QUADRATIC RELATIONS FOR CONFLUENT HYPERGEOMETRIC FUNCTIONS

Hideyuki Majima, Kenji Matsumoto and Nobuki Takayama

(Received February 19, 1999, revised January 25, 2000)

Abstract

We present a theory of intersection on the complex projective line for homology and cohomology groups defined by connections which are regular or not. We apply this theory to confluent hypergeometric functions, and obtain, as an analogue of period relations, quadratic relations satisfied by confluent hypergeometric functions.

1. Introduction. The main objective of this paper is to provide a systematic method of deriving new quadratic relations for confluent hypergeometric functions, especially, in several variables. Classical examples of the quadratic relations are the inversion formula for the gamma function

$$
\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin (\pi a)}
$$

and Lommel's formula for Bessel functions

$$
J_{a}(z) J_{-a+1}(z)+J_{a-1}(z) J_{-a}(z)=\frac{2 \sin (\pi a)}{\pi z} .
$$

The essence of our method is to regard these quadratic relations as analogs of Riemann's period relations, which are quadratic relations for periods on a compact Riemann surface. Periods are integrals of holomorphic 1 -forms (1-cocycles) over closed paths (1 -cycles) on the Riemann surface. The naturality of the pairings of the cohomology and homology groups of the Riemann surface yields period relations. The coefficients of the period relations can be understood as intersection numbers of the cycles and the cocycles.

We regard integral representations of confluent hypergeometric functions as pairings of cocycles of a certain cohomology group and cycles of a sort of homology group. We will introduce the intersection pairing between the cohomology group and its dual, which naturally induces the intersection pairing between the homology group and its dual. The naturality of the pairings yields quadratic relations for confluent hypergeometric functions, as in the case of Riemann's period relations.

We note that the existence of the quadratic relations is an immediate consequence of the commutativity of the dualizing functor and the integration functor, which yields the cohomology groups, for \mathcal{D}-modules. However, the authors would like to emphasize that we are

[^0]interested in deriving explicit formulas for hypergeometric functions, and that such a general fact is not satisfactory for us.

Let us explain what the cohomology and homology groups are and where the difficulty lies. Let ω be a rational 1 -form on the complex projective line \boldsymbol{P} with the polar set $x=\left\{x_{1}, \ldots, x_{m}\right\}$ such that the residue at any simple pole is not an integer. Let \mathcal{L}_{ω} and $\mathcal{L}_{-\omega}$ be the locally constant sheaves over $X=\boldsymbol{P} \backslash x$ of analytic functions $u(t)$ and $u^{-1}(t)$ satisfying $\nabla_{-\omega} u(t)=0$ and $\nabla_{\omega} u^{-1}(t)=0$, respectively, where $\nabla_{\omega}=d+\omega \wedge$ and $\nabla_{-\omega}=d-\omega \wedge$. Note that such $u(t)$ is expressed as $c \exp \left(\int^{t} \omega\right)(c \in \boldsymbol{C})$. We consider the twisted cohomology groups $H^{1}\left(\Omega^{\bullet}(x), \nabla_{ \pm \omega}\right)=\Omega^{1}(x) / \nabla_{ \pm \omega}\left(\Omega^{0}(x)\right)$, where $\Omega^{k}(x)$ denotes the vector space of rational k-forms admitting poles in x, and the twisted homology groups $H_{1}\left(X, \mathcal{L}_{ \pm \omega}\right)$. When the 1-form ω admits only simple poles, the intersection pairing for $H^{1}\left(\Omega^{\bullet}(x), \nabla_{ \pm \omega}\right)$ and that for the twisted homology groups $H_{1}\left(X, \mathcal{L}_{ \pm \omega}\right)$ are studied. Following de Rham's original work in [3], Kita and Yoshida gave evaluation formulas for intersection numbers of homology in [11]. Subsequently, evaluation formulas for intersection numbers for cohomology were established and some quadratic relations for Lauricella's F_{D} 's were given in [1]. It is fundamental in these papers that $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ is isomorphic to

$$
H^{1}\left(E_{c}^{\bullet}(x), \nabla_{\omega}\right)=\frac{\operatorname{ker}\left(\nabla_{\omega}: E_{c}^{1}(x) \rightarrow E_{c}^{2}(x)\right)}{\nabla_{\omega} E_{c}^{0}(x)}
$$

where $E_{c}^{k}(x)$ denotes the space of smooth k-forms on X with compact support, and that both of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)$ and $H_{1}\left(X, \mathcal{L}_{\omega}\right)$ can be regarded as the dual space of $H^{1}\left(E_{c}^{\bullet}(x), \nabla_{\omega}\right)$. For a rational 1-form ω with higher order poles, the groups $H^{1}\left(E_{c}^{\bullet}(x), \nabla_{\omega}\right)$ and $H_{1}\left(X, \mathcal{L}_{\omega}\right)$ are well-defined, but $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ is not isomorphic to $H^{1}\left(E_{c}^{\bullet}(x), \nabla_{\omega}\right)$ in general and $H_{1}\left(X, \mathcal{L}_{\omega}\right)$ is too small to form a fundamental system of solutions for a confluent hypergeometric system of differential equations. In order to generalize results in [1] and [11], we need to find suitable cohomology and homology groups to express confluent hypergeometric functions.

To this end, we modify the isomorphic theorem for an integrable connection provided by the first author in [13] by replacing the asymptotic parts by C^{∞} objects. The key role is played by the isomorphism

$$
\iota_{\omega}: H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \rightarrow H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)
$$

where $S^{\bullet}(x)$ is the complex of the space of rapidly decreasing k-forms on X (see Section 2). This isomorphism induces the intersection pairing between $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ and $H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)$ by

$$
\int_{X} \iota_{\omega}\left(\varphi^{+}\right) \wedge \varphi^{-}
$$

In order to evaluate intersection numbers, we give an explicit form for the image $\varphi \in \Omega^{1}(x)$ under the isomorphism t_{ω}.

We introduce a homology group $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ so that the pairings between an element φ of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ and a basis of $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ form a fundamental system of solutions for a confluent hypergeometric system of differential equations (see Section 3). We show
the perfectness of the pairing between $H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$. This together with the perfect pairing between $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ and $H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)$ shown in [7] induce the perfect pairing between $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$. We present a formula to evaluate intersection numbers between $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$ by comparison theorems given by Malgrange in [14]. We give an explicit intersection matrix I_{h} for certain elements of $H_{1}\left(C_{\bullet}^{ \pm \omega}(X), \partial_{ \pm \omega}\right)$ by this formula.

We have begun with the wedge product of globally defined differential forms to discuss our method of deriving quadratic relations. An anonymous referee advised us that we should start from the Poincaré-Verdier duality between the locally constant sheaves \mathcal{L}_{ω} and $\mathcal{L}_{-\omega}$ on the real blowing up space of \boldsymbol{P} with the centers in x (see, e.g., [9, Chapter 3]), which induces duality of cohomology groups. Although we agree that it is a modern and attractive approach, we do not think that it will drastically simplify our discussions, because we need explicit constructions of isomorphisms between cohomology groups and the Poincaré duality.

Different approaches to derive quadratic relations for confluent hypergeometric functions are given by Sasaki and Yoshida in [21] and by Haraoka in [6].
2. Twisted de Rham cohomology groups. Let n_{1}, \ldots, n_{m} be natural numbers satisfying

$$
n_{1} \geq n_{2} \geq \cdots \geq n_{m}, \quad n=\sum_{i=1}^{m} n_{i} \geq 3
$$

and let x_{1}, \ldots, x_{m} be m distinct points on the complex projective line \boldsymbol{P}. Put

$$
\sigma=\#\left\{i \mid n_{i}>1\right\}, \quad x=\left\{x_{1}, \ldots, x_{m}\right\}, \quad X=\boldsymbol{P} \backslash x
$$

and let

$$
\omega=\sum_{i=1}^{m}\left(\frac{\alpha_{i ; 1}}{t-x_{i}}+\frac{\alpha_{i ; 2}}{\left(t-x_{i}\right)^{2}}+\cdots+\frac{\alpha_{i ; n_{i}-1}}{\left(t-x_{i}\right)^{n_{i}-1}}+\frac{\alpha_{i ; n_{i}}}{\left(t-x_{i}\right)^{n_{i}}}\right) d t
$$

be a rational 1-form, where $\alpha_{i ; k} \in \boldsymbol{C}, \alpha_{i ; n_{i}} \neq 0$ for all $i, \alpha_{i ; 1} \notin \boldsymbol{Z}$ in case $n_{i}=1$, and

$$
\sum_{i=1}^{m} \alpha_{i ; 1}=0
$$

Throughout this paper, we assume this condition on the parameters $\alpha_{i ; k}$ is satisfied. For the 1-form ω on \boldsymbol{P}, we denote by $\nabla_{\omega}=d+\omega \wedge$ the connection with respect to ω on X; note that $\nabla_{\omega} \circ \nabla_{\omega}=0$.

A smooth function f defined in a neighborhood U_{i} of x_{i} is said to be rapidly decreasing at x_{i} if f satisfies

$$
\lim _{t \rightarrow x_{i}} \frac{1}{\left|t-x_{i}\right|^{r}} \frac{\partial^{p+q}}{\partial t^{p} \partial \bar{t}^{q}} f(t)=0
$$

for any $p, q, r \in\{0,1,2, \ldots\}$, where t is a complex coordinate system around x_{i}. Let $S^{0}(x)$ be the vector space of smooth functions on \boldsymbol{P} which rapidly decrease at x_{i} for any i, and $S^{k}(x)$ the vector space of smooth k-forms ζ on \boldsymbol{P} such that the coefficients in the expression of ζ in
terms of a complex coordinate system t around x_{i} rapidly decrease at x_{i} for any i. We denote the sheaf over \boldsymbol{P} of such k-forms by $\mathcal{S}^{k}(x)$.

A smooth function f defined on $U_{i} \backslash\left\{x_{i}\right\}$ is said to grow t-polynomially at x_{i} if there exists $r \in N$ such that $\left(t-x_{i}\right)^{r} f(t)$ is smooth on U_{i}. Let $P^{0}(x)$ be the vector space of smooth functions f on X which grow t-polynomially at x_{i} for any i, and $P^{k}(x)$ the vector space of smooth k-forms ζ such that the coefficients in the expression of ζ in terms of a complex coordinate system t around x_{i} grow t-polynomially at x_{i} for any i. We denote the sheaf over \boldsymbol{P} of such k-forms and that of such (p, q)-forms by $\mathcal{P}^{k}(x)$ and $\mathcal{P}^{(p, q)}(x)$, respectively. Note that $\Gamma\left(X, \mathcal{P}^{(p, q)}\right)=P^{(p, q)}$ and that the stalk $\mathcal{P}_{x_{i}}^{(p, q)}$ of $\mathcal{P}^{(p, q)}$ at x_{i} is equal to $\mathcal{E}_{x_{i}}^{(p, q)}\left[1 /\left(t-x_{i}\right)\right]$, where $\mathcal{E}_{x_{i}}^{(p, q)}$ is the stalk of the sheaf $\mathcal{E}^{(p, q)}$ of smooth (p, q)-forms over \boldsymbol{P} at x_{i}.

