} v^{*} \omega_{S^{\prime} / C} \cong \pi_{*} \omega_{S^{\prime} / C} \cong \pi_{*}\left(\mathcal{O}_{W}(T) \otimes_{\mathcal{O}_{W}} \mathcal{O}_{S^{\prime}}\right) .
$$

Since we have the long exact sequence

$$
\begin{aligned}
0 \rightarrow \pi_{*}\left(\mathcal{O}_{W}(\right. & \left.-3 T) \otimes_{\mathcal{O}_{W}} \pi^{*} \operatorname{det} E\right) \rightarrow \pi_{*} \mathcal{O}_{W}(T) \\
& \rightarrow \pi_{*}\left(\mathcal{O}_{W}(T) \otimes_{\mathcal{U}_{W}} \mathcal{O}_{S}\right) \rightarrow R^{1} \pi_{*}\left(\mathcal{O}_{W}(-3 T) \otimes_{\mathcal{U}_{W}} \pi^{*} \operatorname{det} E\right),
\end{aligned}
$$

and since $R^{j} \pi_{*}\left(\mathcal{O}_{W}(-3 T) \otimes_{\mathcal{O}_{W}} \pi^{*} \operatorname{det} E\right) \cong\left(R^{j} \pi_{*} \mathcal{O}_{W}(-3 T)\right) \otimes_{\mathcal{O}_{C}} \operatorname{det} E=0$ for $j=0$, 1 , we obtain $E=\pi_{*} \mathcal{O}_{W}(T) \cong \pi_{*}\left(\mathcal{O}_{W}(T) \otimes_{\mathscr{O}_{W}} \mathcal{O}_{S^{\prime}}\right)$, and hence $f_{*} \omega_{S / C} \cong E$. q.e.d.

Remark. By the last assertion of Proposition 2.3, we see that two different \boldsymbol{P}^{2} bundles do not contain the same surfaces.

Theorem 2.4 (cf. Atiyah [4, Theorem 5, Theorem 7 and Corollary, Theorem 9], Oda [19, Theorem 1.2]). Let C be an elliptic curve and $\mathscr{E}_{C}(r, d)(r, d \in \boldsymbol{Z})$ the set of isomorphism classes of indecomposable locally free sheaves of rank r and degree dover C.
(1) If $(r, d)=1$, and if we fix any isogeny $\varphi: \tilde{C} \rightarrow C$ of degree r, we have a bijection

$$
\left\{L_{0} \in \operatorname{Pic}(\tilde{C}) \mid \operatorname{deg} L_{0}=d\right\} \ni L_{0} \mapsto \varphi_{*} L_{0} \in \mathscr{E}_{C}(r, d)
$$

Denote $G=\operatorname{ker} \varphi$, and let T_{σ} be the translation by $\sigma \in G$ on \tilde{C}. Then we get

$$
\varphi^{*} \varphi_{*} L_{0} \cong \underset{\sigma \in G}{\oplus} T_{\sigma}^{*} L_{0} .
$$

(2) For any $r \in N$, there exists a unique $F_{r} \in \mathscr{E}_{C}(r, 0)$ such that $H^{0}\left(C, F_{r}\right) \neq 0 . F_{r}$ is a successive extension of \mathcal{O}_{C}, and $F_{r} \cong S^{r-1}\left(F_{2}\right)$ holds. Furthermore, $\operatorname{dim} H^{i}\left(C, F_{r}\right)=1$ $(i=0,1)$. We have the following bijective mapping for $m \in \boldsymbol{Z}$:

$$
\left\{L_{0} \in \operatorname{Pic}(C) \mid \operatorname{deg} L_{0}=m\right\} \ni L_{0} \mapsto F_{r} \otimes_{\mathscr{O}_{C}} L_{0} \in \mathscr{E}_{C}(r, r m) .
$$

Remark. Although not necessary in this paper, we have the following in general: If $(r, d)=h$, then $\mathscr{E}_{C}(r / h, d / h) \ni F^{\prime} \mapsto F^{\prime} \otimes F_{h} \in \mathscr{E}_{C}(r, d)$ is a bijective mapping.

We use the following lemma in $\S 3.2$ and $\S 3.3$:
Lemma 2.5. Let C be an elliptic curve, $\mu: Y=\boldsymbol{P}\left(F_{2}\right) \rightarrow C$ the ruled surface associated to F_{2}, and $C^{\prime} \subset Y$ the unique section of μ with $\mu_{*} \Theta_{Y}\left(C^{\prime}\right) \cong F_{2}$. For any point $p \in C$ and for any positive integer i, we have $\mathrm{Bs}\left|i C^{\prime}+\Gamma_{p}\right|=\left\{y_{0}\right\}$, where $\Gamma_{p}:=\mu^{-1}(p)$ and $y_{0}:=C^{\prime} \cap \Gamma_{p}$. Furthermore, general members of $\left|i C^{\prime}+\Gamma_{p}\right|$ are nonsingular at y_{0}, and all the members which are nonsingular have the same tangent at y_{0}. If i and j are positive integers with $i \neq j$, then a nonsingular member of $\left|i C^{\prime}+\Gamma_{p}\right|$ and a nonsingular member of $\left|j C^{\prime}+\Gamma_{p}\right|$ have different tangents at y_{0}.

Proof. We have $\mathrm{Bs}\left|i C^{\prime}+\Gamma_{p}\right| \subset C^{\prime} \cup \Gamma_{p}$. Since $\operatorname{dim} \operatorname{Im}\left\{H^{0}\left(Y, \mathcal{O}_{\mathrm{Y}}\left(i C^{\prime}+\Gamma_{p}\right)\right) \rightarrow H^{0}\left(\Gamma_{p}\right.\right.$, $\left.\left.\mathcal{O}_{\Gamma_{p}}\left(i C^{\prime}\right)\right)\right\}=i$, and since $\operatorname{dim} H^{0}\left(\Gamma_{p}, \mathcal{O}_{\Gamma_{p}}\left(i C^{\prime}\right)\right)=i+1$, there exists at most one base point on Γ_{p}. On the other hand, since $\operatorname{dim} H^{0}\left(\Gamma_{p}, \mathcal{O}_{Y}\left(i C^{\prime}+\Gamma_{p}\right)\right)=i+1 \neq i=\operatorname{dim} H^{0}\left(Y, \mathcal{O}_{Y}((i-\right.$ 1) $\left.\left.C^{\prime}+\Gamma_{p}\right)\right), C^{\prime}$ is not a fixed component of $\left|i C^{\prime}+\Gamma_{p}\right|$. Furthermore, since $\left(i C^{\prime}+\Gamma_{p}\right) C^{\prime}=1$ and $N_{C^{\prime} / Y} \cong \mathcal{O}_{C^{\prime}}$, only $y_{0}=C^{\prime} \cap \Gamma_{p}$ is the base point of $\left|i C^{\prime}+\Gamma_{p}\right|$ lying on C^{\prime}. Hence, we obtain $\mathrm{Bs}\left|i C^{\prime}+\Gamma_{p}\right|=\left\{y_{0}\right\}$. Since $\left(C^{\prime}+\Gamma_{p}\right) C^{\prime}=1$, general members of $\left|i C^{\prime}+\Gamma_{p}\right|$ are nonsingular at y_{0}.

Let $M \in\left|i C^{\prime}+\Gamma_{p}\right|$ be a nonsingular member. If we consider the cohomology long exact sequence induced by the exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}(M) \rightarrow \mathcal{O}_{M}(M) \rightarrow 0,
$$

we get $\operatorname{dim} H^{0}\left(M, \mathcal{O}_{M}(M)\right)=i+1$, and $\operatorname{dim} \operatorname{Im}\left\{H^{0}\left(Y, \mathcal{O}_{Y}(M)\right) \rightarrow H^{0}\left(M, \mathcal{O}_{M}(M)\right)\right\}=i$. The subsystem of the complete linear system of $\left.M\right|_{M}$ corresponding to the image of $H^{0}\left(Y, \mathcal{O}_{Y}(M)\right) \rightarrow H^{0}\left(M, \mathcal{O}_{M}(M)\right)$ may be regarded as the complete linear system of $\left.M\right|_{M}-y_{0}$, and its dimension is $i-1$. On the other hand, since $\operatorname{deg} \omega_{M}=\left(i C^{\prime}+\Gamma_{p}\right)((i-$ 2) $\left.C^{\prime}+\Gamma_{p}\right)=2 i-2$, the genus of M is equal to i. Since $\left.M\right|_{M}-2 y_{0} \sim K_{M}$ by the adjunction formula, the complete linear system of $\left.M\right|_{M}-2 y_{0}$ is also ($i-1$)-dimensional. Hence, y_{0} is the base point of the complete linear system of $\left.M\right|_{M}-y_{0}$, and the intersection multiplicity of any nonsingular member $M^{\prime} \in\left|i C^{\prime}+\Gamma_{p}\right|$ with M at y_{0} is at least two, i.e., M and M^{\prime} have the same tangent.

The last assertion can be proved in the same way as above. q.e.d.
The following lemma is trivial:
Lemma 2.6. Let X be a complete variety, and D an effective divisor on X. Assume $\operatorname{dim} X \geq 2$, and $\operatorname{dim}|D| \geq 2$. If $D_{1} \cap D_{2} \neq \mathrm{Bs}|D|$ for any distinct members $D_{1}, D_{2} \in|D|$, then $|D|$ is not composite with a pencil. In particular, $|D|$ is not composite with a pencil if one of the following holds:
(i) $\mathrm{Bs}|D|=\varnothing$ and $D^{n}>0$,
(ii) $\mathrm{Bs}|D|=\varnothing$ and the dimension of any component of $\mathrm{Bs}|D|$ is less than $\operatorname{dim} X-2$.
3. Existence and birationality. By Theorems 2.1 and 2.2, to classify canonical surfaces with $K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$, we need to have a necessary and sufficient condition for the complete linear system $\left|4 T-\pi^{*} D\right|$, on the \boldsymbol{P}^{2}-bundle $W=\boldsymbol{P}(E)$ associated to a locally free sheaf E of rank 3 over an elliptic curve C, to have irreducible members with at most rational double points as singularities, where T is a tautological divisor on W with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $D \in \operatorname{Div}(C)$ satisfies $\mathcal{O}_{C}(D) \cong \operatorname{det} E$. We should then choose those members whose minimal resolutions are canonical.

Locally free sheaves of rank 3 over an elliptic curve C are expressed uniquely up to order as direct sums of indecomposable locally free sheaves (cf. [4]). Hence we should consider the following three cases:
(1) E is the direct sum of three invertible sheaves.
(2) E is the direct sum of an invertible sheaf and an indecomposable locally free sheaf of rank 2.
(3) E is indecomposable.

Definition. Let $\pi: W \rightarrow C$ be the \boldsymbol{P}^{2}-bundle over an elliptic curve C associated to a locally free sheaf E of rank $3, T$ a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $D \in \operatorname{Div}(C)$ a divisor with $\mathcal{O}_{C}(D) \cong \operatorname{det} E$. We say that E satisfies the condition (A) if $\left|4 T-\pi^{*} D\right|$ has a member S^{\prime} satisfying the following conditions:
(i) S^{\prime} has at most rational double points as singularities,
(ii) The minimal resolution S of S^{\prime} is of general type,
(iii) S satisfies $K_{S}^{2}=3 p_{g}(S)$ and $q(S)=1$.

Remark. We only have to consider the locally free sheaves E with $H^{0}\left(C, E^{\vee}\right)=0$ by Proposition 2.3. If E satisfies the condition (A), then $\chi\left(\mathcal{O}_{S}\right)=\operatorname{deg} E>0$. Furthermore, by Fujita [8, (1.2) Proposition], we only have to consider locally free sheaves such that any quotient locally free sheaf has nonnegative degree.
3.1. The case where E is a direct sum of three invertible sheaves. Let L_{0}, L_{1}, L_{2} be invertible sheaves over an elliptic curve C such that $E \cong L_{0} \oplus L_{1} \oplus L_{2}$, and denote $d_{i}:=\operatorname{deg} L_{i}(i=0,1,2)$. Furthermore, let $\pi: W \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to E, and T a tautological divisor with $\pi_{*}\left(\mathcal{O}_{W}(T) \cong E\right.$. In $\S 3.1$, we prove the existence of a surface S of general type with $K_{S}^{2}=3 p_{g}(S), q(S)=1$ and $p_{g}(S)=N$ for any integer $N \geq 3$ by obtaining such a locally free sheaf E of rank three satisfying the condition (A) (Theorem 3.1). We then study the canonical mapping of the surfaces thus obtained. The results about the canonical mappings are stated in Corollaries 3.3 and 3.4, and Propositions 3.5, 3.7 and 3.8.
3.1.1. Existences. We may assume $d_{0} \leq d_{1} \leq d_{2}$. We only have to consider the case $d_{0} \geq 0, d_{1} \geq 0$ and $d_{2}>0$ by the remark immediately before $\S 3.1$.

Theorem 3.1. Let $\pi: W=\boldsymbol{P}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle over an elliptic curve C associated to $E \cong L_{0} \oplus L_{1} \oplus L_{2}$, T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $D \in \operatorname{Div}(C)$ satisfies $\mathcal{O}_{C}(D) \cong \operatorname{det} E$. Denote $d_{i}:=\operatorname{deg} L_{i}(i=0,1,2)$, and suppose $0 \leq d_{0} \leq d_{1} \leq d_{2}$ and $d_{2}>0$. Then the locally free sheaf E satisfies the condition (A) if and only if the following (1), (2) and (3) hold.
(1) One of the following (i), (ii) and (iii) holds:
(i) $d_{0}+d_{2}<3 d_{1}$,
(ii) $L_{0} \otimes L_{2} \cong L_{1}^{\otimes 3}$,
(iii) $d_{0}=d_{1}$ and at least one of $L_{1}^{\otimes 2}, L_{0} \otimes L_{1}, L_{0}^{\otimes 2}$ and $L_{0}^{\otimes 3} \otimes L_{1}^{-1}$ is isomorphic to L_{2}.
(2) One of the following (i), (ii) and (iii) holds:
(i) $d_{1}<2 d_{0}$,
(ii) $L_{1} \cong L_{0}^{\otimes 2}$,
(iii) $2 d_{0}=d_{1}=d_{2}$ and $L_{2} \cong L_{0}^{\otimes 2}$.
(3) If $d_{0}=d_{1}=d_{2}=1$ holds, then one of L_{0}, L_{1}, L_{2} is not isomorphic to the others.

Proof. We can choose $X_{i} \in H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} L_{i}^{-1}\right)(i=0,1,2)$ which give homogeneous coordinates on each fiber of π. Then any $\Psi \in H^{0}\left(W, \mathcal{O}_{W}(4 T) \otimes \pi_{*} \operatorname{det} E^{\vee}\right) \cong$ $H^{0}\left(C, S^{4} E \otimes \operatorname{det} E^{\vee}\right)$ can be written as

$$
\Psi=\sum_{\substack{i, j \geq 0 \\ i+j \leq 4}} \psi_{i j} X_{0}^{4-i-j} X_{1}^{i} X_{2}^{j}, \quad \psi_{i j} \in H^{0}\left(C, L_{0}^{\otimes(3-i-j)} \otimes L_{1}^{\otimes(i-1)} \otimes K_{2}^{\otimes(j-1)}\right)
$$

In the same way as in the proof of Claim III in [3], we can show that E does not satisfy the condition (A) when one of (1) and (2) does not hold. If (3) does not hold,
then Bs $\left|4 T-\pi^{*} D\right|$ consists of a fiber of π.
From now on, we assume that (1), (2) and (3) hold.
(I) Let us look at the case where $3 d_{0}>d_{1}+d_{2}$ or $L_{0}^{\otimes 3} \cong L_{1} \otimes L_{2}$. (If, moreover, $d_{0}=d_{1}$ and $L_{0}^{\otimes 3} \cong L_{1} \otimes L_{2}$ hold, we may assume $L_{1}^{\otimes 3} \cong L_{0} \otimes L_{2}$.)

Clearly, $\left|4 T-\pi^{*} D\right|$ has no base point if and only if $3 d_{0}-d_{1}-d_{2} \neq 1$. If $3 d_{0}-$ $d_{1}-d_{2}=1$ and $-d_{0}+3 d_{1}-d_{2} \geq 2$, then $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ consists of one point. Assume $3 d_{0}-d_{1}-d_{2}=-d_{0}+3 d_{1}-d_{2}=1 \quad$ and $\quad-d_{0}-d_{1}+3 d_{2} \geq 2$. If $L_{0}^{\otimes 3} \otimes L_{1}^{-1} \otimes L_{2}^{-1} \nexists$ $L_{0}^{-1} \otimes L_{1}^{\otimes 3} \otimes L_{2}^{-1}$, then $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ consists of two points. If $L_{0}^{\otimes 3} \otimes L_{1}^{-1} \otimes L_{2}^{-1} \cong$ $L_{0}^{-1} \otimes L_{1}^{\otimes 3} \otimes L_{2}^{-1}$, then $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ is a line contained in some fiber of π. Next assume $3 d_{0}-d_{1}-d_{2}=-d_{0}+3 d_{1}-d_{2}=-d_{0}-d_{1}+3 d_{2}=1$, i.e., $d_{0}=d_{1}=d_{2}=1$. If L_{0}, L_{1} and L_{2} are pairwise different, $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ consists of three points. If two of L_{0}, L_{1} and L_{2} are isomorphic, then $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ consists of a point and a line contained in some fiber of π. We can show that a general member of $\left|4 T-\pi^{*} D\right|$ is nonsingular at any point of $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ in any case above by considering the local equation. Clearly, $\left|4 T-\pi^{*} D\right|$ is not composite with a pencil in any case above by Lemma 2.6. Hence a general member of $\left|4 T-\pi^{*} D\right|$ is irreducible and nonsingular by Bertini's theorem.
(II) Let us look at the case where $3 d_{0}<d_{1}+d_{2}$ or ($3 d_{0}=d_{1}+d_{2}$ and $L_{0}^{\otimes 3} \nsupseteq$ $L_{1} \otimes L_{2}$). We have $Z_{0} \subset \mathrm{Bs}\left|4 T-\pi^{*} D\right|$, where Z_{0} is a curve defined by $X_{1}=X_{2}=0$.

