A NON-LIFTABLE CALABI-YAU THREEFOLD IN CHARACTERISTIC 3

Masayuki Hirokado
(Received February 16, 1998, revised May 13, 1999)

Abstract

We show the existence of a Calabi-Yau threefold in characteristic 3 with its third Betti number zero. This example admits no lifting to characteristic zero and hence indicates that a theorem by Deligne that any $K 3$ surface in positive characteristic has a lifting to characteristic zero cannot be generalized straightforward to the case of Calabi-Yau threefolds.

0. Introduction. Calabi-Yau threefolds as complex manifolds have been studied by a number of algebraic geometers as well as physicists, and a great deal of advancement has been achieved in the theory. On the other hand, $K 3$ surfaces in positive characteristics have also been studied intensively through the seventies and eighties. It is the purpose of our study to see to what extent we can understand Calabi-Yau threefolds in positive characteristics with the help of these two theories. In this paper, we observe several results with strong emphasis on specific phenomena of Calabi-Yau threefolds in positive characteristics which are known at this stage.

One of the interesting problems of Calabi-Yau threefolds in characteristic p is whether they have liftings to characteristic zero or not. For $K 3$ surfaces it was proved by Deligne [2] that any $K 3$ surface lifts projectively to characteristic zero.

We consider, in this paper, quotient varieties of \boldsymbol{P}^{3} by p-closed rational vector fields, and obtain a Calabi-Yau threefold X with its third Betti number zero. Then it is seen that this X admits no lifting to characteristic zero, which illustrates a clear difference from the case of $K 3$ surfaces.

I would like to express my sincere gratitude to Professor Toshiyuki Katsura for his advice and encouragement.

1. Preliminaries. We consider a smooth projective variety X defined over an algebraically closed field k of characteristic $p>0$.

DEFINITION 1.1. A smooth projective threefold X is said to be a Calabi-Yau threefold if $K_{X} \cong \mathcal{O}_{X}$ and $H^{1}\left(\mathcal{O}_{X}\right)=H^{2}\left(\mathcal{O}_{X}\right)=0$.

One of the most important properties of Calabi-Yau threefolds in positive characteristics is that the invariant $\mathrm{ht}(X)$, called the height of X, can be defined.

Definition 1.2 (Artin-Mazur [1]). Let X be a Calabi-Yau threefold and $\Phi^{3}\left(X / k, \boldsymbol{G}_{m}\right)$ be the Artin-Mazur formal group associated to X. Then we define the height $\mathrm{ht}(X)$ associated to X to be the height of $\Phi^{3}\left(X / k, G_{m}\right)$.

[^0]Let $W \mathcal{O}_{X}$ denote the sheaf of Witt vectors over X introduced by Serre [14]. Then the above definition is equivalent to the following:

$$
\operatorname{ht}(X)= \begin{cases}\operatorname{dim}_{K} H^{3}\left(X, W \mathcal{O}_{X}\right) \otimes_{W} K & \text { if } H^{3}\left(X, W \mathcal{O}_{X}\right) \otimes_{W} K \neq 0, \\ \infty & \text { if } H^{3}\left(X, W \mathcal{O}_{X}\right) \otimes_{W} K=0,\end{cases}
$$

where K is the quotient field of the ring of Witt vectors $W(k)$. In particular, we say that X is a supersingular Calabi-Yau if $\operatorname{ht}(X)=\infty$, after the case of $K 3$ surfaces.

As is the case with $K 3$ surfaces, this invariant is expected to be closely related to the specific phenomena of positive characteristics. It is known that the following property, which is well-known for $K 3$ surfaces, continues to hold for Calabi-Yau threefolds.

Theorem 1.3. If a Calabi-Yau threefold X is uniruled, then X is supersingular.

The proof of this theorem is based on the following observation (cf. [5]). Let k be a field of characteristic $p>0$ and $f: Y \rightarrow X$ be a generically finite surjective morphism of smooth complete varieties over k. If $H^{j}\left(W \mathcal{O}_{Y}\right) \otimes_{W} K=0$, then $H^{j}\left(W \mathcal{O}_{X}\right) \otimes_{W} K=0$. In particular, if $H^{j}\left(\mathcal{O}_{Y}\right)=0$, then $H^{j}\left(W \mathcal{O}_{X}\right) \otimes_{W} K=0$.