We define three complexes with differential ∇_{ω} :

$$
\begin{aligned}
& \left(\Omega^{\bullet}(x), \nabla_{\omega}\right): \Omega^{0}(x) \xrightarrow{\nabla_{\omega}} \Omega^{1}(x) \xrightarrow{\nabla_{\omega}} 0 \longrightarrow 0, \\
& \left(S^{\bullet}(x), \nabla_{\omega}\right): S^{0}(x) \xrightarrow{\nabla_{\omega}} S^{1}(x) \xrightarrow{\nabla_{\omega}} S^{2}(x) \xrightarrow{\nabla_{\omega}} 0, \\
& \left(P^{\bullet}(x), \nabla_{\omega}\right): P^{0}(x) \xrightarrow{\nabla_{\omega}} P^{1}(x) \xrightarrow{\nabla_{\omega}} P^{2}(x) \xrightarrow{\nabla_{\omega}} 0,
\end{aligned}
$$

where $\Omega^{k}(x)$ is the vector space of rational k-forms on \boldsymbol{P} admitting poles at x. The k-th cohomology groups $H^{k}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right), H^{k}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ and $H^{k}\left(P^{\bullet}(x), \nabla_{\omega}\right)$ of the above complexes are called rational, rapidly decreasing and t-polynomially growing twisted de Rham cohomology groups with respect to ∇_{ω}, respectively. The inclusions

$$
\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \subset\left(P^{\bullet}(x), \nabla_{\omega}\right), \quad\left(S^{\bullet}(x), \nabla_{\omega}\right) \subset\left(P^{\bullet}(x), \nabla_{\omega}\right)
$$

of complexes induce the following isomorphisms among twisted de Rham cohomology groups.
Theorem 2.1 (cf. [12, Theorem 2], [13, Proposition 3.1], [14, p. 82 ii]). We have

$$
H^{k}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{k}\left(P^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{k}\left(S^{\bullet}(x), \nabla_{\omega}\right)
$$

For $k \neq 1, H^{k}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right), H^{k}\left(P^{\bullet}(x), \nabla_{\omega}\right)$ and $H^{k}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ vanish.
It is shown in [10] that the dimension of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ is $n-2$, which is equal to the rank of the associated confluent hypergeometric system of differential equations. See also [20].

REmARK 2.1. Let $E^{k}(x)$ be the space of smooth k-forms on X, and $E_{c}^{k}(x)$ the space of smooth k-forms with compact support on X. When the 1 -form ω admits only simple poles with non-integral residue, we have the isomorphisms (cf. [2, Corollary 6.3])

$$
H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{1}\left(E^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{1}\left(E_{c}^{\bullet}(x), \nabla_{\omega}\right),
$$

which were fundamental for the study of intersection numbers in [11]. On the other hand, we have

$$
H^{1}\left(E^{\bullet}(x), \nabla_{\omega}\right) \nsucceq H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right), \quad H^{1}\left(E_{c}^{\bullet}(x), \nabla_{\omega}\right) \not \not H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)
$$

for a rational ω with higher order poles. This is the reason why we introduce rapidly decreasing and k-polynomially growing twisted de Rham cohomology groups.

The first author proved an isomorphism theorem in [13], which yields essentially the following isomorphism

$$
H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right),
$$

for a rational 1 -form ω with non-integral residues at simple poles. In order to derive explicit formulas for intersection numbers, we will give an elementary proof of Theorem 2.1 in the rest of this section.

We start with proving the following lemma on the $\bar{\partial}$ equation. Let $\Omega^{p}(x)$ be the sheaf of meromorphic p-forms over \boldsymbol{P} admitting poles on x.

Lemma 2.2. (1) The sequence of sheaves

$$
0 \longrightarrow \Omega^{p}(x) \xrightarrow{\text { id }} \mathcal{P}^{(p, 0)}(x) \xrightarrow{\bar{z}} \mathcal{P}^{(p, 1)}(x) \longrightarrow 0
$$

is exact for $p=0,1$.
(2) The sequence

$$
0 \longrightarrow \Gamma\left(\boldsymbol{P}, \Omega^{p}(x)\right) \xrightarrow{\text { id }} \Gamma\left(\boldsymbol{P}, \mathcal{P}^{(p, 0)}(x)\right) \xrightarrow{\bar{\partial}} \Gamma\left(\boldsymbol{P}, \mathcal{P}^{(p, 1)}(x)\right) \longrightarrow 0
$$

is exact for $p=0,1$.
Proof. It is well-known that $\bar{\partial}$ is surjective on the germ of smooth ($p, 1$)-forms (see, e.g., [5, p. 25]). Let $U \ni x_{i}$ be an open set and suppose that we are given $g \in \mathcal{P}^{(p, 1)}(U)$. By definition, there exists a number r such that $\left(t-x_{i}\right)^{r} g$ is a smooth function. From the surjectivity for smooth ($p, 1$)-forms, there exists a smooth ($p, 0$)-form f such that $\bar{\partial} f=$ $\left(t-x_{i}\right)^{r} g$. Since $\left(t-x_{i}\right)$ commutes with $\bar{\partial}$, we have $\bar{\partial}\left(f /\left(t-x_{i}\right)^{r}\right)=g$. Hence, $\bar{\partial}$ is surjective. It is clear that the kernel of $\bar{\partial}: \mathcal{P}^{(p, 0)} \rightarrow \mathcal{P}^{(p, 1)}$ is the germ of meromorphic functions with poles at x.

The second statement follows from the well-known vanishing of $H^{1}\left(\boldsymbol{P}, \Omega^{p}(x)\right)$ (see, e.g., [4, p. 141, 17.17]) and a long exact sequence.
q.e.d.

Proof of

$$
H^{k}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{k}\left(P^{\bullet}(x), \nabla_{\omega}\right)
$$

Let us consider the double complex

where each row is exact and $\nabla_{\omega}=d+\omega=\partial+\bar{\partial}+\omega$. Since $H^{k}\left(\boldsymbol{P}, \Omega^{p}(x)\right)$ vanishes for $k \geq 1$, we obtain the following double complex

By a standard argument in homological algebra, $H^{i}\left(\Gamma\left(\boldsymbol{P}, \Omega^{\bullet}(x)\right), \nabla_{\omega}\right)$ is equal to the cohomology of the associated single complex of the double complex

$$
\begin{gather*}
0 \longrightarrow \Gamma\left(\boldsymbol{P}, \mathcal{P}^{(0,0)}(x)\right) \xrightarrow{\bar{\partial}} \Gamma\left(\boldsymbol{P}, \mathcal{P}^{(0,1)}(x)\right) \longrightarrow 0 \\
\downarrow^{\partial+\omega} \\
\downarrow^{\partial+\omega} \\
0 \longrightarrow \Gamma\left(\boldsymbol{P}, \mathcal{P}^{(1,0)}(x)\right) \xrightarrow{\bar{\partial}} \Gamma\left(\boldsymbol{P}, \mathcal{P}^{(1,1)}(x)\right) \longrightarrow 0
\end{gather*}
$$

We next consider the ring $\boldsymbol{C}_{x_{i}}[[t, \bar{t}]]$ of formal power series around x_{i}. Put

$$
\begin{aligned}
& \mathcal{F}_{x_{i}}^{0}=\boldsymbol{C}_{x_{i}}[[t, \bar{t}]], \quad \mathcal{F}_{x_{i}}^{1}=\mathcal{F}_{x_{i}}^{0} d t \oplus \mathcal{F}_{x_{i}}^{0} d \bar{t}, \quad \mathcal{F}_{x_{i}}^{2}=\mathcal{F}_{x_{i}}^{0} d t \wedge d \bar{t} \\
& \tilde{\mathcal{F}}_{x_{i}}^{0}=\boldsymbol{C}_{x_{i}}[[t, \bar{t}]]\left[\frac{1}{t-x_{i}}\right], \quad \tilde{\mathcal{F}}_{x_{i}}^{1}=\tilde{\mathcal{F}}_{x_{i}}^{0} d t \oplus \tilde{\mathcal{F}}_{x_{i}}^{0} d \bar{t}, \quad \tilde{\mathcal{F}}_{x_{i}}^{2}=\tilde{\mathcal{F}}_{x_{i}}^{0} d t \wedge d \bar{t}
\end{aligned}
$$

It is known that the sequence

$$
0 \longrightarrow \mathcal{S}_{x_{i}}^{k}(x) \longrightarrow \mathcal{E}_{x_{i}}^{k} \longrightarrow \mathcal{F}_{x_{i}}^{k} \longrightarrow 0
$$

is exact, where $\mathcal{E}_{x_{i}}^{k}$ is the stalk at x_{i} of the sheaf \mathcal{E}^{k} of smooth k-forms over \boldsymbol{P}.
LEMMA 2.3. The k-th cohomology group $H^{k}\left(\tilde{\mathcal{F}}_{x_{i}}, \nabla_{\omega}\right)$ of the complex

$$
\left(\tilde{\mathcal{F}}_{x_{i}}^{\bullet}, \nabla_{\omega}\right): \tilde{\mathcal{F}}_{x_{i}}^{0} \xrightarrow{\nabla_{\omega}} \tilde{\mathcal{F}}_{x_{i}}^{1} \xrightarrow{\nabla_{\omega}} \tilde{\mathcal{F}}_{x_{i}}^{2} \xrightarrow{\nabla_{\omega}} 0
$$

vanishes for $k=0,1,2$.
Proof. Suppose that there exists a non-zero $f \in \tilde{\mathcal{F}}_{x_{i}}^{0}$ such that $\nabla_{\omega} f=0$. Since $\bar{\partial} f=0, f$ consists of terms $c_{v}\left(t-x_{i}\right)^{\nu}$. Let N be the minimum number such that $c_{N} \neq 0$. The leading term of $(\partial+\omega \wedge) f$ is

$$
\left(\delta\left(n_{i}, 1\right) N+\alpha_{i ; n_{i}}\right) c_{N}\left(t-x_{i}\right)^{N-n_{i}} d t
$$

which does not vanish by our assumption on the parameters $\alpha_{i ; n_{i}}$ and $\alpha_{i ; 1}$. This contradicts $\nabla_{\omega} f=0$, which implies $H^{0}\left(\tilde{\mathcal{F}}_{x_{i}}(x), \nabla_{\omega}\right)=0$.

Suppose that $f=f_{1} d t+f_{2} d \bar{t} \in \tilde{\mathcal{F}}_{x_{i}}^{1}$ satisfies $\nabla_{\omega} f=0$. Since f_{2} does not contain terms $\left(\bar{t}-\bar{x}_{i}\right)^{-\mu}(\mu \in N)$, there exists $F \in \tilde{\mathcal{F}}_{x_{i}}^{0}$ such that $\bar{\partial} F=f_{2} d \bar{t}$. The element

$$
f-\nabla_{\omega} F=f_{1} d t-(\partial+\omega \wedge) F+f_{2} d \bar{t}-\bar{\partial} F=: g d t \in \tilde{\mathcal{F}}_{x_{i}}^{0} d t
$$

satisfies

$$
\bar{\partial}(g d t)=\nabla_{\omega} g d t=\nabla_{\omega}\left(f-\nabla_{\omega} F\right)=\nabla_{\omega} f-\nabla_{\omega} \circ \nabla_{\omega} F=0
$$

which implies that g consists of terms $c_{\nu}\left(t-x_{i}\right)^{\nu}$. Express ω as an element of $\tilde{\mathcal{F}}_{x_{i}}^{0} d t$, put

$$
G=\sum_{\nu=N}^{\infty} b_{\nu}\left(t-x_{i}\right)^{\nu} \quad(N \in \boldsymbol{Z})
$$

and write down the equation $\nabla_{\omega} G=g d t$. We can easily find that there exist a unique G such that $\nabla_{\omega} G=g d t$ by our assumption on the parameters $\alpha_{i ; n_{i}}$ and $\alpha_{i ; 1}$. Hence we have $\nabla_{\omega}(F+G)=f$, which implies $H^{1}\left(\tilde{\mathcal{F}}_{x_{i}}(x), \nabla_{\omega}\right)=0$.

For any $f \in \tilde{\mathcal{F}}_{x_{i}}^{2}$, we have already seen that there exists $F d t \in \tilde{\mathcal{F}}_{x_{i}}^{0} d t$ such that $\bar{\partial} F d t=$ $\nabla_{\omega} F d t=f$, which implies $H^{2}\left(\tilde{\mathcal{F}}_{x_{i}}^{\bullet}(x), \nabla_{\omega}\right)=0$.
q.e.d.

