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FUNCTIONSMONOTONE CLOSE TO BOUNDARY

OLLI MARTIO, VLADIMIR MIKLYUKOV AND MATTI VUORINEN
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Abstract. Functions which are monotone close to boundary are defined. Some oscil-
lation estimates are given for these functions in Orlicz classes. Criteria for monotonicity close
to boundary are obtained.

1. Mainresults. Let D c R? be a domain in the Euclidean plane. B we denote
. -2 .
the boundary oD in the extended plan@” = R? U {co}. For a subdomaimt c D, we set

dA=03A\3dD and 3"A=9ANdD.
For an arbitrary functiorf : D — RandA c D, A # ), we put
osa f, A) = sup limsup (f(a;) — f(b))).

a,beAaj—a,bj—b
where the limsup is taken over all sequenggs— a,b; — b of points inD. LetI" be a
subset o D. A continuous functiory : D — R is calledmonotone close to I if for every
subdomaimA c D withd”A C T,

(1.1) osq f, A) < osd f,d'A),

see Martio et al. [10].

If ' = ¢, then we have the well-known class of monotone functions in the sense of
Lebesgue. IfI" = 9D, then every function, monotone close K is a constant. This is
evident, since, choosing = D \ {xo} wherexg € D is an arbitrary point, it follows from
(1.1) that

0sd f, A) = osd f, {xo}) =0.

For another generalization of monotonicity in the sense of Lebesgue, see Manfredi [8].
Fora,b € D we let

pp(a,b) = infdiamy ,
%

where the infimum is taken over all argsC D joining a andb. The quantitypp (a, b) is
called theinner distance betweeru andb. Clearly, pp defines a metric irD. For arbitrary
setsA, B C R? we let

dist(A, B) = supdist(x, B) .

xeA

2000Mathematics Subject Classification. Primary 31C45; Secondary 46E30.
Key words and phrases. Dirichlet integral, monotone function, oscillation estimate.
The authors are indebted to the anonymous referee for a set of useful remarks.



606 O. MARTIO, V. MIKLYUKOV AND M. VUORINEN

Forasetl” C 9D, D # ¢, and points:, b € D we set
Sp(a,b; I') = limsupdisty;, dD\ I'),

where limsup is taken over all sequendes} of arcsy, C D joining a andb such that
diamy; — pp(a, b).

We will employ functions with Sobolev derivatives in some Orlicz classes, see [4, Chap-
ter 1]. A function® : R — Ry is called anV-function if it admits the representation

7|
(1.2) D(r) = / p®)dt ,
0

wherep : (0,00) — (0, 00) is a positive non-decreasing function, continuous to the right,
such that

(1.3) p(O+) =0, p(oo) = lim p(1) = oo.

Let D C R? be an open set. L& be anN-function. Recall that a functiofi : D — R
is ACL (absolutely continuous on lines) if for each cu@e 0 c D, and forj = 1,2 and
for all z in the projection ofQ into {x; = 0}, except a one-dimensional set of measure zero,
t = f(z+tej),z+tej € Q, s absolutely continuous. We say that a continuous function
f : D — Rbelongs toACL? (D) if fis ACL and

/ D(|V fl)dx1dxo < 00.
D

HereV f stands for the formal gradienfy,, f;,), which exists almost everywhere . A
continuous functiory belongs toACL? if f € ACL? with @ = 17, p > 1. The clas#CL?
coincides with the clasBL introduced in 1906 by Levi [7] (see also Nikodym [13], Deny and
Lions [2], Lelong-Ferrand [6], and Suvorov [14]). F8¥Ffunctions® of the general form, see
Miklyukov [11], Kruglikov and Miklyukov [5] and Astala et al. [1]. The boundary behavior
of monotoneACL” functions has been studied by these authors and others (see, e.g., Manfredi
and Villamor [9] and Mizuta [12] and references therein).

Our main result yields the following inequality for functions monotone close to bound-
ary.