Remark 1.4 (The Hodge Symmetry). For a smooth projective complex n-fold X, it is well-known that the following equalities, known as the Hodge symmetry, hold:

$$
\operatorname{dim}_{C} H^{j}\left(\Omega_{X}^{i}\right)=\operatorname{dim}_{C} H^{i}\left(\Omega_{X}^{j}\right), \quad 0 \leq i, j \leq n .
$$

In characteristic $p>0$, the Hodge symmetry does not hold in general. However, RudakovShafarevich proved in [10] that these equalities hold for $K 3$ surfaces, by showing the nonexistence of non-zero vector fields. For a Calabi-Yau threefold X, we have the equality $\Omega_{X}^{2} \cong$ T_{X} and the Serre duality. So we see that the Hodge symmetry would follow if one could prove the vanishing $H^{0}\left(\Omega_{X}^{1}\right)=H^{0}\left(\Omega_{X}^{2}\right)=0$, which is one of the main questions about Calabi-Yau threefolds in positive characteristics.

We use the following notation in this paper:
Notation 1.5 .
$X \quad: \quad$ a smooth projective threefold defined over an algebraically closed field k of characteristic $p>0$.
$b_{i}(X) \quad:$ the l-adic Betti number of X given by $\operatorname{dim}_{Q_{l}} H_{\mathrm{et}}^{i}\left(X, \boldsymbol{Q}_{l}\right)(l \neq p)$, which is also equal to $\operatorname{rank}_{W} H_{\text {crys }}^{i}(X / W)$.
$b_{i}^{\mathrm{DR}}(X) \quad:$ the de Rham Betti number of X, which is given by $\operatorname{dim}_{k} H_{\mathrm{DR}}^{i}(X)$. If τ_{i} denotes the number of generators of the torsion part of $H_{\text {crys }}^{i}(X / W)$, then $b_{i}^{\mathrm{DR}}(X)=b_{i}(X)+\tau_{i}+\tau_{i+1}$ holds.
$e(X) \quad:$ the Euler number of X defined by $e(X)=\sum_{i=0}^{6}(-1)^{i} b_{i}(X)$.
$X \rightarrow X^{(-1)}$: the relative Frobenius morphism of X.
$\delta \quad: \quad$ a rational vector field on X which is p-closed, i.e., $\delta^{p}=\alpha \delta$ for some $\alpha \in k(X)$.
(δ) $\quad:$ the divisor on X associated to a p-closed rational vector field δ, which is given as follows: Locally δ is expressed as $\delta=\alpha(A \partial / \partial x+B \partial / \partial y+$ $C \partial / \partial z$), where x, y, z are local coordinates and A, B, C are regular functions without common factors. Then the divisor (α) is given in each affine open set, and can be glued together to form a divisor (δ) on X.
Sing $\delta \quad:$ the set of singular points of a p-closed rational vector field δ. This is given locally by $\{A=B=C=0\}$ under the expression of δ as above.
$\mathcal{L} \subset T_{X} \quad:$ the 1 -foliation induced by a p-closed rational vector field δ, i.e., a saturated invertible subsheaf of the tangent bundle T_{X} which is locally generated by δ.
$\boldsymbol{P}^{n} \quad:$ the n-dimensional projective space defined over k. When considering a different base field, for example \boldsymbol{F}_{p}, we indicate it as $\boldsymbol{P}_{\boldsymbol{F}_{p}}^{n}$.
For a Calabi-Yau threefold X, we have $\chi\left(\mathcal{O}_{X}\right)=0$ and $e(X)=-2 \chi\left(\Omega_{X}^{1}\right)$ by the Riemann-Roch theorem.

We call a morphism $f: X \rightarrow S$ a fibration if S is normal and $f_{*} \mathcal{O}_{X}=\mathcal{O}_{S}$. We say that X has a projective lifting to characteristic zero if there exists a smooth projective morphism

$$
\mathfrak{X} \rightarrow \operatorname{Spec} R
$$

over a discrete valuation ring R such that the closed fiber is isomorphic to X, and the quotient field of R is of characteristic zero.
2. Construction. In this section, we investigate a Calabi-Yau threefold obtained as the quotient of \boldsymbol{P}^{3} by a p-closed rational vector field. Our method of constructing quotient varieties by rational vector fields was introduced by Rudakov-Shafarevich, and has been used in various works. We refer the reader to [3] and [11].