If $-d_{0}+3 d_{1}-d_{2} \geq 2$, or $L_{1}^{\otimes 3} \cong L_{0} \otimes L_{2}$, then we have $\mathrm{Bs}\left|4 T-\pi^{*} D\right|=Z_{0}$. If $-d_{0}+3 d_{1}-d_{2}=1$ and $-d_{0}-d_{1}+3 d_{2} \geq 2$, then Bs $\left|4 T-\pi^{*} D\right|$ consists of Z_{0} and a point. If $-d_{0}+3 d_{1}-d_{2}=-d_{0}-d_{1}+3 d_{2}=1$ and $L_{0}^{-1} \otimes L_{1}^{\otimes 3} \otimes L_{2}^{-1} \nVdash L_{0}^{-1} \otimes L_{1}^{-1} \otimes$ $L_{2}^{\otimes 3}$, then Bs $\left|4 T-\pi^{*} D\right|$ consists of Z_{0} and two points. If $-d_{0}+3 d_{1}-d_{2}=-d_{0}-d_{1}+$ $3 d_{2}=1$ and $L_{0}^{-1} \otimes L_{1}^{\otimes 3} \otimes L_{2}^{-1} \cong L_{0}^{-1} \otimes L_{1}^{\otimes 3} \otimes L_{2}^{-1}$, then $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ consists of Z_{0} and a line contained in some fiber of π. If $-d_{0}+3 d_{1}-d_{2}=0$ and $L_{1}^{\otimes 3} \nsupseteq L_{0} \otimes L_{2}$, then we must have $2 d_{0}=2 d_{1}=d_{2}$, and $\operatorname{Bs}\left|4 T-\pi^{*} D\right|=Z_{0} \cup Z_{1}$, where Z_{1} is the curve defined by $X_{0}=X_{2}=0$.

We can show that a general member of $\left|4 T-\pi^{*} D\right|$ is nonsingular at the base points which are not contained in Z_{0} when $Z_{1} \not \subset \mathrm{Bs}\left|4 T-\pi^{*} D\right|$ holds by considering the local equations. Hence it is sufficient to look at the multiplicity of a general member of $\left|4 T-\pi^{*} D\right|$ at Z_{0} when $Z_{1} \notin \mathrm{Bs}\left|4 T-\pi^{*} D\right|$, or at $Z_{0} \cup Z_{1}$ when $Z_{1} \subset\left|4 T-\pi^{*} D\right|$.

Let us look at the case where $2 d_{0}>d_{2}$ or ($L_{0}^{\otimes 2} \cong L_{2}$ and $d_{0}<d_{1}$). (When $L_{0}^{\otimes 2 \cong} \cong L_{2}$, if we assume $d_{1}=d_{2}$ and $L_{0}^{\otimes 2} \nsupseteq L_{1}$, further, interchange L_{1} and L_{2} and regard this case as the case $L_{0}^{\otimes 2} \nsubseteq L_{2}$. Hence, we may assume $L_{0}^{\otimes 2} \cong L_{1}$ when $L_{0}^{\otimes 2} \cong L_{2}$ and $d_{1}=d_{2}$.) In this case, we have $Z_{1} \notin \mathrm{Bs}\left|4 T-\pi^{*} D\right|$. Since we have $H^{0}\left(C, L_{0}^{\otimes 2} \otimes L_{2}^{-1}\right) \neq 0$ and $H^{0}\left(C, L_{0}^{\otimes 2} \otimes L_{1}^{-1}\right) \neq 0$, a general member of $\left|4 T-\pi^{*} D\right|$ is nonsingular at Z_{0} except in the case where $2 d_{0}-d_{1}=2 d_{0}-d_{2}=1$ and $L_{1} \cong L_{2}$ hold. In this case, we can show that any general member of $\left|4 T-\pi^{*} D\right|$ has a rational double point of type A_{1} on Z_{0} by considering the local equation.

Let us look at the case where $2 d_{0}<d_{2}$ or ($2 d_{0}=d_{2}, d_{0}<d_{1}$ and $L_{0}^{\otimes 2} \not \approx L_{2}$). In this case, the coefficients of X_{0}^{4} and $X_{0}^{3} X_{1}$ are 0 , and $Z_{1} \notin \mathrm{Bs}\left|4 T-\pi^{*} D\right|$ holds. If $2 d_{0}=d_{1}$,
then we have $L_{0}^{\otimes 2} \cong L_{1}$ by the assumption of the theorem, and the coefficient of $X_{0}^{3} X_{2}$ is a constant. Hence a general member is nonsingular at Z_{0}. Assume $d_{1}<2 d_{0}$ holds, and that $\Psi \in H^{0}\left(W, \mathcal{O}_{W}(4 T) \otimes \pi^{*} \operatorname{det} E^{\vee}\right)$ is general. Let $p \in C$ be one of the points with $\psi_{01}(p)=0$ for $0 \neq \psi_{01} \in H^{0}\left(C, L_{0}^{\otimes 2} \otimes L_{1}^{-1}\right)$, and t a local coordinate around p. Furthermore, let $q \in W$ be a point with $t=X_{1}=X_{2}=0$, and denote $x_{1}:=X_{1} / X_{0}$ and $x_{2}:=X_{2} / X_{0}$. Then Ψ can be written as

$$
\begin{aligned}
\Psi= & t x_{2}+\psi_{20} x_{1}^{2}+\psi_{11} x_{1} x_{2}+\psi_{02} x_{2}^{2}+\cdots \\
& =x_{2}\left(t+\psi_{11} x_{1}+\psi_{02} x_{2}+\cdots\right)+\psi_{20} x_{1}^{2}+\psi_{30} x_{1}^{3}+\psi_{40} x_{1}^{4}
\end{aligned}
$$

around q. The equation $\Psi=0$ gives a rational double point of type A_{1} at q except in the case

$$
L_{0} \otimes L_{1} \otimes L_{2}^{-1} \cong L_{0}^{\otimes 2} \otimes L_{1}^{-1}, \quad \text { and } \quad d_{0}+d_{1}-d_{2}=2 d_{0}-d_{1}=1
$$

In this case, $\psi_{20}=c^{\prime} t$ holds around q for some constant $c^{\prime} \in \boldsymbol{C}$, and the equation $\Psi=0$ gives a rational double point of type A_{2} at q. If $2 d_{0}=2 d_{1}=d_{2}$, we can show that a general member of $\left|4 T-\pi^{*} D\right|$ has at most rational double points of tyep A_{1} on $Z_{0} \cup Z_{1}$ in the same way as above.

Let S_{1} and S_{2} be general members of $\left|4 T-\pi^{*} D\right|$, and F a general fiber of π. Furthermore, denote $q_{i}:=Z_{i} \cap F$ for $i=0$, 1. We can show that the intersection multiplicity of $\left.S_{1}\right|_{F}$ and $\left.S_{2}\right|_{F}$ at q_{0} in F is at most two. When $Z_{1} \subset \mathrm{Bs}\left|4 T-\pi^{*} D\right|$, we can also show that the intersection multiplicity of $\left.S_{1}\right|_{F}$ and $\left.S_{2}\right|_{F}$ at q_{1} in F is at most two. Since $\left.S_{1}\right|_{F}$ and $\left.S_{2}\right|_{F}$ are quartic curves, they have other intersection points. Therefore, we see that $\left|4 T-\pi^{*} D\right|$ is not composite with a pencil by Lemma 2.6. Hence a general member of $\left|4 T-\pi^{*} D\right|$ is irreducible and nonsingular by Bertini's theorem. q.e.d.
3.1.2. The canonical mappings. In this section, we consider the canonical mappings of those surfaces whose existences were shown in §3.1.1.

Lemma 3.2. Let L_{0}, L_{1}, L_{2} be invertible sheaves over an elliptic curve C, and denote $d_{i}:=\operatorname{deg} L_{i},(i=0,1,2)$. Assume that L_{0}, L_{1}, L_{2} satisfy the conditions of Theorem 3.1. If $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ is the \boldsymbol{P}^{2}-bundle over C associated to $E:=L_{0} \oplus L_{1} \oplus L_{2}$, and T is a tautological divisor such that $\pi_{*} \Theta_{W}(T) \cong E$, then $\Phi_{|T|}$ is birational onto its image when one of the following holds.
(i) $d_{0}+d_{1}+d_{2} \geq 7$.
(ii) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,3)$.
(iii) $\left(d_{0}, d_{1}, d_{2}\right)=(2,2,2)$ and one of L_{0}, L_{1}, L_{2} is not isomorphic to the others.
(iv) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,2)$ and $L_{1} \nsupseteq L_{2}$.

Proof. If F is a general fiber of π, we have $H^{1}\left(W, \mathcal{O}_{W}(T-F)\right)=0$. Hence the restriction mapping $H^{0}\left(W, \mathcal{O}_{W}(T)\right) \rightarrow H^{0}\left(F, \mathcal{O}_{F}(T)\right)$ is surjective, and the restriction of $\Phi_{|T|}$ to F gives an isomorphism of F onto its image.

Let $X_{i} \in H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} L_{i}^{-1}\right)(i=0,1,2)$ be as in the proof of Theorem 3.1. Any $\Psi \in H^{0}\left(W, \mathcal{O}_{W}(T)\right)$ can be written as

$$
\Psi=\psi_{0} X_{0}+\psi_{1} X_{1}+\psi_{2} X_{2}, \quad \psi_{i} \in H^{0}\left(C, L_{i}\right) \quad(i=0,1,2)
$$

We can easily prove that there exists a Zariski open subset of W such that the restriction of $\Phi_{|T|}$ on it gives an isomorphism onto the image under the assumption of the lemma.
q.e.d.

Corollary 3.3. The canonical mapping of any surface S, whose existence is guaranteed by Theorem 3.1 and the condition (A), is a birational morphism if one of the following holds.
(i) $d_{0}+d_{1}+d_{2} \geq 7$ and $d_{0} \geq 2$,
(ii) $\left(d_{0}, d_{1}, d_{2}\right)=(2,2,2)$, and one of L_{0}, L_{1}, L_{2} is not isomorphic to the others.

Proof. Let the notation be as in Proposition 2.3. Since $\omega_{S^{\prime}} \cong \mathcal{O}_{S^{\prime}}(T)$, and since $H^{i}\left(W, \omega_{W}\right)=0$, for $i=0,1$, we have $H^{0}\left(W, \mathcal{O}_{W}(T)\right) \cong H^{0}\left(S^{\prime}, \omega_{S^{\prime}}\right)$. Since S^{\prime} has at most rational double points as singularities, we have $\Phi_{\left|K_{S}\right|}=\psi \circ \Phi_{|T|}$, where $\psi: S \rightarrow S^{\prime}$ is a minimal resolution. Clearly, S^{\prime} has nonempty intersection with the Zariski open subset of W appearing in the proof of Lemma 3.2, and hence the birationality follows from Lemma 3.2. Since $d_{0} \geq 2$, we have $\mathrm{Bs}|T|=\varnothing$, and hence $\mathrm{Bs}\left|K_{s}\right|=\varnothing$ holds.
q.e.d.

Corollary 3.4. The canonical mapping of any surface S, whose existence is guaranteed by Theorem 3.1 and the condition (A), is birational onto its image but is not a morphism, and its image is non-normal, if one of the following holds:
(i) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,5)$,
(ii) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,4)$,
(iii) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,3)$,
(iv) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,2)$ and $L_{1} \not \neq L_{2}$.

Proof. We can show the birationality of $\Phi_{\left|K_{s}\right|}$ as in the proof of Corollary 3.3.
In the rest of the proof, we use our notation in Theorem 3.1. By considering Bs $|T|$ and $\mathrm{Bs}\left|4 T-\pi^{*} D\right|$, we see that $\left|K_{S}\right|$ has only one base point q_{0}. The restriction of $|T|$ to the fiber F_{0} containing q_{0} may be regarded as a subsystem of the complete linear system of $\mathcal{O}_{\mathbf{P}}(1)$ consisting of all lines going through q_{0}. Each line of this system intersects the fiber \mathscr{F} of S at four points, one of which is q_{0}. Hence we have $\operatorname{deg}\left(\left.\Phi_{\left|K_{s}\right|}\right|_{\mathscr{F}}\right)=3$, and the canonical image of S is non-normal by Zariski's main theorem.
q.e.d.

Proposition 3.5. In the notation of Lemma 3.2, assume $d_{i}=2(i=0,1,2)$ and $L_{0} \cong L_{1} \cong L_{2}$. Then the canonical mapping of a general member of $\left|4 T-\pi^{*} D\right|$ is a morphism of degree 2 onto the image, where $D \in \operatorname{Div}(C)$ satisfies $\mathcal{O}_{C}(D) \cong \operatorname{det} E$.

Proof. If we denote $v:=\Phi_{\left|L_{0}\right|}: C \rightarrow \boldsymbol{P}^{1}$, we have $L_{0} \cong v^{*} \mathcal{O}_{\boldsymbol{P}_{1}(1)}$, and hence $E \cong v^{*}\left(\mathcal{O}_{\boldsymbol{P}^{1}}(1)^{\oplus 3}\right)$. Therefore, if we denote $\pi_{0}: W_{0}:=\boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}_{1}}(1)^{\oplus 3}\right) \rightarrow \boldsymbol{P}^{1}$, we have the following commutative diagram:

Let T_{0} be a tautological divisor with $\pi_{0 *} \mathcal{O}_{W_{0}}\left(T_{0}\right) \cong \mathcal{O}_{\boldsymbol{P}_{1}(1)^{\oplus 3}}$. We have $\tilde{v}^{*} T_{0} \sim T$, and both $H^{0}\left(W, \mathcal{O}_{W}(T)\right)$ and $H^{0}\left(W_{0}, \mathcal{O}_{W_{0}}\left(T_{0}\right)\right)$ are 6 -dimensional. Hence, we get $\Phi_{|T|}=\Phi_{\left|T_{0}\right|} \circ \tilde{v}$. Since $\Phi_{\left|T_{0}\right|}: W_{0} \hookrightarrow P^{5}$ is an embedding we have $\operatorname{deg} \Phi_{|T|}=2$.

Since $\operatorname{dim}\left|4 T-\pi^{*} D\right|=\operatorname{dim}\left|4 T_{0}-\pi_{0}^{*} D_{0}\right|$, and since $\mathrm{Bs}|T|=\varnothing$, the canonical mapping of a general member of $\left|4 T-\pi^{*} D\right|$ is a morphism of degree 2 onto the image.
q.e.d.

Remark. W_{0} in the proof of Proposition 3.5 is isomorphic to $\boldsymbol{P}^{2} \times \boldsymbol{P}^{1}$. Let $S \in\left|4 T-\pi^{*} D\right|$ be a nonsingular member. If S_{0} is the image of S in W_{0}, and if $r: W_{0} \rightarrow \boldsymbol{P}^{2}$ is a natural projection, we see that $K_{S_{0}}^{2}=-7$ holds, and that $\left.r\right|_{S_{0}}: S_{0} \rightarrow \boldsymbol{P}^{2}$ is a birational morphism by easy caluculations. Hence, $\left.r\right|_{S_{0}}$ is the blowing-up at sixteen points of \boldsymbol{P}^{2}, and maps each fiber of $S_{0} \rightarrow \boldsymbol{P}^{1}$ onto a plane quartic curve birationally. Therefore, the surfaces in Proposition 3.5 are obtained in another way as follows:

Let $B_{1}, B_{2}, B_{3}, B_{4} \subset \boldsymbol{P}^{2}$ be nonsingular quartic curves intersecting each other at sixteen points A_{1}, \ldots, A_{16} transversally. Let $\xi: X \rightarrow \boldsymbol{P}^{2}$ be the blowing-up at A_{1}, \ldots, A_{16}, and \widetilde{B}_{j} the proper transform of $B_{j}(j=1,2,3,4)$, and denote $\mathscr{E}_{i}:=\xi^{-1}\left(A_{i}\right)$. We have $\sum_{j=1}^{4} \widetilde{B}_{j} \sim 16 \xi^{*} H-4 \sum_{i=1}^{16} \mathscr{E}_{i}$, where $H \subset \boldsymbol{P}^{2}$ is a line. Let $h: S \rightarrow X$ be a double covering branched along $\sum_{j=1}^{4} \tilde{B}_{j}$. Then $K_{S} \sim h^{*}\left(5 \xi^{*} H-\sum_{i=1}^{16} \mathscr{E}_{i}\right)$ holds, and we have $K_{S}^{2}=$ 18. On the other hand, we have $p_{g}(S)=\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(5 \xi^{*} H-\sum_{i=1}^{16} \mathscr{E}_{i}\right)\right)=\operatorname{dim} \mid 5 \xi^{*} H-$ $\sum_{i=1}^{16} \mathscr{E}_{i} \mid+1$. Since $\operatorname{dim}\left|5 \xi^{*} H-\sum_{i=1}^{16} \mathscr{E}_{i}\right|$ is equal to the dimension of the subsystem of $|5 H|$ which consists of all the quintic curves going through A_{1}, \ldots, A_{16}, we obtain $\operatorname{dim}\left|5 \xi^{*} H-\sum_{i=1}^{16} \mathscr{E}_{i}\right|=\operatorname{dim}|5 H|-15=5$ by using the Caylay-Bacharach theorem (cf., e.g., $[10]$), and hence $p_{g}(S)=6$. Since

$$
\chi\left(\mathcal{O}_{S}\right)=\frac{1}{2}\left(8 \xi^{*} H-2 \sum_{i=1}^{16} \mathscr{E}_{i}\right)\left(5 \xi^{*} H-\sum_{i=1}^{16} \mathscr{E}_{i}\right)+2 \chi\left(\mathcal{O}_{\mathbf{p}^{2}}\right)=6,
$$

we have $q(S)=1$.
Lemma 3.6. Let L_{0}, L_{1}, L_{2} be invertible sheaves over an elliptic curve C, $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ be \boldsymbol{P}^{2}-bundle associated to the locally free sheaf $E:=L_{0} \oplus L_{1} \oplus L_{2}$, and T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and denote $d_{i}:=\operatorname{deg} L_{i}(i=0,1,2)$. If L_{0}, L_{1} and L_{2} satisfy one of the following (i) and (ii), then $\operatorname{deg} \Phi_{|T|}=2$ holds:
(i) $\left(d_{0}, d_{1}, d_{2}\right)=(1,2,2)$ and $L_{0}^{\otimes 2} \cong L_{1} \cong L_{2}$.
(ii) $\left(d_{0}, d_{1}, d_{2}\right)=(1,1,2)$.

