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FUNCTIONS MONOTONE CLOSE TO BOUNDARY

OLLI MARTIO, VLADIMIR MIKLYUKOV AND MATTI VUORINEN

(Received December 15, 2003, revised December 9, 2004)

Abstract. Functions which are monotone close to boundary are defined. Some oscil-
lation estimates are given for these functions in Orlicz classes. Criteria for monotonicity close
to boundary are obtained.

1. Main results. LetD ⊂ R2 be a domain in the Euclidean plane. By∂̃D we denote

the boundary ofD in the extended planẽR
2 = R2 ∪ {∞}. For a subdomain∆ ⊂ D, we set

∂ ′∆ = ∂̃∆ \ ∂̃D and ∂ ′′∆ = ∂̃∆ ∩ ∂̃D .
For an arbitrary functionf : D → R andA ⊂ D̄,A �= ∅, we put

osc(f,A) = sup
a,b∈A

lim sup
aj→a,bj→b

(f (aj )− f (bj )) ,

where the lim sup is taken over all sequencesaj → a, bj → b of points inD. Let Γ be a
subset of̃∂D. A continuous functionf : D → R is calledmonotone close to Γ if for every
subdomain∆ ⊂ D with ∂ ′′∆ ⊂ Γ ,

osc(f,∆) ≤ osc(f, ∂ ′∆) ,(1.1)

see Martio et al. [10].
If Γ = ∅, then we have the well-known class of monotone functions in the sense of

Lebesgue. IfΓ = ∂̃D, then every function, monotone close toΓ , is a constant. This is
evident, since, choosing∆ = D \ {x0} wherex0 ∈ D is an arbitrary point, it follows from
(1.1) that

osc(f,∆) ≤ osc(f, {x0}) = 0 .

For another generalization of monotonicity in the sense of Lebesgue, see Manfredi [8].
Fora, b ∈ D we let

ρD(a, b) = inf
γ

diamγ ,

where the infimum is taken over all arcsγ ⊂ D joining a andb. The quantityρD(a, b) is
called theinner distance betweena andb. Clearly,ρD defines a metric inD. For arbitrary
setsA,B ⊂ R2 we let

dist(A,B) = sup
x∈A

dist(x, B) .
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For a setΓ ⊂ ∂D,D �= ∅, and pointsa, b ∈ D we set

δD(a, b;Γ ) = lim sup dist(γk, ∂D \ Γ ) ,
where lim sup is taken over all sequences{γk} of arcsγk ⊂ D joining a andb such that
diamγk → ρD(a, b).

We will employ functions with Sobolev derivatives in some Orlicz classes, see [4, Chap-
ter I]. A functionΦ : R → R+ is called anN-function if it admits the representation

Φ(τ) =
∫ |τ |

0
p(t)dt ,(1.2)

wherep : (0,∞) → (0,∞) is a positive non-decreasing function, continuous to the right,
such that

p(0+) = 0 , p(∞) = lim
t→∞p(t) = ∞ .(1.3)

LetD ⊂ R2 be an open set. LetΦ be anN-function. Recall that a functionf : D → R
is ACL (absolutely continuous on lines) if for each cubeQ, Q̄ ⊂ D, and forj = 1,2 and
for all z in the projection ofQ into {xj = 0}, except a one-dimensional set of measure zero,
t �→ f (z + tej ), z + tej ∈ Q, is absolutely continuous. We say that a continuous function
f : D → R belongs toACLΦ(D) if f is ACL and∫

D

Φ(|∇f |)dx1dx2 < ∞ .

Here∇f stands for the formal gradient(f ′
x1
, f ′
x2
), which exists almost everywhere inD. A

continuous functionf belongs toACLp if f ∈ ACLΦ with Φ = tp , p ≥ 1. The classACL2

coincides with the classBL introduced in 1906 by Levi [7] (see also Nikodym [13], Deny and
Lions [2], Lelong-Ferrand [6], and Suvorov [14]). ForN-functionsΦ of the general form, see
Miklyukov [11], Kruglikov and Miklyukov [5] and Astala et al. [1]. The boundary behavior
of monotoneACLn functions has been studied by these authors and others (see, e.g., Manfredi
and Villamor [9] and Mizuta [12] and references therein).

Our main result yields the following inequality for functions monotone close to bound-
ary.