Proposition 2.1. i) Let $\boldsymbol{A}^{3}:=\operatorname{Spec} k[x, y, z] \subset \boldsymbol{P}^{3}$ be an affine open set. The derivation

$$
\delta:=\left(x^{p}-x\right) \frac{\partial}{\partial x}+\left(y^{p}-y\right) \frac{\partial}{\partial y}+\left(x^{p}-z\right) \frac{\partial}{\partial z}
$$

determines a p-closed rational vector field on \boldsymbol{P}^{3} with $p^{3}+p^{2}+p+1$ isolated singular points Sing δ. Each singular point of δ can be resolved by one point blowing-up.
ii) Let $\pi: S \rightarrow \boldsymbol{P}^{3}$ be the blowing-ups at $p^{3}+p^{2}+p+1$ singular points $\operatorname{Sing} \delta$. Then the smooth rational vector field on S, which we denote by $\pi^{*} \delta$, induces a smooth projective threefold X as its quotient:

where $g\left(\right.$ resp. g_{0}) is the finite and flat (resp. finite) morphism of degree p which is induced by $\pi^{*} \delta$ (resp. δ). $\tilde{\pi}$ is a naturally induced birational morphism. In particular, we have

$$
g^{*} K_{X} \cong \pi^{*} \mathcal{O}_{\boldsymbol{P}^{3}}\left((p-1)^{2}-4\right) \otimes \mathcal{O}_{S}\left((3-p) \sum_{i=1}^{p^{3}+p^{2}+p+1} E_{i}\right)
$$

where $\left\{E_{i}\right\}$ are the exceptional divisors of π.
THEOREM 2.2. Suppose $p=3$. Then the birational morphism $\tilde{\pi}: X \rightarrow V$ in (2-A) is a crepant resolution. The smooth projective threefold X satisfies the following properties:
i) X is a Calabi-Yau threefold.
ii) X is unirational, therefore supersingular.
iii) $\pi_{1}^{\text {alg }}(X)=\{1\}$.
iv) $\quad b_{2}(X)=41, b_{3}(X)=0$.
v) $H^{0}\left(\Omega_{X}^{1}\right)=H^{0}\left(T_{X}\right)=0$, therefore the Hodge symmetry holds.
vi) X has quasi-elliptic fibrations.

Corollary 2.3. The Calabi-Yau threefold X in $p=3$ obtained above does not admit a projective lifting to characteristic zero.

Proof. Suppose that the Calabi-Yau threefold X in question has a projective lifting to characteristic zero:

$$
\mathfrak{X} \rightarrow \operatorname{Spec} R,
$$

over a discrete valuation ring R (cf. Section 1). Let $\mathfrak{X}_{\bar{\eta}}$ be its geometric generic fiber. Then we have, by the Hodge theory, $b_{3}\left(\mathfrak{X}_{\bar{\eta}}\right)=\operatorname{dim} H_{\mathrm{DR}}^{3}\left(\mathfrak{X}_{\bar{\eta}}\right)=\sum_{i+j=3} h^{j}\left(\Omega_{\mathfrak{X}_{\bar{\eta}}}^{i}\right)$. However, from the fact that the Betti numbers and the arithmetic genus are invariant under deformation, we deduce that $b_{3}\left(\mathfrak{X}_{\bar{\eta}}\right)=0$ and $h^{3}\left(\mathcal{O}_{\mathfrak{X}_{\bar{\eta}}}\right)=1$. But this is absurd.

Before proceeding to the proof of the theorem, we first introduce the following notation.
Notation 2.4.
$\mathcal{L} \hookrightarrow T_{S}$ stands for the smooth 1 -foliation on S, which is locally generated by $\pi^{*} \delta$. We denote a general hyperplane of \boldsymbol{P}^{n} by $\mathcal{O}_{\boldsymbol{P}^{n}}(1)$. The hyperplanes in $\boldsymbol{P}_{\boldsymbol{F}_{p}}^{3}$ are denoted by $\left\{F_{i} \mid i=1, \ldots, p^{3}+p^{2}+p+1\right\}$. The base change $F_{i} \times \operatorname{Spec} \boldsymbol{F}_{p} \operatorname{Spec} k$ is also denoted by the same F_{i}.
\bar{F}_{i} is the strict transform of F_{i} by $\pi: S \rightarrow \boldsymbol{P}^{3}$ in (2-A). In particular, $\left.\pi\right|_{\bar{F}_{i}}: \bar{F}_{i} \rightarrow F_{i}$ corresponds to blowing-ups at \boldsymbol{F}_{p}-rational points of $F_{i} \cong \boldsymbol{P}_{\boldsymbol{F}_{p}}^{2}$.

Proof of Proposition 2.1. i) Suppose that the local coordinates are given by

$$
U:=\operatorname{Spec} k[x, y, z], \quad U_{1}:=\operatorname{Spec} k\left[x_{1}, y_{1}, z_{1}\right] \subset \boldsymbol{P}^{3}:=\operatorname{Proj} k\left[X_{0}, X_{1}, X_{2}, X_{3}\right],
$$

where $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(1, x, y, z)=\left(x_{1}, 1, y_{1}, z_{1}\right)$. In U_{1}, the derivation δ is expressed as:

$$
\delta=\frac{1}{x_{1}^{p-1}}\left[\left(x_{1}^{p}-x_{1}\right) \frac{\partial}{\partial x_{1}}+\left(y_{1}^{p}-y_{1}\right) \frac{\partial}{\partial y_{1}}+\left(z_{1}^{p}-z_{1}\right) \frac{\partial}{\partial z_{1}}\right] .
$$

It can be observed that δ has a pole of degree $p-1$ at $x_{1}=0$, and the singular points $\operatorname{Sing} \delta$ correspond to the \boldsymbol{F}_{p}-rational points of $\boldsymbol{P}_{\boldsymbol{F}_{p}}^{3}:=\operatorname{Proj} \boldsymbol{F}_{p}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$.

