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Abstract. We consider the asymptotic behaviour of the transition density for processes

of jump type as the time parameter t tends to 0. We use Picard's duality method, which allows

us to obtain the lower and upper bounds of the density even for the case where the support

of Levy measure is singular. The main result is that, under certain restrictions, the density

behaves in polynomial order or may decrease in exponential order as t -> 0 according to

geometrical conditions of the objective points.

Introduction. Let xt(x) be a ^/-dimensional jump process given by the stochastic dif-

ferential equation

pt C

(0.1) *t(x) = x + I b(xs(x))ds + Y^ y(xs-(x), Δz(s)),
Jo s<t

where z(s) denotes an Rd-valued Levy process of jump type, γ(x, ζ) is a function from

Rd x Rd to /?^ and Σ^< r denotes the compensated sum (cf. Section 1).

Picard [18] has developed a calculus for showing the existence and the regularity of the

transition density pt(x, y) for xt(x) (as the density of the law of the process xt(x)), which is

applicable to the case where the Levy measure of the driving process z(s) is not necessarily

smooth. He uses a method of adding and subtracting Dirac masses on the Poisson time-space

state space (called duality method), instead of previous methods using perturbations in space

or time directions developped by [1], [2], [3] and [21] for instance. This method has, in

particular, an advantage that it can be applied to the case of singular Levy measures (e.g., it is

countably supported).

In this note, we will study the asymptotic behavior of pt(x, y), for given x and v, as

t -> 0 under the condition that z(s) has a singular Levy measure. In particular, its support

may be discrete (μ is the sum of point masses.) We shall extend the type of processes treated

in [19], [20], and apply the method of Picard. The present study may also be viewed as a

continuation and an improvement of the same subject in [7], [8], [9] and [10]. Indeed it will

be seen, as in those previous results, that the geometrical quantity a(x, y) attached to the

support of the Levy measure plays an important role in estimating pt(x, y) for accessible
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points y (see Section 1 for the definition). Namely, if y is accessible, then we have

pt{x,y)^ta{x^-d'β a s ί ^ O .

If y is not accessible, then the density does not decay in polynomial order of t as t ->• 0

and may decrease in exponential order (see Theorem 2(b)). The resulting formula in this

exponential case is very close to the one that Picard obtained in the case d = 1, and xt(x) is a

Levy process.

We organize this note as follows. In Section 1 we state our results under necessary

assumptions. In Section 2, we recall fundamental lemmas (Lemmas 2.1, 2.2) due to Picard,

and provide several examples using these lemmas.

In Section 3 we prove Theorem 2 by using previous lemmas. More precisely, for the

lower bound (Lemma 2.1), we use a point of view similar to that used in [20], [8] and [10]

(it is called as a method of skelton trajectories in [10]). That is, we approximate trajectories

which may have positive law by some principal trajectories given by a certain Markov chain.

To obtain the upper bound (Lemma 2.2), however, this strategy is not sufficient to treat all the

points of positive density. We introduce to this end, according to [20], perturbations (φn) of

the Markov chain above. This enables the estimations from above at all points which may

have positive densities, and gives a strong result in the scheme of approximation of jump-type

processes by Markov chains compared with [15]. The lower bound for the case of Theorem

2(b) (asymptotically accessible case) is not obtained yet. This will be studied in a subsequent

paper.

A part of this work was done at Universite Blaise Pascal (Clermont-Ferrand, France)

in the summer of 1997, on leave from University of Tsukuba. The author would like to

thank Professor J. Picard for his hospitality and stimulative discussions during the stay. He

is grateful also to the anonymous referee for the careful reading of the first version of this

article, and for giving useful comments and advices.

1. Statement of Results. Let z(s) be an Rd-valued Levy process with Levy measure

μ(dζ): fRd(\ζ I2 Λ l)μ(dζ) < +σo. That is, the characteristic function ψt is given by

ψt(ξ) = E[e^z{t)] = exp(ιf§ c + t j(e^ - 1 - it- • ζlm<ι})μ(dζ)).

We may write

z(s) = cs+ / / ζ(N(dudζ) - dul{\ξ\<\} μ(dζ)),
JO JRd\{0}

where TV is a Poisson random measure with mean du x μ(dζ). Let γ(x,ζ) : Rd xRd -> Rd

and b(x) : Rd —> Rd be C°°-functions, whose derivatives of all orders are bounded, satisfying

Y(x,0) = 0.
We carry out our study in the probability space (Ω, (Ft)t>o, P), where Ω = D[/? + , Rd]

(Skorohood space), (^)r>o = filtration generated by z(s)9 and P = probability measure on

ω of z(s). Thatis,μ(d£) = P(z(s+ds) e dζ\z(s))/ds.
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Consider the following SDE

pt

= x + /
Jo

(1.1) xt(x) = x + / b(xs(x))ds + χ^γ(xs-(x), Δz(s)),
s<t

where Yf denotes the compensated sum. That is,

= lim V γ(x, Δz(s)) - [ ds [ γ(x, ζ)μ(dζ) .