Proof of

$$
H^{k}\left(S^{\bullet}(x), \nabla_{\omega}\right) \simeq H^{k}\left(P^{\bullet}(x), \nabla_{\omega}\right)
$$

Since the sequence

$$
0 \longrightarrow \mathcal{S}_{x_{i}}^{k}(x) \longrightarrow \mathcal{P}_{x_{i}}^{k}(x) \longrightarrow \tilde{\mathcal{F}}_{x_{i}}^{k} \longrightarrow 0
$$

is exact and $\mathcal{S}^{k}(x)$ is a fine sheaf, we have the following exact sequence of complexes

$$
\begin{equation*}
0 \longrightarrow\left(S^{\bullet}(x), \nabla_{\omega}\right) \longrightarrow\left(P^{\bullet}(x), \nabla_{\omega}\right) \longrightarrow \bigoplus_{i=1}^{m}\left(\tilde{\mathcal{F}}_{x_{i}}, \nabla_{\omega}\right) \longrightarrow 0 \tag{1}
\end{equation*}
$$

The previous lemma shows that the k-th cohomology groups of the complexes $\left(S^{\bullet}(x), \nabla_{\omega}\right)$ and $\left(P^{\bullet}(x), \nabla_{\omega}\right)$ are isomorphic.
q.e.d.

Let us now explicitly construct a cocycle in $H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ corresponding to φ of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ under the isomorphism

$$
\iota_{\omega}: H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right) \rightarrow H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right) .
$$

By Lemma 2.3, for each x_{i}, there exists

$$
\begin{equation*}
G_{i}=G_{i}^{1}+G_{i}^{2}=\sum_{\nu=-N}^{N} c_{\nu}\left(t-x_{i}\right)^{\nu}+\sum_{\nu=N+1}^{\infty} c_{\nu}\left(t-x_{i}\right)^{\nu} \in \tilde{\mathcal{F}}_{x_{i}}^{0} \tag{2}
\end{equation*}
$$

such that

$$
\nabla_{\omega} G_{i}=\varphi \in \Omega_{x_{i}}^{1}(x) \subset \tilde{\mathcal{F}}_{x_{i}}^{1}
$$

where N is a sufficiently large integer. The exact sequence

$$
0 \longrightarrow \mathcal{S}_{x_{i}}^{0}(x) \longrightarrow \mathcal{E}_{x_{i}}^{0} \longrightarrow \mathcal{F}_{x_{i}}^{0} \longrightarrow 0
$$

implies that there exists a smooth function F_{i} around x_{i} such that the formal Taylor series of F_{i} at x_{i} is equal to G_{i}^{2}. We have

$$
\begin{equation*}
f_{i}=G_{i}^{1}+F_{i} \in \mathcal{P}_{x_{i}}^{0}(x), \quad \varphi-\nabla_{\omega} f_{i} \in \mathcal{S}_{x_{i}}^{1}(x) \tag{3}
\end{equation*}
$$

Though each f_{i} is defined only in a small neighborhood U_{i} of x_{i}, we can regard $h_{i} \cdot f_{i}$ to be defined on X, where h_{i} is a smooth function on \boldsymbol{P} such that

$$
\begin{aligned}
h_{i}(t)=1, & t \in V_{i}, \\
0 \leq h_{i}(t) \leq 1, & t \in U_{i} \backslash V_{i}, \\
h_{i}(t) & =0, \quad t \notin U_{i},
\end{aligned}
$$

for $x_{i} \in V_{i} \subset U_{i}$. The element

$$
\begin{equation*}
\iota_{\omega}(\varphi)=\varphi-\sum_{i=1}^{m} \nabla_{\omega}\left(h_{i} \cdot f_{i}\right)=\varphi-\sum_{i=1}^{m}\left(h_{i} \cdot \nabla_{\omega}\left(f_{i}\right)+f_{i} \cdot d h_{i}\right) \tag{4}
\end{equation*}
$$

belongs to $\operatorname{ker}\left(\nabla_{\omega}: S^{1}(x) \rightarrow S^{2}(x)\right)$ and is cohomologous to φ in $H^{1}\left(P^{\bullet}(x), \nabla_{\omega}\right)$.

We close this section with the following proposition which is necessary to define intersection numbers later.

Proposition 2.4. The k-th cohomology group $H^{k}\left(S^{\bullet}(x), d\right)$ of the complex

$$
\left(S^{\bullet}(x), d\right): S^{0}(x) \xrightarrow{d} S^{1}(x) \xrightarrow{d} S^{2}(x) \xrightarrow{d} 0
$$

is isomorphic to the k-th de Rham cohomology group $H_{D R}^{k}(\boldsymbol{P}, \boldsymbol{C})$ of \boldsymbol{P}. In particular, we have

$$
H^{2}\left(S^{\bullet}(x), d\right) \simeq \boldsymbol{C}
$$

the isomorphism is given by

$$
S^{2}(x) \ni \varphi \mapsto \int_{\boldsymbol{P}} \varphi \in \boldsymbol{C}
$$

Proof. It is known that the sequence

$$
\left(\mathcal{F}_{x_{i}}^{\bullet}, d\right): 0 \longrightarrow \mathcal{F}_{x_{i}}^{0} \xrightarrow{d} \mathcal{F}_{x_{i}}^{1} \xrightarrow{d} \mathcal{F}_{x_{i}}^{2} \xrightarrow{d} 0
$$

is exact. The exact sequence

$$
0 \longrightarrow \mathcal{S}_{x_{i}}^{k}(x) \longrightarrow \mathcal{E}_{x_{i}}^{k} \longrightarrow \mathcal{F}_{x_{i}}^{k} \longrightarrow 0
$$

yields the following exact sequence of complexes

$$
0 \longrightarrow\left(S^{\bullet}(x), d\right) \longrightarrow\left(E^{\bullet}, d\right) \longrightarrow \bigoplus_{i=1}^{m}\left(\mathcal{F}_{x_{i}}^{\bullet}, d\right) \longrightarrow 0
$$

where $\left(E^{\bullet}, d\right)$ is the de Rham complex on \boldsymbol{P}. Then $H^{k}\left(S^{\bullet}(x), d\right)$ is isomorphic to $H_{D R}^{k}(\boldsymbol{P}, \boldsymbol{C})$. Note that the isomorphism from $H^{2}\left(S^{\bullet}(x), d\right)$ to $H_{D R}^{2}(\boldsymbol{P}, \boldsymbol{C})$ is given by the natural inclusion and the map from $H_{D R}^{2}(\boldsymbol{P}, \boldsymbol{C})$ to \boldsymbol{C} is by $\varphi \mapsto \int_{\boldsymbol{P}} \varphi$.

3. Twisted homology groups. Let \mathcal{L}_{ω} be the locally constant sheaf over X of analytic functions which belong to the kernel of the connection $\nabla_{-\omega}$. Since a solution of the differential equation $\nabla_{-\omega} f(t)=0$ can be locally expressed as $c \exp \left(\int_{s}^{t} \omega\right)(c \in \boldsymbol{C})$ around any point s in X, \mathcal{L}_{ω} is determined by the multi-valued function

$$
u(t)=\prod_{i=1}^{m}\left(t-x_{i}\right)^{\alpha_{i: 1}} \exp \left(-\frac{\alpha_{i ; 2}}{\left(t-x_{i}\right)}-\frac{\alpha_{i ; 3}}{2\left(t-x_{i}\right)^{2}}-\cdots-\frac{\alpha_{i ; n_{i}}}{\left(n_{i}-1\right)\left(t-x_{i}\right)^{n_{i}-1}}\right)
$$

on X. Let $C_{k}^{\omega}(X)$ be the vector space of finite sums of formal products $\rho_{i} \otimes u_{\rho_{i}}(t)$, where ρ_{i} is a smooth k-chain in $\boldsymbol{P} \backslash\left\{x_{i} \mid n_{i}=1\right\}$ and $u_{\rho_{i}}(t)$ is a branch of $u(t)$ on $\rho_{i} \cap X$ such that $u_{\rho_{i}}(t)$ can be continuously extended to 0 at every point of $\rho_{i} \cap x$ if the set $\rho_{i} \cap x$ is not empty. We define a boundary operator ∂_{ω} on $C_{\bullet}^{\omega}(X)$ as $\partial_{\omega}:\left.\rho \otimes u_{\rho}(t) \mapsto \partial \rho \otimes u_{\rho}(t)\right|_{\partial \rho}$, where ∂ is the ordinary boundary operator and $\left.u_{\rho}(t)\right|_{\partial \rho}$ is the restriction of $u_{\rho}(t)$ on $\partial \rho$. Since $\partial_{\omega} \circ \partial_{\omega}=0$, we have the complex with boundary operator ∂_{ω}

$$
\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right): C_{2}^{\omega}(X) \xrightarrow{\partial_{\omega}} C_{1}^{\omega}(x) \xrightarrow{\partial_{\omega}} C_{0}^{\omega}(X) \longrightarrow 0
$$

The k-th homology group of this complex is denoted by $H_{k}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$.

We define a pairing between $S^{k}(x)$ and $C_{k}^{\omega}(X)$ by

$$
\langle\varphi, \gamma\rangle=\sum_{v} b_{v} \int_{\rho_{v}} u_{\rho_{v}}(t) \varphi
$$

where

$$
\varphi \in S^{k}(x), \quad \gamma=\sum_{\nu} b_{\nu} \rho_{\nu} \otimes u_{\rho_{\nu}}(t) \in C_{k}^{\omega}(X) .
$$

Since we have $\left\langle\varphi+\nabla_{\omega} f, \gamma+\partial_{\omega} g\right\rangle=\langle\varphi, \gamma\rangle$ for $\varphi \in \operatorname{ker}\left(\nabla_{\omega}: S^{k}(x) \rightarrow S^{k+1}(x)\right), f \in$ $S^{k-1}(x), \gamma \in \operatorname{ker}\left(\partial_{\omega}: C_{k}^{\omega}(X) \rightarrow C_{k-1}^{\omega}(X)\right)$ and $g \in C_{k+1}^{\omega}(X)$ by the Stokes theorem, this pairing descends to the pairing of $H^{k}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ and $H_{k}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$.

Let us now introduce some elements of $C_{k}^{\omega}(X)$. Fix x and α, take $x_{0} \in X$ and $c \in \boldsymbol{C} \backslash\{0\}$, and define $u_{0}=u_{0}(t)$ and $u_{0}^{-1}=u_{0}^{-1}(t)$ around x_{0} as

$$
u_{0}(t)=c \exp \left(\int_{x_{0}}^{t} \omega\right), \quad u_{0}^{-1}(t)=c^{-1} \exp \left(\int_{x_{0}}^{t}-\omega\right)
$$

note that the product of them is identically 1 around x_{0}. For x_{i} such that $n_{i} \geq 2$, there are $n_{i}-1$ sectors $S_{i ; 1}^{+}, \ldots, S_{i ; n_{i}-1}^{+}$and $n_{i}-1$ sectors $S_{i ; 1}^{-}, \ldots, S_{i ; n_{i}-1}^{-}$in a small neighborhood U_{i} of x_{i} such that

$$
\lim _{t \rightarrow x_{i}, t \in S_{i: k}^{+}} u_{0}(t)=0, \quad \lim _{t \rightarrow x_{i}, t \in S_{i: k}^{-}} u_{0}^{-1}(t)=0
$$

respectively, where u_{0} is the analytic continuation of u_{0} defined around x_{0} along a path from x_{0} to a point near x_{i}. We arrange them as in Figure 1. Note that $S_{i ; 1}^{+}, \ldots, S_{i ; n_{i}-1}^{+}$are arranged clockwise and that $S_{i ; 1}^{-}, \ldots, S_{i ; n_{i}-1}^{-}$are arranged counterclockwise (cf. Theorem 4.4).