Consider the blowing-up at the origin: $x=s, y=s t, z=s u$. Then we have $\partial / \partial x=$ $\partial / \partial s-(t / s) \partial / \partial t-(u / s) \partial / \partial u, \partial / \partial y=(1 / s) \partial / \partial t, \partial / \partial z=(1 / s) \partial / \partial u$ and

$$
\pi^{*} \delta=s\left[\left(s^{p-1}-1\right) \frac{\partial}{\partial s}+s^{p-2}\left(t^{p}-t\right) \frac{\partial}{\partial t}+s^{p-2}\left(u^{p}-u\right) \frac{\partial}{\partial u}\right] .
$$

We see that $\pi^{*} \delta$ vanishes along an exceptional divisor $E_{1}:=\{s=0\}$ with degree one, that is, the equality of divisors $\left(\pi^{*} \delta\right)=\pi^{*}(\delta)+E_{1}$ holds. Moreover, $\pi^{*} \delta$ has no singular points lying on E_{1}, so the singularity at the origin is resolved. Other singular points in Sing δ can also be resolved in the same way.
ii) The first assertion follows from the result (i). For the second, we use the canonical bundle formula (cf. [11]):

$$
g^{*} K_{X} \sim K_{S}-(p-1)\left(\pi^{*} \delta\right)
$$

where $\left(\pi^{*} \delta\right) \sim-(p-1) \pi^{*} \mathcal{O}_{\boldsymbol{P}^{3}}(1)+\sum_{i=1}^{p^{3}+p^{2}+p+1} E_{i}$.
Remark 2.5. Let $q \in \operatorname{Sing} \delta$ be a singular point of δ in Proposition 2.1. Then the complete local ring of the singular point $g_{0}(q) \in \operatorname{Sing} V$ is given as:

In particular, this is a toric singularity of type $(1 / p)(1,1,1)$, and there exists a crepant resolution if $p=3$.

LEMMA 2.6. Let $\pi_{0}: \bar{F} \rightarrow \boldsymbol{P}^{2}\left(\cong \boldsymbol{P}_{\boldsymbol{F}_{p}}^{2} \times \operatorname{Spec} k\right)$ be the birational morphism obtained by blowing up the \boldsymbol{F}_{p}-rational points in $\boldsymbol{P}_{\boldsymbol{F}_{p}}^{2}$. Then we have

$$
H^{0}\left(\pi_{0}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}((p-1) p) \otimes \mathcal{O}_{\bar{F}}\left(-p \sum_{j=1}^{p^{2}+p+1} e_{j}\right)\right)=0
$$

where $e_{1}, \ldots, e_{p^{2}+p+1}$ are the exceptional curves for π_{0}.
Proof. Consider the lines $\left\{l_{i} \mid i=1, \ldots, p^{2}+p+1\right\}$ in $\boldsymbol{P}_{\boldsymbol{F}_{p}}^{2}$. We denote the strict transform of $l_{i} \times_{\text {Spec } \boldsymbol{F}_{p}}$ Spec k for $\pi_{0}: \bar{F} \rightarrow \boldsymbol{P}^{2}$ by the same l_{i}. Then it can be expressed as $l_{k} \sim \pi_{0}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}(1)-\sum_{l=1}^{p+1} e_{j l}$.

Suppose that there exists an effective divisor $\bar{D} \in H^{0}\left(\pi_{0}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}((p-1) p) \otimes\right.$ $\left.\mathcal{O}_{\bar{F}}\left(-p \sum_{j=1}^{p^{2}+p+1} e_{j}\right)\right)$. Then we have $\left(\bar{D} . l_{k}\right)=-2 p<0$. This implies that \bar{D} has $\sum_{k=1}^{p^{2}+p+1} l_{k}$ as its component. On the other hand, we have the intersection number ($\bar{D}-$ $\left.\sum_{k=1}^{p^{2}+p+1} l_{k} \cdot \pi_{0}^{*} \mathcal{O}_{P^{2}}(1)\right)=-2 p-1<0$, which contradicts the fact that $\pi_{0}^{*} \mathcal{O}_{\boldsymbol{P}^{2}}(1)$ is nef. Thus we have the desired assertion.