THEOREM 1.4. Let D be a subdomain of R?, I' c 9D an open Jordan arc, and
f € ACL? (D). If f ismonotone closeto I”, then for every pair of pointsa, b € D with

pp(a,b) <épla,b; I,
the following estimate holds:
(1.5) | f(a) — fD)| = ko(pp(a, b); dpla,b; I'), P, 1),
where
1 :/ Q(|V fdxidxz,
and o is the function defined by (3.1). ’
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Suppose thab is convex. Themp(a, b) = |b — a| and
Sp(a, b; I') < 2min{dist(a, 3D \ I'), dist(b, 9D \ I')}
provided that the condition
pp(a,b) < %8D(a,b;TU

holds. If D is convex and® satisfies some additional conditions, then the estimate (1.5)
implies thatf has a continuous extensionfb Specifically, if D is convex, then we suppose
that for alla > 1 and allz > 0,

(1.6) @ (at) < coa’d (1)

with some constanty independent of andz, and that

(1.7) /w LSRN,
1 T

COROLLARY 1.8. Ifinthe situation of Theorem 1.4, D is convex and the N-function
@ satisfies (1.6) and (1.7), then f hasa continuous extensionto I".

In what follows we give two sufficient conditions for monotonicity close to boundary.

THEOREM 1.9. Let @ and ¥ be arbitrary mutually complementary N-functions. Let
D C R? beasubdomain of R?, I' ¢ 9D and f € ACL? (D). Suppose that there exists a
vector field A(x) : D — R? of the class LY (D) such that for almost all x € D at which

Vi) #0,

2
(1.10) Z £l ()Ai(x) > 0.

i=1
If for every subdomain A ¢ D such that 8’ A is locally rectifiable and 9”A ¢ I', and for
every ¢ € ACL? (A)NC(AU Y A)

2
(1.11) / $(A(x), n)ldx| = / > ¢l Ai(0)dxadaz,
A Ai:l

then f ismonotone closeto I'.

Because the assumptions in Theorem 1.9 are rather complicated, we illustrate the
theorem with an example.

ExAMPLE 1.12. LetD C R?be a bounded subdomain with smooth boundary and let
I C 9D be an open proper subarc. Lgte aC(D U I') solution of the equation

div(IVfIP7?Vf) =0, p=1.
Suppose that the normal derivati¥g/dn| = 0. If we now choose

A(x) = VF(x)|Vfx)|P72,
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then

2
DAL @A) =V IP
i=1
and the assumption (1.10) holds. Next, for every functboand every subdomain as in
Theorem 1.9, we have

¢(A(x), n)|dx| =/ GV FIPHV £ (x), n)|dx|
A A

9’

:/¢div|Vf|P*ZVfdxldx2+/ IV FIP~2(Ve, V f)dxidxo
A A

2
= / Z q);i A;(x)dx1dx> .
A

i=1
This formula implies (1.11) and by Theorem 19is monotone close td'.

In order to state the next result, 16t ¢ 9D and leth : D — (0, c0) be a locally
Lipschitz function such that lig, - 2(x) = 0 and

(1.13) O<hg < es[s)inﬂVh(x)| < esssupVi(x)| < h1 < o0,
D

wherehg andhq are some constants. We Bt = {x € D ; h(x) =1t}.

THEOREM 1.14. Let f € ACLfc’)C(D), p > 1, be a bounded function. Suppose that
there exists a vector field

A=(A1,A2):D—>R? Aeli(D), q=p/(p—-1)
such that

2
1)V <Y 1 () A(x),

i=1
2 1/2
<2Ai2(x)) <o)V )Pt
i=1

for some continuous functionso; : D — (0,00), j = 1,2, and that (1.11) holds for all
functions ¢ € ACLP (D), suppp cC D, and for all subdomains A cc D with locally
rectifiable boundaries. If

o? 1/(1-p)
(1.16) /dt(/ —zldHl(E,)> = 00,
0 DNE, of

then f ismonotonecloseto I'. In particular, if I = 3D, then f = constant.

(1.15)

Lety be a simple open Jordan arc lying in the upper half-plane with endp@irds and
(a, 0) on thexz-axis. We set

I'={(x1,x2); 0<x1 <a,x»=0},
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and denote byD the subdomain oR? lying betweeny and I". Choosingh(x) = x» in
Theorem 114, we obtain the following result.