Proof. In the case (i), let $p \in C$ be a point with $L_{0} \cong \mathcal{O}_{c}(p)$. There exists a point $q \in \pi^{-1}(p)$ with Bs $|T|=\{q\}$. Denote $E^{\prime}:=\mathcal{O}_{C} \oplus L_{1} \oplus L_{1}$ and $F^{\prime}:=\left(L_{1} \oplus L_{1}\right) \otimes \mathcal{O}_{p}$. We
have the following commutative diagram as a special case of Maruyama [17, Chapter 1]:

where $\pi^{\prime}: W^{\prime}:=\boldsymbol{P}\left(E^{\prime}\right) \rightarrow C$ is the \boldsymbol{P}^{2}-boundle associated to $E^{\prime}, \phi: \bar{W} \rightarrow W$ is the blowing-up at $q\left(=\boldsymbol{P}\left(\mathcal{O}_{P}(p)\right)\right), \phi^{\prime}: \bar{W} \rightarrow W^{\prime}$ is the blowing-up along $\boldsymbol{P}\left(F^{\prime}\right)$, and $\pi_{0}: W_{0} \rightarrow \boldsymbol{P}^{1}$ is the \boldsymbol{P}^{2}-bundle associated to $E_{0}:=\mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(1) \oplus \mathcal{O}_{\boldsymbol{P}^{1} 1}(1)$. Let T^{\prime} be a tautological divisor of W^{\prime} with $\pi_{*} \mathcal{O}_{W^{\prime}}\left(T^{\prime}\right) \cong E^{\prime}$, and \bar{T} the proper transform of T by ϕ. We have $\phi^{\prime}(\bar{T}) \sim T^{\prime}$. If T_{0} is a tautological divisor of W_{0} satisfying $\pi_{0 *} \mathcal{O}_{W_{0}}\left(T_{0}\right) \cong E_{0}$, then we have $\Phi^{*} T_{0} \sim T^{\prime}$, and $\operatorname{dim}\left|T^{\prime}\right|=\operatorname{dim}\left|T_{0}\right|=4$. Hence we have $\Phi_{\left|T^{\prime}\right|}=\Phi_{\left|T_{0}\right|} \circ \Phi$. We can show that $\Phi_{\left|T_{0}\right|}$ is a birational morphism onto the image in a way similar to Lemma 3.2. Therefore we have $\operatorname{deg} \Phi_{|T|}=\operatorname{deg} \Phi_{\left|T^{\prime}\right|}=\operatorname{deg} \Phi=2$.

In the case (ii), if we assume $L_{0} \nsubseteq L_{1}$, then the statement can be proved in a way similar to that in the case (i).

Assume $L_{0} \cong L_{1}$ in the case (ii). If $p \in C$ is the point with $\mathcal{O}_{C}(p) \cong L_{0}$, then there exists a line $Z \subset \pi^{-1}(p)$ with $\mathrm{Bs}|T|=Z$. We obtain the same commutative diagram as above, and in this case, $\phi: \bar{W} \rightarrow W$ is the blowing-up along Z. We can show that $\operatorname{deg} \Phi_{|T|}=2$ by the same argument as in the case (i).
q.e.d

Proposition 3.7. Let the notation and the assumption be as in Lemma 3.6. Then the minimal resolution of a general member $S \in\left|4 T-\pi^{*} D\right|$ is canonical.

Proof. First, we consider the case $E \cong L_{0} \oplus L_{1} \oplus L_{1},\left(L_{0} \in \mathscr{E}_{C}(1,1), L_{1} \cong L_{0}^{\otimes 2}\right)$. There is nothing to prove if $\Phi_{\left|K_{s}\right|}$ is birational onto its image. Thus suppose $\Phi_{\left|K_{s}\right|}$ is not birational. Hence $\Phi_{\left|K_{s}\right|}$ gives an unramified two-to-one covering

$$
h: S \backslash \bigcup_{i=0}^{3} F_{i} \rightarrow \tilde{S}_{0}
$$

where $F_{i}:=\pi^{-1}\left(p_{i}\right)$ with $p_{i} \in C(i=0,1,2,3)$ the ramification points of $\Phi_{\left|L_{1}\right|}: C \rightarrow \boldsymbol{P}^{1}$, and \tilde{S}_{0} is the image. Let $C_{0} \subset W$ be a curve which is the base locus of $\mathcal{O}_{W}(T) \otimes \pi^{*} L_{1}^{-1}$. Fix a point $q \in S \backslash\left(C_{0} \cup \bigcup_{i=0}^{3} F_{i}\right)$ and let $q^{\prime} \in W$ be the other point which is mapped to $\Phi_{|T|}(q)$ by the two-to-one map $\Phi_{|T|}$.

Since $\operatorname{dim} H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} L_{0}^{-1}\right)=3$, we obtain $X_{0} \in H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} L_{0}^{-1}\right)$ such that X_{0} vanishes at q and q^{\prime} and that the divisor $\left(X_{0}\right)$ is irreducible. Similarly, since $\operatorname{dim} H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} L_{1}^{-1}\right)=2$, we obtain $X_{1}, X_{2} \in H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} L_{1}^{-1}\right)$ such that X_{1} vanishes at q and q^{\prime}, and that X_{2} does not vanish at q and q^{\prime}. Furthermore, the divisors (X_{1}) and (X_{2}) are irreducible. A global section $\Psi \in H^{0}\left(W, \mathcal{O}_{W}(4 T) \otimes\right.$ $\pi^{*} \operatorname{det} E^{\vee}$) defining S satisfies $\Psi\left(q^{\prime}\right)=\psi_{04}\left(q^{\prime}\right) X_{2}\left(q^{\prime}\right)^{4}$ by our choice of X_{0}, X_{1}, X_{2}, where
ψ_{04} is as in the previous section. Hence q^{\prime} is not contained in S if and only if $\psi_{04}\left(q^{\prime}\right) \neq 0$ holds. Since S is general, we are done.

Next, we consider the case $E \cong L_{0} \oplus L_{1} \oplus L_{2},\left(L_{0}, L_{1} \in \mathscr{E}_{C}(1,1), L_{2} \in \mathscr{E}_{C}(1,2)\right)$.
Let $S \in\left|4 T-\pi^{*} D\right|$ be a general member. Except when the following (i) and (ii) are satisfied, if we assume $\operatorname{deg} \Phi_{\left|K_{s}\right|}=2$, then a fiber of $S^{\prime} \rightarrow C$ which has a multiple component and another fiber which has no multiple component are mapped onto the same curve isomorphically, which is absurd.
(i) $L_{0}^{\otimes 2} \cong L_{1}^{\otimes 2} \cong L_{2}$.
(ii) $L_{0}^{\otimes 2}, L_{1}^{\otimes 2} \nsubseteq L_{2}, L_{0} \otimes L_{1} \cong L_{2}$ and $L_{0} \nsubseteq L_{1}$.

In the cases (i) and (ii), we can show that S is a canonical surface in the same way as in the case $E \cong L_{0} \oplus L_{1} \oplus L_{2},\left(L_{0} \in \mathscr{E}_{C}(1,1), L_{1} \cong L_{0}^{\otimes 2}\right)$.
q.e.d

Remark. In the situation of Proposition 3.7, we have a possibility that there exist special members, with at most rational double points as singularities, of $\left|4 T-\pi^{*} D\right|$ whose canonical mapping is of degree 2.

Proposition 3.8. Let L_{0}, L_{1} and L_{2} be invertible sheaves over an elliptic curve C satisfying $\operatorname{deg} L_{i}=1(i=0,1,2)$ and the condition (3) of Theorem 3.1, $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ the \boldsymbol{P}^{2}-bundle associated to $E:=L_{0} \oplus L_{1} \oplus L_{2}, T$ a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, $D \in \operatorname{Div}(C)$ a divisor with $\mathcal{O}_{C}(D) \cong \operatorname{det} E$, and $S \in\left|4 T-\pi^{*} D\right|$ a general member. We have the following about $\Phi_{\left|K_{s}\right|}$:
(i) If $L_{0}^{\otimes 2} \nsubseteq L_{1} \otimes L_{2}, L_{1}^{\otimes 2} \nsubseteq L_{2} \otimes L_{0}$ and $L_{2}^{\otimes 2} \not \approx L_{0} \otimes L_{1}$, then $\Phi_{\left|K_{s}\right|}$ gives a covering of degree 9 onto \boldsymbol{P}^{2}.
(ii) If only one of $L_{0}^{\otimes 2} \cong L_{1} \otimes L_{2}, L_{1}^{\otimes 2} \cong L_{2} \otimes L_{0}$ and $L_{2}^{\otimes 2} \cong L_{0} \otimes L_{1}$ holds, then $\left|K_{S}\right|$ has one isolated base point, and $\Phi_{\left|K_{s}\right|}$ gives a covering of degree 8 over \boldsymbol{P}^{2}.
(iii) If all of $L_{0}^{\otimes 2} \cong L_{1} \otimes L_{2}, L_{1}^{\otimes 2} \cong L_{2} \otimes L_{0}$ and $L_{2}^{\otimes 2} \cong L_{0} \oplus L_{1}$ hold, then $\left|K_{S}\right|$ has three isolated base points, and $\Phi_{\left|K_{S}\right|}$ gives a covering of degree 6 over \boldsymbol{P}^{2}.

Proof. First we assume that L_{0}, L_{1}, L_{2} are pairwise non-isomorphic. Let the notation be as in Theorem 3.1. If $q_{i} \in W(i=0,1,2)$ is the point defined by $\psi_{i}=X_{\tau(i)}=X_{\tau^{2}(i)}=0$, where $\psi_{i} \in H^{0}\left(C, L_{i}\right) \backslash\{0\}$, and τ is the cyclic permutation (012), then we have Bs $|T|=\left\{q_{0}, q_{1}, q_{2}\right\}$.

In the case (i), we have $\mathrm{Bs}|T| \cap \mathrm{Bs}\left|4 T-\pi^{*} D\right|=\varnothing$. Hence $\Phi_{\left|K_{s}\right|}$ is a surjective morphism onto \boldsymbol{P}^{2}. Since $K_{S}^{2}=9$ and the degree of \boldsymbol{P}^{2} is 1 , we are done in the case (i).

Next, we consider the case (ii). We only have to consider the case $L_{0}^{\otimes 2} \cong L_{1} \otimes L_{2}$ by renumbering L_{0}, L_{1} and L_{2} if necessary. In this case, all the members of $\left|4 T-\pi^{*} D\right|$ go through q_{0}. Since $S \in\left|4 T-\pi^{*} D\right|$ is general, it does not contain q_{1} and q_{2}. Hence we obtain $\mathrm{Bs}\left|K_{S}\right|=\left\{q_{0}\right\}$. Let $\phi: \tilde{W} \rightarrow W$ be the blowing-up at q_{0}, and \tilde{T} a proper transform of T by ϕ. It is easy to see that $\mathrm{Bs}|\tilde{T}|=\varnothing$ holds, and hence q_{0} is the simple base point of $\left|K_{S}\right|$. Denote $\xi:=\left.\phi\right|_{\tilde{S}}$, where \tilde{S} is a proper transform of S by ϕ, and $E:=\xi^{-1}\left(q_{0}\right) \subset \tilde{S}$. If $|V|$ is the variable part of $\left|\xi^{*} K_{S}\right|$, then we have $\left|\xi^{*} K_{S}\right|=|V|+E$. Therefore, we obtain

$$
\operatorname{deg} \Phi_{\left|K_{s}\right|}=V^{2}=\left(\xi^{*} K_{S}-E\right)^{2}=8 .
$$

Similarly, since $q_{i}(i=0,1,2)$ is the simple base point of $\left|K_{S}\right|$ in the case (iii), we have $\operatorname{deg} \Phi_{\left|K_{s}\right|}=K_{S}^{2}-3=6$.

The proof is essentially the same when $L_{0} \nsubseteq L_{1} \cong L_{2}, L_{1} \nsubseteq L_{2} \cong L_{0}$, or $L_{2} \nsubseteq L_{0} \cong$ L_{1}.
q.e.d.
3.2. E is the direct sum of an invertible sheaf and an indecomposable locally free sheaf of rank 2 . We denote $E=E_{0} \oplus L$, where E_{0} is an indecomposable locally free sheaf of rank 2 with $\operatorname{deg} E_{0}=: e$, and L is an invertible sheaf over an elliptic curve C with $\operatorname{deg} L=: d$. We only have to consider the case $e \geq 0, d \geq 0$ and $(e, d) \neq(0,0)$ by the remark immediately before §3.1.

We prove the existence of a surface S with $K_{S}^{2}=3 p_{g}(S), q(S)=1$ and $p_{g}(S)=N$ for any integer $N \geq 2$ in §3.2.1 (Theorem 3.9) when e is even, and in §3.2.2 (Theorem 3.10) when e is odd. (When e is even, however, the case $p_{g}(S)=2$ does not occur.) In §3.2.3, we study the canonical mapping of the surfaces obtained in §3.2.1 and §3.2.2. The results about the canonical mappings are stated in Corollary 3.13, and Propositions 3.14, 3.17, 3.18 and 3.30.

Let $\pi: W:=\boldsymbol{P}^{2}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to E, and T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$. If $\rho: X \rightarrow W$ is the blowing-up along $C_{1}:=\boldsymbol{P}\left(E / E_{0}\right) \subset W$, then X is a \boldsymbol{P}^{1}-bundle $\sigma: X \rightarrow Y:=\boldsymbol{P}\left(E_{0}\right)$. Let $\mu: Y \rightarrow C$ be the ruling, and denote $Y_{1}:=\rho^{*} T$ and $Y_{\infty}:=\rho^{-1}\left(C_{1}\right)$. If $C_{0} \in \operatorname{Div}(Y)$ is a tautological divisor with $\mu_{*} \mathcal{O}_{Y}\left(C_{0}\right) \cong E_{0}$, then we have $Y_{1} \sim Y_{\infty}+\sigma^{*} C_{0}$, and $\sigma_{*} \mathcal{O}_{X}\left(Y_{1}\right) \cong \mathcal{O}_{Y}\left(C_{0}\right) \oplus \mu^{*} L$. Let $Y_{0} \in \operatorname{Div}(X)$ be a divisor with $\mathcal{O}_{X}\left(Y_{0}\right) \cong \mathcal{O}_{X}\left(Y_{1}\right) \otimes \sigma^{*} \mu^{*} L^{-1}$, and let $Z_{0} \in H^{0}\left(X, \mathcal{O}_{X}\left(Y_{0}\right)\right), Z_{\infty} \in H^{0}\left(X, \mathcal{O}_{X}\left(Y_{\infty}\right)\right)$ be global sections with $\left(Z_{0}\right)=Y_{0}$ and $\left(Z_{\infty}\right)=Y_{\infty}$. Then Z_{0} and Z_{∞} give homogeneous coordinates of each fiber of the \boldsymbol{P}^{1}-bundle σ.

We study the complete linear system of the invertible sheaf $\mathcal{O}_{X}\left(4 Y_{1}\right) \otimes \sigma^{*} \mu^{*} \operatorname{det} E^{\vee}$ $\cong \rho^{*}\left(\mathcal{O}_{W}(4 T) \otimes \pi^{*} \operatorname{det} E^{\vee}\right)$ over X.

Any $\Psi \in H^{0}\left(X, \mathcal{O}_{X}\left(4 Y_{1}\right) \otimes \sigma^{*} \mu^{*} \operatorname{det} E^{\vee}\right) \cong H^{0}\left(Y, S^{4}\left(\mathcal{O}_{Y}\left(C_{0}\right) \oplus \mu^{*} L\right) \otimes \mu^{*} \operatorname{det} E^{\vee}\right)$ can be written as

$$
\Psi=\sum_{j=0}^{4} \psi_{j} Z_{0}^{4-j} Z_{\infty}^{j}, \quad \psi_{j} \in H^{0}\left(Y, \mathcal{O}_{Y}\left(j C_{0}\right) \otimes \mu^{*}\left(L^{\otimes(4-j)} \otimes \operatorname{det} E^{\vee}\right)\right), \quad(j=0, \ldots, 4) .
$$

3.2.1. Existence in the case where e is even. Denote $e=2 e_{0}$. There exist $L_{0} \in \mathscr{E}_{C}\left(1, e_{0}\right)$, and $L_{1} \in \mathscr{E}_{C}\left(1, d-e_{0}\right)$, with $E_{0} \cong L_{0} \otimes F_{2}, L \cong L_{0} \otimes L_{1}$, hence we have $E \cong L_{0} \otimes\left(F_{2} \oplus L_{1}\right)$.