Proof of Theorem 2.2. If $p=3$, we have $g^{*} K_{X} \sim 0$ by Proposition 2.1 (ii), that is, K_{X} is numerically equivalent to zero. Here, we show that X is indeed a Calabi-Yau threefold.

First, we prove $H^{0}\left(\mathcal{L}^{-p}\right)=0$, where $\mathcal{L} \cong \pi^{*} \mathcal{O}_{\boldsymbol{P}^{3}}(-(p-1)) \otimes \mathcal{O}\left(\sum_{i=1}^{p^{3}+p^{2}+p+1} E_{i}\right)$. Suppose there exists an effective divisor $D \in H^{0}\left(\mathcal{L}^{-p}\right)$. Then consider the exact sequence

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{S}\left(D-\bar{F}_{i}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{S}(D)\right) \rightarrow H^{0}\left(\mathcal{O}_{\bar{F}_{i}}\left(\left.D\right|_{\bar{F}_{i}}\right)\right)
$$

where the last term vanishes because of Lemma 2.6. This implies that $D-\sum_{i=1}^{p^{3}+p^{2}+p+1} \bar{F}_{i}$ is an effective divisor. On the other hand, we have

$$
\left(D-\sum_{i=1}^{p^{3}+p^{2}+p+1} \bar{F}_{i \cdot}\left(\pi^{*} \mathcal{O}_{\boldsymbol{P}^{3}}(1)\right)^{2}\right)<0
$$

But this is absurd. Thus, we have $H^{0}\left(\mathcal{L}^{-p}\right)=0$.
Secondly, we show that $H^{1}\left(\mathcal{O}_{X}\right)=0$ is derived from $H^{0}\left(\mathcal{L}^{-p}\right)=0$. Consider the smooth 1-foliation $\mathcal{L} \hookrightarrow T_{S}$ locally generated by $\pi^{*} \delta$, and let $\Omega_{S} \rightarrow \mathcal{L}^{-1}$ be its dual. Consider the composition map with the universal derivation d.

$$
\mathcal{O}_{S} \xrightarrow{d} \Omega_{S} \rightarrow \mathcal{L}^{-1}
$$

This composition map is the one which sends $s \in \mathcal{O}_{S}$ to $\delta(s) \in \mathcal{L}^{-1}$. Taking the direct images by the quotient morphism $g: S \rightarrow X$, we have the following diagram:

$$
\begin{array}{rllll}
0 & \rightarrow \mathcal{O}_{X} & \rightarrow g_{*} \mathcal{O}_{S} & \rightarrow & g_{*} \mathcal{O}_{S} / \mathcal{O}_{X} \rightarrow 0 \\
0 & & \| & & \cap \\
0 & \rightarrow \mathcal{O}_{X} & \rightarrow g_{*} \mathcal{O}_{S} & \rightarrow & g_{*} \mathcal{L}^{-1}
\end{array}
$$

Here, these two rows are exact by definition. Then the assertion verified above $H^{0}\left(\mathcal{L}^{-p}\right)=0$ indicates that the first term in the following exact sequence vanishes:

$$
H^{0}\left(g_{*} \mathcal{O}_{S} / \mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(g_{*} \mathcal{O}_{S}\right)
$$

Indeed, the last term also vanishes, since g is a finite morphism and S is a smooth rational threefold. Thus we obtain the desired assertion $H^{1}\left(\mathcal{O}_{X}\right)=0$.

Thirdly, we prove $H^{2}\left(\mathcal{O}_{X}\right)=0$ and $K_{X} \cong \mathcal{O}_{X}$. By the Riemann-Roch formula, we have $\chi\left(\mathcal{O}_{X}\right)=h^{0}\left(\mathcal{O}_{X}\right)-h^{1}\left(\mathcal{O}_{X}\right)+h^{2}\left(\mathcal{O}_{X}\right)-h^{3}\left(\mathcal{O}_{X}\right)=0$. Then by the Serre duality and the facts: $h^{0}\left(\mathcal{O}_{X}\right)=1, h^{1}\left(\mathcal{O}_{X}\right)=0$, we have the following inequality:

$$
1 \leq 1+h^{2}\left(\mathcal{O}_{X}\right)=h^{3}\left(\mathcal{O}_{X}\right)=h^{0}\left(K_{X}\right)
$$

Here, we see that the last term is at most one, because K_{X} is numerically trivial in $p=3$, from which the assertions $H^{2}\left(\mathcal{O}_{X}\right)=0$ and $K_{X} \cong \mathcal{O}_{X}$ follow. Thus X is a Calabi-Yau threefold.