COROLLARY 1.17. Let f beasin Theorem 1.14. Suppose that there exists a vector

field
A= (A1 A):D—>R? AeLiD), q=p/(p—1),.
satisfying
2
o1 (x| VFE)IP <Y fl (0)A(x),
(1.18) =t

2 1/2
(Z A?(x)) < 02(x2) |V F ()71
i=1

with some continuous functions o1, o2 > 0. Suppose also that for all functions¢ € ACL” (D),
suppp CcC D, and all subdomains A cc D with locally rectifiable boundaries, the relation
(1.11) holds. If

(1.19) /L(t)dt — 00,
0

p/(p—1
05 / )(t)
then f ismonotone closeto I".

EXAMPLE 1.20. LetD be as in Corollary 1.17 and Igt be aC* solution inD of an
equation
div(c|VfIP2Vf) =0, p=>1,

with a continuous weight functios(x) = o (x2). Setting

Ai(x) = o|VFIP2fL
we find

2
Y flAi=o|VfI’ and |A|=o|VfIPTL

i=1
Thus, (1.18) holds witlr; = 02 = 0. The assumption (1.19) takes the form

/o*l/(f’*)(z)dt =00,
0

which guarantees thgtis monotone close té'.

2. Length and area principle. Each N-function is convex. The first condition in
(1.3) means that

]
2.1) im £ _ ¢,
=0 T
and the second condition means that
]
2.2) im 2@ _

T—>00 T
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For every non-decreasing functign: (0, co) — (0, c0), which is continuous to the
right and satisfies (1.3), we find another functipn(0, co) — (0, c0), s > 0, such that
q(s) = supt.
p()<s
It is easy to see that(s) also satisfies (1.3). The pair df-functions

7]

I
d(7) =/ p()dt and W(t):/ q(s)ds
0 0

are callednutually complementary.

We give several estimates fACL?-functions, which are needed for studying functions
monotone close to boundary. For this purpesefirst recall Orlicz classes. Fix a Lebesgue
measurable set c R? and an arbitraryV-function ®. Then theOrlicz class L? (A) is
defined to be the set of Lebesgue measurable functiamsi such that

I(u, A; @) = / Dlu(x)]dx1dxr < c0.
A

In applications the functions
®(t) =72In*(e + 1)
play an important role, and the classe®(A) associated with this particulab are called
Zygmund classes [1].
Let @ (r) and¥ (r) be mutually complementar -functions. ByL? (A) we denote the
set of the functiong (x) satisfying

/ u(x)v(x)dx1dxz| < oo forallv(x) € LY (A).

A

Next, we set

(2.3) lulle.a =  sup /u(x)v(x)dxldxz .
1w, Aw)<1|JA

After introducing equivalent norms, the clas€ (A) is converted to a linear norm space (see
[4, Chapter 11]). Namely, the definition (2.3) of the norm implies that:

(1) llulle,a = 0if and only ifu(x) = 0 almost everywhere 0A;

(2) lleulle,a = lallulle,a;

(3) llur+uzlle,a < lluille,a + luzlle,a.

For the next lemma we refer the reader to [4].

LEMMA 2.4. (i) Foreachu € L?(A),
(2.5) lullo,a < / @ (u)dxidxz + 1.
A

Inparticular, L? (A) ¢ L?(A).
(i) If|ull¢.a <1,thenu € L?(A) and

2.6) / S (u)dx1dxz < Jullo.s .
A
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In particular,

/fp[ 4O eidns < 1.
A

lullo,a

(iii)  For every pair of functionsu € L?(A) andv € LY (A),

2.7 /M(X)U(X)dmdxz < llulle.allvlie.a -
A

LEMMA 2.8. Supposethat adomain D c R?isof finitearea, @ isan N-function and
f € ACL?(D). Then f € ACLY(D).
PROOF. Since® satisfies (2.2), there exisys> 0 such that

T
D (1)

<1 forallt >g4.