Let $\rho_{i ; k}^{+}(t)$ be a path from x_{i} to t in the sector $S_{i, k}^{+}$. We assign a branch of $u_{\rho_{i: k}^{+}(t)}(s)$ on

Figure 1. Sectors.
$\rho_{i ; k}^{+}(t)$ by the integral

$$
\exp \left(\int_{t}^{s} \omega\right)
$$

along the path from t to $s \in \rho_{i ; k}(t)$ in the path $-\rho_{i ; k}(t)$. The formal product

$$
\begin{equation*}
\gamma_{i ; k}^{+}(t)=\rho_{i ; k}^{+}(t) \otimes u_{\rho_{i: k}^{+}(t)}(s) \tag{5}
\end{equation*}
$$

is an element of $C_{1}^{\omega}(X)$ such that

$$
\partial_{\omega}\left(\rho_{i ; k}^{+}(t) \otimes u_{\rho_{i: k}(t)}^{+}\right)=t \otimes u_{\rho_{i: k}(t)}(t)-x_{i} \otimes 0=t \otimes 1
$$

Similarly, we have an element

$$
\begin{equation*}
\gamma_{i ; k}^{-}(t)=\rho_{i ; k}^{-}(t) \otimes u_{\rho_{i ; k}^{\prime}(t)}^{-1}(s) \in C_{1}^{-\omega}(X) \tag{6}
\end{equation*}
$$

such that

$$
\partial_{-\omega}\left(\rho_{i ; k}^{-}(t) \otimes u_{\rho_{i ; k}(t)}^{-1}\right)=t \otimes u_{\rho_{i: k}(t)}^{-1}(t)-x_{i} \otimes 0=t \otimes 1
$$

For x_{i} such that $n_{i}=1$, let $\rho_{i ; 1}^{+}$be a loop turning around x_{i} counterclockwise and terminating at t, and let $\rho_{i ; 1}^{-}=-\rho_{i ; 1}^{+}$. We assign a branch of $u_{\rho_{i: 1}^{+}(t)}(s)$ on $\rho_{i ; 1}^{+}(t)$ and that of $u_{\rho_{i, 1}^{-}(t)}(s)$ on $\rho_{i ; 1}^{-}(t)$ by the integrals

$$
\exp \left(\int_{t}^{s} \omega\right), \quad \exp \left(\int_{t}^{s}-\omega\right)
$$

along the path from the ending point t to $s \in \rho_{k}^{ \pm}(t)$ in the path $-\rho_{i ; 1}^{ \pm}(t)$, respectively. We can regard

$$
\begin{align*}
& \gamma_{i ; 1}^{+}(t)=\frac{c_{i}}{c_{i}-1} \rho_{i ; 1}^{+} \otimes u_{\rho_{i: 1}^{+}(t)} \in C_{1}^{\omega}(X) \tag{7}\\
& \gamma_{i ; 1}^{-}(t)=\frac{c_{i}}{c_{i}-1} \rho_{i ; 1}^{-} \otimes u_{\rho_{i, 1}^{-}(t)} \in C_{1}^{-\omega}(X) \tag{8}
\end{align*}
$$

by dividing $\rho_{i ; 1}^{+}$into two simply connected paths, where $c_{i}=\exp \left(2 \pi \sqrt{-1} \alpha_{i ; 1}\right)$. Note that

$$
\begin{aligned}
\partial_{\omega}\left(\gamma_{i ; 1}^{+}(t)\right) & =\frac{c_{i}}{c_{i}-1}\left(t \otimes 1-t \otimes c_{i}^{-1}\right)=t \otimes 1 \\
\partial_{-\omega}\left(\gamma_{i ; 1}^{-}(t)\right) & =\frac{c_{i}}{c_{i}-1}\left(t \otimes 1-t \otimes c_{i}^{-1}\right)=t \otimes 1
\end{aligned}
$$

Any $\gamma_{i ; k}^{ \pm}(t)$ can be extended along a path to a general point $t \in X$ so that $\partial_{ \pm \omega}\left(\gamma_{i ; k}^{ \pm}(t)\right)=$ $t \otimes 1$. Since

$$
\partial_{ \pm \omega}\left(\gamma_{i ; k}^{ \pm}(t)-\gamma_{j ; l}^{ \pm}(t)\right)=0,
$$

$\gamma_{i j ; k l}^{ \pm}=\gamma_{i ; k}^{ \pm}(t)-\gamma_{j ; l}^{ \pm}(t)$ belongs to $H_{1}\left(C_{\bullet}^{ \pm \omega}(X), \partial_{ \pm \omega}\right)$.
Lemma 3.1. If $\varphi \in H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ satisfies $\langle\varphi, \gamma\rangle=0$ for all $\gamma \in H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$, then $\varphi=0$ in $H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$.

Proof. For i such that $n_{i}>1$, we define a function $f_{i ; k}$ on $S_{i ; k}^{+}$as

$$
f_{i ; k}(t)=\left\langle\varphi, \gamma_{i ; k}^{+}(t)\right\rangle=\int_{\rho_{i: k}^{+}(t)} \exp \left(\int_{t}^{s} \omega\right) \varphi(s)
$$

Since s is nearer to x_{i} than to t in $S_{i ; k}^{+}, \exp \left(\int_{t}^{s} \omega\right)$ is bounded as $t \rightarrow x_{i}$ in $S_{i ; k}^{+}$, which implies that $f_{i ; k}(t)$ is well-defined and rapidly decreases at x_{i} in $S_{i ; k}^{+}$. Since

$$
\begin{aligned}
d f_{i ; k}(t) & =\exp \left(\int_{t}^{s} \omega\right) \varphi(t)+\left(\int_{\rho_{i: k}^{+}(t)} \frac{\partial}{\partial t}\left(\exp \left(\int_{t}^{s} \omega\right)\right) \varphi(s)\right) d t \\
& =\varphi-f_{i ; k} \omega
\end{aligned}
$$

we have $\nabla_{\omega} f_{i ; k}=\varphi$. By a suitable choice of a path, we see that as $t \rightarrow x_{i}$ in the neighboring sectors $S_{i ; l-1}^{-}$and $S_{i ; l}^{-}$of $S_{i ; k}, \exp \left(\int_{t}^{s} \omega\right)$ is bounded on $S_{i ; k}^{+} \cup S_{i ; l-1}^{-} \cup S_{i ; l}^{-}$, which implies that $f_{i ; k}$ can be extended to $S_{i ; l-1}^{-}$and $S_{i ; l}^{-}$and that $f_{i ; k}(t)$ rapidly decreases at x_{i} in $S_{i ; k}^{+} \cup S_{i ; l-1}^{-} \cup$ $S_{i ; l}^{-}$. Indeed, fix a sufficiently small real positive number r and assume that $t \in S_{i ; l-1}^{-}$and $\left|t-x_{i}\right| \leq r$. Take $t_{0} \in S_{i ; k}^{-}$and $t_{1} \in S_{i ; k}^{+}$so that

$$
\arg \left(t_{0}-x_{i}\right)=\arg \left(t-x_{i}\right), \quad\left|t_{0}-x_{i}\right|=r, \quad\left|t_{1}-x_{i}\right|=r .
$$

Regard $\rho_{i ; k}^{+}$as a path connecting the segment $\left[x_{i}, t_{1}\right]$, the arc from t_{1} to t_{0} and the segment $\left[t_{0}, t\right]$. When s is not on the segment $\left[x_{i}, t_{0}\right]$, we can estimate $\exp \left(\int_{t}^{s} \omega\right)$ by $\exp \left(\int_{t}^{s} \omega\right)=$ $\exp \left(\int_{t}^{t_{0}} \omega\right) \exp \left(\int_{t_{0}}^{s} \omega\right)$ and show the boundedness. When s is on the segment $\left[x_{i}, t_{0}\right]$, it is easy to estimate $\exp \left(\int_{t}^{s} \omega\right)$ and show the boundedness.

For i such that $n_{i}=1$, we define $f_{i ; 1}$ on U_{i} as

$$
f_{i ; 1}(t)=\left\langle\varphi, \gamma_{i ; 1}^{+}\right\rangle=\frac{c_{i}}{c_{i}-1} \int_{\rho_{i: 1}} \exp \left(\int_{t}^{s} \omega\right) \varphi(s) .
$$

By estimating the integral, we can easily show that $f_{i ; 1}$ rapidly decreases at x_{i}. Note that $f_{i ; 1}$ is single-valued on U_{i} and that $\nabla_{\omega} f_{i ; 1}=\varphi$.

Each $f_{i ; k}(t)$ can be extended to X. By assumption, all

$$
f_{i ; k}(t)-f_{j ; l}(t)=\left\langle\varphi, \gamma_{i j ; k l}\right\rangle
$$

vanish, which means that the functions $f_{i ; k}(t)$ determine $f \in S^{0}(x)$ satisfying $\nabla_{\omega} f=\varphi$.
q.e.d.

THEOREM 3.2. The pairing between $H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ is perfect.
Proof. Put $A=\bigcup_{i, j} S_{i ; j}^{+}$and consider the homology group $H_{1}\left(X, A ; \mathcal{L}_{\omega}\right)$. It is easy to prove by the Mayer-Vietris exact sequence that the dimension of this homology group is equal to $n-2$. Since three exists a surjective linear map from $H_{1}\left(X, A ; \mathcal{L}_{\omega}\right)$ to $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$, we have

$$
n^{\prime}:=\operatorname{dim}_{C} H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) \leq \operatorname{dim}_{C} H_{1}\left(X, A ; \mathcal{L}_{\omega}\right)=n-2 .
$$

Lemma 3.1 asserts that $\varphi=0$, provided the map $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) \ni \gamma \mapsto\langle\varphi, \gamma\rangle \in \boldsymbol{C}$ defined by a vector φ in the $(n-2)$-dimensional vector space $H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ is the zero map. Therefore, $n^{\prime} \geq n-2$ and hence $n^{\prime}=n-2$, which implies that the pairing is perfect. q.e.d.
4. Intersection pairings. There is the natural pairing between $S^{k}(x)$ and $P^{2-k}(x)$ by

$$
\begin{equation*}
\int_{X} \varphi \wedge \psi, \quad \varphi \in S^{k}(x), \quad \psi \in P^{2-k}(x) \tag{9}
\end{equation*}
$$

the integral converges since $\varphi \wedge \psi \in S^{2}(x)$. Since we have

$$
\left(\nabla_{\omega} \varphi\right) \wedge \eta=d(\varphi \wedge \eta)+(-1)^{k+1} \varphi \wedge\left(\nabla_{-\omega} \eta\right)
$$

for $\varphi \in S^{k}(x), \eta \in P^{1-k}(x)$, this pairing descends to a pairing \langle,$\rangle between H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ and $H^{1}\left(P^{\bullet}(x), \nabla_{-\omega}\right)$, which is called the intersection pairing. By the isomorphisms in Theorem 2.1, this intersection pairing naturally induces a pairing between $H^{1}\left(\Omega^{\bullet}(x), \nabla_{+\omega}\right)$ and $H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)$.

THEOREM 4.1 ([17]). The intersection number of $\varphi \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ and $\psi \in$ $H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)$ is given by

$$
\langle\varphi, \psi\rangle=2 \pi \sqrt{-1} \sum_{i=1}^{m} \operatorname{Res}_{t=x_{i}}\left(G_{i}^{1} \cdot \psi\right)
$$

where G_{i}^{1} is a sufficiently large finite part of the formal Laurent series solution G for the equation $\nabla_{\omega} G=\varphi$ at x_{i} in (2).