THEOREM 1.4. Let D be a subdomain of R2, Γ ⊂ ∂D an open Jordan arc, and
f ∈ ACLΦ(D). If f is monotone close to Γ , then for every pair of points a, b ∈ D with

ρD(a, b) < δD(a, b;Γ ) ,
the following estimate holds:

|f (a)− f (b)| ≤ κ0(ρD(a, b); δD(a, b;Γ ),Φ, I) ,(1.5)

where

I =
∫
D

Φ(|∇f |)dx1dx2 ,

and κ0 is the function defined by (3.1).



FUNCTIONS MONOTONE CLOSE TO BOUNDARY 607

Suppose thatD is convex. ThenρD(a, b) = |b − a| and

δD(a, b;Γ ) ≤ 2 min{dist(a, ∂D \ Γ ),dist(b, ∂D \ Γ )}
provided that the condition

ρD(a, b) ≤ 1

2
δD(a, b;Γ )

holds. IfD is convex andΦ satisfies some additional conditions, then the estimate (1.5)
implies thatf has a continuous extension toΓ . Specifically, ifD is convex, then we suppose
that for alla ≥ 1 and allτ > 0,

Φ(aτ) ≤ cΦa
2Φ(τ)(1.6)

with some constantcΦ independent ofa andτ , and that∫ ∞

1

Φ(τ)

τ3
dτ = ∞ .(1.7)

COROLLARY 1.8. If in the situation of Theorem 1.4,D is convex and the N-function
Φ satisfies (1.6) and (1.7), then f has a continuous extension to Γ .

In what follows we give two sufficient conditions for monotonicity close to boundary.

THEOREM 1.9. Let Φ and Ψ be arbitrary mutually complementary N-functions. Let
D ⊂ R2 be a subdomain of R2, Γ ⊂ ∂D and f ∈ ACLΦ(D). Suppose that there exists a
vector field A(x) : D → R2 of the class LΨ (D) such that for almost all x ∈ D at which
∇f (x) �= 0,

2∑
i=1

f ′
xi
(x)Ai(x) > 0 .(1.10)

If for every subdomain ∆ ⊂ D such that ∂ ′∆ is locally rectifiable and ∂ ′′∆ ⊂ Γ , and for
every φ ∈ ACLΦ(∆) ∩ C(∆ ∪ ∂ ′∆)

∫
∂ ′∆

φ〈A(x),n〉|dx| =
∫
∆

2∑
i=1

φ′
xi
Ai(x)dx1dx2 ,(1.11)

then f is monotone close to Γ .

Because the assumptions in Theorem 1.9 are rather complicated, we illustrate the
theorem with an example.

EXAMPLE 1.12. LetD ⊂ R2 be a bounded subdomain with smooth boundary and let
Γ ⊂ ∂D be an open proper subarc. Letf be aC1(D ∪ Γ ) solution of the equation

div(|∇f |p−2∇f ) = 0 , p ≥ 1 .

Suppose that the normal derivative∂f /∂n|Γ = 0. If we now choose

A(x) = ∇f (x)|∇f (x)|p−2 ,
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then
2∑
i=1

f ′
xi
(x)Ai(x) = |∇f |p

and the assumption (1.10) holds. Next, for every functionφ and every subdomain∆ as in
Theorem 1.9, we have∫

∂ ′∆
φ〈A(x),n〉|dx| =

∫
∂∆

φ|∇f |p−2〈∇f (x),n〉|dx|

=
∫
∆

φ div|∇f |p−2∇f dx1dx2 +
∫
∆

|∇f |p−2〈∇φ,∇f 〉dx1dx2

=
∫
∆

2∑
i=1

φ′
xi
Ai(x)dx1dx2 .

This formula implies (1.11) and by Theorem 1.9,f is monotone close toΓ .