Theorem 3.9. Let the conditions and notation be as above. Then the locally free sheaf E satisfies the condition (A) if and only if one of the following (1), (2) and (3) holds:
(1) $e=d>0$ and $L_{0} \cong L_{1}$,
(2) $d<e<4 d$,
(3) $e=4 d>0$ and $L_{0} \otimes L_{1}^{\otimes 2} \cong \mathcal{O}_{C}$.

Proof. We deal with different cases. Let $D \in \operatorname{Div}(C)$ satisfy $\mathcal{O}_{C}(D) \cong \operatorname{det} E$.
(i) The case where ($e=d$ and $L_{0} \nsubseteq L_{1}$), or ($e<d$). Since we have

$$
H^{0}\left(Y, \mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*} \operatorname{det} E^{\vee}\right) \cong H^{0}\left(C, F_{5} \otimes L_{0} \otimes L_{1}^{-1}\right)=0,
$$

by Theorem 2.4, Ψ is divisible by Z_{0}. Hence, the image of (Ψ) in W is reducible.
(ii) The case where ($\left.L_{0} \cong L_{1}\right),(d<e<3 d)$, or $\left(L_{0} \otimes L_{1}^{\otimes 3} \cong \mathcal{O}_{C}\right)$.

Let us look at the complete linear system of $L^{\otimes 4} \otimes \operatorname{det} E^{\vee}$. Since we have $\operatorname{deg}\left(L^{\otimes 4} \otimes \operatorname{det} E^{\vee}\right)=3 d-e \geq 0$, it does not have base points when $3 d-e \neq 1$. If $3 d-e=$ 1 holds, we have $\Gamma:=Y_{\infty} \cap(\mu \circ \sigma)^{-1}(q) \subset \operatorname{Bs}\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$, where $q \in C$ satisfies $L^{\otimes 4} \otimes$ $\operatorname{det} E^{\vee} \cong \mathcal{O}_{C}(q)$. We easily check that Γ is a (-1)-curve on $S^{\prime \prime}:=(\Psi)$.

Let us look at $\left|4 C_{0}-\mu^{*} D\right|$. Clearly, Bs $\left|4 C_{0}-\mu^{*} D\right|=\varnothing$ holds when $\operatorname{deg}\left(L_{0} \otimes L_{1}^{-1}\right)=e-d \geq 2$. When $e-d=1$, a general member of $\left|4 C_{0}-\mu^{*} D\right|$ is nonsingular by Lemma 2.5. Thus a general member of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is nonsingular at the base point $Y_{0} \cap \sigma^{-1}\left(y_{0}\right)$, where y_{0} is the base point of $\left|4 C_{0}-\mu^{*} D\right|$. If $e-d=0$, since we assume $L_{0} \cong L_{1}$, we have $H^{0}\left(Y, \mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*} \operatorname{det} E^{\vee}\right) \cong \boldsymbol{C}$. Thus we have $\sigma^{-1}\left(C^{\prime}\right) \cap Y_{0} \subset \mathrm{Bs}\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$, where C^{\prime} is a section of μ with $\mu_{*} \mathcal{O}_{Y}\left(C^{\prime}\right) \cong F_{2}$. The divisor $\left(\psi_{3}\right)$ on Y defined by general ψ_{3} intersects C^{\prime} at e_{0} points transversally. Let p be one of these intersection points, (t, u) a local coordinate around p so that $t=0$ and $u=0$ are the local equations for C^{\prime} and $\left(\psi_{3}\right)$ around p, respectively, and denote $z_{0}:=Z_{0} / Z_{\infty}, \Psi$ can be written as

$$
\Psi=\psi_{0} z_{0}^{4}+\psi_{1} z_{0}^{3}+\psi_{2} z_{0}^{2}+\psi_{3} z_{0}+\psi_{4}=z_{0}\left(\psi_{0} z_{0}^{3}+\psi_{1} z_{0}^{2}+\psi_{2} z_{0}+u\right)+t^{4}
$$

near $p_{0}:=\sigma^{-1}(p) \cap Y_{0}$. This is an equation defining a rational double point of type A_{3}.
We have to consider the case $E \cong L \otimes\left(F_{2} \oplus \mathcal{O}_{C}\right)$ with $L \in \mathscr{E}_{C}(1,1)$. (This is the case where $3 d-e=1$ and $e-d=1$ above hold at the same time.) In this case, ψ_{i} is contained in $H^{0}\left(Y, \mathcal{O}_{Y}\left(i C^{\prime}\right) \otimes \mu^{*} L\right)$. We have $\mathrm{Bs}\left|i C^{\prime}+\Gamma_{0}\right|=\left\{y_{0}\right\}$ by Lemma 2.5 , and hence Bs $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|=\sigma^{-1}\left(y_{0}\right) \cup\left\{(\mu \circ \sigma)^{-1}(q) \cap Y_{\infty}\right\}$. We only have to prove that it is nonsingular along $\sigma^{-1}\left(y_{0}\right)$. Since all the nonsingular members of $\left|4 C^{\prime}+\Gamma_{0}\right|$ have the same tangent at y_{0} by Lemma 2.5, we can choose a local coordinate (t, u) around y_{0} so that $t=0$ is the local equation of Γ_{0} and that $u=0$ gives the tangent line of nonsingular members of $\left|4 C^{\prime}+\Gamma_{0}\right|$ at y_{0}. If we denote $z:=Z_{0} / Z_{\infty}$, then Ψ can be written as

$$
\begin{aligned}
\Psi= & a_{0} t z^{4}+\left(a_{1} t+b_{1} u+l_{1}(t, u)\right) z^{3}+\left(a_{2} t+b_{2} u+l_{2}(t, u)\right) z^{2} \\
& +\left(a_{3} t+b_{3} u+l_{3}(t, u)\right) z+\left(b_{4} u+l_{4}(t, u)\right)
\end{aligned}
$$

near $\sigma^{-1}\left(y_{0}\right) \backslash Y_{\infty}$, where $a_{i}, b_{j} \in \boldsymbol{C},(i=0,1,2,3, j=1,2,3,4)$, and $\iota_{j}(t, u),(j=1,2,3,4)$ is the sum of all the monomials with respect to t and u with degree at least two. Since Ψ is general, we may assume $a_{0} \neq 0$ and $b_{4} \neq 0$. If we fix a_{1}, a_{2} and a_{3}, then b_{1}, b_{2} and b_{3} are uniquely determined. On the other hand, a_{0} and b_{4} can be chosen independently of them. Hence the two equations $\partial \Psi / \partial t=0$ and $\partial \Psi / \partial u=0$ do not have the same solutions, and (Ψ) is nonsingular along $\sigma^{-1}\left(y_{0}\right)$.

Clearly, $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is not composite with a pencil when $e>d$ by Lemma 2.6.

If $e=d$ holds, let S_{1} and S_{2} be two distinct general members of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$, and F a general fiber of $\mu \circ \sigma$, and denote $q:=F \cap \sigma^{-1}\left(C^{\prime}\right) \cap Y_{0}$. We can easily check that the intersection multiplicity of $\left.S_{1}\right|_{F}$ and $\left.S_{2}\right|_{F}$ at q is four. Hence $\left.S_{1}\right|_{F}$ and $\left.S_{2}\right|_{F}$ have other intersection points, and we see that $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is not composite with a pencil even in the case $e=d$ by Lemma 2.6. Therefore, a general member of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is irreducible.

It is easily seen that $\left.Y_{\infty}\right|_{S^{\prime \prime}}$ consists of $3 d-e$ pieces of (-1)-curves, where $S^{\prime \prime}:=(\Psi)$. Hence the image of $Y_{\infty} \cap S^{\prime \prime}$ in W is a finite set of nonsingular points of $S^{\prime}:=\rho\left(S^{\prime \prime}\right)$.
(iii) The case where ($e=3 d$ and $\left.L_{0} \otimes L_{1}^{\otimes 3} \nsubseteq \mathcal{O}_{C}\right)$, $(3 d<e<4 d)$, or $\left(L_{0} \otimes L_{1}^{\otimes 2} \cong \mathcal{O}_{C}\right)$. Ψ is divisible by Z_{∞}, i.e., the image of (Ψ) in W contains C_{1}. In this case, we have to consider the complete linear system of $\mathcal{O}_{X}\left(3 Y_{1}\right) \otimes \sigma^{*}\left(\mathcal{O}_{Y}\left(C_{0}\right) \otimes \mu^{*} \operatorname{det} E^{\vee}\right)$. Any $\tilde{\Psi}:=\Psi / Z_{\infty}$ can be written as

$$
\begin{aligned}
\tilde{\Psi} & =\sum_{j=0}^{3} \psi_{j+1} Z_{0}^{3-j} Z_{\infty}^{j}, \\
& \psi_{j+1} \in H^{0}\left(Y, \mathcal{O}_{Y}\left((j+1) C_{0}\right) \otimes \mu^{*}\left(L^{\otimes(3-j)} \otimes \operatorname{det} E^{\vee}\right)\right), \quad(j=0, \ldots, 3) .
\end{aligned}
$$

Let us look at $\mathcal{O}_{Y}\left(C_{0}\right) \otimes \mu^{*}\left(L^{\otimes 3} \otimes \operatorname{det} E^{\vee}\right)$. If $4 d-e \geq 4$, then base points do not exist. If $4 d-e=2$, then there exists a unique isolated base point on C^{\prime}. If $4 d-e=0$, then we have $\left|C^{\prime}\right|=\left\{C^{\prime}\right\}$. In each case, we easily see that a general $(\widetilde{\Psi})$ is nonsingular over the base points of $\mathcal{O}_{Y}\left(C_{0}\right) \otimes \mu^{*}\left(L^{\otimes 3} \otimes \operatorname{det} E^{\vee}\right)$.

Let us look at $\mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*}\left(\operatorname{det} E^{\vee}\right) \cong \mathcal{O}_{Y}\left(4 C^{\prime}\right) \otimes \mu^{*}\left(L_{0} \otimes L_{1}^{-1}\right)$. Since $\operatorname{deg}\left(L_{0} \otimes\right.$ $\left.L_{1}^{-1}\right)=e-d \geq 2$ hold, we have Bs $\left|4 C_{0}-\mu^{*} D\right|=\varnothing$.

In the same way as in the proof of (ii), we can show that $\left|3 Y_{1}+\sigma^{*}\left(C_{0}-\mu^{*} D\right)\right|$ is not composite with a pencil.

By what we have seen so far, a general member of $\left|3 Y_{1}+\sigma^{*}\left(C_{0}-\mu^{*} D\right)\right|$ is irreducible and nonsingular. It is easy to see that the intersection of the member with Y_{∞} is irreducible, and hence its image by ρ is nonsingular.
(iv) The case where $\left(e=4 d\right.$ and $\left.L_{0} \otimes L_{1}^{\otimes 2} \not \equiv \mathcal{O}_{C}\right)$ or $(4 d<e)$. (Ψ) has $2 Y_{\infty}$ as a component, and the image of (Ψ) in W contains C_{1} as a singular curve.
3.2.2. Existence in the case where e is odd. Denote $e=: 2 e_{0}+1(\geq 1)$. If we fix any $F_{2,1} \in \mathscr{E}_{C}(2,1)$, then there exist $L_{0} \in \mathscr{E}_{C}\left(1, e_{0}\right)$ and $L_{1} \in \mathscr{E}_{C}\left(1, d-e_{0}\right)$ with $E_{0} \cong L_{0} \otimes F_{2,1}$ and $L \cong L_{0} \otimes L_{1}$. Let $\mathscr{N}_{k}(k=1,2,3)$ be the invertible sheaves with $\mathscr{N}_{k} \nsubseteq \mathcal{O}_{C}$, and $\mathcal{N}_{k}^{\otimes 2} \cong \mathcal{O}_{C}$.

Theorem 3.10. Let the conditions and notation be as above. Then the locally free sheaf E satisfies the condition (A) if and only if one of the following (1) and (2) holds:
(1) $e=d>0$ and $\operatorname{det} F_{2,1} \otimes L_{0} \otimes L_{1}^{-1}$ is isomorphic to one of $\mathcal{O}_{\mathbf{C}}$ and $\mathscr{N}_{k}(k=1,2,3)$.
(2) $d<e<4 d$.

We use the following result on symmetric products by Ashikaga [1] to prove this theorem. Since [1] is unpublished, we give the proof for the readers' convenience.

Lemma 3.11 (cf. [1]). If $\mathscr{N}_{k}(k=1,2,3)$ are the three nontrivial line bundles satisfying $\mathscr{N}_{k}^{\otimes 2} \cong \mathcal{O}_{C}$, and if $F_{2,1}$ is an indecomposable locally free sheaf of rank 2 and degree 1 on an elliptic curve C, then the following hold for any nonnegative integer m :

$$
\begin{align*}
& S^{4 m}\left(F_{2,1}\right) \cong\left(\mathcal{O}_{C}^{\oplus(m+1)} \oplus\left(\oplus_{k=1}^{3} \mathscr{N}_{k}\right)^{\oplus m}\right) \otimes\left(\operatorname{det} F_{2,1}\right)^{\otimes 2 m} \tag{1}\\
& S^{4 m+2}\left(F_{2,1}\right) \cong\left(\mathcal{O}_{C}^{\oplus m} \oplus\left(\bigoplus_{k=1}^{3} \mathscr{N}_{k}\right)^{\oplus(m+1)}\right) \otimes\left(\operatorname{det} F_{2,1}\right)^{\otimes(2 m+1)} \tag{2}
\end{align*}
$$

Proof. First, we show the statement for $S^{2}\left(F_{2,1}\right)$. We have

$$
\begin{aligned}
& F_{2,1} \otimes F_{2,1} \cong S^{2}\left(F_{2,1}\right) \oplus \operatorname{det} F_{2,1} \\
& F_{2,1} \otimes F_{2,1} \cong\left(\mathcal{O}_{c} \oplus \mathscr{N}_{1} \oplus \mathscr{N}_{2} \oplus \mathscr{N}_{3}\right) \otimes \operatorname{det} F_{2,1}
\end{aligned}
$$

by the Clebsch-Gordan formula [4, p. 438], and Atiyah's result [4, Theorem 14]. Hence we obtain an isomorphism

$$
S^{2}\left(F_{2,1}\right) \cong\left(\mathscr{N}_{1} \oplus \mathscr{N}_{2} \oplus \mathscr{N}_{3}\right) \otimes \operatorname{det} F_{2,1}
$$

To complete the proof, it is sufficient to show the following (i), (ii) and (iii):
(i) $\quad S^{4}\left(F_{2,1}\right) \cong\left(\mathcal{O}_{C}^{\oplus 2} \oplus \mathscr{N}_{1} \oplus \mathscr{N}_{2} \oplus \mathscr{N}_{3}\right) \otimes\left(\operatorname{det} F_{2,1}\right)^{\otimes 2}$.
(ii) (1) of the lemma is true under the assumption that the lemma is true for all the even integers less than or equal to $4 m-2$.
(iii) (2) of the lemma is true under the assumption that the lemma is true for all the even integers less than or equal to $4 m$.

We show only (iii) here. (i) and (ii) can be shown in the same way.
We have

$$
\begin{aligned}
& S^{4 m}\left(F_{2,1}\right) \otimes S^{2}\left(F_{2,1}\right) \\
& \quad \cong S^{4 m+2}\left(F_{2,1}\right) \oplus\left(\left(\operatorname{det} F_{2,1}\right) \otimes S^{4 m}\left(F_{2,1}\right)\right) \oplus\left(\left(\operatorname{det} F_{2,1}\right)^{\otimes 2} \otimes S^{4 m-2}\left(F_{2,1}\right)\right)
\end{aligned}
$$

for $m>0$ by the Clebsch-Gordan formula. On the other hand, we have

$$
S^{4 m}\left(F_{2,1}\right) \otimes S^{2}\left(F_{2,1}\right) \cong\left(\mathcal{O}_{C}^{\oplus 3 m} \oplus\left(\mathscr{N}_{1} \oplus \mathscr{N}_{2} \oplus \mathscr{N}_{3}\right)^{\oplus(3 m+1)}\right) \otimes\left(\operatorname{det} F_{2,1}\right)^{\otimes(2 m+1)}
$$

by the induction assumption, and furthermore, we have

$$
\begin{aligned}
& \left(\left(\operatorname{det} F_{2,1}\right) \otimes S^{4 m}\left(F_{2,1}\right)\right) \oplus\left(\left(\operatorname{det} F_{2,1}\right)^{\otimes 2} \otimes S^{4 m-2}\left(F_{2,1}\right)\right) \\
& \quad \cong\left(\mathcal{O}_{C}^{\oplus 2 m} \oplus\left(\mathscr{N}_{1} \oplus \mathcal{N}_{2} \oplus \mathscr{N}_{3}\right)^{\oplus 2 m}\right) \otimes\left(\operatorname{det} F_{2,1}\right)^{\otimes(2 m+1)} .
\end{aligned}
$$

Hence we have

$$
S^{4 m+2}\left(F_{2,1}\right) \cong\left(\mathscr{O}_{C}^{\oplus m} \oplus\left(\mathscr{N}_{1} \oplus \mathscr{N}_{2} \oplus \mathscr{N}_{3}\right)^{\oplus(m+1)}\right) \otimes\left(\operatorname{det} F_{2,1}\right)
$$

by the Krull-Schmidt theorem.
q.e.d.

Proof of Theorem 3.10. Let Ψ and D be as in the previous section.
(i) The case where $(e<d)$, or ($e=d$ and $\operatorname{det} F_{2,1} \otimes L_{0} \otimes L_{1}^{-1}$ is isomorphic to none of \mathcal{O}_{C} and $\mathscr{N}_{k}(k=1,2,3)$). Using Lemma 3.11, we can show that (Ψ) has Y_{0} as a component in the same way as in the proof of (i) of Theorem 3.9.
(ii) The case where $\left(\operatorname{det} F_{2,1} \otimes L_{0} \otimes L_{1}^{-1}\right.$ is isomorphic to one of \mathcal{O}_{C} and \mathscr{N}_{k} $(k=1,2,3)),(d<e<3 d)$, or $\left(L_{0} \otimes L_{1}^{\otimes 3} \cong \operatorname{det} F_{2,1}\right)$.