Proof. The explicit form of the image φ under the isomorphism $t_{\omega}: H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right)$ $\rightarrow H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right)$ (see (3), (4)) yields

$$
\langle\varphi, \psi\rangle=\int_{X}\left(\varphi-\sum_{i=1}^{m}\left(h_{i} \cdot \nabla_{\omega}\left(f_{i}\right)+f_{i} \cdot d h_{i}\right)\right) \wedge \psi
$$

Note that

$$
\left(\varphi-\sum_{i=1}^{m}\left(h_{i} \cdot \nabla_{\omega}\left(f_{i}\right)\right)\right) \wedge \psi \in S^{2}(x)
$$

and that its support is $\bigcup_{i=1}^{m} U_{i}$. For any $\varepsilon>0$, we have

$$
\left|\int_{U_{i}}\left(\varphi-\left(h_{i} \cdot \nabla_{\omega}\left(f_{i}\right)\right)\right) \wedge \psi\right|<\varepsilon,
$$

if we take a sufficiently small U_{i}.
Since the support of $d h_{i}$ is $U_{i} \backslash V_{i}$, we have

$$
\begin{aligned}
-\int_{X} f_{i} \cdot d h_{i} \wedge \psi & =-\int_{U_{i} \backslash V_{i}}\left(G_{i}^{1}+F_{i}\right) \cdot d h_{i} \wedge \psi \\
& =-\int_{U_{i} \backslash V_{i}} d\left(h_{i} \cdot\left(G_{i}^{1} \cdot \psi\right)\right)-\int_{U_{i} \backslash V_{i}} d h_{i} \wedge\left(F_{i} \cdot \psi\right)
\end{aligned}
$$

The Stokes theorem and the residue theorem together with the property

$$
h_{i}= \begin{cases}0 & \text { on } \partial U_{i}, \\ 1 & \text { on } \partial V_{i},\end{cases}
$$

imply

$$
\begin{aligned}
-\int_{U_{i} \backslash V_{i}} d\left(h_{i} \cdot\left(G_{i}^{1} \cdot \psi\right)\right) & =-\int_{\partial U_{i}} h_{i} \cdot\left(G_{i}^{1} \cdot \psi\right)+\int_{\partial V_{i}} h_{i} \cdot\left(G_{i}^{1} \cdot \psi\right) \\
& =\int_{\partial V_{i}} G_{i}^{1} \cdot \psi=2 \pi \sqrt{-1} \operatorname{Res}_{t=x_{i}}\left(G_{i}^{1} \cdot \psi\right)
\end{aligned}
$$

On the other hand, since

$$
d\left(h_{i} \cdot\left(F_{i} \cdot \psi\right)\right)=d h_{i} \wedge\left(F_{i} \cdot \psi\right)+h_{i} d\left(F_{i} \cdot \psi\right)
$$

we have

$$
\begin{aligned}
-\int_{U_{i} \backslash V_{i}} d h_{i} \wedge\left(F_{i} \cdot \psi\right) & =-\int_{U_{i} \backslash V_{i}} d\left(h_{i} \cdot\left(F_{i} \cdot \psi\right)\right)+\int_{U_{i} \backslash V_{i}} h_{i} d\left(F_{i} \cdot \psi\right) \\
& =-\int_{\partial U_{i} \backslash \partial V_{i}} h_{i} \cdot\left(F_{i} \cdot \psi\right)+\int_{U_{i} \backslash V_{i}} h_{i} d\left(F_{i} \cdot \psi\right) \\
& =\int_{\partial V_{i}} F_{i} \cdot \psi+\int_{U_{i} \backslash V_{i}} h_{i} d\left(F_{i} \cdot \psi\right)
\end{aligned}
$$

Since $F_{i} \cdot \psi$ is smooth on U_{i} for a sufficiently large N, for any $\varepsilon>0$ we can take a sufficiently small U_{i} such that

$$
\left|\int_{\partial V_{i}} F_{i} \cdot \psi\right|<\varepsilon, \quad\left|\int_{U_{i} \backslash V_{i}} h_{i} d\left(F_{i} \cdot \psi\right)\right|<\varepsilon
$$

q.e.d.

The intersection numbers for suitable bases of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{ \pm \omega}\right)$ are evaluated in [17]. It is shown in [7] that the determinant of the intersection matrix of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{ \pm \omega}\right)$ is

$$
(2 \pi \sqrt{-1})^{n-2} \prod_{i=\sigma+1}^{m} \frac{1}{\alpha_{i ; 1}},
$$

which implies that the intersection form between the twisted cohomology groups is perfect.
In order to define the intersection pairing between $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$ by the duality in Theorem 3.2, we introduce spaces of temperate currents as follows. By a semi-norm similar to that for Schwartz's space of rapidly decreasing functions, the space $S^{k}(x)$ becomes a Fréchet space. The space $\check{S}^{2-k}(x)$ of continuous \boldsymbol{C}-linear functionals on $S^{k}(x)$ is called the space of temperate currents of degree $2-k$. Taking the dual complex of ($S^{\bullet}(x), \nabla_{\omega}$), we have a complex with differential $\nabla_{-\omega}$:

$$
\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right): \check{S}^{0}(x) \xrightarrow{\nabla_{-\omega}} \check{S}^{1}(x) \xrightarrow{\nabla_{-\omega}} \check{S}^{2}(x) \longrightarrow 0 .
$$

Since

$$
\int_{X} \nabla_{\omega}(\xi) \wedge \eta=(-1)^{k+1} \int_{X} \xi \wedge \nabla_{-\omega}(\eta), \quad\left\langle\nabla_{\omega}(\xi), \gamma\right\rangle=\left\langle\xi, \partial_{\omega}(\gamma)\right\rangle
$$

for $\xi \in S^{k}(x), \eta \in P^{1-k}(x)$ and $\gamma \in C_{k+1}^{\omega}(X)$, we have natural inclusions of complexes

$$
\left(P^{\bullet}(x), \nabla_{-\omega}\right) \subset\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right), \quad\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) \subset\left(\check{S}_{\bullet}^{\bullet}(x), \nabla_{-\omega}\right),
$$

which induce the maps

$$
\begin{align*}
& \iota_{1}: H^{1}\left(P^{\bullet}(x), \nabla_{-\omega}\right) \rightarrow H^{1}\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right), \tag{10}\\
& \iota_{2}: H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) \rightarrow H^{1}\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right), \tag{11}
\end{align*}
$$

respectively, where $H^{1}\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right)$ is the first cohomology group of the complex $\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right)$.

THEOREM 4.2. The maps ι_{1} and ι_{2} are isomorphisms.
Proof. It was proved in [14, p. 81, i)] that

$$
H^{1}\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right) \simeq H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)
$$

Therefore, the map ι_{1} is an isomorphism by virtue of Theorem 2.1.
The injectivity of ι_{2} follows from the perfectness (Theorem 3.2) of the pairing between the homology and cohomology groups. Since the dimensions of both sides agree, the map ι_{2} is an isomorphism.
q.e.d.

By Theorems 2.1 and 4.2, we get the isomorphisms

$$
\begin{align*}
& J^{+}: H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right) \rightarrow H^{1}\left(S^{\bullet}(x), \nabla_{\omega}\right), \tag{12}\\
& J^{-}: H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) \rightarrow H^{1}\left(P^{\bullet}(x), \nabla_{-\omega}\right) . \tag{13}
\end{align*}
$$

The intersection number of $\gamma^{+} \in H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ and $\gamma^{-} \in H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$ is defined by

$$
\left\langle\gamma^{+}, \gamma^{-}\right\rangle=\left\langle J^{-}\left(\gamma^{+}\right), J^{+}\left(\gamma^{-}\right)\right\rangle=\int_{X} J^{-}\left(\gamma^{+}\right) \wedge J^{+}\left(\gamma^{-}\right)
$$

Theorem 4.3. Let

$$
\begin{aligned}
& \gamma^{+}=\sum_{\nu} b_{\nu} \rho_{\nu}^{+} \otimes u_{\rho_{\nu}^{+}}(t) \in H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right), \\
& \gamma^{-}=\sum_{\mu} b_{\mu} \rho_{\mu}^{-} \otimes u_{\rho_{\mu}^{-}}^{-1}(t) \in H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)
\end{aligned}
$$

If the set $\bigcup_{\nu, \mu}\left\langle\rho_{\nu}^{+} \cap \rho_{\mu}^{-}\right)$is finite and ρ_{ν}^{+}and ρ_{μ}^{-}intersect transversally at each point of $\rho_{\nu}^{+} \cap \rho_{\mu}^{-} \cap X$, then the intersection number $\left\langle\gamma^{+}, \gamma^{-}\right\rangle$is equal to

$$
\left\langle\gamma^{+}, \gamma^{-}\right\rangle=\sum_{\mu, v} \sum_{v \in \rho_{v}^{+} \cap \rho_{\mu}^{-} \cap X} b_{\nu} b_{\mu}\left[u_{\rho_{v}^{+}}^{+}(t)\right]_{t=v}\left[u_{\rho_{\mu}^{-}}^{-1}(t)\right]_{t=v} I_{v}\left(\rho_{v}^{+}, \rho_{\mu}^{-}\right),
$$

where $I_{v}\left(\rho_{\nu}^{+}, \rho_{\mu}^{-}\right)$is the topological intersection number of ρ_{ν}^{+}and ρ_{μ}^{-}at $v \in X$.
Proof. Let δ_{Δ} be a delta r-current which has support on Δ. Then, we have

$$
F_{\gamma^{+}}=\sum_{\nu} b_{\nu} \delta_{\rho_{\nu}^{+}} u_{\rho_{\nu}^{+}}, \quad F_{\gamma^{-}}=\sum_{\mu} b_{\mu} \delta_{\rho_{\mu}^{-}} u_{\rho_{\mu}^{-}}
$$

Let reg be the regularization

$$
\text { reg : } H^{1}\left(\check{S}^{\bullet}(x), \nabla_{-\omega}\right) \xrightarrow{\sim} H^{1}\left(\mathcal{S}^{\bullet}(x), \nabla_{-\omega}\right) .
$$

Then the intersection number $\left\langle\gamma^{+}, \gamma^{-}\right\rangle$is equal to

$$
\int_{X} \operatorname{reg}\left(F_{\gamma^{+}}\right) \wedge \operatorname{reg}\left(F_{\gamma^{-}}\right) .
$$

Hence we are going to evaluate this integral.
If we regard the operator ∇_{ω} as an operator on the $2 r$-dimensional real manifold X ($r=1$), it is holonomic at degree $r-1$ and hypo-elliptic (resp. hypo-analytic [8, Theorem 4.3.3]) on X. Indeed, for any current F of degree r and G of degree $r-1$, if $\nabla_{ \pm \omega} G=F$ and F is smooth (resp. real analytic) at a point p, then G is also smooth (resp. real analytic) at p. Moreover, the singularity spectrum of G is contained in that of F. Hence, when $\operatorname{reg}\left(F_{\gamma^{+}}\right)=$ $F_{\gamma^{+}}+\nabla_{-\omega} G_{\gamma^{+}}$and $\operatorname{reg}\left(F_{\gamma^{-}}\right)=F_{\gamma^{-}}+\nabla_{\omega} G_{\gamma^{-}}$, the wedge product of $G_{\gamma^{+}}$and $G_{\gamma^{-}}$is well-defined. We note that $\varphi[1]=\langle\varphi, 1\rangle$ does not always exist for a temperate 2-current, because 1 is not a rapidly decreasing 0 -form. Therefore, to evaluate $\int_{X} \operatorname{reg}\left(F_{\gamma^{+}}\right) \wedge \operatorname{reg}\left(F_{\gamma^{-}}\right)$ through evaluation of integrals of currents, we need a more precise description of $G_{\gamma^{ \pm}}$.

By using the Heaviside function, we can express a solution $G_{\gamma^{+}}$of $\operatorname{reg}\left(F_{\gamma^{+}}\right)=F_{\gamma^{+}}+$ $\nabla_{-\omega} \boldsymbol{G}_{\gamma^{+}}$as

$$
\begin{equation*}
G_{\gamma^{+}}=u_{\gamma^{+}} v_{\gamma^{+}}, \quad u_{\gamma^{+}} \in S^{0}(x), \quad u_{\gamma^{+}} \in \check{S}^{0}(x) \tag{14}
\end{equation*}
$$

Consider now the wedge product of $\operatorname{reg}\left(F_{\gamma^{+}}\right)=F_{\gamma^{+}}+\nabla_{-\omega} G_{\gamma^{+}}$and $\operatorname{reg}\left(F_{\gamma^{-}}\right)=F_{\gamma^{-}}+$ $\nabla_{\omega} G_{\gamma^{-}}$. Then we have

$$
\operatorname{reg}\left(F_{\gamma^{+}}\right) \wedge \operatorname{reg}\left(F_{\gamma^{-}}\right)=F_{\gamma^{+}} \wedge F_{\gamma^{-}}+F_{\gamma^{+}} \wedge \nabla_{\omega} G_{\gamma^{-}}+\nabla_{-\omega} G_{\gamma^{+}} \wedge F_{\gamma^{-}}+\nabla_{-\omega} G_{\gamma^{+}} \wedge \nabla_{\omega} G_{\gamma^{-}}
$$