° [ ? J h JΊtt

Equivalently, we may write xt (JC) as

xt(x) = x + ί b\xs(x))ds + ί f y(xs-(x), ζ)N(dsdζ)
Jo JoJ\ζ\<\

(1.2)
+ / / y(xs-(x),ζ)N(dsdζ),

JθJ\ζ\>\

where TV denotes the compensated Poisson random measure: N(dsdζ) = N(dsdζ) —

dsμ(dζ), b\x) = b(x) - f^>{ y(x, ζ)μ{dζ), where the integrability of γ(x, ζ) with re-

spect to l{|£|>i} dμ(ζ) is assumed. We remark that

for some y(;c, ζ) = o(\ζ\) as ζ -> 0.

Throughout this paper we assume the following four assumptions (A.1)-(A.4):

(A.I) The Levy measure satisfies that there exist some 0 < β < 2 and positive C\, C2

such that as p -> 0,

(1.3) Cxp
2~h < f ζζ*μ(dζ) < C2p

2~βI,
J\ζ\<P

where ζ = (ζ\,... , ζd) is considered as a column vector and hence inequalities are in the

sense of matricies. Or equivalently, for all u e Sd~ι

J\t;\
(ζ, u)2μ(dζ)

f\ζ\<p

as p ->• 0. (Here x means the quotient of the two sides is bounded away from zero and above

as p -> 0.)

(A.2) We further make the following assumptions in case 0 < β < 1 in the above:

(2-a) If 0 < β < 1, we assume that c = f]ζl<ι ζμ(dζ), b = 0 and for all u € Sd~ι

(1.4) f <?, «
% I < P )

as

(1

p - > 0 .
(2-b) lίβ

.5)

= 1, then

lim sup ζμ(dζ) < +00.
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(A.3) (3-a) For any p > 2 and any k e Nd \ {0},

\γ{x,ζ)\pdμ.{ζ)< \x\y , sup / \d-^r{x, ζ) dμ(ζ) < +oo.

(3-b) There exists <5 > 0 such that

(1-6) ζ(x,θή y; x e Rd j > δ\y\

onRd.
(A.4) We assume that for some C > 0,

(1.7) inf > C.

The condition (1.7) guarantees the existence of the flow φst(x)(ω) : Rd -> Rd, xs(x) \->

xt(x) of diffeomoφhisms for all 0 < s < t (cf. [13]).

Equation (1.1) (resp. (1.2)) has a unique solution. This follows from the fact that (1.1) can

be written in the canonical form (in Ito integral)

(1.8) dxt{x) = dΘt(xt-(x)), JCOOO - 0,

where

Θ,(y) = b\y)t + Γ ( f y(y, ζ)N(dsdζ) + [ y(y9 ζ)N(dsdζ)\ ,
Jo (J\ζ\<\ J\ζ\>ι J

and that the equation (1.8) has a unique solution due to [4, Theorem 2.1] (cf. [12, Theorem

3.1]). Furthermore, due to the inversibility assumption (A.4), there exists a stochastic flow of

diffeomoφhisms, denoted by φs,t(s < t) : Rd -> Rd, such that jcf (JC) = Φs,t(xs(x)), which

is inversible ([13, Section 1], [1, Lemma 7-27]; see also [22, Theorem V65] for the simple

We cite the following fundamental result due to Picard [18].

PROPOSITION 1.1 (cf. [18, Theorem 4.1]). Under the conditions (A.I) through (A.4),

xt(x) has a C™ -density for each t > 0, which we denote by y \-> Pt(x, y)>

We remark the crucial condition: for each t > 0, p > 1,

- 1

< +00

(1.9)
LP

With ψs = (J-φst(χs{χ))\ (?L(Xs(x), 0) J

for the existence of the density in [18] being derived from (1.6) and (1.7) by an argument

similar to that in the proof of Corollary 4.4 of [18].

Let v(dζ) be the probability measure onRd given by

(\ζ\2Al)μ(dζ)
(1.10) v{dζ) = f(\ζ\2Λl)μ(dζ))'
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Then dv ~ dμ and dv/dμ is globally bounded from above.

The following result is an extension of Theorem 1 in [20] to the above mentioned type

of processes.

THEOREM 1 (general upper bound: cf. Picard [20]). The density pt(x, y) satisfies the

following estimate:

(1.11) (a) supp t(x,y) < Cot~
d/β as t -> 0,

χ,y

(1.12) pt(x, x) x Γd/β as t -> 0 uniformly in x .

(b) For all k e Nd there exists Q > 0 such that

(1.13)

where p^ denotes the k-th derivative with respect to y.

We can give examples that the supremum in (a) is in fact attained on the diagonal [x = y}

(diagonal estimate):

Pt(x,x) xΓd/β as *-• 0

uniformly in x (see [7, Section 2-4]). The estimate above is more exact than the one by

Hoh-Jacob [5] using functional analytic methods: there exist C > 0, v e (1, oo) such that

supp t(x,y) < Ct~v as t -> 0.
χ,y

Consider a series of functions (An)™=0, An : Rdχ(»+V -> fl^, defined by A 0(r) = JC

andA w + i (x,xi , . . . ,* π +i) = An(x,xu . . . ,x«) + y(A«(x,xi,... ,xn),Xn+\)- F™x £ Rd

We put Sn to be the support of the image measure of μ®n by the mapping (x\,... ,xn) \-+

An(x,x\,... ,Λ Π ), and5 = \Jn

sn

DEFINITION 1.2 (accessible points). Points in S, regarded as points in Rd, are called

accessible points. Points in S \ S are called asymptotically accessible points.