In order to state the next result, letΓ ⊂ ∂D̃ and leth : D → (0,∞) be a locally
Lipschitz function such that limx→Γ h(x) = 0 and

0< h0 ≤ ess inf
D

|∇h(x)| ≤ ess sup
D

|∇h(x)| ≤ h1 < ∞ ,(1.13)

whereh0 andh1 are some constants. We letEt = {x ∈ D ; h(x) = t}.
THEOREM 1.14. Let f ∈ ACLploc(D), p > 1, be a bounded function. Suppose that

there exists a vector field

A = (A1, A2) : D → R2 , A ∈ Lq(D) , q = p/(p − 1)

such that

σ1(x)|∇f (x)|p ≤
2∑
i=1

f ′
xi
(x)Ai(x) ,

( 2∑
i=1

A2
i (x)

)1/2

≤ σ2(x)|∇f (x)|p−1

(1.15)

for some continuous functions σj : D → (0,∞), j = 1,2, and that (1.11) holds for all
functions φ ∈ ACLp(D), suppφ ⊂⊂ D, and for all subdomains ∆ ⊂⊂ D with locally
rectifiable boundaries. If∫

0
dt

( ∫
D∩Et

σ
p

2

σ
p−1
1

dH1(Et )

)1/(1−p)
= ∞ ,(1.16)

then f is monotone close to Γ . In particular, if Γ = ∂̃D, then f ≡ constant.

Let γ be a simple open Jordan arc lying in the upper half-plane with endpoints(0,0) and
(a,0) on thex1-axis. We set

Γ = {(x1, x2) ; 0 ≤ x1 ≤ a, x2 = 0} ,
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and denote byD the subdomain ofR2 lying betweenγ andΓ . Choosingh(x) = x2 in
Theorem 1.14, we obtain the following result.

COROLLARY 1.17. Let f be as in Theorem 1.14. Suppose that there exists a vector
field

A = (A1, A2) : D → R2 , A ∈ Lq(D), q = p/(p − 1) ,

satisfying

σ1(x2)|∇f (x)|p ≤
2∑
i=1

f ′
xi
(x)Ai(x) ,

( 2∑
i=1

A2
i (x)

)1/2

≤ σ2(x2)|∇f (x)|p−1

(1.18)

with some continuous functions σ1, σ2 > 0. Suppose also that for all functions φ ∈ ACLp(D),
suppφ ⊂⊂ D, and all subdomains ∆ ⊂⊂ D with locally rectifiable boundaries, the relation
(1.11) holds. If ∫

0

σ1(t)

σ
p/(p−1)
2 (t)

dt = ∞ ,(1.19)

then f is monotone close to Γ .

EXAMPLE 1.20. LetD be as in Corollary 1.17 and letf be aC1 solution inD of an
equation

div(σ |∇f |p−2∇f ) = 0 , p > 1 ,

with a continuous weight functionσ(x) = σ(x2). Setting

Ai(x) = σ |∇f |p−2f ′
xi
,

we find
2∑
i=1

f ′
xi
Ai = σ |∇f |p and |A| = σ |∇f |p−1 .

Thus, (1.18) holds withσ1 = σ2 = σ . The assumption (1.19) takes the form∫
0
σ−1/(p−1)(t)dt = ∞ ,

which guarantees thatf is monotone close toΓ .

2. Length and area principle. EachN-function is convex. The first condition in
(1.3) means that

lim
τ→0

Φ(τ)

τ
= 0 ,(2.1)

and the second condition means that

lim
τ→∞

Φ(τ)

τ
= ∞ .(2.2)
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For every non-decreasing functionp : (0,∞) → (0,∞), which is continuous to the
right and satisfies (1.3), we find another functionq : (0,∞) → (0,∞), s ≥ 0, such that

q(s) = sup
p(t)≤s

t .

It is easy to see thatq(s) also satisfies (1.3). The pair ofN-functions

Φ(τ) =
∫ |τ |

0
p(t)dt and Ψ (τ) =

∫ |τ |

0
q(s)ds

are calledmutually complementary.
We give several estimates forACLΦ -functions, which are needed for studying functions

monotone close to boundary. For this purposewe first recall Orlicz classes. Fix a Lebesgue
measurable setA ⊂ R2 and an arbitraryN-functionΦ. Then theOrlicz class LΦ(A) is
defined to be the set of Lebesgue measurable functionsu in A such that

I (u,A;Φ) ≡
∫
A

Φ[u(x)]dx1dx2 < ∞ .

In applications the functions
Φ(τ) = τ2 lnα(e + τ )

play an important role, and the classesLΦ(A) associated with this particularΦ are called
Zygmund classes [1].