Writing
Di={xeD;|Vf(x)l=q}, D2={xeD;|Vf)|>gq},

we have

/ |V fldxidx2 :/ |Vf|dx1dx2+/ |V fldxidx2
D Dy Dy

V7l
dx1d —————®(|VDdxid
sq/Dl x1 xz+/D2q>(|Vf|) (Y fdx1dxa

<qH* (D) +C / ®(|V f)dxidxz,
D>
whereH? is the two-dimensional Lebesgue measure and

V0]
C = _
S SAVImD

Hence, we obtain

/ IV fldxidys < gH2(Dy) + / ®(\V f)dx1dxa
D D

2

< qH?(D) + /D @ (|V f)dx1dxo

and f is ACL! as required. O

EXAMPLE 2.9. The functionsb(r) = 2 and®(r) = t2/In(e + |r|) are typical
examples ofV-functions satisfying (1.6) and (1.7). This is evident @) = 2. We verify
the necessary conditions fér(r) = 72/ In(e + |7]).

First, we observe that this function satisfies (1.3). Indeed, the derivatigémfhas the
form
2In(e+1) —1t/(e + 1)

In?(e + 1)

P (t)=r1
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Clearly,®’(0+) = 0. Next, we note that
Ine+71)>1 for t>0.

Hence, for allt > 0,
2e+1t)Inte+1)—1 2e+1)—71
T >T

(e +1)InN%(e + 1) (e + 1) In(e + 1)
2e+1

T >0
(e +1)In(e + 1)

(1) =

from which we see
@' (00) = lim @'(1) = 00.
T—>00
Secondly, we verify (1.6). For every> 1 we have
@ (at) = a’t?/In(e + alz]) < a®t?/In(e + |7|) = a’® (7).
The property (1.7) is evident.

We denote bySp(a, r) the intersection of the circl§(a, r) and the seD ¢ R2. Fix
¢ andegg such that 0< ¢ < g9 < oo. Suppose that for alt € (e, g9) the intersection
Sp(a, t) # 0. We set

Deey= |J Sp@.1). Ia.r)=H"Spar).
£<T<EQ
Let o1, 02, ... be the components &fp(a,r). ThenSp(a,r) = |J; o; and for a function
f: D — Rwe set

Wi(a,r) =) 0sqf, o).

We prove the following version of the Length and Area Principlef6L.? -functions. A
closely related class of futions was considered in [5].

THEOREM 2.10. Let @ be an N-function. Then for all f € ACL®(D) andall 0 <
£ < gp < 00,

(2.11) / "o (M> la, T)d = 1(Deeg)
e l(a, 1)

where
I(Dery) = / O (Y f|)dxidxz.

De eq
PROOF. We may assume that = 0. Lemma 2.8 shows that a functigh ¢ ACL?

belongs toACLﬁ)C(D). Let (r, #) be polar coordinates iR? and setf* = f(r, 6). Now f* €

ACLﬁ)C(D) and, in particularf* is absolutely continuous on each line segment 6 < g

on Sp (0, 7) for almost allz. Hence, for almost alt € (¢, ¢g), we have

W00 =Y osafo) <Y [ 19 fiaxl <

SD(O,‘L’

)IVfIIdXI.
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Recall thats; are the components ¢6f, (0, 7).
Jensen’s integral inequality yields

[z a)dH?! 1 / 1
*( ey ) = i J, P

for an arbitraryN-function @ and every integrable functiom [4, (8.2)]. Using (2.12) for
almost allz € (¢, gg), we obtain

¢<M> <q>< ! |Vf||dx|)< !
l(ov 7:) - l(ov 7:) SD(O,‘E) - l(ov 7:) SD(O,‘E)

The functions on both sides of this inequality are measurable with respecktdze, ).
Multiplying this inequality by/ (0, t) and integrating ovete, o), we obtain

/"@(L‘(O’ ”)uo, ndrs [Car [ oavsixi= [ e(vhdndre.
. 1(0, 1) e Sp(0,7) De,eq
O

(2.12)

@ (VfDldx].

The following might be the most useful corollary of Theorem 2.10.
COROLLARY 2.13. For every N-function @ and f € ACL? (D),

(2.14) /EO @ <M> rdt < %I(Dg,go).