Intuitively accessible points are those points which can be reached by jcf (JC) using only

by a finite number of jumps of z(s). We remark that S is not necessarily closed, although each

Sn is so.

We define for each x the mapping Hx : suppv ->• Px = x + {γ(x, ζ)', ζ € suppv}
b y ^ ^ x + γ ( x , ζ ) . L e t P $ n ) = {y e PZn_x\ zx e P x , Z i e P Z i _ l 9 i = 2 , . . . , π - 1 } ,

n = 1, 2 , . . . (zo = x) Then PJ = Px, and PJw) can be interpreted as points which can be

reached from x by n jumps along the trajectory xt(x). Given x,y e Rd(y φ x), let a(x, y)

be the minimum number / such that y e Px^ if such / exists, and put a(x, y) = +oo if not.

Or equivalently, α(jc, y) = inf{n; y e \^jk<n 5^}.

Now we introduce a concrete "singular" Levy measure of z(s), which has already de-

scribed in [23, Example 3.7], and in [2, Section 2]. Let μ(dζ) = Σ ^ L o ^ ^ W ) b e t h e

^-dimensional Levy measure such that (an; n e N) and (/:„; n e N) are sequences of points

in Rd and real numbers, respectively, satisfying
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(i) \an I decreases to 0 as n -> oo,

(ϋ) kn>0,

For this Levy measure, we can show the unique existence of the solution xt (x) of (1.2)

([23, Theorems 1.1, 2.1]), and the existence of the density under the assumptions (A.1)-(A.4).

We further assume that

(1.14) N = N(t) = max{n; \an\ > tι/β} x log (-

The next theorem (b) can be viewed as an extension of Proposition 5.2 in [19].

THEOREM 2. Letyφx.

(a) Assume y £ S, that is, a(x, y) < +oo. Then we have

(1.15) p,(jc, y) x ta{x^-d'β as t -> 0.

(b) Assume y e S\S (α(jt, y) = +σo). Suppose b{x) = 0 am/ to 0' > β. Then

log /?r(x, v) w bounded from above by the expression of type Γ = Γ(t):

(1.16) Γ = -πύnΣ(wnlog(l/(tkn)) + log(u;π!)) + O(log(l/ί)loglog(l/ί))
n=0

as t -> 0. //^r^ ί/ze minimum is taken with respect to all choice of ao, . . . , αyv ^y £n /<^r

n = 1, 2 , . . . , n i am/ n i e N such that

( l .Π) \y-Anι(x,ξu... ,ξnι)\<tl/β\

where wn = # 6>/β/2 m ίΛ^ choice andn\ = Σn=0 Wn-

We remark that in finding the above minimum the conditions (1.14) and (1.17) work

complementarily. That is, as / > 0 gets smaller, (1.17) becomes apparently more strict,

whereas we may use more combinations of at's to approximate y due to (1.14). Since β1 > β,

the condition (1.17) does not prevent Anχ (x, ξ\,... , ξnι) from attaining to y as t -> 0, using

ao,... , a^j under (1.14). We also remark that if x and an are rational points (e.g., d — 1,

* = 0, αΛ = 2"π), then the result (b) holds for almost all y e S(= [0, 1]) relative to the

Lebesgue measure, whereas for t > 0, y t->- pt(x, v) is smooth on S due to Proposition 1.1.

The proof of these theorems will be given in Section 3.

Notation. Here we sum up notation we will use throughout this note.

z(s) Levy process with Levy measure dμ

xs (x) the jump type process driven by z(s)

zr(s) Levy process defined by zr(s) = Σu<s Δ^u)^{\ΔZ{u)\>r}
zr(s) Levy process defined by zr{s) = z(s) — zr(s)

2. Preliminaries. In this section, we prove two lemmas which are essential for our

estimation. These lemmas are inspired by Picard [20]. Proofs of these lemmas can be derived
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easily in view of Picard [20], using several corresponding lemmas. Let (ξn)neN be an Rd-

valued series of random variables (i.i.d.) obeying the probability law v(dζ), independent of

z(s).

LEMMA 2.1 (lower bound for accessible points). Let (ξn)neN be an Rd-valued random

variables {i.i.d.) obeying the probability law v(dζ), independent ofz(s). We define a Markov

chain (Un)neN by UQ = x and Un+\ = Un + γ(Un, £rt+i), n e N. Assume that for y e Rd,

there exist some n > 1, γ = γn > 0 and c > 0 such that for all ε e (0, 1], P(\Un — y\ <

ε) > cεγ. Then we have

(2.1) pt(x, y) > CtnHγ~d)/β as t -* 0.

We notice that the lower bound in R.H.S. depends on («, γn). Put g(x, dz) = d(H*v)(z),

z € Px \ {x}, where H*v = v o H~x (cf. Section 1). Then we have an expression of the
probability above:

(2.2) P(\Un-y\<έ)= ί .-. f l{Zn;\zn-y\<e}(Zn)g(x,dzι) • - • g(Zn-\,dzn)

(cf. [8]). Hence the condition P(\Un - y\ < ε) > cεy implies:

y can be attained with the singular Levy measure (dim supp v = 0) if γ = 0.