It follows from (14) that all terms on the right hand side can be expressed as (a rapidly decreasing smooth 0 -form) \wedge (a temperate 2 -current).
Hence, the integrals of the 2 -currents exist. Therefore, by the Stokes theorem (cf. KitaYoshida [11, 1.5]), we have

$$
\begin{aligned}
\int_{X} \operatorname{reg}\left(F_{\gamma^{+}}\right) \wedge \operatorname{reg}\left(F_{\gamma^{-}}\right)= & \int_{X} F_{\gamma^{+}} \wedge F_{\gamma^{-}}+\int_{X} F_{\gamma^{+}} \wedge \nabla_{\omega} G_{\gamma^{-}} \\
& +\int_{X} \nabla_{-\omega} G_{\gamma^{+}} \wedge F_{\gamma^{-}}+\int_{X} \nabla_{-\omega} G_{\gamma^{+}} \wedge \nabla_{\omega} G_{\gamma^{-}} \\
= & \int_{X} F_{\gamma^{+}} \wedge F_{\gamma^{-}},
\end{aligned}
$$

which is equal to

$$
\sum_{\mu, v} \sum_{v \in \rho_{v}^{+} \cap \rho_{\mu}^{-} \cap X} b_{v} b_{\mu}\left[u_{\rho_{v}^{+}}(t)\right]_{t=v}\left[u_{\rho_{\mu}^{-}}^{-1}(t)\right]_{t=v} I_{v}\left(\rho_{v}^{+}, \rho_{\mu}^{-}\right)
$$

We introduce the following explicit cycles for twisted homology groups. Assume that the base point x_{0} is in the upper half space \mathbf{H},

$$
x_{i} \in \boldsymbol{R}, \quad x_{1}<x_{2}<\cdots<x_{m}
$$

and that the interior of the closure of $S_{i ; 1}^{+} \cup S_{i ; 1}^{-}$in X contains the set

$$
L_{i}=\left\{t \in U_{i} \mid \operatorname{Re}\left(t-x_{i}\right)>0, \operatorname{Im}\left(t-x_{i}\right)=0\right\}
$$

for i such that $n_{i}>1$. We define $\gamma_{i ; k}^{ \pm}\left(x_{0}\right)$ by the continuation of $\gamma_{i ; k}^{ \pm}(t)$ in (5), (6), (7) along a path from $t \in S_{i ; k}^{ \pm}$passing through $U_{i} \backslash L_{i}$ to a point in $\mathbf{H} \cap S_{i ; 1}^{+}$and going to x_{0} in \mathbf{H}. For i such that $n_{i}>1$, we define $\tilde{\gamma}_{i ; 1}^{+}\left(x_{0}\right)$ by the continuation of $\gamma_{i ; 1}^{+}(t)$ along a path from $t \in S_{1 ; k}^{+}$turning around x_{i} counterclockwise in U_{i} and going to x_{0} in $\mathbf{H} \cup S_{i ; 1}^{+}$, and $\tilde{\gamma}_{i ; 1}^{-}\left(x_{0}\right)$ by the continuation of $\gamma_{i ; 1}^{-}(t)$ along a path from $t \in S_{1 ; k}^{-}$traversing L_{i} to a point in $\mathbf{H} \cap S_{i ; 1}^{+}$and going to x_{0} in \mathbf{H}. The topological path $\rho_{i ; k}^{ \pm}\left(x_{0}\right)$ of $\gamma_{i ; k}^{ \pm}\left(x_{0}\right)$ is as given in Figure 2. We define

$$
\begin{aligned}
\overbrace{\gamma_{1 ; 1}^{ \pm}, \ldots, \gamma_{1 ; n_{1}-1}^{ \pm}}^{n_{1}-1} & , \overbrace{\gamma_{2 ; 1}^{ \pm}, \ldots, \gamma_{2 ; n_{2}-1}^{ \pm}}^{n_{2}-1}, \ldots, \overbrace{\gamma_{m ; 1}^{ \pm}, \ldots, \gamma_{m ; n_{m}-1}^{ \pm}}^{m-1}
\end{aligned}
$$

as

$$
\gamma_{i ; k}^{ \pm}= \begin{cases}\gamma_{i ; 1}^{ \pm}\left(x_{0}\right)-\tilde{\gamma}_{i ; 1}^{ \pm}\left(x_{0}\right), & 1 \leq i \leq \sigma, k=1, \\ \gamma_{i ; 1}^{ \pm}\left(x_{0}\right)-\gamma_{i ; k}^{ \pm}\left(x_{0}\right), & 1 \leq i \leq \sigma, 2 \leq k \leq n_{i}-1, \\ \gamma_{i+1 ; 1}^{ \pm}\left(x_{0}\right)-\gamma_{i ; 1}^{ \pm}\left(x_{0}\right), & 1 \leq i \leq m-1, k=n_{i} .\end{cases}
$$

Figure 2. Paths.

THEOREM 4.4. The intersection matrix $I_{\mathrm{h}}=\left\langle\gamma_{i ; k}^{+}, \gamma_{j ; l}^{-}\right\rangle$is

$$
\left(\begin{array}{ccccc}
\Xi_{1} & & & & D_{1} \\
& \Xi_{2} & & & D_{2} \\
& & \ddots & & \vdots \\
& & & \Xi_{\sigma} & D_{\sigma} \\
{ }^{t} D_{1} & { }^{t} D_{2} & \ldots & { }^{t} D_{\sigma} & G
\end{array}\right),
$$

whose entries are given as follows: the $\left(n_{i}-1, n_{i}-1\right)$-matrix Ξ_{i} is

$$
\left(\begin{array}{cccccc}
c_{1}-1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & 1 & \cdots & 1 & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 1 & 1 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

the $\left(n_{i}-1, m-1\right)$-matrix D_{i} is

$$
\left(\begin{array}{cccccc}
0 & (i-1) & i \\
0 & \cdots & -1 & 1 & \cdots & 0 \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right),
$$

and the $(m-1, m-1)$-matrix G is

$$
G=\left(\begin{array}{cccccccc}
-1 & 1 & & & \vdots & & & \\
& -1 & 1 & & \vdots & & & \\
& & \ddots & \ddots & \vdots & & & \\
& & & -1 & 1 & & & \\
\cdots & \cdots & \cdots & \cdots & \frac{c_{\sigma+1}}{1-c_{\sigma+1}} & \frac{-c_{\sigma+1}}{1-c_{\sigma+1}} & & \\
& & & & \frac{-1}{1-c_{\sigma+1}} & \frac{1-c_{\sigma+1} c_{\sigma+2}}{\left(1-c_{\sigma+1}\right)\left(1-c_{\sigma+2}\right)} & \frac{-c_{\sigma+2}}{1-c_{\sigma+2}} & \\
& & & & & \ddots & \ddots & \ddots
\end{array}\right),
$$

where $c_{i}=\exp \left(2 \pi \sqrt{-1} \alpha_{i ; 1}\right)$ and $\sigma=\#\left\{j \mid n_{j}>1\right\}$.
Proof. By applying Theorem 4.3, we have the desired intersection matrix. q.e.d.
It is shown in [7] that the $(1,1)$-minor of I_{h} is

$$
\prod_{i=\sigma+1}^{m} \frac{1}{d_{i}}
$$

which implies that $\left\{\gamma_{i ; k}^{+}\right\}_{i ; k}$ and $\left\{\gamma_{i ; k}^{-}\right\}_{i ; k}$ form bases of $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$, respectively.
5. Twisted period relations. Let $\left\{\varphi_{\mu}^{ \pm}\right\}$and $\left\{\gamma_{\mu}^{ \pm}\right\}$be bases of $H^{1}\left(\Omega^{\bullet}(x), \nabla_{ \pm \omega}\right)$ and $H_{1}\left(C_{\bullet}^{ \pm \omega}(X), \partial_{ \pm \omega}\right)$, respectively. We define four $(n-2, n-2)$-matrices as
$\Pi^{+}=\left\langle\varphi_{\mu}^{+}, \gamma_{\nu}^{+}\right\rangle_{\mu, \nu}, \quad \Pi^{-}=\left\langle\varphi_{\mu}^{-}, \gamma_{v}^{-}\right\rangle_{\mu, \nu}, \quad I_{\mathrm{ch}}=\left\langle\varphi_{\mu}^{+}, \varphi_{v}^{-}\right\rangle_{\mu, \nu}, \quad I_{\mathrm{h}}=\left\langle\gamma_{\mu}^{+}, \gamma_{v}^{-}\right\rangle_{\mu, \nu}$.
The naturality of the pairings between the twisted cohomology group and the twisted homology group implies the following (cf. [1, Theorem 2]).

ThEOREM 5.1. We have twisted period relations with respect to $\pm \omega$:

$$
\Pi^{+t} I_{\mathrm{h}}^{-1} \Pi^{-}=I_{\mathrm{ch}}, \quad \text { i.e., } \quad{ }^{t} \Pi^{-} I_{\mathrm{ch}}^{-1} \Pi^{+}={ }^{t} I_{\mathrm{h}} .
$$

Since I_{ch} and I_{h} can be computed explicitly, the above identities yield quadratic relations among confluent hypergeometric functions.
5.1. The gamma function $\Gamma(\alpha)$. The gamma function is defined by

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha} \frac{d t}{t}
$$

for $\operatorname{Re}(\alpha)>0$. Let us derive the inversion formula for the gamma function as a twisted period relation by using Theorems 4.1 and 4.3.

We put

$$
u(t)=e^{-t} t^{\alpha}, \quad \omega=-d t+\alpha \frac{d t}{t}(\alpha \neq 0), \quad\left(n_{1}, n_{2}\right)=(2,1), \quad\left(x_{1}, x_{2}\right)=(\infty, 0)
$$

Since $n_{1}+n_{2}=3, H^{1}\left(\Omega^{\bullet}(X), \nabla_{\omega}\right)$ and $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ are 1-dimensional. We define a branch $u_{0}(t)$ of $u(t)$ around $t=1$ as

$$
u_{0}(t)=\frac{1}{e} \exp \left(\int_{1}^{t} \omega\right) ;
$$

note that

$$
u_{0}^{-1}(t)=e \exp \left(\int_{1}^{t}-\omega\right)
$$

around $t=1$. By Cauchy's integral formula, we have

$$
\Gamma(\alpha)=\frac{1}{1-e^{-2 \pi \sqrt{-1} \alpha}} \int_{C} e^{-t} t^{\alpha} \frac{d t}{t}
$$

for $\alpha \notin \boldsymbol{Z}$, where C is described in Figure 3 and the argument of t in C belongs to [$-2 \pi, 0$]. We regard the integral as the pairing of

$$
\varphi^{+}=d t / t \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{+\omega}\right)
$$

and

$$
\gamma^{+}=\frac{1}{1-e^{-2 \pi \sqrt{-1} \alpha}} C \otimes u_{0}(t) \in H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) .
$$

Put $\varphi^{-}=d t / t \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right)$ and define a twisted cycle g^{-}by $\gamma^{-}=C^{\prime} \otimes$ $u_{0}^{-1}(t) \in H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$, where C^{\prime} is as described in Figure 3 and the argument of t

Figure 3. Cycles.
belongs to $[-\pi, \pi]$. Apply the change of coordinate $t=e^{\pi \sqrt{-1}}$ s to the integral $\left\langle\varphi^{-}, \gamma^{-}\right\rangle=$ $\int_{C^{\prime}} e^{t} t^{-\alpha} d t / t$. Then we have

$$
\begin{aligned}
\left\langle\varphi^{-}, \gamma^{-}\right\rangle & =\int_{C} e^{-s} e^{-\alpha \pi \sqrt{-1}} s^{-\alpha} \frac{d s}{s} \\
& =e^{-\alpha \pi \sqrt{-1}}\left(1-e^{-2 \pi \sqrt{-1}(-\alpha)}\right) \Gamma(-\alpha) \\
& =-2 \sqrt{-1} \sin (\pi \alpha) \Gamma(-\alpha)
\end{aligned}
$$