27T

PROOF. EveryN-function® satisfies
(2.15) D (at) < a® (1)
forall t > 0 anda € [0, 1]. Indeed, write® in the form® (7)) = [0’ p(t)dt asin (1.2). Then

at

ad(r) = /Tp(t)d(at) z/ plat)d(at) =/ p(t)dt = @(at)
0 0 0

as required. LeW > 0. From (2.15) we conclude that

(p(ﬂ):q)( w l(a,r)) 505( w >l(a,r).
27t l(a,T) 27T l(a,7)) 2nt

Hence,
W ) W k]
o (WrlaDN, o (W@ DN,
27T7: l(av 7:)
and the desired conclusion follows from (2.11). O

3. Thefunction kg. Here we study the inequality (2.14). For akfunction ® and
an interval(e, g) with 0 < ¢ < &g, we set
€0 K 1
(3.1 ko(e; €0, @, 1) = supik ; / P (—) tdt < —14¢,
e 2nt 27
where

1:/ @(|V fdxrdxs .
D
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It follows from (2.1) and (2.2) that the function

F(k) = /8003 (;—T) dt

is continuous and strictly monotone. Moreover,
F0)=0 and F(oco) = lim F(k) =o00.
K—> 00
Now ko(g) = ko(e; €0, @, I) is the unique positive root of the equation
(3.2) F(x) = (1/(2r)).

The functionF («) has the following properties.

(i) For every N-function @ the function xo(e) = «o(e; €g, @, I) is continuous and
strictly increasing on (0, gg). Moreover, o depends continuously on o.

The proof is evident.

(i) If an N-function @ satisfies (1.7), thenlim,_ gxo(e) = 0.

Indeed, suppose that there exists a numiber 0 such that for all sufficiently small
e >0,

ko(e) >m > 0.

Then by the definition (3.2) ofg(¢) and the monotonicity o, we have

/;SO(P(%)TCZTS%I.

Substitutingg = m /2t in this inequality, we find

m 2 am/2ne d (1)
() ]

1

—3dt < —1 forall 0<e <¢gp.
m/2meg t 2

Lettinge — 0+ we obtain a contradiction to (1.7).

(i) If an N-function @ satisfies (1.6), then

1\ P
lim inf «o(e) <In —) =00 foreveryp >1.
e—>0+ &
Indeed, suppose that this is not true; that is, for some sequgnee 0 of positive

numbers the inequality
1\*
Ko(gi) < C<|n g_)

holds with some constant> 0. From (3.2) we obtain

0 (ko(ei) 1
. P =—]
33 /;l. < 27T )rdr 2

and hence
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Whenegg < 1, from (1.6) and (2.15) we have
1 Y 1\ c (1PN [eoar
—I < o —|In— 1dt < co®| — | In— —dt
2 & 2nt & 2 & 6 T
1N? ey, 1 NP /e
<col| In— Dl —)In— <ce| In— ol — ).
& 2 & & 2

Whenegg > 1, we also have
1I</lq> ¢ Inl_/3 d+/80q5 ¢ Inl_ﬁ d
— — — tdt — — tdt
2t T Jg 21T & 1 2nt &
<ot )t 1_ﬁ+ int _ﬁfeoqb € Vea
c — — — — |rdr.
= e 2 & & 1 2nt

For 8 > 1 we obtain a contradiction as— oo.

(iv) We assume here that avrfunction @ satisfies (1.6) and (1.7). Then it is possible
to find a majorant fowg(e). For this fix 0 < ¢ < gg and setkg = «o(e). Substituting
t = ko/2r 7 in (3.3), we have

Ko/2re d(t
2rl =K§/ Ldt
K

0/2m 0 r3
By property (ii) there exists a numbei = «1(go) such that

ko(e) < 2mgg forall 0 <& < a1,

and hence for all sufficiently smadl> 0,

Kko/2me d(t
2l > K&/ %dt
1 t
By (iii), we see that
Kko(e )
e—>0+ f

and hence there exists a number= a»(gg) such that

ko(e) > 2m+/e forall 0<e < ap.