Let (φn)neN be a series of smooth functions: Rd —> Rd. We define another Markov

chain (Vn)neN by Vo = φo(x) and Vn+\ = Vn + (φn+\ o γ)(Vn, ξn+\). Furthermore we define

the series of real numbers (Φn)nGN by

(2.3) Φn= sup (\φk(y)-y\ + \φ'k(y)-I\)
k<n,yeRd

Under these preparations we have

LEMMA 2.2 (upper bound). Choose y Φ x. Assume there exist a sequence (γn)n€N,
γn e [0, oo], and a non-decreasing sequence (Kn)ne]\f, Kn > 0, satisfying the following

condition: for each n and for any (<pk)l=0 satisfying Φn < Kn, Vn defined as above satisfies

that with some Cn > 0

(2.4) if γn < +oo, then P(\Vn - y\ < ε) < Cnε
Yn for all ε > 0,

and

(2.5) if yn = +oo, then P(\Vn - y\ < ε) = 0 for ε > 0 small.

Furthermore, if we put Γ = minn(n + (yn — d)/β), then we have:

(i) IfΓ < +oo, then pt(x, y) = O(tΓ) as t -* 0.

(ii) IfΓ = +oo, then for any n e N pt(x, y) = o(tn) as t -> 0.

Note that Γ depends implicitly on the choice of (Kn). However, for each n, bigger γn

gives a better upper bound.

Given perturbations (<py), we define Q^ ) = {<̂ o( ̂ )} and the sequence (g*π )) succes-
sively by

Q(

χ

n) = {Zn-l + (ψn o γ)(Zn-\, ζ); ζ €SUppυ,Zπ_i G Qχ

n~l)]
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for n = 1,2,... . Hence the set Q^ can be interpreted as the points which can be reached

from x by Vn, and we have

P(\Vn-y\<ε)

(2.6) -L
for n = 0, 1, 2 , . . . . We remark that if y ^ PJπ ) (n > 1), then by choosing φn such that the

size Φn of perturbations is small enough, we can let y £ Q^\ so that by choosing Kn > 0

small and ε > 0 small, }/„ may be +oo in the above.

EXAMPLES. We give here some results which are derived from above lemmas but are

not in the scope of our main result. In the following examples, we assume that the drift

coefficient b for Xt(x) is identically zero, so that Xt(x) is a martingale.

(1) First we give an example where the Levy measure has an absolutely continuous

density with respect to d-dimensional Lebesgue measure, treated in [8].

Consider the case μ(dζ) = h(ζ)dζ, where h(ζ) e C°°(Rd \ {0}) is symmetric and

satisfies

(i) supp/z( ) c [ζ e Rd, \ζ\ < c] where 0 < c < +oo,

(ii) fRdχ{0} πύn(\ζ\, l)h(ζ)dζ < +σo,

(iii) h(ζ) = a(ζ/\ζ\)\ζ\-d-a, a e (0, 1), in a neighbourhood of the origin with a(>) €
C°°(Sd-χ).

From these assumptions, we can choose v to have a bounded density. As in [8, Section

2], we can show that U\, and hence Un, have bounded densities, so that the assumption holds

with the index γ = d in Lemma 2.1 with n >a(x,y). Here a(x,y) is the integer introduced

in Section 1. Furthermore, the assumption in Lemma 2.2 is satisfied with γn = d and with

Kn small if a(x, y) < n, and /„ = +oo if α(x, y) > n (choose φn = id). Hence we have

Γ = a(x, v), and pt(x, y) x ία(x'-v) as t -> 0.

(2) Our next example is the one treated in [7] and [10]. Let μ be the J-dimensional

Levy measure

(2.7) μ(dζ) = h(ζχ) (8).- . 0 h(ζd)dζχ -

where each h eC°°(R\ {0}) satisfies

(i) supp/z( ) C [-c, c] \ {0} where 0 < c < +oo,

(ii) h > 0 on (-c, c) \ {0}, and

in some neighborhood of the origin for some β e (0, 2) and a+ > 0, a~ > 0, α + + a~ — 1.

We choose γ(x, ζ) to be γ(x, ζ) = (X\(x),... , Xd(x)Yζ, where Xj are C°° Λ^-valued

functions, whose derivatives of all orders are bounded, such thatZ( c) = (X\ (x),..., Xd(x))

forms a basis of Tx(Rd), x e Rd. In this case we can show the existence of a smooth density
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(cf. [7]). The measure g(x, dζ) is given by

(2.8) J f(z)g(x, dζ) = C ί f(x + XixYζMζO h{ζd)dζχ - dζd.

For simplicity, we assume that supp/z = [— 1, 1] (c = 1) and X; = r ( 0 , . . . , 0, 1, 0 , . . . ,

0), where the component 1 is at z'-th coordinate, so that X = Ij. Let x = ( 0 , . . . ,0) . We first

choose y φ x be on (R \ {0}) x {O}^"1; so that a(x, y) < + o o . By the expression (1.12) we

have

(2.9) P(\Un - y\ < ε) x ει as ε -> 0 if n > a(x, y),

(2.10) P(\Un-y\<ε)=0 ifn<a(x,y).

Hence we can choose γ = 1 for the lower bound (cf. [7, Section 2-4]):

(2.11) pt(x, y) > ctaix'y)-(d-l)/β as t -+ 0.