We evaluate $\left\langle\varphi^{+}, \varphi^{-}\right\rangle$by Theorem 4.1. We need to solve

$$
\nabla_{\omega} G=d G-G d t+\alpha G \frac{d t}{t}=\varphi^{+}=\frac{d t}{t}
$$

around $t=x_{1}=\infty$ and $t=x_{2}=0$. The formal solutions G_{1} and G_{2} around $t=\infty$ and $t=0$ are expressed as

$$
\begin{aligned}
& G_{1}=-s-(\alpha-1) s^{2}-(\alpha-1)(\alpha-2) s^{3}-\cdots \\
& G_{2}=\frac{1}{\alpha}+\frac{1}{\alpha(\alpha+1)} t+\frac{1}{\alpha(\alpha+1)(\alpha+2)} t^{2}+\cdots,
\end{aligned}
$$

respectively, where $s=1 / t$ is a local coordinate around ∞. Theorem 4.1 implies that

$$
\left\langle\varphi^{+}, \varphi^{-}\right\rangle=2 \pi \sqrt{-1}\left(\operatorname{Res}_{s=0} G_{1} \frac{-d s}{s}+\operatorname{Res}_{t=0} G_{2} \frac{d t}{t}\right)=2 \pi \sqrt{-1}\left(0+\frac{1}{\alpha}\right)=\frac{2 \pi \sqrt{-1}}{\alpha} .
$$

Next, we evaluate $\left\langle\gamma^{+}, \gamma^{-}\right\rangle$from Theorem 4.3. We have $C \cap C^{\prime}=\left\{v_{1}, v_{2}\right\}$ (see Figure 3). The topological intersection number of C and C^{\prime} at v_{1} is -1 and that at v_{2} is 1 . Note that

$$
\left.u_{0}(t) u_{0}^{-1}(t)\right|_{t=v_{1}}=e^{-2 \pi \sqrt{-1} \alpha},\left.\quad u_{0}(t) u_{0}^{-1}(t)\right|_{t=v_{2}}=1 .
$$

Then the intersection number $\left\langle\gamma^{+}, \gamma^{-}\right\rangle$is

$$
\frac{1}{1-e^{-2 \pi \sqrt{-1} \alpha}}\left(-e^{-2 \pi \sqrt{-1} \alpha}+1\right)=1 .
$$

The twisted period relation for $\varphi^{ \pm}$and $\gamma^{ \pm}$is

$$
\begin{aligned}
\left\langle\varphi^{+}, \gamma^{+}\right\rangle 1\left\langle\varphi^{-}, \gamma^{-}\right\rangle & =2 \pi \sqrt{-1} \frac{1}{\alpha}, \\
\Gamma(\alpha)\{-2 \sqrt{-1} \sin (\pi \alpha) \Gamma(-\alpha)\} & =2 \pi \sqrt{-1} \frac{1}{\alpha},
\end{aligned}
$$

which is nothing but the inversion formula for the gamma function:

$$
\Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin (\pi \alpha)}
$$

5.2. The integral $\int_{-\infty}^{+\infty} e^{-t^{2} / 2} d t$. Let $\omega=-t d t$ and $n_{1}=n=3, x_{1}=\infty$. The spaces $H^{1}\left(\Omega^{\bullet}(x), \nabla_{ \pm \omega}\right)$ and $H_{1}\left(C_{\bullet}^{ \pm \omega}(X), \partial_{ \pm \omega}\right)$ are 1-dimensional. Let $\varphi^{ \pm}=d t$ and

$$
\gamma^{+}=[-\infty, \infty] \otimes e^{-t^{2} / 2}, \quad \gamma^{-}=[-\sqrt{-1} \infty, \sqrt{-1} \infty] \otimes e^{t^{2} / 2}
$$

The intersection number $\langle d t, d t\rangle$ is $2 \pi \sqrt{-1}$ as given in Theorem 4.1 and [17], and Theorem 4.3 implies $\left\langle\gamma^{+}, \gamma^{-}\right\rangle=1$. Since

$$
\left\langle d t, \gamma^{+}\right\rangle=\int_{-\infty}^{+\infty} e^{-t^{2} / 2} d t, \quad\left\langle d t, \gamma^{-}\right\rangle=\int_{-\sqrt{-1} \infty}^{+\sqrt{-1} \infty} e^{t^{2} / 2} d t=\sqrt{-1} \int_{-\infty}^{+\infty} e^{-t^{2} / 2} d t
$$

we have the twisted period relation

$$
\left(\int_{-\infty}^{\infty} e^{-t^{2} / 2} d t\right) \cdot 1 \cdot\left(\sqrt{-1} \int_{-\infty}^{\infty} e^{-t^{2} / 2} d t\right)=2 \pi \sqrt{-1}
$$

which yields the identity $\int_{-\infty}^{+\infty} e^{-t^{2} / 2} d t=\sqrt{2 \pi}$.
5.3. The Bessel function $(n=4)$. The Bessel function is defined by the power series

$$
J_{a}(z)=\left(\frac{z}{2}\right)^{a} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(a+k+1)}\left(\frac{z}{2}\right)^{2 k},
$$

where $z \in\{z \in \boldsymbol{C} \mid \operatorname{Re}(z)>0\}$, the argument of $z / 2$ is in $(-\pi / 2, \pi / 2)$, and $a \in \boldsymbol{C}$. It is known that $J_{a}(z)$ satisfies the Bessel differential equation

$$
\frac{d^{2} w}{d z^{2}}+\frac{1}{z} \frac{d w}{d z}+\left(1-\frac{a^{2}}{z}\right)=0
$$

and that $J_{a}(z)$ admits the integral representation

$$
J_{a}(z)=\frac{1}{2 \pi \sqrt{-1}} \int_{C^{\prime}} \exp \left(\frac{z}{2}\left(t-\frac{1}{t}\right)\right) t^{-a} \frac{d t}{t}
$$

where C^{\prime} is as in Figure 3 and the argument of t on C^{\prime} is in $[-\pi, \pi]$. By putting

$$
\begin{gathered}
u(t)=\exp \left(\frac{z}{2}\left(t-\frac{1}{t}\right)\right) t^{a}, \quad \omega=\left(\frac{z}{2}+\frac{z}{2} \frac{1}{t^{2}}-a \frac{1}{t}\right) d t \\
\left(n_{1}, n_{2}\right)=(2,2), \quad\left(x_{1}, x_{2}\right)=(\infty, 0)
\end{gathered}
$$

we regard $J_{a}(z)$ as the pairing $\left\langle\varphi_{1}^{+}, \gamma_{1}^{+}\right\rangle$, where

$$
\begin{aligned}
& \varphi_{1}^{+}=\frac{1}{2 \pi \sqrt{-1}} \frac{d t}{t} \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right), \\
& \gamma_{1}^{+}=C^{\prime} \otimes u(t) \in H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right) .
\end{aligned}
$$

Take

$$
\begin{aligned}
& \varphi_{2}^{+}=\frac{d t}{2 \pi \sqrt{-1}} \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{\omega}\right), \\
& \varphi_{1}^{-}=\frac{1}{2 \pi \sqrt{-1}} \frac{d t}{t} \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right), \\
& \varphi_{2}^{-}=\frac{1}{2 \pi \sqrt{-1}} \frac{d t}{t^{2}} \in H^{1}\left(\Omega^{\bullet}(x), \nabla_{-\omega}\right), \\
& \gamma_{1}^{-}=C \otimes u^{-1}(t) \in H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right),
\end{aligned}
$$

where C is as in Figure 3 and the argument of t on C is in $[-2 \pi, 0]$. By results in Theorem 4.1 and [17], the intersection matrix $\left\langle\varphi_{i}^{+}, \varphi_{j}^{-}\right\rangle_{i j}$ is

$$
\frac{1}{2 \pi \sqrt{-1}}\left(\begin{array}{cc}
0 & 2 / z \\
-2 / z & 0
\end{array}\right)
$$

We have

$$
\begin{gathered}
I_{v_{1}}\left(C^{\prime}, C\right)=1, \quad I_{v_{2}}\left(C^{\prime}, C\right)=-1 \\
u\left(v_{1}\right) u^{-1}\left(v_{1}\right)=\exp (-2 \pi \sqrt{-1} a), \quad u\left(v_{2}\right) u^{-1}\left(v_{2}\right)=1
\end{gathered}
$$

Thus the intersection number of γ_{1}^{+}and γ_{1}^{-}is $\exp (-2 \pi \sqrt{-1} a)-1$. The twisted period relation

$$
{ }^{t} \Pi^{-} I_{\mathrm{ch}}^{-1} \Pi^{+}={ }^{t} I_{\mathrm{h}}
$$

implies that

$$
\begin{aligned}
& 2 \pi \sqrt{-1}\left(\frac{z}{2}\right)\left(\left\langle\varphi_{1}^{-}, \gamma_{1}^{-}\right\rangle,\left\langle\varphi_{2}^{-}, \gamma_{1}^{-}\right\rangle\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{\left\langle\varphi_{1}^{+}, \gamma_{1}^{+}\right\rangle}{\left\langle\varphi_{2}^{+}, \gamma_{1}^{+}\right\rangle} \\
& \quad=\exp (-2 \pi \sqrt{-1} a)-1 .
\end{aligned}
$$

Note that $\left\langle\varphi_{2}^{+}, \gamma_{1}^{+}\right\rangle=J_{a-1}(z)$. Since

$$
\begin{aligned}
& \int_{C} \exp \left(-\frac{z}{2}\left(t-\frac{1}{t}\right)\right) t^{a} \frac{d t}{t}=\exp (-\pi \sqrt{-1} a) \int_{C^{\prime}} \exp \left(\frac{z}{2}\left(s-\frac{1}{s}\right)\right) s^{a} \frac{d s}{s} \\
& \int_{C} \exp \left(-\frac{z}{2}\left(t-\frac{1}{t}\right)\right) t^{a} \frac{d t}{t^{2}}=\exp (-\pi \sqrt{-1} a) \int_{C^{\prime}} \exp \left(\frac{z}{2}\left(s-\frac{1}{s}\right)\right) s^{a} e^{\pi \sqrt{-1}} \frac{d s}{s^{2}}
\end{aligned}
$$

by the change of variable $t=\exp (-\pi \sqrt{-1}) s$, we have

$$
\begin{aligned}
& \left\langle\varphi_{1}^{-}, \gamma_{1}^{-}\right\rangle=\exp (-\pi \sqrt{-1} a) J_{-a}(z) \\
& \left\langle\varphi_{2}^{-}, \gamma_{1}^{-}\right\rangle=-\exp (-\pi \sqrt{-1} a) J_{-a+1}(z)
\end{aligned}
$$

Hence we have a quadratic identity among the Bessel functions

$$
J_{a}(z) J_{-a+1}(z)+J_{a-1}(z) J_{-a}(z)=\frac{2 \sin (\pi a)}{\pi z}
$$

which is called Lommel's formula. For $a=1 / 2$, this formula is equivalent to $\sin ^{2} x+\cos ^{2} x=$ 1.
5.4. A confluent hypergeometric function of two variables $(n=5)$. The function $\Phi_{2}\left(b_{1}, b_{2}, c ; z_{1}, z_{2}\right)$ defined by the power series

$$
\sum_{k_{1}, k_{2}=0}^{\infty} \frac{\left(b_{1} ; k_{1}\right)\left(b_{2} ; k_{2}\right)}{\left(c ; k_{1}+k_{2}\right) k_{1}!k_{2}!} z_{1}^{k_{1}} z_{2}^{k_{2}}
$$

which converges in \boldsymbol{C}^{2}, is one of the confluent hypergeometric functions derived from Appell's hypergeometric function $F_{1}\left(a, b_{1}, b_{2}, c ; z_{1}, z_{2}\right)$. Here $(b ; k)$ stands for $b(b+1)(b+$ 2) $\cdots(b+k-1)$. This function admits the integral representation

$$
\frac{1}{\Gamma(1-c)(1-\exp (2 \pi \sqrt{-1} c))} \int_{C} t^{b_{1}+b_{2}-c}\left(t-z_{1}\right)^{-b_{1}}\left(t-z_{2}\right)^{-b_{2}} e^{-t} d t
$$

where C is a path from $+\infty$ turning along a large circle containing z_{1}, z_{2} and 0 counterclockwise and going to $+\infty$, and the arguments of $t,\left(t-z_{1}\right)$ and $\left(t-z_{2}\right)$ is near 0 around the end point of C (see Figure 3). Put

$$
\begin{gathered}
\omega=d \log \left(t^{b_{1}+b_{2}-c}\left(t-z_{1}\right)^{-b_{1}}\left(t-z_{2}\right)^{-b_{2}} e^{-t}\right) \\
=\left(\frac{b_{1}+b_{2}-c}{t}-\frac{b_{1}}{t-z_{1}}-\frac{b_{2}}{t-z_{2}}-1\right) d t, \\
\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(2,1,1,1), \quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\infty, 0, z_{1}, z_{2}\right), \\
\varphi_{1}^{+}=d t, \quad \varphi_{2}^{+}=\frac{d t}{t-z_{1}}, \quad \varphi_{3}^{+}=\frac{d t}{t-z_{2}}, \\
\varphi_{1}^{-}=\frac{d t}{t}, \quad \varphi_{2}^{-}=\frac{d t}{t}-\frac{d t}{t-z_{1}}=\frac{-z_{1} d t}{t\left(t-z_{1}\right)}, \quad \varphi_{3}^{-}=\frac{d t}{t}-\frac{d t}{t-z_{2}}=\frac{-z_{2} d t}{t\left(t-z_{2}\right)} .
\end{gathered}
$$