We can show that E satisfies the condition (A) when $e-d \geq 2$ holds in the same way as in the proof of (ii) of Theorem 3.9. We only have to prove that a general member of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is nonsingular at the base points dominating the base points of $\mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*} \operatorname{det} E^{\vee}$ when $e-d=0,1$.

For that purpose, we need to study the structure of Y more precisely. We can show that $\operatorname{dim} H^{0}\left(Y, \mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*}\left(\operatorname{det} E_{0}^{\vee}\right)^{\otimes 2}\right)=2$ by using Lemma 3.11, and that this linear pencil has no base point. Let $\zeta: Y \rightarrow \boldsymbol{P}^{1}$ be the corresponding fibration. The invertible sheaves $\mathscr{M}_{k}:=\mathcal{O}_{Y}\left(2 C_{0}\right) \otimes \mu^{*}\left(\mathcal{N}_{k} \otimes \operatorname{det} E_{0}^{\vee}\right)(k=1,2,3)$ satisfy $\mathscr{M}_{k}^{\otimes 2} \cong \mathcal{O}_{Y}\left(4 C_{0}\right) \otimes$ $\mu^{*}\left(\operatorname{det} E_{0}^{\vee}\right)^{\otimes 2}$, and $H^{0}\left(Y, \mathscr{M}_{k}\right) \cong \boldsymbol{C}$ by Lemma 3.11, hence ζ has three multiple fibers $2 \mathscr{F}_{k}$ ($k=1,2,3$) with \mathscr{F}_{k} satisfying $\mathscr{M}_{k} \cong \mathcal{O}_{Y}\left(\mathscr{F}_{k}\right)$.

Next, we study the complete linear system of $\mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*}\left(\left(\operatorname{det} E_{0}^{\vee}\right)^{\otimes 2} \otimes \mathscr{N}_{k}\right)$. We obtain $H^{0}\left(Y, \mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*}\left(\left(\operatorname{det} E_{0}^{\vee}\right)^{\otimes 2} \mathscr{N}_{k}\right)\right) \cong \boldsymbol{C}$ by Lemma 3.11. Since

$$
\mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*}\left(\left(\operatorname{det} E_{0}^{\vee}\right)^{\otimes 2} \otimes \mathscr{N}_{k}\right) \cong \mathscr{M}_{\tau(k)} \otimes \mathscr{M}_{\tau^{2}(k)} \quad(k=1,2,3)
$$

where τ is a cyclic permutation, each of these three complete linear systems consists only of $\mathscr{F}_{\tau(k)}+\mathscr{F}_{\tau^{2}(k)}$.

If $e-d=1$, there exists a point $p \in C$ with $\operatorname{det} E^{\vee} \cong\left(\operatorname{det} E_{0}^{\vee}\right)^{\otimes 2} \otimes \mu^{*} \mathcal{O}_{C}(p)$, and we have $\mathrm{Bs}\left|4 C_{0}-\mu^{*} D\right| \subset \Gamma:=\mu^{-1}(p)$. Let $p_{k} \in C$ be a point with $\mathscr{N}_{k} \otimes \mathcal{O}_{C}(p) \cong \mathcal{O}_{C}\left(p_{k}\right)$, and denote $\Gamma_{k}:=\mu^{-1}\left(p_{k}\right)(k=1,2,3)$. Then we have $\Gamma_{k}+\mathscr{F}_{\tau(k)}+\mathscr{F}_{\tau^{2}(k)} \in\left|4 C_{0}-\mu^{*} D\right|$ $(k=1,2,3)$. Since p, p_{1}, p_{2}, p_{3} are pairwise distinct, and since $\mathscr{F}_{1}, \mathscr{F}_{2}$ and \mathscr{F}_{3} intersect Γ at distinct points, we obtain $\mathrm{Bs}\left|4 C_{0}-\mu^{*} D\right|=\varnothing$.

If $e-d=0$, then $\operatorname{det} F_{2,1} \otimes L_{0} \otimes L_{1}^{-1}$ is isomorphic to one of \mathcal{O}_{C} and $\mathscr{N}_{k}(k=1,2$, 3) by assumption. If $\operatorname{det} F_{2,1} \otimes L_{0} \otimes L_{1}^{-1} \cong \mathcal{O}_{C}$, then $\mathrm{Bs}\left|4 C_{0}-\mu^{*} D\right|=\varnothing$ holds. If $\operatorname{det} F_{2,1} \otimes L_{0} \otimes L_{1}^{-1} \cong \mathscr{N}_{k}$, we have $\left|4 C_{0}-\mu^{*} D\right|=\left\{\mathscr{F}_{\tau(k)}+\mathscr{F}_{\tau^{2}(k)}\right\}$. We can easily show that a general member of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is nonsingular along $\sigma^{-1}\left(\mathscr{F}_{\tau(k)} \cup \mathscr{F}_{\tau^{2}(k)}\right) \cap Y_{0}$.

In the same way as in the proof of Theorem 3.9, we can show that $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is not composite with a pencil in each case above, and hence a general member of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ is irreducible and nonsingular.

As in the case of (ii) with e even, we can show that $(\Psi) \cap Y_{\infty}$ is a disjoint union of $3 d-e$ pieces of (-1)-curves.
(iii) The case where ($e=3 d>0$ and $L_{0} \otimes L_{1}^{\otimes 3} \nsupseteq \operatorname{det} F_{2,1}$), or ($3 d<e<4 d$). Using Lemma 3.11, we can show that a general member of $\left|3 Y_{1}+\sigma^{*}\left(C_{0}-\mu^{*} D\right)\right|$ is irreducible and nonsingular in the same way as in the proof of (iii) of Theorem 3.9.
(iv) The case where $4 d<e$. The images of all the members of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ in
W have non-isolated singularity for the same reason as in the case (iv) with e even.
q.e.d.

Remark. (1) We can prove Theorem 3.10 above by using an isogeny $\varphi: \tilde{C} \rightarrow C$ with $\operatorname{deg} \varphi=2$ of elliptic curves as in $\S 3.3 .4$ below where we use an isogeny of degree 3 .
(2) The existence of the linear pencil $\zeta: Y \rightarrow \boldsymbol{P}^{1}$ and the multiple fibers $2 \mathscr{F}_{k}$ $(k=1,2,3)$ above was proved by Suwa [21, $\S 4]$. What we mentioned in the proof of Theorem 3.10 is a re-interpretation of Suwa's result by means of Lemma 3.11 due to Ashikaga.
3.2.3. The canonical mapping. In this section, we study the canonical mappings of those surfaces whose existence was shown in $\S \S 3.9-3.10$. Let E_{0} and L be as above satisfying the conditions of Theorem 3.9 when e is even, and Theorem 3.10 when e is odd.

Lemma 3.12. If $\mu: Y:=\boldsymbol{P}\left(E_{0}\right) \rightarrow C$ is the ruled surface associated to $E_{0} \in \mathscr{E}_{C}(2,4)$, and C_{0} is a section of μ with $\mu_{*} \mathcal{O}_{Y}\left(C_{0}\right) \cong E_{0}$, then $\Phi_{\left|C_{0}\right|}$ is birational onto its image.

Proof. Let $\delta \in \operatorname{Div}(C)$ be a divisor satisfying $L_{0} \cong \mathscr{O}_{C}(\delta)$, and C^{\prime} a section of μ with $\left|C_{0}-\mu^{*} \delta\right|=\left\{C^{\prime}\right\}$, where L_{0} is an invertible sheaf with $E_{0} \cong L_{0} \otimes F_{2}$.

Let $q_{1}, q_{2} \in Y \backslash C^{\prime}$ be any pair of points contained in different fibers of μ, and Γ_{1} the fiber of μ containing q_{1}. Since Bs $\left|C_{0}-\Gamma_{1}\right|$ consists of one point on C^{\prime} by Lemma 2.5, there exists a member C_{0}^{\prime} of $\left|C_{0}-\Gamma_{1}\right|$ with $q_{2} \notin C_{0}^{\prime}$. Then $C_{0}^{\prime}+\Gamma_{1}$ contains q_{1} but not q_{2}. Hence $\left|C_{0}\right|$ separates q_{1} and q_{2}, and $\Phi_{\left|C_{0}\right|}$ is birational onto its image. q.e.d.

Proposition 3.13. Any surface whose existence is guaranteed by Theorems 3.9 and 3.10 and the condition (A) is canonical if $e+d \geq 5$. If $(e, d) \neq(4,1)$, then the canonical mapping is a morphism. If $(e, d)=(4,1)$, then $\left|K_{S}\right|$ has a unique isolated base point, and its canonical image is non-normal.

Proof. We use the same notation as in §§3.2.1-3.2.2. We only have to prove that $\Phi_{|T|}$ is birational onto the image to show the birationality of the canonical mapping.

We can show that the restriction of $\Phi_{|T|}$ to a general fiber F of π gives an isomorphism of F onto its image as in the proof of Lemma 3.2.

If $\Phi_{\left|Y_{1}\right|}$ is birational onto its image, then $\Phi_{|T|}$ is also birational onto its image. Therefore, we consider $\Phi_{\left|Y_{1}\right|}$.

Any $\Psi \in H^{0}\left(X, \mathcal{O}_{X}\left(Y_{1}\right)\right)$ can be written as

$$
\Psi=\psi_{0} Z_{0}+\psi_{\infty} Z_{\infty}, \quad \psi_{0} \in H^{0}(C, L), \quad \psi_{\infty} \in H^{0}\left(Y, \mathcal{O}_{Y}\left(C_{0}\right)\right)
$$

Hence it is easy to see that $\Phi_{\left|Y_{1}\right|}$ is birational onto its image if one of $d \geq 3, e \geq 6$ and $(e, d)=(5,2)$ holds. Similarly, in the cases $(e, d)=(4,2),(4,1), \Phi_{\left|Y_{1}\right|}$ is birational by Lemma 3.12. If $(e, d)=(3,2)$, then we have Bs $\left|Y_{1}\right|=\varnothing$. Since $Y_{1}^{3}=5$ and the degree of the image of X cannot be $1, \Phi_{\left|Y_{1}\right|}$ is a birational morphism.

If $e \geq 3$ and $d \geq 2$, then $\mathrm{Bs}\left|Y_{1}\right|=\varnothing$ by the equation above. The statement in the case $(e, d)=(4,1)$ is proved in the same way as in the proof of Corollary 3.4. q.e.d.

Proposition 3.14. Let $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to a locally free sheaf $E:=E_{0} \oplus L,\left(E_{0} \in \mathscr{E}_{C}(2,2), L \in \mathscr{E}_{C}(1.1)\right), \quad T$ a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $L_{0} \in \mathscr{E}_{C}(1,1), L_{1} \in \mathscr{E}_{C}(1,0)$ the invertible sheaves satisfying $E_{0} \cong L_{0} \otimes$ F_{2} and $L \cong L_{0} \otimes L_{1}$. We have the following for a general $S \in\left|4 T-\pi_{*} D\right|$:
(i) $\operatorname{deg} \Phi_{\left|K_{s}\right|}=9$, if $L_{1}^{\otimes 2} \not \approx \mathcal{O}_{C}$.
(ii) $\operatorname{deg} \Phi_{\left|K_{s}\right|}=8$, if $L_{1}^{\otimes 2} \cong \mathscr{O}_{C}$ and $L_{1} \nsupseteq \mathcal{O}_{C}$.
(iii) $\operatorname{deg} \Phi_{\left|K_{s}\right|}=4$, if $L_{1} \cong \mathcal{O}_{C}$.

Proof. Let $p \in C$ be a point with $L \cong \mathcal{O}_{C}(p)$, and $q \in Y$ a point with $\mathrm{Bs}\left|C_{0}\right|=\{q\}$. (See Lemma 2.5.) $\mathrm{Bs}\left|Y_{1}\right|=\left\{(\mu \circ \sigma)^{-1}(p) \cap Y_{\infty}\right\} \cup\left\{\sigma^{-1}(q) \cap Y_{0}\right\}$ is proved in the same way as in the proof of Corollary 3.13.

Let C^{\prime} be a section of μ with $\mathcal{O}_{Y}\left(C^{\prime}\right) \cong \mathcal{O}_{Y}\left(C_{0}\right) \otimes \mu^{*} L_{0}^{-1}, p_{0} \in C$ a point with $L_{0} \otimes L_{1}^{-1} \cong \mathcal{O}_{c}\left(p_{0}\right), q^{\prime} \in Y$ the intersection point of $\mu^{-1}\left(p_{0}\right)$ with C^{\prime}, and $p^{\prime} \in C$ a point with $L^{\otimes 4} \otimes \operatorname{det} E^{\vee} \cong \mathcal{O}_{C}\left(p^{\prime}\right)$. We have already seen that $\mathrm{Bs}\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|=$ $\left\{\sigma^{-1}\left(q^{\prime}\right) \cap Y_{0}\right\} \cup\left\{(\mu \circ \sigma)^{-1}\left(p^{\prime}\right) \cap Y_{\infty}\right\}$ holds in Theorem 3.9.
q coincides with q^{\prime} if and only if $L_{0} \cong L_{0} \otimes L_{1}^{-1}$, hence $L_{1} \cong \mathcal{O}_{C} . p$ coincides with ρ^{\prime} if and only if $L \cong L^{\otimes 4} \otimes \operatorname{det} E^{\vee}$. This is equivalent to $L_{1}^{\otimes 2} \cong \mathcal{O}_{C}$.

Hence, if $L_{1}^{\otimes 2} \not \approx \mathcal{O}_{C}$ holds, the complete linear system of the canonical divisor of a general member of $\left|4 Y_{1}-\sigma^{*} \mu^{*} D\right|$ has no base point, and we obtain $\operatorname{deg} \Phi_{\left|K_{S}\right|}=9$.

If $L_{1}^{\otimes 2} \cong \mathcal{O}_{\mathrm{C}}$ and $L_{1} \not \approx \mathcal{O}_{\mathrm{C}}$ holds, then we have $q \neq q^{\prime}$ and $p=p^{\prime}$. Hence the canonical system of a general member of $\left|4 T-\pi^{*} D\right|$ has one isolated base point. We have the following elementary transformation (cf. [17]):

where $\pi^{\prime}: W^{\prime} \rightarrow C$ is the P^{2}-bundle associated to a locally free sheaf $E^{\prime}:=E_{0} \oplus \mathcal{O}_{C}$ of rank 3 over C, ϕ is the blowing-up at the isolated base point of $\left|4 T-\pi^{*} D\right|$, and ϕ^{\prime} is the blowing-up along the line $\boldsymbol{P}\left(E_{0} \otimes_{\mathcal{O}_{C}} \mathcal{O}_{p}\right) \subset W^{\prime}$. Let T^{\prime} be a tautological divisor with $\pi_{*}^{\prime} \mathcal{O}_{W^{\prime}}\left(T^{\prime}\right) \cong E^{\prime}$. The complete linear system $|T|$ on W is mapped to the complete linear system $\left|T^{\prime}\right|$ by this elementary transformation. Furthermore, if \bar{S} is the proper transform of a general member S by ϕ, and if we denote $S^{\prime}:=\phi^{\prime}(\bar{S})$, then we have $S^{\prime} \sim 4 T^{\prime}$ by the assumption $L_{1}^{\otimes 2} \cong \mathcal{O}_{C}$. Since $\mathrm{Bs}\left|T^{\prime}\right|=\varnothing$, the complete linear system of $\mathcal{O}_{W^{\prime}}\left(T^{\prime}\right) \otimes_{\mathscr{O}_{W^{\prime}}} \mathcal{O}_{S^{\prime}}$ on S^{\prime} has no base point. Since $\Phi_{\mid K_{\bar{s} \mid}}$ factors as

$$
\Phi_{|K \bar{K}|}: \bar{S} \rightarrow S^{\prime} \rightarrow \Phi_{\left|T^{\prime}\right|}\left(S^{\prime}\right) \hookrightarrow \boldsymbol{P}^{n}, \quad\left(n:=p_{g}(S)-1\right)
$$

we have $\operatorname{deg} \Phi_{\left|K_{s}\right|}=\operatorname{deg} \Phi_{\left|K_{\bar{S} \mid}\right|}=\left(T^{\prime}\right)^{2} S^{\prime}=4\left(T^{\prime}\right)^{3}=4 \operatorname{deg} E^{\prime}=8$.
Finally, we consider the case (iii), i.e., the case $E \cong L \otimes\left(F_{2} \oplus \mathcal{O}_{C}\right)$. We see that Bs $|T|=\mathrm{Bs}\left|4 T-\pi^{*} D\right|$ holds, and it is a line contained in a fiber $\pi^{-1}(p) \subset W$.

We have the same elementary transformation as in the case (ii). (We use the same notation as above.) In this case, $\mathrm{Bs}\left|T^{\prime}\right|$ consists of one point contained in
$\pi^{\prime-1}(p)$, and the image S^{\prime} in W^{\prime} of the proper transform of a general member $S \in\left|4 T-\pi^{*} D\right|$ goes through this point. Let T_{0}^{\prime} be the image of $\boldsymbol{P}(E / L) \subset W$ in W^{\prime}. Regarding C_{0}, C^{\prime} and $\mu^{-1}(p)$ as divisors on $\boldsymbol{P}(E / L)$ or T_{0}^{\prime} in view of $Y \cong \boldsymbol{P}(E / L) \cong T_{0}^{\prime}$, we have $\mathcal{O}_{T_{0}^{\prime}}\left(T_{0}^{\prime}\right) \cong \mathcal{O}_{T_{0}^{\prime}}\left(C_{0}\right)\left(\cong \mathcal{O}_{T_{0}^{\prime}}\left(C^{\prime}+\mu^{-1}(p)\right)\right)$. Since the restriction of S to $P(E / L)$ is linearly equivalent to $4 C^{\prime}+\mu^{-1}(p)$, the restriction of S^{\prime} to T_{0}^{\prime} is the sum of a divisor G which is linearly equivalent to $4 C^{\prime}+\mu^{-1}(p)$ and $3 \mu^{-1}(p)$. G goes through $q=\mu^{-1}(p) \cap C^{\prime}$, and since S is generic, G is nonsingular at q. C_{0} also goes through q and is nonsingular at q, and C_{0} and G have different tangents by Lemma 2.5.