The assertions ii), iii) follow from the construction, iv) follows from the equalities $b_{i}(S)=$ $b_{i}(X)$ for $i=0, \ldots, 6$, since the quotient morphism g in (2-A) is finite and purely inseparable. The quasi-elliptic fibrations in vi) are induced from the projection $\tilde{\boldsymbol{P}}^{3} \rightarrow \boldsymbol{P}^{2}$, where $\tilde{\boldsymbol{P}}^{3}$ is a one point blowing-up of \boldsymbol{P}^{3}. So there remains to prove v).

Let $\mathcal{M}:=T_{X / S^{(-1)}} \hookrightarrow T_{X}$ be the smooth 1-foliation of rank two on X, which corresponds to the purely inseparable finite morphism $\tilde{g}: X \rightarrow S^{(-1)}$ of degree p^{2}. Then we have the following exact sequences:

$$
\begin{aligned}
& 0 \rightarrow g^{*} \mathcal{M}^{-1} \rightarrow \Omega_{S} \rightarrow \mathcal{L}^{-1} \rightarrow 0 \\
& 0 \rightarrow \tilde{g}^{*} \mathcal{L}^{-1} \rightarrow \Omega_{X} \rightarrow \mathcal{M}^{-1} \rightarrow 0
\end{aligned}
$$

Then look at the long exact sequence:

$$
0 \rightarrow H^{0}\left(\tilde{g}^{*} \mathcal{L}^{-1}\right) \rightarrow H^{0}\left(\Omega_{X}\right) \rightarrow H^{0}\left(\mathcal{M}^{-1}\right) \rightarrow \cdots
$$

Here we have $H^{0}\left(\mathcal{M}^{-1}\right)=0$ because of the inclusion $H^{0}\left(g^{*} \mathcal{M}^{-1}\right) \hookrightarrow H^{0}\left(\Omega_{S}\right)=0$. Moreover, $H^{0}\left(\tilde{g}^{*} \mathcal{L}^{-1}\right)=0$ holds, since we have

$$
H^{0}\left(\tilde{g}^{*} \mathcal{L}^{-1}\right) \hookrightarrow H^{0}\left(g_{*}\left(g^{*} \tilde{g}^{*} \mathcal{L}^{-1}\right)\right)=H^{0}\left(\mathcal{L}^{-p}\right)
$$

and we already know that the last term vanishes. Thus we have $H^{0}\left(\Omega_{X}\right)=0$.
The assertion $H^{0}\left(T_{X}\right)=0$ follows from Proposition 2.7 mentioned below. Thus we complete the proof of Theorem 2.2.

Proposition 2.7. Consider the p-closed rational vector field on \boldsymbol{P}^{3} given by

$$
\delta=\left(G_{1}^{p}-x\right) \frac{\partial}{\partial x}+\left(G_{2}^{p}-y\right) \frac{\partial}{\partial y}+\left(G_{3}^{p}-z\right) \frac{\partial}{\partial z}
$$

with $G_{1}, G_{2}, G_{3} \in k[x, y, z]$. Let $g_{0}: \boldsymbol{P}^{3} \rightarrow V$ be its quotient and suppose that the resolution of singularities $\tilde{\pi}: X \rightarrow V$ such that $X \backslash \tilde{\pi}^{-1}(\operatorname{Sing} V) \cong V \backslash \operatorname{Sing} V$ exists. Suppose further that $\left\{1, G_{1}, G_{2}, G_{3}\right\} \cup\left\{G_{i} G_{j} \mid i, j \in\{1,2,3\}\right\}$ in $k[x, y, z]$ are k-linearly independent and $\delta \notin H^{0}\left(T_{P^{3}}\right)$. Then we have $H^{0}\left(T_{X}\right)=0$.

PROOF. For the proof, we consider the purely inseparable morphisms which factor the Frobenius morphism:

$$
\boldsymbol{P}^{3} \xrightarrow{g_{0}} V \xrightarrow{\tilde{g}_{0}} \boldsymbol{P}^{3(-1)} .
$$

Then there exist 1-foliations $\mathcal{L}_{0}:=T_{\boldsymbol{P}^{3} / V} \subset T_{\boldsymbol{P}^{3}}$ and $\mathcal{M}_{0}:=T_{V / \boldsymbol{P}^{3(-1)}} \subset T_{V}$ which correspond to g_{0} and \tilde{g}_{0}, respectively. Consider the exact sequence:

$$
0 \rightarrow \mathcal{L}_{0} \rightarrow T_{\boldsymbol{P}^{3}} \rightarrow T_{\boldsymbol{P}^{3}} / \mathcal{L}_{0} \rightarrow 0
$$