LetΦ(τ) andΨ (τ) be mutually complementaryN-functions. ByL̃Φ(A) we denote the
set of the functionsu(x) satisfying∣∣∣∣

∫
A

u(x)v(x)dx1dx2

∣∣∣∣ < ∞ for all v(x) ∈ LΨ (A) .
Next, we set

‖u‖Φ,A ≡ sup
I (v,A;Ψ)≤1

∣∣∣∣
∫
A

u(x)v(x)dx1dx2

∣∣∣∣ .(2.3)

After introducing equivalent norms, the classL̃Φ(A) is converted to a linear norm space (see
[4, Chapter II]). Namely, the definition (2.3) of the norm implies that:

(1) ‖u‖Φ,A = 0 if and only ifu(x) = 0 almost everywhere onA;
(2) ‖αu‖Φ,A = |α|‖u‖Φ,A;
(3) ‖u1 + u2‖Φ,A ≤ ‖u1‖Φ,A + ‖u2‖Φ,A.
For the next lemma we refer the reader to [4].

LEMMA 2.4. (i) For each u ∈ LΦ(A),
‖u‖Φ,A ≤

∫
A

Φ(u)dx1dx2 + 1 .(2.5)

In particular, LΦ(A) ⊂ L̃Φ(A).
(ii) If ‖u‖Φ,A ≤ 1, then u ∈ LΦ(A) and∫

A

Φ(u)dx1dx2 ≤ ‖u‖Φ,A .(2.6)
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In particular, ∫
A

Φ

[
u(x)

‖u‖Φ,A
]
dx1dx2 ≤ 1 .

(iii) For every pair of functions u ∈ L̃Φ(A) and v ∈ L̃Ψ (A),∣∣∣∣
∫
A

u(x)v(x)dx1dx2

∣∣∣∣ ≤ ‖u‖Φ,A‖v‖Ψ,A .(2.7)

LEMMA 2.8. Suppose that a domain D ⊂ R2 is of finite area,Φ is an N-function and
f ∈ ACLΦ(D). Then f ∈ ACL1(D).

PROOF. SinceΦ satisfies (2.2), there existsq > 0 such that
τ

Φ(τ)
≤ 1 for all τ ≥ q .

Writing

D1 = {x ∈ D ; |∇f (x)| ≤ q}, D2 = {x ∈ D ; |∇f (x)| > q} ,
we have ∫

D

|∇f |dx1dx2 =
∫
D1

|∇f |dx1dx2 +
∫
D2

|∇f |dx1dx2

≤ q

∫
D1

dx1dx2 +
∫
D2

|∇f |
Φ(|∇f |)Φ(|∇f |)dx1dx2

≤ qH2(D1)+ C

∫
D2

Φ(|∇f |)dx1dx2 ,

whereH2 is the two-dimensional Lebesgue measure and

C = sup
x∈D2

|∇f (x)|
Φ(|∇f (x)|) ≤ 1 .

Hence, we obtain ∫
D

|∇f |dx1dx2 ≤ qH2(D1)+
∫
D2

Φ(|∇f |)dx1dx2

≤ qH2(D)+
∫
D

Φ(|∇f |)dx1dx2

andf is ACL1 as required. �

EXAMPLE 2.9. The functionsΦ(τ) = τ2 andΦ(τ) = τ2/ ln(e + |τ |) are typical
examples ofN-functions satisfying (1.6) and (1.7). This is evident forΦ(τ) = τ2. We verify
the necessary conditions forΦ(τ) = τ2/ ln(e + |τ |).

First, we observe that this function satisfies (1.3). Indeed, the derivative ofΦ(τ) has the
form

Φ ′(τ ) = τ
2 ln(e + τ )− τ/(e + τ )

ln2(e + τ )
, τ > 0 .
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Clearly,Φ ′(0+) = 0. Next, we note that

ln(e + τ ) > 1 for τ > 0 .

Hence, for allτ > 0,

Φ ′(τ ) = τ
2(e + τ ) ln(e + τ )− τ

(e + τ ) ln2(e + τ )
> τ

2(e + τ )− τ

(e + τ ) ln2(e + τ )

= τ
2e+ τ

(e + τ ) ln2(e + τ )
> 0 ,

from which we see

Φ ′(∞) = lim
τ→∞Φ

′(τ ) = ∞ .

Secondly, we verify (1.6). For everya ≥ 1 we have

Φ(aτ) = a2τ2/ ln(e + a|τ |) ≤ a2τ2/ ln(e + |τ |) = a2Φ(τ) .