Let $v: \tilde{W} \rightarrow W^{\prime}$ be the blowing-up at q, let \tilde{T} and \tilde{S} be the proper transforms of T^{\prime} and S^{\prime}, respectively, and denote $\widetilde{\mathscr{E}}:=v^{-1}(q)$. Since $v^{*} T^{\prime} \sim \tilde{T}+\widetilde{\mathscr{E}}$, we can prove $v^{*} S^{\prime} \sim \tilde{S}+4 \tilde{\mathscr{E}}$ by the above result. Although $|\widetilde{T}|$ has one isolated base point, \widetilde{S} does not go through the point. Hence we have

$$
\begin{aligned}
& \operatorname{deg} \Phi_{\left|K_{S}\right|}=\operatorname{deg}\left(\Phi_{|\widetilde{\widetilde{T}}|} \mid \tilde{S}\right)=\widetilde{T}^{2} \tilde{S}=\left(v^{*} T^{\prime}-\widetilde{\mathscr{E}}\right)^{2}\left(v^{*} S^{\prime}-4 \widetilde{\mathscr{E}}\right) \\
& \quad=T^{\prime 2} S^{\prime}-4 \widetilde{\mathscr{E}}^{3}=4 T^{\prime 3}-4=4
\end{aligned}
$$

q.e.d.

We treat the case $(e, d)=(1,1)$ in Proposition 3.30 in the next section.
In the case $(e, d)=(3,1)$, we have the following:
Lemma 3.15. Let $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to a locally free sheaf $E:=L \otimes\left(F_{2,1} \oplus L\right),\left(L \in \mathscr{E}_{C}(1,1)\right)$, and T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$. Then $\Phi_{|T|}$ is a triple covering of W over \boldsymbol{P}^{3}.

Proof. Let $\mu: Y:=\boldsymbol{P}\left(L \otimes F_{2,1}\right) \rightarrow C$ be the ruled surface associated to $L \otimes F_{2,1}$, and C_{0} a section of μ with $\mu_{*} \mathcal{O}_{Y}\left(C_{0}\right) \cong L \otimes F_{2,1}$. Then the restriction mapping $H^{0}\left(Y, \mathcal{O}_{Y}\left(C_{0}\right)\right) \rightarrow H^{0}\left(\Gamma, \mathcal{O}_{\Gamma}\left(C_{0}\right)\right)$ is surjective for any fiber Γ of μ, and we have $\mathrm{Bs}\left|C_{0}\right|=$ \varnothing.

Consider the pull-back $\left|Y_{1}\right|$ of $|T|$ to X. Since $\mathrm{Bs}\left|C_{0}\right|=\varnothing$, we have $\mathrm{Bs}\left|Y_{1}\right|=$ $Y_{\infty} \cap(\mu \circ \sigma)^{-1}(p)$, where $p \in C$ is the point with $L \cong \mathcal{O}_{C}(p)$. This curve is contracted to a point q by $\rho: X \rightarrow W$, and we have Bs $|T|=\{q\}$.

Let $\pi^{\prime}: W^{\prime}:=\boldsymbol{P}\left(E^{\prime}\right) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to the locally free sheaf $E^{\prime}:=E_{0} \oplus \mathcal{O}_{C}$, and T^{\prime} a tautological divisor with $\pi_{*}^{\prime} \mathcal{O}_{W^{\prime}}\left(T^{\prime}\right) \cong E^{\prime}$. We obtain an elementary transformation

as before, where ϕ is the blowing-up at q. The image under ϕ^{\prime} of the proper transform of T by ϕ is linearly equivalent to T^{\prime}. Clearly $\mathrm{Bs}\left|T^{\prime}\right|=\varnothing$, and hence, $\operatorname{deg} \Phi_{|T|}=\operatorname{deg} \Phi_{\left|T^{\prime}\right|}=\left(T^{\prime}\right)^{3}=3$ holds.

Lemma 3.16. Let $\mu: Y \rightarrow C$ be the ruled surface associated to a locally free sheaf $E_{0} \in \mathscr{E}_{C}(2,3)$, and C_{0} a section of μ with $\mu_{*} \mathcal{O}_{Y}\left(C_{0}\right) \cong E_{0}$. Then $\Phi_{\left|4 C_{0}-\mu^{*} D\right|}$ is a birational morphism onto its image for any divisor $D \in \operatorname{Div}(C)$ of degree 4 .

Proof. It is known that Y is isomorphic to the symmetric product of C of degree 2 (cf. [7]). Let $\eta: C \times C \rightarrow Y$ be the quotient morphism. $C \times\{p\}$ and $\{p\} \times C$ are mapped by η to the same curve C_{p} on Y for any point $p \in C$. Since $(C \times\{p\}+\{p\} \times C)^{2}=2$ and $\operatorname{deg} \eta=2$, this curve C_{p} is a section of μ with self-intersection number 1 .
$\left|4 C_{0}-\mu^{*} D\right|$ contains a member of the form $\sum_{i=1}^{4} C_{p_{i}},\left(p_{i} \in C, i=1,2,3,4\right)$. Since $\eta^{-1}\left(\bigcup_{i=1}^{4} C_{p_{i}}\right)=\bigcup_{i=1}^{4}\left\{\left(C \times\left\{p_{i}\right\}\right) \cup\left(\left\{p_{i}\right\} \times C\right)\right\}$, there exist points $p_{i} \in C$ such that $\bigcup_{i=1}^{4} C_{p_{i}}$ does not contain q for any point $q \in Y$. Hence we have Bs $\left|4 C_{0}-\mu^{*} D\right|=\varnothing$.

Let $q, q^{*} \in Y$ be distinct points which are not contained in the image under η of the diagonal of $C \times C$, and denote $q=\left(p, p^{\prime}\right)$ for $p, p^{\prime} \in C$ in view of the above. Then C_{p} and $C_{p^{\prime}}$ are two distinct sections of μ. Since $C_{p} C_{p^{\prime}}=1$, at least one of C_{p} and $C_{p^{\prime}}$ does not go through q^{*}. We may assume that C_{p} does not go through q^{*}. $\left|4 C_{0}-\pi^{*} D-C_{p}\right|$ contains a member of the form $\sum_{i=1}^{3} C_{p_{i}},\left(p_{i} \in C, i=1,2,3\right)$, and there exists points $p_{i} \in C(i=1,2,3)$ such that $\sum_{i=1}^{3} C_{p_{i}}$ does not go through q^{\prime}. Hence the complete linear system $\left|4 C_{0}-\mu^{*} D\right|$ separates q and q^{\prime}. q.e.d.

Proposition 3.17. In the notation of Lemma 3.15, if $D \in \operatorname{Div}(C)$ is a divisor with $\mathcal{O}_{C}(D) \cong \operatorname{det} E$, then a general member $S \in\left|4 T-\pi^{*} D\right|$ is a canonical surface.

Proof. By the proof of Theorem 3.10, we know that Bs $\left|4 T-\pi^{*} D\right|=\varnothing$ holds when $L \cong \operatorname{det} E_{2,1}$, and that $\mathrm{Bs}\left|4 T-\pi^{*} D\right|=C_{1}:=\boldsymbol{P}\left(E / E_{0}\right) \subset W$ holds when $L \not \approx \operatorname{det} F_{2,1}$.

Since $\operatorname{deg} \Phi_{|T|}=3$ by Lemma 3.15, we have $\operatorname{deg} \Phi_{\left|K_{s}\right|}=1,2$ or 3 .
First, we consider the case $L \cong \operatorname{det} F_{2,1}$.
Assume $\operatorname{deg} \Phi_{\left|K_{s}\right|}=2$. Bs $|T|$ consists of one point $q \in W$, and S does not contain q. Let $\phi: \bar{W} \rightarrow W$ be the blowing-up at q and $\bar{T} \subset \bar{W}$ the proper transform of T by ϕ, and denote $\mathscr{E}:=\phi^{-1}(q)$. The proper transform \bar{S} of S is linearly equivalent to $4 \bar{T}+4 \mathscr{E}-\phi^{*} \pi^{*} D$. If $\phi^{\prime}: \bar{W} \rightarrow W^{\prime}$ is as in the proof of Lemma 3.15 , then we have $S^{\prime}:=\phi^{\prime}(\bar{S}) \sim 4 T^{\prime}$. We may identify as $S=\bar{S}$, and $\Phi_{\left|K_{s}\right|}$ is factored as

$$
\Phi_{\left|K_{S}\right|}: S \rightarrow S^{\prime} \rightarrow \Phi_{\left|T^{\prime}\right|}\left(S^{\prime}\right) \quad\left(\subset \boldsymbol{P}^{3}\right) .
$$

Since $\Phi_{\left|T^{\prime}\right|}^{*}\left(\Phi_{\left|T^{\prime}\right|}\left(S^{\prime}\right)\right) \sim 6 T^{\prime}$, there exists a divisor $Q \in\left|2 T^{\prime}\right|$ with $\Phi_{\left|T^{\prime}\right|}^{*}\left(\Phi_{\left|T^{\prime}\right|}\left(S^{\prime}\right)\right)=S^{\prime}+Q$. Since $\operatorname{deg} \Phi_{\left|T^{\prime}\right|}=3$ and $\operatorname{deg} \Phi_{\left|K_{s}\right|}=2$ hold, Q is birationally equivalent to $\Phi_{\left|K_{s}\right|}(S)$. On the other hand, Q is birationally equivalent to a ruled surface over C. Thus S^{\prime} is birationally equivalent to a double covering of a ruled surface over C, which is absurd.

Assume $\operatorname{deg} \Phi_{\left|K_{s}\right|}=3$. Let $q_{0} \in S^{\prime} \backslash C_{1}$ be a point such that $\Phi_{\left|T^{\prime}\right|}^{-1}\left(\Phi_{\left|T^{\prime}\right|}\left(q_{0}\right)\right)$ consists of three distinct points q_{0}, q_{1}, q_{2}. Since the restriction of $\Phi_{\left|T^{\prime}\right|}$ to any fiber of π is an isomorphism onto its image, q_{0}, q_{1}, q_{2} are contained in distinct fibers of π^{\prime}. Let the notation be as in Theorem 3.10. Since $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(Y_{1}\right) \otimes \sigma^{*} \mu^{*} L^{-1}\right)=2$, we may choose $Z_{0} \in H^{0}\left(X, \mathcal{O}_{X}\left(Y_{1}\right) \otimes \sigma^{*} \mu^{*} L^{-1}\right)$ in such a way that $Z_{0}\left(q_{0}\right)=0$ and that the divisor $\left(Z_{0}\right)$ is irreducible. Let $\Psi \in H^{0}\left(X, \mathcal{O}_{X}\left(4 Y_{1}\right) \otimes \sigma^{*} \mu^{*} \operatorname{det} E^{\vee}\right)$ be the global section defining the
proper transform \tilde{S} of S by ρ. Since $|T|$ does not separate q_{0}, q_{1} and q_{2}, we have $Z_{0}\left(q_{1}\right)=Z_{0}\left(q_{2}\right)=0$. Hence we have $\Psi\left(q_{i}\right)=\psi_{4}\left(q_{i}\right) Z_{\infty}\left(q_{i}\right)^{4}$, where ψ_{4} is as in the previous section. On the other hand, since $\psi_{4} \in H^{0}\left(Y, \mathcal{O}_{Y}\left(4 C_{0}\right) \otimes \mu^{*} \operatorname{det} E^{\vee}\right)$, we have $\psi_{4}\left(q_{i}\right) \neq 0$ for a general S by Lemma 3.16, a contradiction.

Next, we consider the case $L \not \approx \operatorname{det} F_{2,1}$.
Since $\mathrm{Bs}|T|=C_{1} \cap \pi^{-1}(p)$, if we let the notation to be as above, we have $\bar{S} \sim 4 \bar{T}+3 \mathscr{E}-\phi^{*} \pi^{*} D$, and $S^{\prime} \sim 4 T^{\prime}-\pi^{*}\left(p^{\prime}\right)$, where $S^{\prime}=\phi^{\prime}(\bar{S}) \subset W^{\prime}$, and $p^{\prime} \in C$ is the point with $\mathcal{O}_{C}\left(p^{\prime}\right) \cong \operatorname{det} F_{2,1}$. Hence, the invertible sheaf $\mathcal{O}_{W^{\prime}}\left(S^{\prime}\right)$ cannot be the pull-back of any invertible sheaf over \boldsymbol{P}^{3}, and we have $\operatorname{deg} \Phi_{\left|K_{s}\right|} \neq 3$.

We can prove that $\Phi_{\left|K_{s}\right|}$ does not give rise to a double covering onto its image as in the case $L \cong \operatorname{det} F_{2,1}$. Therefore, S is canonical in this case, too.
q.e.d.

In the case $(e, d)=(2,2)$, we have the following:
Proposition 3.18. Let $\pi: W \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to E with $E_{0} \in \mathscr{E}_{C}(2,2)$ and $L \in \mathscr{E}_{C}(1,2), T$ a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $D \in \operatorname{Div}(C)$ the divisor with $\mathcal{O}_{C}(D) \cong \operatorname{det} E$. Then the minimal resolution S of a general member $S^{\prime} \in\left|4 T-\pi^{*} D\right|$ is canonical.

Proof. Let the notation be as above, and $y_{0} \in Y$ as in Lemma 2.5. We have Bs $\left|Y_{1}\right|=\left\{q_{0}\right\}$, where $q_{0}:=\sigma^{-1}\left(y_{0}\right) \cap Y_{0}$. If we identify q_{0} with $\rho\left(q_{0}\right)$ so that $q_{0} \in W$, then we have $\operatorname{Bs}|T|=\left\{q_{0}\right\}$. Again by Lemma 2.5, general members of $\left|C_{0}\right|$ have the same tangent y_{0}. Hence if we let $\zeta_{1}: W_{1} \rightarrow W$ to be the blowing-up at q_{0}, and T^{\prime} the proper transform of T, then the complete linear system $\left|T^{\prime}\right|$ has one base point q_{0}^{\prime}. If we let $\zeta_{2}: W_{2} \rightarrow W_{1}$ to be the blowing-up at q_{0}^{\prime}, and $T^{\prime \prime}$ the proper transform of T^{\prime}, then we have Bs $\left|T^{\prime \prime}\right|=\varnothing, \operatorname{dim}\left|T^{\prime \prime}\right|=\operatorname{dim}|T|=3$ and $\left(T^{\prime \prime}\right)^{3}=T^{3}-2=2$, and $\Phi_{\left|T^{\prime \prime}\right|}: Y_{1}^{\prime \prime}-\boldsymbol{P}^{3}$ is the double covering. Hence, the canonical mapping of S has degree one or two.

Since Bs $\left|4 T-\pi^{*} D\right|=C^{\prime}$ and since S^{\prime} has a rational double point of type A_{3} at $q_{0} \in C^{\prime}$ by the proof of Theorem 3.9 , we have $S_{1}^{\prime} \sim 4 T^{\prime}+2 \mathscr{E}_{1}-\zeta_{1}^{*} \pi^{*} D$, where $\mathscr{E}_{1}:=\zeta_{1}^{-1}\left(q_{0}\right)$ and S_{1}^{\prime} is the proper transform of S^{\prime} by $\zeta_{1} . S_{1}$ has a rational double point of type A_{1}. On the other hand, if we regard Y_{0} as a divisor of W, since the support of the intersection of S^{\prime} with Y_{0} is C^{\prime}, this rational double point does not coincide with q_{0}^{\prime}. Hence the proper transform S_{2}^{\prime} of S_{1}^{\prime} by ζ_{2} satisfies $S_{2}^{\prime} \sim 4 T^{\prime \prime}+6 \mathscr{E}_{2}+2 \mathscr{E}_{1}^{\prime}-\zeta_{2}^{*} \zeta_{1}^{*} \pi^{*} D$, where \mathscr{E}_{2} is the exceptional divisor of ζ_{2}, and \mathscr{E}_{1}^{\prime} is the proper transform of \mathscr{E}_{1} by ζ_{2}. Since $6 \mathscr{E}_{2}+2 \mathscr{E}_{1}^{\prime} \nsim \zeta_{2}^{*} \zeta_{1}^{*} \pi^{*} D$, we see that S_{2}^{\prime} cannot be the pull-back of any effective divisor of P^{3} by $\Phi_{\left|T^{\prime \prime}\right|}$. Therefore, S is canonical.
q.e.d.
3.3. E is indecomposable. Let E be an indecomposable locally free sheaf of rank 3 over an elliptic curve C. Denote $d:=\operatorname{deg} E$. We prove the following theorem in $\S \S 3.3 .1-3.3 .4$. We consider the case $d \neq 0(\bmod 3)$ and $d \neq 1,2$ in $\S 3.3 .1$, the case $d \equiv 0$ $(\bmod 3)$ and $d \neq 3$ in $\S 3.3 .2$, the case $d=3$ in $\S 3.3 .3$, and the case $d=2$ in $\S 3.3 .4$. We omit the case $d=1$ because it was investigated by Catanese and Ciliberto [7]. In §3.3.5, we study the canonical mappings of the surfaces obtained in $\S \S 3.3 .1-3.3 .4$. The results
about the canonical mappings are stated in Propositions 3.28, 3.29 and 3.30.
We only have to consider the case $d>0$ by the remark immediately before $\S 3.1$.
Theorem 3.19. Let $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to $E \in \mathscr{E}_{C}(3, d)$, and T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$. Then the locally free sheaf E satisfies the condition (A) if and only if $d \geq 1$.