For the upper bound, we may have for some (φn) for which Φn is small, that γn = +oo

for n < a(x, v) by the reason given after (2.6). For n > a(x, v), we have from (2.9) that

γn = 1 for some Kn small. Hence Γ — a(x, y) — (d — I)/β. Therefore

(2.12) pt(x, y) x t*ί**y)-V-V/β as t -> 0.

In [10] we gave an upper bound Cta{x^){X-{d-X)/^ for this case.

Next we choose y in (R \ {0})d. Then, similarly to the above, Q?(JC, v) < +oo, and we

have:

(2.13) P(\Un -y\<ε)xεd as ε -+ 0 if n > α(;c, .y),

(2.14) P(\Un-y\<ε) = 0 ifn<a(x9y),

(2.15) /7f(jc, v) x ta{x*y) as ί -^ 0 .

3. Proof of Theorem 1. First we prove two lemmas.

LEMMA 3.1. Let φsj be the stochastic flow of diffeomorphisms generated by xt(x).

Then for any q > 1, k e Nd \ {0}

(3.1) sup E[sup\(φ;}γk)(y)\^] < + o o .
(t,y)e[0,\]xRd s<t

PROOF. Consider the reversed process Zs = Φ^t

X_s)_ r ThenZs satisfies the backward

SDE

(3.2)
rs

= y- b(Zu)du +
Jo t

where Vu = z(t) — z((t — u)—), γo(x, ζ) satisfies that for μ-a.e. ζ, x H» X + Yo(x, ζ) is the

inverse map of x \-+ x + γ(x, ζ). Then [4, Section 3 (3.7)] implies (3.1).
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LEMMA 3.2. Let h > 0 and k e Nd. Denote by pr,t(x, y) the density ofxr

t{x), where

xr

t{x) is defined as (1.1) with z(s) replaced by zr(s). Then

Ϊ}βιM forO<r<l.

PROOF. Let h > 0 and r > 0. We put xr

h(x) = (l/r)xr

rβh(x). xr

h(x) satisfies

r()Λϊr(hf)) +
r

h(x) = ί br(xr

hf(Jo t r

where zr(t) = (l/r)zr(rh), br(y) = r^lb(ry) and γr(x,ζ) = (l/r)γ(rx,rζ). The

assumption (A.2) (2-b) is used here to guarantee that the scaled drift parameter cr =

rβ~ι(c - /{Γ<|£|<i} ζμ(dζ)) is finite. Then, by the definition of h ι-> xr

h(x),

P(xr

h{x) e d(y/r)\xr

0(x) = x/r) = P(xr

rβh(x) e dy).

On the other hand, y h> br(y) is in C£° (we use here the assumption for the case β < 1).

γr(x, ζ) satisfies the assumptions (A.I) through (A.4) uniformly in r. Hence by Proposition

1.1, {xr

h(x)\ r > 0) have C£°-densities ph(x/r, y : r), which are uniformly bounded with

respect to r > 0. Hence, by the above relation,

Pr,rβh(χ/r, y) = -μPh&lr, y/r : r).

This implies

Estimates for the derivatives with respect to v follows by differetiating the equality.

We are in a position to prove Theorem 1 (first part of (a) and (b)). We follow here Picard

[20].

Let In(t) = [*„, fo+i] = [ί(l - 2- r t + 1 ), ί( l - 2~w)], n = 1, 2 , . . . , and put the random

variable TV = min{n; supu(Ξln{t) \Δz(u)\ < r}, where r = r(/i, t) = γtι/β2~n/β. Then we

have

n

P(N > n) = f ] P(sup{\Δz(u)\; u e Ik(t)} > r(*. t)})
k=\

n
= Y\(l-exp(-\Ik(t)\μ{\ζ\ > r(

k=\

k=\

by the Poisson representation of z(s). Since μ{\ζ\ > p} x p~β ((A.I), (A.2)), μ{\ζ\ > r} <

cγ~β2kt~ι,andhence

P(N >n) <cnγ
nγ~nβ
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We put the interval IN = [Sf, S]. We denote by ψn : Rd -> Rd the flow of zr{nJ)(s)

from tn to tn+\ (that is, xr£"f(x) = ψn{xr

t^
nJ))\ so that xs(x) = ΨN(XS'(X))- τ h e truncated

process xr

t(x) has a C£° density pr,t(x, y) by Proposition 1.1. Hence

P{ψn{x') e dy) = /V(/i,o,|/,i(O|(*'> 3θ^y

Then

' = n, xtn (x) = x)

On //v, z(5 ) makes no greater jumps than r = r(N, t), and hence

P(xs(x) edy\N = n,xs>(x) = x) = Pr,\

Since \IN\=t/2N = (r(N,t)/γ)P,

P(xs(x) e dy\N)/dy = ( / y )

Denote by φsj the flow of diffeomorphisms generated by Xt(x), so that Xt(x) =

Φs,t(xsW) f°Γ t > •S' Then, by changing the variable j = φ~^\ (v) and taking the expectation

with respect to N in both sides of the above,

(3.3) pt(x,y) = E[p_ ,Lγ(xs'W, 4>s}(y)) ' I fet(J(φl\)(y))\].