The property (1.7) is evident.

We denote bySD(a, r) the intersection of the circleS(a, r) and the setD ⊂ R2. Fix
ε and ε0 such that 0< ε < ε0 < ∞. Suppose that for allτ ∈ (ε, ε0) the intersection
SD(a, τ ) �= ∅. We set

Dε,ε0 =
⋃

ε<τ<ε0

SD(a, τ ) , l(a, r) = H1(SD(a, r)) .

Let σ1, σ2, . . . be the components ofSD(a, r). ThenSD(a, r) = ⋃
i σi and for a function

f : D → R we set

Wf (a, r) =
∑
i

osc(f, σi ) .

We prove the following version of the Length and Area Principle forACLΦ -functions. A
closely related class of functions was considered in [5].

THEOREM 2.10. Let Φ be an N-function. Then for all f ∈ ACLΦ(D) and all 0 <
ε < ε0 < ∞, ∫ ε0

ε

Φ

(
Wf (a, τ )

l(a, τ )

)
l(a, τ )dτ ≤ I (Dε,ε0) ,(2.11)

where

I (Dε,ε0) =
∫
Dε,ε0

Φ(|∇f |)dx1dx2 .

PROOF. We may assume thata = 0. Lemma 2.8 shows that a functionf ∈ ACLΦ

belongs toACL1
loc(D). Let (r, θ) be polar coordinates inR2 and setf ∗ = f (r, θ). Nowf ∗ ∈

ACL1
loc(D) and, in particular,f ∗ is absolutely continuous on each line segmentα ≤ θ ≤ β

onSD(0, τ ) for almost allτ . Hence, for almost allτ ∈ (ε, ε0), we have

Wf (0, τ ) =
∑
i

osc(f, σi) ≤
∑
i

∫
σi

|∇f ||dx| ≤
∫
SD(0,τ )

|∇f ||dx| .
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Recall thatσi are the components ofSD(0, τ ).
Jensen’s integral inequality yields

Φ

(∫
E a(x)dH1

H1(E)

)
≤ 1

H1(E)

∫
E

Φ(a(x))dH1(2.12)

for an arbitraryN-functionΦ and every integrable functiona [4, (8.2)]. Using (2.12) for
almost allτ ∈ (ε, ε0), we obtain

Φ

(
Wf (0, τ )

l(0, τ )

)
≤ Φ

(
1

l(0, τ )

∫
SD(0,τ )

|∇f ||dx|
)

≤ 1

l(0, τ )

∫
SD(0,τ )

Φ (|∇f |) |dx| .
The functions on both sides of this inequality are measurable with respect toτ ∈ (ε, ε0).
Multiplying this inequality byl(0, τ ) and integrating over(ε, ε0), we obtain∫ ε0

ε

Φ

(
Wf (0, τ )

l(0, τ )

)
l(0, τ )dτ ≤

∫ ε0

ε

dτ

∫
SD(0,τ )

Φ(|∇f |)|dx| =
∫
Dε,ε0

Φ(|∇f |)dx1dx2 .

�

The following might be the most useful corollary of Theorem 2.10.

COROLLARY 2.13. For every N-function Φ and f ∈ ACLΦ(D),∫ ε0

ε

Φ

(
Wf (a, τ )

2πτ

)
τdτ ≤ 1

2π
I (Dε,ε0) .(2.14)

PROOF. EveryN-functionΦ satisfies

Φ(ατ) ≤ αΦ(τ)(2.15)

for all τ ≥ 0 andα ∈ [0,1]. Indeed, writeΦ in the formΦ(τ) = ∫ τ
0 p(t)dt as in (1.2). Then

αΦ(τ) =
∫ τ

0
p(t)d(αt) ≥

∫ τ

0
p(αt)d(αt) =

∫ ατ

0
p(t)dt = Φ(ατ)

as required. LetW ≥ 0. From (2.15) we conclude that

Φ

(
W

2πτ

)
= Φ

(
W

l(a, τ )

l(a, τ )

2πτ

)
≤ Φ

(
W

l(a, τ )

)
l(a, τ )

2πτ
.