Remark. In this case, $\left|4 T-\pi^{*} D\right|$ turns out not to have base points except in the case $d=3$, where $D \in \operatorname{Div}(C)$ satisfies $\mathcal{O}_{C}(D) \cong E$. Hence its general members are irreducible and nonsingular by Bertini's theorem and Lemma 2.6. In particular, it suffices to show the following lemma when $d \geq 4$ ((§§3.3.1-3.3.2).

Lemma 3.20. Let the notation be as in Theorem 3.19. Then the restriction mapping $H^{0}\left(W, \mathcal{O}_{W}(4 T) \otimes \pi^{*} \operatorname{det} E^{\vee}\right) \rightarrow H^{0}\left(F, \mathcal{O}_{F}(4 T)\right)$ is surjective for any fiber F of π when $d \geq 4$.
3.3.1. The proof when $\operatorname{deg} E \geq 4$ is not divisible by 3. Suppose $d:=\operatorname{deg} E \not \equiv 0$ $(\bmod 3)$. By Theorem 2.4 , if we choose and fix any isogeny $\varphi: \widetilde{C} \rightarrow C$ of degree 3 , there exists an invertible sheaf L_{0} of degree d over \tilde{C} such that $\varphi_{*} L_{0} \cong E$. Furthermore, if we denote $G:=\operatorname{ker} \varphi=\{0, \sigma, 2 \sigma\}$ and $L_{i}:=T_{i \sigma}^{*} L_{0}(i=1,2)$ where $T_{i \sigma}$ is the translation by $i \sigma \in G$, then we have $\tilde{E}:=\varphi^{*} E \cong \oplus_{i=0}^{2} L_{i}$.

Let $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ and $\tilde{\pi}: \tilde{W}:=\boldsymbol{P}(\tilde{E}) \rightarrow \tilde{C}$ be the \boldsymbol{P}^{2}-bundles associated to E and \tilde{E}, respectively. Let T and \tilde{T} be tautological divisors on W and \tilde{W}, respectively, such that $\pi_{*} \mathcal{O}_{W}(T) \cong E$ and $\tilde{\pi}_{*} \mathcal{O}_{\tilde{W}}(\tilde{T}) \cong \tilde{E}$. Consider the following diagram:

If we denote $\Phi: \widetilde{W} \rightarrow W$, then $\tilde{T} \sim \Phi^{*} T$.
Denote $\mathscr{N}=\mathcal{O}_{W}(4 T-F) \otimes \pi^{*} \operatorname{det} E^{\vee}$, where F is any fiber of π. It suffices to show that $H^{1}(W, \mathcal{N})=0$ holds.

The proof of the following is immediate:
Lemma 3.21. If $\left\{\mathcal{O}_{C}, \mathscr{M}, \mathscr{M}^{\otimes 2}\right\}$ is the kernel $\operatorname{ker} \varphi^{*}$ of the isogeny $\varphi^{*}: \operatorname{Pic}^{0}(C) \rightarrow$ $\operatorname{Pic}^{0}(\tilde{C})$ corresponding to $\varphi: \widetilde{C} \rightarrow C$, then we have $\varphi_{*} \mathcal{O}_{\tilde{C}} \cong \mathcal{O}_{C} \oplus \mathscr{M} \oplus \mathscr{M}^{\otimes 2}$.

By Lemma 3.21, we get $H^{1}\left(\tilde{W}, \Phi^{*} \mathcal{N}\right) \cong \oplus_{i=0}^{2} H^{1}\left(W, \mathscr{N} \otimes \mathscr{M}^{\otimes i}\right)$. Since the action of G on \tilde{W} is fixed point free, we have $H^{1}(W, \mathcal{N})=H^{1}\left(\tilde{W}, \Phi^{*} \mathcal{N}\right)^{G}$ (cf., e.g., [11, p. 202, Corollaire]). On the other hand, if we denote $\tilde{F}_{0}+\tilde{F}_{1}+\tilde{F}_{2}:=\Phi^{*} F$, and $q_{i}:=\tilde{\pi}\left(\tilde{F}_{i}\right)$ $(i=0,1,2)$, then we have $\Phi^{*} \mathscr{N} \cong \mathcal{O}_{\tilde{W}}\left(4 \tilde{T}-\sum_{i=0}^{2} \widetilde{F}_{i}\right) \otimes \tilde{\pi}^{*} \operatorname{det} \widetilde{E}^{\vee}$, and

$$
H^{1}\left(\tilde{W}, \Phi^{*} \mathcal{N}\right) \cong \underset{\substack{\alpha, \beta, \gamma>0 \\ \alpha+\beta+\gamma=4}}{ } H^{1}\left(\widetilde{C}, L_{0}^{\otimes(\alpha-1)} \otimes L_{1}^{\otimes(\beta-1)} \otimes L_{2}^{\otimes(\gamma-1)} \otimes \mathcal{O}_{\tilde{C}}\left(-q_{0}-q_{1}-q_{2}\right)\right) .
$$

Since $d \geq 4$, this cohomology group vanishes, and hence $H^{1}(W, \mathcal{N})=0$. Therefore, Lemma 3.20 in the case $d \neq 0(\bmod 3)$ is proved. q.e.d.
3.3.2. The proof when $\operatorname{deg} E \neq 3$ is divisible by 3. If we denote $d_{0}=d / 3$, there exists an invertible sheaf L of degree d_{0} such that $E \cong L \otimes F_{3}$.

Denote $p:=\pi(F)$ for any fiber F of π. Since $S^{4}\left(F_{3}\right) \cong S^{4}\left(S^{2}\left(F_{2}\right)\right) \cong F_{9} \oplus F_{5} \oplus \mathcal{O}_{C}$ by [4, Theorem 9] and [9, p. 156], we have an isomorphism

$$
H^{1}\left(W, \mathcal{O}_{W}(4 T-F) \otimes \pi^{*} \operatorname{det} E^{\vee}\right) \cong \bigoplus_{i=0}^{2} H^{1}\left(C, F_{4 i+1} \otimes L \otimes \mathcal{O}_{C}(-p)\right)
$$

which vanishes if $d_{0} \geq 2$.
q.e.d.
3.3.3. The proof when $\operatorname{deg} E=3$ holds. There exists an invertible sheaf $L \in \mathscr{E}_{C}(1,1)$ with $E \cong L \otimes F_{3}$ for $E \in \mathscr{E}_{C}(3,3)$. Let $p_{0} \in C$ be a point satisfying $L \cong \mathcal{O}_{C}\left(p_{0}\right)$. Let $\pi: W \rightarrow C$ be the \boldsymbol{P}^{2}-bundle associated to E and T a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$. Denote $F_{0}:=\pi^{-1}\left(p_{0}\right)$.

Lemma 3.22. Let the notation be as above, T_{0} a relative hyperplane with $T_{0} \sim T-F_{0}$, and $C_{0} \subset T_{0}$ the section of $\mu:=\pi_{\mid T_{0}}: T_{0} \rightarrow C$ with $\mu_{*} \mathcal{O}_{T_{0}}\left(C_{0}\right) \cong F_{2}$. Then we have Bs $\left|4 T-3 F_{0}\right|=\left\{q_{0}\right\}$ where $q_{0}:=C_{0} \cap F_{0}$.

Proof. In the same way as in the proof of $\S 3.3 .2$, we can show that there is no base point of $\left|4 T-3 F_{0}\right|$ on any fiber except F_{0}. Furthermore, the base points of $\left|4 T-3 F_{0}\right|$ exist only on the line $T_{0} \cap F_{0} \cong \boldsymbol{P}^{1}$, since $3 T_{0}+T \in\left|4 T-3 F_{0}\right|$.

Since $S^{3}\left(F_{3}\right) \cong F_{3} \oplus F_{7}$ (cf. [4, Theorem 9], [9, p. 156]), the restriction mapping

$$
H^{0}\left(W, \mathcal{O}_{W}\left(4 T-3 F_{0}\right)\right) \rightarrow H^{0}\left(T_{0}, \mathcal{O}_{T_{0}}\left(4 C_{0}+\Gamma_{0}\right)\right)
$$

is surjective, where $\Gamma_{0}:=F_{0} \cap T_{0}$, and the statement follows from Lemma 2.5. q.e.d.
The restriction of a general member S of $\left|4 T-3 F_{0}\right|$ to T_{0} is nonsingular by Lemmas 2.5 and 3.22. Hence S is irreducible and nonsingular by Lemma 2.6. q.e.d.
3.3.4. The proof when $\operatorname{deg} E=2$ holds. Let the notation be an in §3.3.1, and denote $\mathscr{U}:=\left\{\Phi^{*} S \in\left|4 \tilde{T}-\tilde{\pi}^{*} \tilde{D}\right||S \in| 4 T-\pi^{*} D \mid\right\}$.
G acts on $H^{0}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(4 \tilde{T}) \otimes \tilde{\pi}^{*} \operatorname{det} \tilde{E}^{\vee}\right)$. Let $H^{0}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(4 \widetilde{T}) \otimes \tilde{\pi}^{*} \operatorname{det} \tilde{E}^{\vee}\right)^{G}$ be the subspace which consists of all the members which are invariant under this action.

Lemma 3.23. In the above notation, we have

$$
\mathscr{U}=\left\{(\Psi) \mid \Psi \in H^{0}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(4 \tilde{T}) \otimes \tilde{\pi}^{*} \operatorname{det} \tilde{E}^{\vee}\right)^{G}\right\} .
$$

Proof. Since we have $\Phi_{*} \mathcal{O}_{\tilde{W}} \cong \pi^{*} \varphi_{*} \mathcal{O}_{\tilde{C}}$ by the base change theorem (cf., e.g., Mumford [18]), if we denote $\mathscr{N}:=\mathcal{O}_{W}(4 T) \otimes \pi^{*} \operatorname{det} E^{\vee}$, then we obtain isomorphisms

$$
H^{0}\left(\tilde{W}, \Phi^{*} \mathcal{N}\right) \cong H^{0}\left(W, \mathcal{N} \otimes \pi^{*} \varphi_{*} \mathcal{O}_{\tilde{C}}\right) \cong \bigoplus_{i=0}^{2} H^{0}\left(W, \mathcal{N} \otimes \pi^{*} \mathscr{M}^{\otimes i}\right)
$$

The eigenspace $H^{0}\left(\tilde{W}, \Phi^{*} \mathscr{N}\right)^{G}$ of T_{σ}^{*} for the eigenvalue 1 corresponds to $H^{0}(W, \mathcal{N})$, and is the image of the injection $H^{0}(W, \mathscr{N}) \subsetneq H^{0}\left(\tilde{W}, \Phi^{*} \mathcal{N}\right)$.
q.e.d.

We describe the action of G on $H^{0}\left(\tilde{W}, \Phi^{*} \mathscr{N}\right)$ to study Bs \mathscr{U}.
We choose and fix $0 \neq X_{i} \in H^{0}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(\tilde{T}) \otimes \tilde{\pi}^{*} L_{i}^{-1}\right)(i=0,1,2)$ so that $X_{1}=T_{\sigma}^{*} X_{0}$ and $X_{2}=T_{2 \sigma}^{*} X_{0}$ hold. Then any $\Psi \in H^{0}\left(\tilde{W}, \Phi^{*} \mathscr{N}\right)$ can be written as

$$
\Psi=\sum_{\substack{\alpha, \beta, \gamma \geq \geq 0 \\ \alpha+\beta+\gamma=4}} \psi_{\alpha \beta \gamma} X_{0}^{\alpha} X_{1}^{\beta} X_{2}^{\gamma}, \quad \psi_{\alpha \beta \gamma} \in H^{0}\left(\tilde{C}, L_{0}^{\otimes(\alpha-1)} \otimes L_{1}^{\otimes(\beta-1)} \otimes L_{2}^{\otimes(\gamma-1)}\right)
$$

Since we have

$$
T_{\sigma}^{*} \Psi=\sum_{\substack{\alpha, \beta, \beta \geq 0 \\ \alpha+\beta+\gamma=4}}\left(T_{\sigma}^{*} \psi_{\alpha \beta \gamma}\right) X_{1}^{\alpha} X_{2}^{\beta} X_{o}^{\gamma},
$$

we get $\Psi \in H^{0}\left(\tilde{W}, \mathcal{O}_{W}(4 \tilde{T}) \otimes \tilde{\pi}^{*} \operatorname{det} \tilde{E}^{\vee}\right)^{G}$ if and only if $T_{\sigma}^{*} \psi_{\alpha \beta \gamma}=\psi_{\gamma \alpha \beta}(\alpha, \beta, \gamma \geq 0, \alpha+\beta+$ $\gamma=4$).

Let $\Lambda: \tilde{C} \rightarrow \operatorname{Pic}^{0}(\tilde{C})$ be defined by $\Lambda(y):=T_{y}^{*} L_{0} \otimes L_{0}^{-1}$ for $y \in C$, where T_{y} is the translation by y on \tilde{C}. Then it is a group homomorphism by the theorem of square (cf., e.g., [18]). Since $L_{i}=L_{0} \otimes \Lambda(i \sigma),(i=1,2)$ and $\Lambda(3 \sigma)=\Lambda(0)=\mathcal{O}_{\tilde{C}}$, we have isomorphisms

$$
L_{i} \cong L_{i}^{\otimes 3} \otimes L_{\tau(i)}^{-1} \otimes L_{\tau^{2}(i)}^{-1} \cong L_{\tau(i)}^{\otimes 2} \otimes L_{\tau^{2}(i)}^{-1} \cong L_{\tau(i)}^{-1} \otimes L_{\tau^{2}(i)}^{\otimes 2} \cong L_{i}^{-1} \otimes L_{\tau(i)} \otimes L_{\tau^{2}(i)}
$$

for $i=0,1,2$, where τ is the cyclic permutation (123). Hence we have

$$
\begin{aligned}
& \psi_{400}, \psi_{211}, \psi_{130}, \psi_{103}, \psi_{022} \in H^{0}\left(\tilde{C}, L_{0}\right) \\
& \psi_{040}, \psi_{121}, \psi_{013}, \psi_{310}, \psi_{202} \in H^{0}\left(\tilde{C}, L_{1}\right) \\
& \psi_{004}, \psi_{112}, \psi_{301}, \psi_{031}, \psi_{220} \in H^{0}\left(\tilde{C}, L_{2}\right)
\end{aligned}
$$

Let $\left\{s_{1}, s_{2}\right\} \subset H^{0}\left(\tilde{C}, L_{0}\right)$ be a basis, and denote $t_{j}:=T_{\tilde{T}}^{*} s_{j} \in H^{0}\left(\tilde{C}, L_{1}\right), u_{j}:=T_{2 \sigma}^{*} s_{j} \in$ $H^{0}\left(\tilde{C}, L_{2}\right)(j=1,2)$. We can choose a basis of $H^{0}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(4 \tilde{T}) \otimes \tilde{\pi}^{*} \operatorname{det} \tilde{E}\right)^{G}$ consisting of the following for $j=1,2$:

$$
\begin{aligned}
& \Psi_{1 j}:=s_{j} X_{0}^{4}+t_{j} X_{1}^{4}+u_{j} X_{2}^{4}, \\
& \Psi_{2 j}:=s_{j} X_{0}^{2} X_{1} X_{2}+t_{j} X_{0} X_{1}^{2} X_{2}+u_{j} X_{0} X_{1} X_{2}^{2}, \\
& \Psi_{3 j}:=s_{j} X_{0} X_{1}^{3}+t_{j} X_{1} X_{2}^{3}+u_{j} X_{0}^{3} X_{2}, \\
& \Psi_{4 j}:=s_{j} X_{0} X_{2}^{3}+t_{j} X_{0}^{3} X_{1}+u_{j} X_{1}^{3} X_{2}, \\
& \Psi_{5_{j}}:=s_{j} X_{1}^{2} X_{2}^{2}+t_{j} X_{0}^{1} X_{2}^{2}+u_{j} X_{0}^{2} X_{1}^{2} .
\end{aligned}
$$

Lemma 3.24. We can choose the basis $\left\{s_{1}, s_{2}\right\}$ of $H^{0}\left(\tilde{C}, L_{0}\right)$ so that $s_{j}(p) t_{j}(p) u_{j}(p) \neq 0$ holds for any $p \in \tilde{C}$ and for at least one of $j=1$, 2. Furthermore, we have $s_{j}(p) s_{j}\left(p^{\prime}\right) s_{j}\left(p^{\prime \prime}\right) \neq 0$, where $p^{\prime}:=T_{\sigma}(p)$ and $p^{\prime \prime}:=T_{2 \sigma}(p)$.

Proof. To avoid confusion in this proof, we denote by (q) the divisor on \tilde{C} determined by $q \in \tilde{C}$. There exist distinct points $p_{1}, p_{2} \in \tilde{C}$ with $L_{0} \cong \mathcal{O}_{\tilde{\mathcal{C}}}\left(2\left(p_{1}\right)\right) \cong \mathcal{O}_{\tilde{\mathcal{C}}}\left(2\left(p_{2}\right)\right)$ by Abel's theorem. If we denote $p_{i}^{\prime}:=T_{-\sigma}\left(p_{i}\right)$ and $p_{i}^{\prime \prime}:=T_{-2 \sigma}\left(p_{i}\right)(i=1,2)$, we have
$\left\{p_{1}, p_{1}^{\prime}, p_{1}^{\prime \prime}\right\} \cap\left\{p_{2}, p_{2}^{\prime}, p_{2}^{\prime \prime}\right\}=\varnothing$.
Let $s_{1}, s_{2} \in H^{0}\left(\tilde{C}, L_{0}\right)$ be the global sections defining the divisors $2\left(p_{1}\right), 2\left(p_{2}\right)$ respectively, and denote $t_{j}:=T_{\sigma}^{*} s_{j}$, and $u_{j}:=T_{2 \sigma}^{*} s_{j}(j=1,2)$. Then one of s_{1} and s_{2} satisfies the condition of the lemma for any point.
q.e.d.