Therefore, for all sufficiently small > 0, we find

l/\/_(p[
2nlz;c§/ t(3) t,
1

and arrive at the estimate

1/e 172
(3.4) ko(e, e0; @, 1) < <2n1// qj(t) ) ,

which holds for all 0< ¢ < min{a1(gg), @2(c0)}.
From (3.4) we obtain the following.
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REMARK 3.5. FortheN-functions® satisfying (1.6) and (1.7), and for all> 0 with
0 < ¢ < min{a1(e0), @2(c0)}, the inequality (2.14) can be written in the form

UVe ¢ 172

(3.6) inf We(a, 1) < (2711// %dt) ,
e<t<eg 1 t

where

1:/ DV f)dx1dxz.
D

4. Proof of Theorem 1.4. Fix a number: > 0 such that
ppla,b) +h <dpla,b; I') —h,
and choose an ate C D connecting: andb with
diamy < pp(a,b) +h.
Let xo € y and consider a family of circlgsS (xo, 7)}, wheret € [, 9] and
e =ppla,b)+h, e=20dpla,b;I")—h.
By Corollary 2.13 and definition (3.1) we obtain

inf  Wy(xo, 7) < Ko(e; 0, P, 1)
TE(e,€0)

For everyr € [g, go], each circleS(xg, v) separates points b fromdaD \ I". Hence, we can
find a component of Sp(xg, t) separating:, b fromdD \ I". Because < [e, go], the ends
of o lie onI". We denote byD,, the set of the points which are separatedbiyom oD \ I".
The functionf is monotone close té’ and therefore,
0sd f, Dy) < 0sdf, 8'Dy) .

Hence we have
|f(a)— f(b)] < inf osdf D,)< inf osdf,d'Dy)
T€(e,80) €(&,80)
< infiee,e0) Wr(x0, T) < Kko(e; €0, D, I)
<«ko(pp(a,b)+h;épla,b; ') —h, P, I).

Lettingh — 0, we obtain (1.5).
By (1.7) and by property (ii) in Section 3, we see thetop (a, b)) — 0 aspp(a, b) —
0. This means that can be continuously extendedfo

T

5. Proof of Theorem 1.9.  Fix a subdomaim of D with 3”A C I'. First we prove
that

(5.1) supf(x) = supf(x).
A 9'A
Suppose that this is not the case, that is, there exists ayptA such that
f(xo) >supf(x) =M.
A
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Chooses > M such thatf(xg) > ¢. By Lemma 2.8 the functiorf € ACLY(D) and, by
[15, Theorem 5.4.4], for almost allthe set{x € A ; f(x) = ¢} is locally rectifiable. Fix a
componentU, xg € U, of the set{x € A; f(x) > ¢}. Without loss of generality, we may
assume thal'U is locally rectifiable. Using (1.11) withh = f(x) — &, we write

2
/ Z foAi(x)dxidxz = / (f —&)(A(x), n)ldx| = 0.
Uiz U

(Since® and¥ are mutually complementary, it follows from (2.5) and (2.7) that the left-hand
integral and, hence, the right-hand integral exist.) From (1.10) it follows that

Vf(x) =0 almosteverywhere o/,

and f = constant onU, which leads to a contradiction with the definition of the
componentl/, xg € U. Thus (5.1) follows.
Since— f also satisfies (1.10), (5.1) yields

(5.2 inf f(x) =inf f(x).
A A
Finally, (5.1) and (5.2) imply (1.1).

6. Proof of Theorem 1.14. Fix a subdomaim of D with 8”A c I'. As in the proof
of Theorem 1.9, it suffices to prove (5.1). Suppose that (5.1) is not true; that is, there i4
such that

f(x0) > Mo = supf(x).
A

As above, for some, f(xo) > ¢ > Mp, we choose a componebitof {x € A; f(x) > ¢}
with a locally rectifiable boundar§U along whichf (x) — e = 0.

Fix numbers O< 8’ < 8" < h(xp) and a non-negative Lipschitz functign : Ry — R.
Definey : Ry — Rby

1 for 8 <1 < 00,
V() = {vYo(r) ford <7<4§",
0 for0<1t<¥§'.

Denotegp = ¥ P(f — &) with v = Y (h(x)) forx € U and¢ = 0forx € D\ U. Clearly,
¢ € ACL? (D) and supp cC D. Applying (1.11) top, we have

[ =eramiasi= [ wriv s adnds+p [ 977 - o9, ..