Hence,

Φ

(
Wf (a, τ )

2πτ

)
2πτ ≤ Φ

(
Wf (a, τ )

l(a, τ )

)
l(a, τ ) ,

and the desired conclusion follows from (2.11). �

3. The function k0. Here we study the inequality (2.14). For anN-functionΦ and
an interval(ε, ε0) with 0< ε < ε0, we set

κ0(ε; ε0,Φ, I) = sup

{
κ ;

∫ ε0

ε

Φ
( κ

2πτ

)
τdτ ≤ 1

2π
I

}
,(3.1)

where

I =
∫
D

Φ(|∇f |)dx1dx2 .
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It follows from (2.1) and (2.2) that the function

F(κ) =
∫ ε0

ε

Φ
( κ

2πτ

)
τdτ

is continuous and strictly monotone. Moreover,

F(0) = 0 and F(∞) = lim
κ→∞F(κ) = ∞ .

Now κ0(ε) = κ0(ε; ε0,Φ, I) is the unique positive root of the equation

F(κ) = (I/(2π)) .(3.2)

The functionF(κ) has the following properties.
(i) For every N-function Φ the function κ0(ε) = κ0(ε; ε0,Φ, I) is continuous and

strictly increasing on (0, ε0). Moreover, κ0 depends continuously on ε0.
The proof is evident.
(ii) If an N-function Φ satisfies (1.7), then limε→0 κ0(ε) = 0.
Indeed, suppose that there exists a numberm > 0 such that for all sufficiently small

ε > 0,

κ0(ε) ≥ m > 0 .

Then by the definition (3.2) ofκ0(ε) and the monotonicity ofΦ, we have∫ ε0

ε

Φ
( m

2πτ

)
τdτ ≤ 1

2π
I .

Substitutingt = m/2πτ in this inequality, we find
(
m

2π

)2 ∫ m/2πε

m/2πε0

Φ(t)

t3
dt ≤ 1

2π
I for all 0< ε < ε0 .

Lettingε → 0+ we obtain a contradiction to (1.7).
(iii) If an N-function Φ satisfies (1.6), then

lim inf
ε→0+ κ0(ε)

/(
ln

1

ε

)−β
= ∞ for every β > 1 .

Indeed, suppose that this is not true; that is, for some sequenceεi → 0 of positive
numbers the inequality

κ0(εi) ≤ c

(
ln

1

εi

)−β

holds with some constantc > 0. From (3.2) we obtain∫ ε0

εi

Φ

(
κ0(εi)

2πτ

)
τdτ = 1

2π
I(3.3)

and hence ∫ ε0

εi

Φ

(
c

2πτ

(
ln

1

εi

)−β)
τdτ ≥ 1

2π
I .
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Whenε0 ≤ 1, from (1.6) and (2.15) we have

1

2π
I ≤

∫ ε0

εi

Φ

(
c

2πτ

(
ln

1

εi

)−β)
τdτ ≤ cΦΦ

(
c

2π

(
ln

1

εi

)−β) ∫ ε0

εi

dτ

τ
dτ

≤ cΦ

(
ln

1

εi

)−β
Φ

(
c

2π

)
ln

1

εi
≤ cΦ

(
ln

1

εi

)1−β
Φ

(
c

2π

)
.

Whenε0 > 1, we also have

1

2π
I ≤

∫ 1

εi

Φ

(
c

2πτ

(
ln

1

εi

)−β)
τdτ +

∫ ε0

1
Φ

(
c

2πτ

(
ln

1

εi

)−β)
τdτ

≤ cΦΦ

(
c

2π

)(
ln

1

εi

)1−β
+

(
ln

1

εi

)−β ∫ ε0

1
Φ

(
c

2πτ

)
τdτ .

Forβ > 1 we obtain a contradiction asi → ∞.
(iv) We assume here that anN-functionΦ satisfies (1.6) and (1.7). Then it is possible

to find a majorant forκ0(ε). For this fix 0 < ε < ε0 and setκ0 = κ0(ε). Substituting
t = κ0/2πτ in (3.3), we have

2πI = κ2
0

∫ κ0/2πε

κ0/2πε0

Φ(t)

t3
dt .

By property (ii) there exists a numberα1 = α1(ε0) such that

κ0(ε) ≤ 2πε0 for all 0< ε < α1 ,

and hence for all sufficiently smallε > 0,

2πI ≥ κ2
0

∫ κ0/2πε

1

Φ(t)

t3
dt .