We also have an exact sequence on $V_{0}:=V \backslash$ Sing V :

$$
0 \rightarrow \mathcal{M}_{0} \rightarrow T_{V} \rightarrow \tilde{g}_{0}^{*} \mathcal{L}_{0} \rightarrow 0
$$

and $T_{\boldsymbol{P}^{3}} / \mathcal{L}_{0} \cong g_{0}^{*} \mathcal{M}_{0}$ holds on $g_{0}^{-1}\left(V_{0}\right)$ (cf. [3]). So the following long exact sequences are induced:

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathcal{L}_{0}\right) \rightarrow H^{0}\left(T_{\boldsymbol{P}^{3}}\right) \rightarrow H^{0}\left(T_{\boldsymbol{P}^{3}} / \mathcal{L}_{0}\right) \rightarrow 0, \\
& 0 \rightarrow H^{0}\left(V_{0}, \mathcal{M}_{0}\right) \rightarrow H^{0}\left(V_{0}, T_{V}\right) \rightarrow H^{0}\left(V_{0}, \tilde{g}_{0}^{*} \mathcal{L}_{0}\right) .
\end{aligned}
$$

Here $H^{0}\left(\mathcal{L}_{0}\right)=0$ holds from the hypothesis $\delta \notin H^{0}\left(T_{\boldsymbol{P}^{3}}\right)$. Then $H^{0}\left(V_{0}, \tilde{g}_{0}^{*} \mathcal{L}_{0}\right)=0$ also follows. By computation of local cohomologies, we have $H^{0}\left(\boldsymbol{P}^{3}, T_{\boldsymbol{P}^{3}} / \mathcal{L}_{0}\right) \cong H^{0}\left(g_{0}^{-1}\left(V_{0}\right)\right.$, $\left.T_{\boldsymbol{P}^{3}} / \mathcal{L}_{0}\right)$. So, we obtain the inclusion $H^{0}\left(V_{0}, T_{V}\right) \hookrightarrow H^{0}\left(T_{\boldsymbol{P}^{3}}\right)$.

Now, we show that there exists no element $\theta \in H^{0}\left(\boldsymbol{T}_{P^{3}}\right)$ such that the restriction $\left.\theta\right|_{k(V)}$ determines a derivation of $k(V)$. Take a basis of $H^{0}\left(T_{P^{3}}\right)$:

$$
\begin{gathered}
\frac{\partial}{\partial x}, x \frac{\partial}{\partial x}, y \frac{\partial}{\partial x}, z \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, x \frac{\partial}{\partial y}, y \frac{\partial}{\partial y}, z \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, x \frac{\partial}{\partial z}, y \frac{\partial}{\partial z}, z \frac{\partial}{\partial z} \\
x\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right), \quad y\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right), \quad z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) .
\end{gathered}
$$

The function field of V is given by $k(V)=k\left(x^{p}, y^{p}, z^{p}, w_{1}, w_{2}\right)$, where $w_{1}:=\left(G_{1}^{p}-\right.$ $x)\left(G_{2}^{p}-y\right)^{p-1}$ and $w_{2}:=\left(G_{2}^{p}-y\right)\left(G_{3}^{p}-z\right)^{p-1}$.

So, it suffices to show that there exists no element $\theta \in H^{0}\left(T_{\boldsymbol{P}^{3}}\right)$ such that $\left(\delta\left(\theta w_{1}\right)\right.$, $\left.\delta\left(\theta w_{2}\right)\right)=0$ in $k\left(\boldsymbol{P}^{3}\right) \oplus k\left(\boldsymbol{P}^{3}\right)$. This is equivalent to the following elements in $k\left(\boldsymbol{P}^{3}\right) \oplus k\left(\boldsymbol{P}^{3}\right)$ being k-linearly independent:

$$
\begin{gathered}
\left(\delta\left(\frac{\partial}{\partial x} w_{1}\right), \delta\left(\frac{\partial}{\partial x} w_{2}\right)\right),\left(\delta\left(x \frac{\partial}{\partial x} w_{1}\right), \delta\left(x \frac{\partial}{\partial x} w_{2}\right)\right),\left(\delta\left(y \frac{\partial}{\partial x} w_{1}\right), \delta\left(y \frac{\partial}{\partial x} w_{2}\right)\right), \\
\left(\delta\left(z \frac{\partial}{\partial x} w_{1}\right), \delta\left(z \frac{\partial}{\partial x} w_{2}\right)\right),\left(\delta\left(\frac{\partial}{\partial y} w_{1}\right), \delta\left(\frac{\partial}{\partial y} w_{2}\right)\right),\left(\delta\left(x \frac{\partial}{\partial y} w_{1}\right), \delta\left(x \frac{\partial}{\partial y} w_{2}\right)\right), \\
\left(\delta\left(y \frac{\partial}{\partial y} w_{1}\right), \delta\left(y \frac{\partial}{\partial y} w_{2}\right)\right),\left(\delta\left(z \frac{\partial}{\partial y} w_{1}\right), \delta\left(z \frac{\partial}{\partial y} w_{2}\right)\right),\left(\delta\left(\frac{\partial}{\partial z} w_{1}\right), \delta\left(\frac{\partial}{\partial z} w_{2}\right)\right), \\
\left(\delta\left(x \frac{\partial}{\partial z} w_{1}\right), \delta\left(x \frac{\partial}{\partial z} w_{2}\right)\right),\left(\delta\left(y \frac{\partial}{\partial z} w_{1}\right), \delta\left(y \frac{\partial}{\partial z} w_{2}\right)\right),\left(\delta\left(z \frac{\partial}{\partial z} w_{1}\right), \delta\left(z \frac{\partial}{\partial z} w_{2}\right)\right), \\
\left(\delta\left(x\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) w_{1}\right), \delta\left(x\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) w_{2}\right)\right), \\
\left(\delta\left(y\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) w_{1}\right), \delta\left(y\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) w_{2}\right)\right), \\
\left(\delta\left(z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) w_{1}\right), \delta\left(z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) w_{2}\right)\right) .
\end{gathered}
$$

This is, indeed, the case under the assumption of Proposition 2.7. Then the desired assertion follows from the inclusion:

$$
H^{0}\left(X, T_{X}\right) \hookrightarrow H^{0}\left(\pi^{-1}\left(V_{0}\right), T_{X}\right) \cong H^{0}\left(V_{0}, T_{V}\right)=0 .
$$

This completes the proof of Proposition 2.7.
Remarks 2.8. i) The smooth quotient threefold X obtained in Proposition 2.1 in other characteristics is classified as a rational threefold if $p=2$, and as a threefold of general type (i.e., the Kodaira dimension $\kappa(X)=3$) if $p \geq 5$.
ii) It is not known if the existence of Calabi-Yau threefolds with the third Betti number zero is a phenomenon specific to characteristic three or not. It follows that such Calabi-Yau threefolds are supersingular.

References

[1] M. Artin and B. Mazur, Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup. (4) 10 (1977), 87-131.
[2] P. Deligne, Relèvement des surfaces $K 3$ en caractéristique nulle, Lecture Notes in Math. 868, SpringerVerlag, 1981, 58-79.
[3] T. EKEDAHL, Foliations and inseparable morphisms, Proc. Sympos. Pure Math. 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, 139-149.
[4] M. Hirokado, Zariski surfaces as quotients of Hirzebruch surfaces by 1 -foliations, preprint.
[5] M. Hirokado, Calabi-Yau threefolds obtained as fiber products of elliptic and quasi-elliptic rational surfaces, to appear in J. Pure Applied Algebra.
[6] W. Lang and N. Nygaard, A short proof of the Rydakov-Safarevic theorem, Math. Ann. 251 (1980), 171-173.
[7] Y. MiYaокa, Vector fields on Calabi-Yau manifolds in characteristic p, Daisuu Kikagaku Symposium at Kinosaki, 1995, 149-156.
[8] N. NyGAARD, On the fundamental group of a unirational 3-fold, Invent. Math. 44 (1978), 75-86.
[9] N. NyGAARD, A p-adic proof of the non-existence of vectorfields on $K 3$ surfaces, Ann. of Math. 110 (1979), 515-528.
[10] K. Oguiso, On certain rigid fibered Calabi-Yau threefolds, Math. Z. 221 (1996), 437-448.
[11] A. Rudakov and I. Shafarevich, Inseparable morphisms of algebraic surfaces, Math. USSR Izv. 10 (1976), 1205-1237.
[12] A. Rudakov and I. Shafarevich, Surfaces of type $K 3$ over fields of finite characteristics, J. Soviet Math. 22 (1983), 1476-1533.
[13] K. SaKAmaki, Artin-Mazur formal groups and Picard-Fuchs equations attached to certain Calabi-Yau threefolds, Master's Thesis, Kyoto University, 1994.
[14] J. SERRE, Sur la topologie des variétés algébriques en caractéristique p, Symposium Internacional de Topologia Algebraica, México, 1958, 24-53.
[15] N. Suwa, Hodge-Witt cohomology of complete intersections, J. Math. Soc. Japan 45 (1993), 295-300.
Department of Information Sciences
Hiroshima City University
3-4-1 Ozuka-higashi Asaminami-ku
Hiroshima 731-3194
JAPAN
E-mail address: hirokado@math.its.hiroshima-cu.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 14J32; Secondary 14D05, 14F20, 14F30.