We choose a basis $\left\{s_{1}, s_{2}\right\} \subset H^{0}\left(\tilde{C}, L_{0}\right)$ as in Lemma 3.24, fix any point $p \in \tilde{C}$, and denote $p^{\prime}:=T_{\sigma}(p)$ and $p^{\prime \prime}:=T_{2 \sigma}(p)$. We assume that $j \in\{1,2\}$ satisfies $s_{j}(p) s_{j}\left(p^{\prime}\right) s_{j}\left(p^{\prime \prime}\right) \neq 0$. Let us restrict $\Psi_{i j}(i=1, \ldots, 5, j=1,2)$ to $\tilde{\pi}^{-1}(p)$, and study if they have common solutions on it. Note $\Psi_{2 j}=X_{0} X_{1} X_{2}\left(s_{j} X_{0}+t_{j} X_{1}+u_{j} X_{2}\right)$.

The following lemma is trivial.
Lemma 3.25. If we fix $j \in\{1,2\}$ satisfying $s_{j}(p) s_{j}\left(p^{\prime}\right) s_{j}\left(p^{\prime \prime}\right) \neq 0$, then $X_{i}=0, \Psi_{1 j}=0$ and $\Psi_{3_{j}}=0$ do not have common solutions for any $i=0,1,2$.

In view of Lemma 3.25 , we consider only the solutions satisfying $X_{0} X_{1} X_{2} \neq 0$ in the rest of our argument. Denote $\Psi_{0 j}:=s_{j} X_{0}+t_{j} X_{1}+u_{j} X_{2}$.

Lemma 3.26. If we fix $j \in\{1,2\}$ with $s_{j}(p) s_{j}\left(p^{\prime}\right) s_{j}\left(p^{\prime \prime}\right) \neq 0$, then $(p,(1: a: b))$ is a common solution of $\Psi_{i j}=0(i=0,1,3,4,5)$ if any only if a, b are cube roots of 1 , and $s_{j}(p)+a t_{j}(p)+b u_{j}(p)=0$.

Proof. Since we have $\Psi_{1 j}+\Psi_{3 j}+\Psi_{4 j}=\Psi_{0 j}\left(X_{0}^{3}+X_{1}^{3}+X_{2}^{3}\right)$, we may exclude $\Psi_{1 j}$ from our consideration. We have

$$
X_{0}^{5} \Psi_{0 j}-X_{0}^{2}\left(\Psi_{3 j}+\Psi_{4 j}\right)+X_{1} X_{2} \Psi_{5 j}=s_{j}\left(X_{0}^{3}-X_{1}^{3}\right)\left(X_{0}^{3}-X_{2}^{3}\right) .
$$

If $X_{1}^{3}=X_{0}^{3}$ holds, since we have $X_{0}^{3} \Psi_{0 j}-\Psi_{4 j}=s_{j} X_{0}\left(X_{0}^{3}-X_{2}^{3}\right)$ and since $s_{j}(p) \neq 0$ and $X_{0} \neq 0$, we obtain $X_{2}^{3}=X_{0}^{3}$. Similarly, if we assume $X_{2}^{3}=X_{0}^{3}$, we have $X_{1}^{3}=X_{0}^{3}$. Hence, the common solutions are of the form $(p,(1: a: b))$ where a and b are one of $1, \omega$, and ω^{2}, and ω is a cube root of 1 . If $(p,(1: 1: 1))$ is a common solution, we obtain $s_{j}(p)+t_{j}(p)+u_{j}(p)=0$ by substituting $(p,(1: 1: 1))$ into $\Psi_{i j}=0(i=0,1,3,4,5)$. We can obtain the same result in the other cases. q.e.d.

Proposition 3.27. U has no base point. Hence a general member of \mathscr{U} is irreducible and nonsingular by Bertini's theorem and Lemma 2.6.

Proof. Assume $(p,(1: a: b)) \in \operatorname{Bs} \mathscr{U}$. Let $g: \tilde{C} \rightarrow \boldsymbol{P}^{1}$ be defined by the complete linear system of L_{0}. Denote $p^{\prime}:=T_{\sigma}(p)$ and $p^{\prime \prime}:=T_{2 \sigma}(p)$.

First assume that $g(p)=g\left(p^{\prime}\right)$ holds. If $s^{\prime} \in H^{0}\left(\tilde{C}, L_{0}\right)$ is a global section defining the divisor $p+p^{\prime}$, then $s^{\prime}(p)+a s^{\prime}\left(p^{\prime}\right)+b s^{\prime}\left(p^{\prime \prime}\right) \neq 0$. This contradicts Lemma 3.26. We can obtain the same results when $g\left(p^{\prime}\right)=g\left(p^{\prime \prime}\right)$ or $g\left(p^{\prime \prime}\right)=g(p)$ holds.

Next, assume that $g(p), g\left(p^{\prime}\right)$ and $g\left(p^{\prime \prime}\right)$ are pairwise distinct. Let ξ_{0}, ξ_{∞} be global sections of $\mathcal{O}_{\boldsymbol{P}^{1}(1)}(1)$ defining $g(p), g\left(p^{\prime}\right)$, respectively. Then any $\xi \in H^{0}\left(\boldsymbol{P}^{1}, \mathcal{O}_{\boldsymbol{P}^{1} 1}(1)\right)$ is written as $\xi=A \xi_{0}+B \xi_{\infty}(A, B \in \boldsymbol{C})$, and clearly there exist $A, B \in C$ such that $s:=g^{*} \xi \in H^{0}\left(\tilde{C}, L_{0}\right)$ satisfies $s(p)+a s\left(p^{\prime}\right)+b x\left(p^{\prime \prime}\right) \neq 0$. This contradicts Lemma 3.26.
q.e.d.

Let $\tilde{S} \in \mathscr{U}$ be irreducible and nonsingular. We have $S:=\Phi(\tilde{S}) \in\left|4 T-\pi^{*} D\right|$, and $\Phi_{\mid \tilde{S}}: \tilde{S} \rightarrow S$ is the restriction of the action of G on \tilde{W}. Since this action has no fixed point, S is irreducible and nonsingular as well.
q.e.d.

Remark. Instead of our argument in §3.3.1, we can use the above argument also in the case $d \geq 4$ and $d \equiv 0(\bmod 3)$.
3.3.5. The canonical mapping. In this section, we study the canonical mappings of those surfaces whose existence was shown in §§3.3.1-3.3.4.

Proposition 3.28. Let $\pi: W:=\boldsymbol{P}(E) \rightarrow C$ be the \boldsymbol{P}^{2}-boundle associated to $E \in \mathscr{E}_{C}(3, d), T$ a tautological divisor with $\pi_{*} \mathcal{O}_{W}(T) \cong E$, and $D \in \operatorname{Div}(C)$ satisfy $\mathcal{O}_{C}(D) \cong \operatorname{det} E$. Then a genral member of $\left|4 T-\pi^{*} D\right|$ is canonical when $d \geq 4$.

Proof. Since $\operatorname{dim} H^{1}\left(W, \mathcal{O}_{W}(T-F)\right)=0$, for any fiber F of π, the restriction mapping $H^{0}\left(W, \mathcal{O}_{W}(T)\right) \rightarrow H^{0}\left(F, \mathcal{O}_{F}(T)\right)$ is surjective when $d \geq 4$.

We first show that $\Phi_{|T|}$ is birational onto the image when $d \geq 5$, hence a general member of $\left|4 T-\pi^{*} D\right|$ is canonical. We can prove this in the same way as in the proof of Lemma 3.12 when $d \geq 7$ in view of what we just saw above, and when $d=6$ in view of Lemma 3.22. If $d=5$, then since $5=T^{3}=\operatorname{deg} \Phi_{|T|} \operatorname{deg} \Phi_{|T|}(W)$ and $\operatorname{deg} \Phi_{|T|}(W) \geq 2$, we see that $\Phi_{|T|}$ is birational onto the image.

In the case where $d=4$, since $\mathrm{Bs}|T|=\varnothing$, and since $T^{3}=4>0$, we see that $\Phi_{|T|}$ gives a 4-fold covering of W onto \boldsymbol{P}^{3}. Hence, $\Phi_{\left|K_{S}\right|}$ is a morphism, and the degree of $\Phi_{\left|K_{S}\right|}$ is $1,2,3$ or 4 for general $S \in\left|4 T-\pi^{*} D\right|$.

Since $K_{S}^{2}=T^{2} S=12$ holds, if $\operatorname{deg} \Phi_{\left|K_{s}\right|}=4$, then $S^{\prime \prime}:=\Phi_{\left|K_{s}\right|}(S) \subset \boldsymbol{P}^{3}$ is a cubic surface. Hence, we have $\Phi_{|T|}^{*} S^{\prime \prime} \sim 3 T$, which is absurd since $S \sim 4 T-\pi^{*} D$.

If $\operatorname{deg} \Phi_{\left|K_{s}\right|}=3$, we have $\Phi_{|T|}^{*} S^{\prime \prime} \sim 4 T$ as above. Therefore, there exist fibers F_{1}, F_{2}, F_{3}, F_{4} of π satisfying $\Phi_{|T|}^{*} S^{\prime \prime}=S+F_{1}+F_{2}+F_{3}+F_{4} . \Phi_{|T|}$ is a birational morphism of $F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ onto its image, since $\operatorname{deg} \Phi_{|T|}=4$ and $\operatorname{deg} \Phi_{\left|K_{s}\right|}=\left.\operatorname{deg} \Phi_{\left|K_{s}\right|}\right|_{S}=3$. This means that the image is not irreducible, a contradiction.

Finally, we show that the case $\operatorname{deg} \Phi_{\left|K_{s}\right|}=2$ does not occur. Let $p, p^{\prime} \in C$ be two distinct general points. Furthermore, denote $F_{p}:=\pi^{-1}(p)$ and $F_{p^{\prime}}:=\pi^{-1}\left(p^{\prime}\right)$, and let T_{p} and $T_{p^{\prime}}$ be the relative hyperplanes of W satisfying $T \sim T_{p}+F_{p} \sim T_{p^{\prime}}+F_{p^{\prime}}$. Since p, p^{\prime} and S are generic, $S \cap T_{p} \cap F_{p^{\prime}} S \cap T_{p^{\prime}} \cap F_{p}$ and $S \cap T_{p} \cap T_{p^{\prime}}$ all consist of four distinct points set-theoretically. Since any fiber of π is mapped onto its image in P^{3} by $\Phi_{|T|}$, if $\operatorname{deg} \Phi_{\left|K_{s}\right|}=2$, then some point of $S \cap T_{p} \cap F_{p^{\prime}}$ and some point of $S \cap T_{p^{\prime}} \cap F_{p}$ are mapped to the same point by $\Phi_{|T|}$. Hence if we fix any point $q \in S \cap T_{p} \cap F_{p^{\prime}}$ and any point $q^{\prime} \in S \cap T_{p^{\prime}} \cap F_{p}$, we only have to find a member of $|T|$ containing q but not q^{\prime}.

It is well-known that W is isomorphic to the symmetric product of C of degree 3 (cf. e.g., [7]). We can show that the image of $(C \times C \times\{p\}) \cup(C \times\{p\} \times C) \cup(\{p\} \times C \times$ $C) \subset C \times C \times C$ in W is a relative hyperplane with self-intersection number one in the same way as in the proof of Lemma 3.16. Therefore, for a general point of W, there
exist three distinct relative hyperplanes with self-intersection number one containing the point.

Since p, p^{\prime} and S are general, there exist two distinct relative hyperplanes T_{p}^{\prime} and $T_{p}^{\prime \prime}$ distinct from T_{p} and containing q. If F_{p}^{\prime} and $F_{p}^{\prime \prime}$ are fibers of π satisfying $T \sim T_{p}^{\prime}+F_{p}^{\prime} \sim T_{p}^{\prime \prime}+F_{p}^{\prime \prime}$, respectively, then one of $T_{p}^{\prime}+F_{p}^{\prime}$ and $T_{p}^{\prime \prime}+F_{p}^{\prime \prime}$ does not contain q^{\prime}.

Hence $\Phi_{\left|K_{s}\right|}$ is a birational morphism onto its image. q.e.d.
Next, we investigate the canonical mapping in the case $p_{g}(S)=d=3$. We use the notation of §3.3.3.

Proposition 3.29. Let the notation be as in §3.3.3. Then the canonical mapping of a nonsingular member $S \in\left|4 T-3 F_{0}\right|$ has degree 8.

Proof. In the same way as in the proof of Lemma 3.22, we can show that Bs $|T|=B s\left|4 T-3 F_{0}\right|=\left\{q_{0}\right\}$. Hence, the canonical system of S has one base point. If $v: \bar{W} \rightarrow W$ is the blowing-up at q_{0}, the complete linear system of the proper transform \bar{T} of T by v has one base point by Lemma 2.5. On the other hand, the proper transform \bar{S} of S by v does not go through the base point of $|\bar{T}|$ by Lemma 2.5. Hence, if we denote $\mathscr{E}:=\nu^{-1}\left(q_{0}\right)$, we have $\operatorname{deg} \Phi_{\left|K_{s}\right|}=\operatorname{deg} \Phi_{\mid K_{\bar{s} \mid}}=\bar{T}^{2}\left(4 \bar{T}+3 \mathscr{E}-3 F_{0}\right)=8$. q.e.d.

Finally, we study the canonical mapping in the case $p_{g}(S)=2$. In §3.2.2, we proved the existence of a surface S with $K_{S}^{2}=3 p_{g}(S), q(S)=1$ and $p_{g}(S)=2$, but did not study the canonical mapping $\Phi_{\left|K_{s}\right|}$ in the case $E \cong E_{0} \oplus L,\left(E_{0} \in \mathscr{E}_{C}(2,1), L \in \mathscr{E}_{C}(11)\right)$. On the other hand, we showed the existence of a surface S with the same invariants in the case $E \in \mathscr{E}_{C}(3,2)$. We obtain the following result in these two cases:

Proposition 3.30. Let E be one of the following:
(i) $E:=E_{0} \oplus L$ with $E_{0} \in \mathscr{E}_{C}(2,1), L \in \mathscr{E}_{C}(1,1)$.
(ii) $E \in \mathscr{E}_{C}(3,2)$.

In the same notation as in Proposition 3.28, the canonical mapping of the minimal resolution of a general member $S \in\left|4 T-\pi^{*} D\right|$ gives a linear pencil whose general fibers are irreducible nonsingular curves of genus 7 .

Proof. Since $H^{0}\left(S, \omega_{S}\right)$ is 2-dimensional, $\left|K_{s}\right|$ is a linear pencil. Furthermore, we have $g(Z)=(1 / 2) T(2 T)\left(4 T-\pi^{*} D\right)+1=7$ for a general member of Z of $\left|K_{S}\right|$. q.e.d.

References

[1] T. Ashikaga, A remark on lower semi-continuity of Kodaira dimension, Master's thesis, Tohoku Univ., 1978 (in Japanese).
[2] T. Ashikaga, A remark on the geography of surfaces with birational canonical morphism, Math. Ann. 290 (1991), 63-76.
[3] T. Ashikaga and K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-7$, Tôhoku Math. J. 42 (1990), 517-536.
[4] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452.
[5] A. Beauville, L'application canonique pour les surfaces de type general, Invent. Math. 55 (1979), 121-140.
[6] G. Castelnuovo, Osservazioni intorno alla geometria sopra una superficie, Nota II. Rendiconti del R. Instituto Lombardo, s. II, vol. 24, 1891.
[7] F. Catanese and C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with $p_{g}=q=1$, J. Algebraic Geometry 2 (1993), 389-411.
[8] T. Furita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), 779-794.
[9] W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York-Heidelberg-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1991.
[10] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Willey and Sons, 1978.
[11] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221.
[12] E. Horikawa, Algebraic surfaces of general type with small c_{1}^{2}, II, Invent. Math. 37 (1976), 121-155.
[13] E. Horikawa, Notes on canonical surfaces, Tôhoku Math. J. 43 (1991), 141-148.
[14] E. Horikawa, Certain degenerate fibers in pencils of non-hyperelliptic curves of genus three, preprint.
[15] K. Konno, Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (4) 20 (1993), 575-595.
[16] K. Konno, A note on surfaces with pencils of non-hyperelliptic curves of genus 3, Osaka J. Math. 28 (1991), 737-745.
[17] M. Maruyama, On a family of algebraic vector bundles, Number Theory, Algebraic Geometry and Commutative Algebra in honor of Y. Akizuki (Y. Kusunoki et al., eds.), Kinokuniya, Tokyo, (1973), 95-146.
[18] D. Mumford, Abelian Varieties, Tata Inst. Studies in Math., Oxford Univ. Press, 1970.
[19] T. OdA, Vector bundles on an elliptic curve, Nagoya Math. J. 43 (1971), 41-72.
[20] M. Reid, Problems on pencils of small genus, preprint.
[21] T. Suwa, On ruled surfaces of genus 1, J. Math. Soc. Japan 21 (1969), 291-311.
[22] T. Takahashi, Certain algebraic surfaces of general type with irregularity one and their canonical mappings, Tohoku Mathematical Publications 2 (1996), 1-60.

Faculty of General Education

Ichinoseki National College of Technology
ICHINOSEKI 021-0902
JAPAN
E-mail address: tomokuni@ichinoseki.ac.jp

[^0]: * 1991 Mathematics Subject Classification. Primary 14J10.