Since the contour integral vanishes, we see that
/ YP(Vf, A)dxrdxz = —p/ YP N — &) (VY. A)dxidx,
U U

< p/ YP f — el V|| Aldxidxa .
U
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Using (1.15), we then obtain
/ YPor|V fIPdx1dx2
U

= p/ YPf = el|VloalV 1P dxidxa
U

(p=D/p

O
< pM f PP e VYool V P Y x1dxa
U O(p— )/ p
1
of i/p (p=D/p
< pM(/ 2_1|V¢|de1dxz> </ I/prflIVprdeXZ) :
Uof U
where
M = sup|f(x) —e¢l,
xeU
and hence
P
0.
(6.1) / YPor|V f|Pdxidxs < ppMp/ —2_|Vy|Pdx1dxy .
U Uof
Let

UGS Y={xecU; 8 <hx), UG, 8"N={xelU; 8 <hkx)<S¥"}.

Sinces” < h(xp) andxg € U, the setU(8"”) # #. Noting the specific structure af and
using (6.1), we arrive at the inequality

oy
-1

/ o1V f|Pdxidxs < p? MP / Vol dxidxz.
U (8"

U((S/,(S//) O—f

We have|Vyo| = [|¥l|Vh|. By (1.13) together with the well-known co-area formula
[3, Section 3.2], we find that

Uzp o Uzp 15491
/U _1|V¢o|de1dx2=/8/ Iwé(f)lpdff IVR|P™"dH™(E,),

P p-1
(8,8 g UNE; oy

and then

Uzp p—1 o / Uzp 1
/ p,llvwolpdxldxz <hy / Il/fo(f)lpdff ?dH (E7).
U(s’,8") 0’1 & UNE; O’l

Thus we obtain

5//
(6.2) /U o, OV Vdnadxz < pPMPRE | E @G

where

o?
§(r) = / — 2 dHN(Er).

Eo’l
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We choose

T 8//
Yo(r) = / gl/(lp)(t)// VAP yar fors <t <4".
8 8

4 8// 17p
/ s(r>|1/fa(r>|"dr=< / sl/“l’)(r)dr) ,
S’ S8

and from (6.2) we have

8" 1-p
/ 01|V f|Pdx1dxz < pPMPhi"l( / sl/“l’)(r)dr) ,
U(s//) S
which holds for every O< 8’ < §”. Lettings’ — 0+ and using (1.16), we obtain

/ 01|V f|Pdx1dx2 =0
)

Then

and, in particularyV f = 0 onU (8”). Sinces” < h(xp) is arbitrary, we see that f = 0 on
U, which means that = ¢ onU. This is again a contradiction to the definition@fand the
rest of the proof proceeds as in the end of the proof of Theorem 1.9.

7. Twoexamples. LetD c R?beadomainwith a Jordan boundar. Let I' c 9D
bean openarc. Let £ : D — R bea continuous function, monotone in the sense of Lebesgue
in D, suchthat therestriction f|;- hasno points of strict local extremumt. Then f ismonotone
closeto I'.

For the proof letA be a subdomain ab with 8” A c I". The functionf, being monotone
in the sense of Lebesgue, takes its maximum and minimum valus.itdence there exist
X1, X2 € A such that
supf(x) = f(x1), XIQfA f&x) = f(x2).

xeA
If x1 & I', then
(7.2) supf(x) = sup f(x).
X€A xed'A
Forxi € I" there are two possibilities (a) € Clo(d’A) and (b)x1 ¢ Clo(d’A). By conti-
nuity, (7.1) holds in case (a). In case (b), there is an open neighboliaddi; on I" such
thatU c 8” A. Sincef does not have a strict maximum &h f takes greater values am
than f(x1). This is a contradiction. Hence (7.1) always holds. The pointan be handled
similarly. Thus, we obtain
0sd f, A) = f(x1) — f(x2) = sup f(x) — inf f(x)=o0saf, d'4).
xe€d' A x€d'A

Consequently, the functiofi is monotone close td'.

There exist non-constant functions, monotone close to boundary, which do not have con-

1A continuous function: : I" — R has a strict local minimum (maximum) at a pain€ I if there existg > 0
such thatu(a) < u(x) (u(a) > u(x))forallx e I',0 < |x —a| < &.
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tinuous extensions to the boundary.
Let D = {(x1, x2) ; x2 > 0} be the upper half-plane. Consider the function

1
fxg, x2) =sin—.
X2

Clearly, f is monotone close to boundafy = {x = (x1, x2) ; x2 = 0}, but it does not have
a continuous extension tB.
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