Here Jφ~ι(y) = (90~1/^O(> ;) denotes the Jacobian matrix of 0 " 1 at y. We remark this

change-of-variables calculation is possible, since, conditionally on N, φs,t is independent of

xs(x) and *£/(*).

Here sup(ί y)e[0 l]xR(ι E[\ sup5<f | άQt(J(φ~ι

t))\(y)\^] < +oo for all q > 1 by Lemma

3.1 with \k\ = ϊ. We also have, for λ > 0,

for 0 < r < 1 (Lemma 3.2).

Choose A = γ~β and r = r = r(Λf, ί). Then we obtain by (3.3)

Pt(x,y) < E[Cγr(N,tΓd\det(J(φ-]))\(y)\]

We choose γ > 0 so that Hκ" ί / 2 y V ί / ^ | | L 2 ( P ) < M, and hence pt(x, y) < Cot~d/β.

The proof of the second statement of (a) is given below.

For the derivatives with respect to y (case (b)), we also have from Lemmas 3.1 and 3.2

that

p\k) < Q, y r^ + l*">/' ϊ | | y-< ί ' + l* l>2^ ί / + ' *»^ | | L 2 ( p ) .

Again, by choosing large γ, we have the conclusion (b).

We next prove the second part of (a). We first have

LEMMA 3.3. Consider an Rd-valued infinitely divisible random variable Θt indexed

by t > 0, and another Rd-valued random variable Yt. We assume that
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(i) Yt has a C£° transition density uniformly in t,

(ii) \\Y,-Θ,\\Lι ^Oast^O,

(iii) for the Levy measure μt ofΘt, there exist a compact K C Rd, and M > 0 such

that suppμf C K, and f \x\2μt(dx) < M (uniformly in t < 1), respectively. We further

assume that μt satisfies (A.I) and (A.2). Then the density ofYt is bounded away from zero as

t -> 0 on any compact set.

For the proof, see [20, Lemma 6]. The conclusion essentially follows from the uniform

boundedness of μt (dx).

From the assumption (A.I) we have μ{\ζ\ > p} x p~β, and hence we have μ{\ζ\ >

r(t)} < Cr~β. We put At = {sup5<f \Δz(s)\ < r(t)}. Since t μ{\ζ\ > r(t)} < C, we have

P(At) > 0 uniformly as t -• 0.

On At, z(s) = zr(s), xt(x) = xr

t(x) on [0, t]. Since xr

t(x) and At are independent,

(3.5) pt(x, y) > P(At) P(xr

t(x) € dy)/dy > cP(xr
t(x) e dy)/dy

with some c > 0. Hence we have only to prove that the density of Xt = t~x^(xr
t(x) — x) is

bounded away from zero at 0.
Xt has a C£° density for each t > 0 by Proposition 1.1. We shall approximate it by

some infinitely divisible random variable. Put t' \-+ zr(t') by zr(tf) = (l/r)zr(rβt'). For

each t' > 0, zr(tf) is an infinitely divisible random variable, whose Levy measure μr(dζ) =

l{\ζ\<\}μ(rdζ) at t' = 1 satisfies assumptions (A.I) and (A.2). We introduce

Θt = %(x, 0)zr(l) = %(x, 0)(Γι^zr(t)).
dζ dζ

Then Xt - Θt converges in L1 to 0 as t -> 0 (to b(x) in case β = 1) (cf. [20, Lemma 7]).

Furthermore |(θ>//af )(JC, 0)| is bounded and ((3y/3f )(JC, 0))((dγ/dζ)(x, 0))* is uniformly

elliptic by the assumption (A.3). Hence by Lemma 3.3, we conclude the density of Xt is

bounded away from 0 at zero as t -> 0.

4. Proof of Theorem 2. (a) For n > a(x, y) we have P(\Un - y\ < ε) > c for

ε e (0, 1], since μ has point masses. Hence pt(x, y) > cta{x>y)~d/β by Lemma 2.1.

For the upper bound, if n < a(x, v), then by choosing Kn small, we have y £ ζjf .

That is,

P(\Vn -y\<ε) = 0 for ε > 0 small,

and we may choose /„ = +oo in (2.4) and (2.5). On the other hand, if n > a(x, y), then we

must choose γn — 0 in (2.4) (φn = id must satisfy it).

Hence we may choose Γ = a(x, y) — d/β in the conclusion. These imply

(4.1) pt(x,y)^ta{x<y)-d/β.

(b) We set St,k = ([0, t]k/ ~) and St = LJ*>o5α» where ]J^>0 denotes the disjoint

sum and ~ means the identification of the coordinates on the product space [0, t]k by the

permutation.
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Let r = r(t) = t1^. The distribution Ptr of the moments (instants) of jumps related to
zr(s) during [0, t] is given by

f
J{#

f
J{#St=k}

(4.2) = ή J
*τr / ••• / / ( ί i . ,

where / is a function on St,k (a symmetric function on [0, t]k). Given St e <Sr, we introduce

the process xs (r, St, JC) as the solution of the following S.D.E.:

jc,(r, St, x) = x - J du j l{\ζ\>r}(ζ)y(xu(r, St,x), ζ)μr(dζ)

(43)

+ Σγ(xu-(r, St,x), Δzr(u)) + Σ Y^s.Λr, St,x),ξ[),
u<s SieSt,Si<s

where (ξn)neN denotes a series of random variables (i.i.d.) obeying the probability law

We remark that ;c5(r, ^ , JC) is a martingale for each 0 < r < 1, due to the assumption b(x) =

0. We define a new Markov chain (Ur

n)neN by Ur

0 = jcandί/^+ 1 = Ur

n+γ(Ur

n,ξ
r

n+x),n e N.