We have

$$
I_{\mathrm{ch}}=2 \pi \sqrt{-1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 / b_{1} & 0 \\
0 & 0 & -1 / b_{2}
\end{array}\right), \quad I_{\mathrm{ch}}^{-1}=\frac{1}{2 \pi \sqrt{-1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -b_{1} & 0 \\
0 & 0 & -b_{2}
\end{array}\right) .
$$

Let γ_{1}^{+}be the element of $H_{1}\left(C_{\bullet}^{\omega}(X), \partial_{\omega}\right)$ defined by

$$
\frac{1}{\Gamma(1-c)(1-\exp (2 \pi \sqrt{-1} c))} C \otimes t^{b_{1}+b_{2}-c}\left(t-z_{1}\right)^{-b_{1}}\left(t-z_{2}\right)^{-b_{2}} e^{-t},
$$

where the arguments of $t,\left(t-z_{1}\right)$ and $\left(t-z_{2}\right)$ is near 0 around the end point of C. Let γ_{1}^{-} be the element of $H_{1}\left(C_{\bullet}^{-\omega}(X), \partial_{-\omega}\right)$ defined by

$$
\frac{1}{\Gamma(c)(1-\exp (-2 \pi \sqrt{-1} c))} C^{\prime} \otimes t^{-b_{1}-b_{2}+c}\left(t-z_{1}\right)^{b_{1}}\left(t-z_{2}\right)^{b_{2}} e^{t},
$$

where C^{\prime} is a path from $-\infty$ turning along a large circle containing z_{1}, z_{2} and 0 counterclockwise and going to $-\infty$, and the arguments of $t,\left(t-z_{1}\right)$ and $\left(t-z_{2}\right)$ is near π around the end point of C^{\prime} (see Figure 3).

It is easy to see that

$$
\begin{aligned}
\left\langle\varphi_{1}^{+}, \gamma_{1}^{+}\right\rangle & =\Phi_{2}\left(b_{1}, b_{2}, c ; z_{1}, z_{2}\right), \\
\left\langle\varphi_{2}^{+}, \gamma_{1}^{+}\right\rangle & =-\frac{1}{c} \Phi_{2}\left(b_{1}+1, b_{2}, c+1 ; z_{1}, z_{2}\right), \\
\left\langle\varphi_{3}^{+}, \gamma_{1}^{+}\right\rangle & =-\frac{1}{c} \Phi_{2}\left(b_{1}, b_{2}+1, c+1 ; z_{1}, z_{2}\right) .
\end{aligned}
$$

By putting $t=\exp (\pi \sqrt{-1}) s$, we have

$$
\begin{aligned}
\left\langle\varphi_{1}^{-}, \gamma_{1}^{-}\right\rangle & =\frac{1}{\Gamma(c)(1-\exp (-2 \pi \sqrt{-1} c))} \int_{C^{\prime}} t^{-b_{1}-b_{2}+c}\left(t-z_{1}\right)^{b_{1}}\left(t-z_{2}\right)^{b_{2}} e^{t} \frac{d t}{t} \\
& =\frac{1}{\Gamma(c)(1-\exp (-2 \pi \sqrt{-1} c))} \int_{C}(-s)^{-b_{1}-b_{2}+c}\left(-s-z_{1}\right)^{b_{1}}\left(-s-z_{2}\right)^{b_{2}} e^{-s} \frac{d s}{s} \\
& =\exp (\pi \sqrt{-1} c) \Phi_{2}\left(-b_{1},-b_{2},-c+1 ;-z_{1},-z_{2}\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \left\langle\varphi_{2}^{-}, \gamma_{1}^{-}\right\rangle=-\frac{z_{1} \exp (-\pi \sqrt{-1} c)}{(c-1)} \Phi_{2}\left(-b_{1}+1,-b_{2},-c+2 ;-z_{1},-z_{2}\right) \\
& \left\langle\varphi_{3}^{-}, \gamma_{1}^{-}\right\rangle=-\frac{z_{2} \exp (-\pi \sqrt{-1} c)}{(c-1)} \Phi_{2}\left(-b_{1}+1,-b_{2},-c+2 ;-z_{1},-z_{2}\right)
\end{aligned}
$$

Since the intersection number of γ_{1}^{+}and γ_{1}^{-}is

$$
\begin{aligned}
& \frac{1}{\Gamma(1-c)(1-\exp (2 \pi \sqrt{-1} c))} \frac{1}{\Gamma(c)(1-\exp (-2 \pi \sqrt{-1} c))}(1-\exp (2 \pi \sqrt{-1} c)) \\
& =\frac{\sin (\pi c)}{\pi(1-\exp (-2 \pi \sqrt{-1} c))}=\frac{\exp (\pi \sqrt{-1} c)}{2 \pi \sqrt{-1}}
\end{aligned}
$$

the twisted period relation yields that

$$
\begin{aligned}
& \Phi_{2}\left(b_{1}, b_{2}, c ; z_{1}, z_{2}\right) \Phi_{2}\left(-b_{1},-b_{2},-c+1 ;-z_{1},-z_{2}\right)-1 \\
& \quad=\frac{-1}{c(c-1)}\left(b_{1} z_{1} \Phi_{2}\left(b_{1}+1, b_{2}, c+1 ; z_{1}, z_{2}\right) \Phi_{2}\left(-b_{1}+1,-b_{2},-c+2 ;-z_{1},-z_{2}\right)\right. \\
& \left.\quad+b_{2} z_{2} \Phi_{2}\left(b_{1}, b_{2}+1, c+1 ; z_{1}, z_{2}\right) \Phi_{2}\left(-b_{1},-b_{2}+1,-c+2 ;-z_{1},-z_{2}\right)\right)
\end{aligned}
$$

5.5. A generalization of $\Phi_{2}\left(n\right.$ general). The function $\Phi_{2}(\mathbf{b}, c ; \mathbf{z})=\Phi_{2}\left(b_{1}, \ldots, b_{r}, c\right.$; z_{1}, \ldots, z_{r}) defined by the power series

$$
\sum_{k_{1}, \ldots, k_{r}=0}^{\infty} \frac{\left(b_{1} ; k_{1}\right) \cdots\left(b_{r} ; k_{r}\right)}{\left(c ; k_{1}+\cdots+k_{r}\right) k_{1}!\cdots k_{r}!} z_{1}^{k_{1}} \cdots z_{r}^{k_{r}},
$$

which converges in \boldsymbol{C}^{r}, is one of the confluent hypergeometric functions derived from Lauricella's hypergeometric function $F_{D}\left(a, b_{1}, \ldots, b_{r}, c ; z_{1}, \ldots, z_{r}\right)$. By following the previous
argument, we have

$$
\begin{aligned}
& \Phi_{2}(\mathbf{b}, c ; \mathbf{z}) \Phi_{2}(-\mathbf{b},-c+1 ;-\mathbf{z})-1 \\
& \quad=\frac{-1}{c(c-1)}\left(\sum_{\mu=1}^{r} b_{\mu} z_{\mu} \Phi_{2}\left(\mathbf{b}+\mathbf{e}_{\mu}, c+1 ; \mathbf{z}\right) \Phi_{2}\left(-\mathbf{b}+\mathbf{e}_{\mu},-c+2 ;-\mathbf{z}\right)\right)
\end{aligned}
$$

where \mathbf{e}_{μ} is the μ-th unit vector.
Acknowledgments. The authors are grateful to Professor Nobuo Tsuzuki who kindly suggested to the second author the idea of using the exact sequence of complexes (1) to prove Theorem 2.1. Our deep appreciation goes to Hironobu Kimura, who gave us useful suggestions and constructive criticisms through discussions. Especially, the use of the homology group $H_{1}\left(X, A ; \mathcal{L}_{\omega}\right)$ in the proof of Theorem 3.1 was essentially his idea.

References

[1] K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann's period relations I, Nagoya Math. J. 139 (1995), 67-86.
[2] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, SpringerVerlag, Berlin-New York, 1970.
[3] G. de Rham, Differentiable manifolds, Hermann, Paris, 1960.
[4] O. Forster, Lectures on Riemann surfaces, Grad. Texts in Math. 81, Springer-Verlag, New York-Berlin, 1981.
[5] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Intersci. Publ., New York, 1978.
[6] Y. Haraoka, Quadratic relations for confluent hypergeometric functions on $Z_{2, n+1}$, Funkcial. Ekvac. 42 (1999), 435-490.
[7] N. Kachi, K. Matsumoto and M. Mihara, The perfectness of the intersection pairings for twisted cohomology and homology groups with respect to rational 1-forms, Kyushu J. Math. 53 (1999), 163-188.
[8] M. Kashiwara, H. Kawai and T. Kimura, Foundations of algebraic analysis, Princeton Univ. Press, Princeton, 1986.
[9] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer-Verlag, New York, 1990.
[10] H. Kimura, On rational de Rham cohomology associated with the generalized confluent hypergeometric functions I, P ${ }^{1}$ case, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 145-155.
[11] M. Kita and M. Yoshida, Intersection theory for twisted cycles I, II, Math. Nachr. 166 (1994), 287-304, 168 (1994), 171-190.
[12] H. Majima, ∇-Poincaré's Lemma and ∇-de Rham Cohomology for an Integrable Connection with Irregular Singular Points, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 4, 150-153.
[13] H. Majima, Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Math. 1075, Springer-Verlag, Berlin-New York, 1984.
[14] B. Malgrange, Remarques sur les équations différentielles à points singuliers irréguliers, Équations différentielles et systèmes de Pfaff dans le champ complexe, 77-86, Lecture notes in Math. 712, SpringerVerlag, Berlin, 1979.
[15] B. MALGRANGE, Équations différentielles à coefficients polynomiaux, Progress Math. 96, Birkhäuser, Basel, Boston, 1991.
[16] K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998), 873-893.
[17] K. Matsumoto, Intersection numbers for 1 -forms associated with confluent hypergeometric functions, Funkcial. Ekvac. 41 (1998), 291-308.
[18] K. Matsumoto and N. Takayama, Braid group and a confluent hypergeometric function, J. Math. Sci. Univ. Tokyo 2 (1995), 589-610.
[19] J. P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Memoirs of the American Mathematica Society, 296, 1984.
[20] C. SabBah, On the comparison theorem for elementary irregular \mathcal{D}-modules, Nagoya Math. J. 141 (1996), 107-124.
[21] T. SaSaki and M. Yoshida, Tensor products of linear differential equations II, Funkcial. Ekvac. 33 (1990), 527-549.
[22] L. Schwartz, Théorie des distributions, Herman, Paris, 1966.

Department of Mathematics
Faculty of Science
Ochanomizu University
TOKYO 112-8610
Japan
E-mail address: majima@math.ocha.ac.jp
Department of Mathematics
Faculty of Science
Kobe University
Rокко Кове 657-8501
Japan
E-mail address: takayama@math.kobe-u.ac.jp

Division of Mathematics

Graduate School of Science
Hokkaido University
SAPPORO 060-0810
JAPAN
E-mail address: matsu@math.sci.hokudai-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 32G20; Secondary 33Cxx, 55N33.
 Key words and phrases. Period relation, confluent hypergeometric function, intersection theory.
 Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