We can prove due to Proposition 1.1 that under (A.I) through (A.4) the law of xs (r, 5 r, x)

for (ds-a.e.) 5 > 0 has a C£°-density, denoted by ps(r, 5 r, JC, V).

Indeed, let 0 < s < t. In the case St = 0, we can choose l{|£|<r} μ(dζ) for the

measure μ(dζ) in Proposition 1.1. Hence we have the existence of the density for the law

Λ ( r , 0, x, dy) of xs(r, 0, JC) (= JC5(r, St, x)\st=iή) : Ps(r, 0, *, rfy) = p,(r, 0, JC, v)^y.

Next we consider the general case. Since zr(s) and zr(s) are independent, we have

by Markov property that the law ps(r, St,x, dy) = P(xs(r, St,x) G dy) of xs(r, St, JC) is

represented by

ps(r,St,x,dy)

= I dz'o I pSι(r,0,x,zΌ)gΛz'o,dzi) / dz\ / pS2-sl(r, 0,z\,z\)gr(z\,dzi)
z' z\

• / dznχ_x /
J J P 1

zznχ-\

if Sf € 5 f f Π I (cf. [8, (2.7)]). Here ^r(jc, dz) = P(x + γ(x, ξ[) € dz).
On the other hand, we have by the independence of zr(s) and zr(s) again

ps(x,dy) = ί Ps(r,St,x,
JS,
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using the factorization of the measure TV (cf. [11, p. 71]). By Proposition 1.1, L.H.S. has

the density ps(x, y) with respect to dy. Hence ps(r, St,x, dy) is absolutely continuous with

respect to dy (dPr,r-a.s.). Hence we have by the derivation under the integral sign

Ps(x,y)= ί (Ps(r,St,x,dy)/dyHy)dPtASt).

We denote by ps(r, St, x, y) the derivative ps(r, St, x, dy)/dy(y) which is defined uniquely

dPt,r ® dy-a.e. (Since dPt,r\st k is the uniform distribution on St%k, Ps(r, St, x, y) is defined

uniquely ds <g> Jv-a.e.) Since y ι->- ps(x, y) is smooth, so is v h^ ps(r, St, x, y) ds-a.s.9 and

hence ps(r, St, x, y) is defined as a smooth density ds-a.e.

Thus by taking s = t

(4.4) Pt(x,y)= /

where

pt(k, r, x,yj= I p,(r, S,,x, y)dP,,r(St) •

Hence

pt(x, y)dy = Ep'r[P{xt{r, S,,x) 6 dy)]

= Ep'-rE^ > [P(x,(r, S,,x) € dy\S,, ξ[,... , %Sι)].

For each 5, e St, we put n\ = k if St e <S,yt. We then have

(4.6) = E^®*St [P(xt(r, St, x) e dy : \y - Ur

n{ \ < tι^'\St9 ξ{9... , ξr

nχ)}

[P(Xt(r, St, χ)edy:\y- Ur

n{ | > tx^'\St, ξ\,... , £ ,

First we have to compute P(\y-Ur

nχ \ < t1^') = E^9"1 [P(\y - Ur

nχ\ <tW\ξ[,... ,

ξnχ)] for a given y = xt(r, St, x) with St e 5 r, r t,. We denote by the random variable Wn the

number of an in (ξ/")^ .

Given n\ e N, let (wn)%=0 and u^ 6 iV U {0} be a series of integers such that n\ —

Σn=o wn- We then have

P(for all n < N, Wn = wn and \y -Ur

nχ \ < tx/β>)

n=0
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since each Wn is a Poisson random variable with mean tkn. Hence

logP(for all n < N, Wn = wn and \y - Ur

nχ \ < tι/β>)

N

(4.7) < — Tj(w« log(\/(tkn)) + \og(wn!) + tkn)
n=0

N

= ~ Σ(wn log(l/(ίtΛ)) + log(wn!)) + 0(1).
n=0

We introduce the set W of all (wn)^=0's such that for some n\ e N, Ur

nχ directed by the

following condition (*) satisfies \y — JJr

nχ \ <tχlβ'\

(*) wn = (# of απ 's which appear in £ [ , . . . , ξ^)mdn\ = Σn=\ wn-

Then it follow from (4.7) that

there exists (wn) e W such that for all n < N,

(4.8) N

< — min2^(u>n ^og(l/(tkn)) + \og(wn\)) + 0(log

On the other hand, we have

(4.9) P(Wn > N3 and \y - Ur

nχ \ < tx/β') < Ce~N" < Ct

since Wn is a Poisson variable with mean tkn. Since this is very small relative to the prob-

ability above, we may put the restriction wn < N3 and n\ < N4. Hence we may write

\W\ = O«N3)N), and

log|W| = O(N\ogN) = 0(log(l/Ologlog(l/O).

Let xt(r, 0, JC) denote the process defined by (4.3) with St = 0, and pt(r, 0, JC, v) its

density. By Theorem l(a), pt(r, 0, JC, y) < Ct~d/β as t -> 0, and this implies, for given

St e 5 f f Λ l , § [ , . . . , ^ , t h a t P(xt(r, St,x) e dy\St,ξ
r

{,... ,ξr

n{)/dy = 0 ( ί " J ^ ) a s ί -• 0.

Since zr(u) and (ξ[) are independent, by (4.4) and Fubini's Theorem we have

^ [P(*,(r, St, x) edy:\y- Ur

nχ | < tx^\Su § [ , . . . , ξr

nι)]/dy)

N

< log lrd"> exp(- min J^(wn log(l/(ί*π))

(4.10)

-0(log(l/Ologlog(l/ί)))J

< - m i n £ ( u ; π log(l/(ί*n)) + log(u;rt!)) + 0(log(l/ί)loglog(l/O).

For the second term, we have the following lemma, whose proof is given in Appendix.



198 Y.ISHIKAWA

LEMMA 4 . 1 . Given y = xt(r, St, x), St e S, ί Π l and Ur

nχ = Anχ (x, ξ[,... , ξ^), there

exist k > 0 and Co > 0 such that for every p > k

- [ p Q y _ ^ ! > tl,β> ! 5 ί ! ^ _ ^ } ]

<niC0exp[-Q?-*)(log(l/ί))2]

as t -+ 0.

Given £ [ \ . . . . ^ . w e h a v e a s above £ p ' r l 5 ' -i[P(*,(r,S,,jc) €dy |S, ,§f , . . . ,fB
r,)/</y]

= O(t~d^)ast -*• 0. We integrate this with respect to (μr)®"< on {\y-U^\ > t1^'}. Since

zr(u) and (ξ[) are independent, we then have by Lemma 4.1

-dlβ exp[-(/7 -

as ί ->• 0.

We get

2

ξr

nι)]/dy)

< -(p - k)(log(l/t))2 + max logm + logC^ + O(log(l/ί))

< -(p - *)(log(l/ί))2 + O(log(l/f)),

since max Π ] < A / 4logni = logΛ^4 = O(log( l/ ί)) Since p > k is arbitrary, this can be

neglected in view of R.H.S. of (4.10) and (4.6).

After summing up £ P ' r l 5 ' » i E(μr)®"' [...] with respect to n\ = 0 , . . . , N 4 , we get

r)0*S' [P(xt(r, S,, x)edy\ St, ξ\,..., %Sl

N

(4.11) < -miny](u;nlog(l/(ίA:n)) + log(wπ!))

+ O(log(l/f)loglog(l/f)) + O(log(l/f))

In
(4

view
.12)

10]

of (4.5) and

gPt(x,y) <

(4.9),

w

we get

N

n=0

) + log(wB!)) + O(log(l/ί)loglog(l/f)).

Since there is no difference between the trajectories of the deterministic chain Anχ(x,ξ\9... ,

ξnι) and Ur

nχ obtained by using {αn; n = 0, . . . , N] under (1.14), we have the assertion.

5. Appendix. Proof of Lemma 4.1. We fix 0 < r < 1, and put ξ(r, , JC) = x +

γ (JC, •) when is occupied by the random variables ξ[.

Choose St = 0 and consider the process s f-> xs(r, 0, x) as the solution of (4.3). Given

(s\, y), the solution for 2̂ ^ l̂ with the initial value z at s = s\ is given by a smooth
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(2) C a s e n\ > 1. A s s u m e St = {t\,... , tnχ} with t\ < -•• < t n ι . Given § [ , . . . , ^ ,

w e put

(a.5) Inι = ί / ; - * , ( r , S , , * ) ,

and

( II II \ / ^

sup — ( r , ζ, JC) , 1 I = max I sup
x* I I d x II / V^,^

which exists by the assumption on γ. Here || || denotes the norm of the matrix. In rewriting

(a.5), we have by an elementaly calculation
\hx I < sup |0 r j(y) - y\ + M sup 1 0 * , , * 0 0 - y\

y y

+ M2 sup \φtnχ_2,tn{-χ (y)-y\ + -- + Mnχ sup | 0 o , r i (x)-x\.

We assume \Inχ \ > tι/V. Then for some j e { 1 , . . . , n\},

(a.6)

Indeed, if for all j, supy \φtj_utj{y) - y\ < (l/n\)M-nHx^\ then

\Inχ I < s u p \φt j ( y ) - y\ + M s u p 1 0 * , , * ( j ) - y\
y y

+ M 2 sup |0, _2,r _, (y) - y | + . . . + M"1 sup |0offl_ 2 , r

' ί 1 ^ + ( l / n , ) M - ^ + 1 ί 1 ^ + + (l/m)tW

which is a contradiction. Hence

< £p'-'|s<.»i Γ/> I there exists; such that sup\φtj_hlj(y) - y\ > ( l / n O M " " 1 ? 1 ^ ' J

sup |jcs(r,0,Λ)-x| > (l/nι)M-nιtι/β>).
s<t,x /0<s<t,x

We choose β" = β"(n\) such that β < β" < β' and ί 1^ < ί1^"

f'/̂ ' for ί > 0 small. Then by the proof of (a.2)

as ί ->• 0. This proves (a.l).
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