By (iii), we see that

lim inf
ε→0+

κ0(ε)√
ε

= ∞
and hence there exists a numberα2 = α2(ε0) such that

κ0(ε) ≥ 2π
√
ε for all 0< ε < α2 .

Therefore, for all sufficiently smallε > 0, we find

2πI ≥ κ2
0

∫ 1/
√
ε

1

Φ(t)

t3
dt ,

and arrive at the estimate

κ0(ε, ε0;Φ, I) ≤
(

2πI

/ ∫ 1/
√
ε

1

Φ(t)

t3
dt

)1/2

,(3.4)

which holds for all 0< ε < min{α1(ε0), α2(ε0)}.
From (3.4) we obtain the following.
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REMARK 3.5. For theN-functionsΦ satisfying (1.6) and (1.7), and for allε > 0 with
0< ε < min{α1(ε0), α2(ε0)}, the inequality (2.14) can be written in the form

inf
ε<τ<ε0

Wf (a, τ ) ≤
(

2πI

/ ∫ 1/
√
ε

1

Φ(t)

t3
dt

)1/2

,(3.6)

where

I =
∫
D

Φ(|∇f |)dx1dx2 .

4. Proof of Theorem 1.4. Fix a numberh > 0 such that

ρD(a, b)+ h < δD(a, b;Γ )− h ,

and choose an arcγ ⊂ D connectinga andb with

diamγ < ρD(a, b)+ h .

Let x0 ∈ γ and consider a family of circles{S(x0, τ )}, whereτ ∈ [ε, ε0] and

ε = ρD(a, b)+ h, ε0 = δD(a, b;Γ )− h .

By Corollary 2.13 and definition (3.1) we obtain

inf
τ∈(ε,ε0)

Wf (x0, τ ) ≤ κ0(ε; ε0,Φ, I) .

For everyτ ∈ [ε, ε0], each circleS(x0, τ ) separates pointsa, b from ∂D \ Γ . Hence, we can
find a componentσ of SD(x0, τ ) separatinga, b from ∂D \ Γ . Becauseτ ∈ [ε, ε0], the ends
of σ lie onΓ . We denote byDσ the set of the points which are separated byσ from ∂D \ Γ .

The functionf is monotone close toΓ and therefore,

osc(f,Dσ ) ≤ osc(f, ∂ ′Dσ ) .

Hence we have

|f (a)− f (b)| ≤ inf
τ∈(ε,ε0)

osc(f,Dσ ) ≤ inf
τ∈(ε,ε0)

osc(f, ∂ ′Dσ )

≤ infτ∈(ε,ε0)Wf (x0, τ ) ≤ κ0(ε; ε0,Φ, I)

≤ κ0(ρD(a, b)+ h; δD(a, b;Γ )− h,Φ, I) .

Lettingh → 0, we obtain (1.5).
By (1.7) and by property (ii) in Section 3, we see thatκ0(ρD(a, b)) → 0 asρD(a, b) →

0. This means thatf can be continuously extended toΓ .

5. Proof of Theorem 1.9. Fix a subdomain∆ of D with ∂ ′′∆ ⊂ Γ . First we prove
that

sup
∆

f (x) = sup
∂ ′∆

f (x) .(5.1)

Suppose that this is not the case, that is, there exists a pointx0 ∈ ∆ such that

f (x0) > sup
∂ ′∆

f (x) = M .
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Chooseε > M such thatf (x0) > ε. By Lemma 2.8 the functionf ∈ ACL1(D) and, by
[15, Theorem 5.4.4], for almost allε the set{x ∈ ∆ ; f (x) = ε} is locally rectifiable. Fix a
componentU, x0 ∈ U , of the set{x ∈ ∆ ; f (x) > ε}. Without loss of generality, we may
assume that∂ ′U is locally rectifiable. Using (1.11) withφ = f (x)− ε, we write

∫
U

2∑
i=1

f ′
xi
Ai(x)dx1dx2 =

∫
∂ ′U
(f − ε)〈A(x),n〉|dx| = 0 .

(SinceΦ andΨ are mutually complementary, it follows from (2.5) and (2.7) that the left-hand
integral and, hence, the right-hand integral exist.) From (1.10) it follows that

∇f (x) = 0 almost everywhere onU ,

and f ≡ constant onU , which leads to a contradiction with the definition of the
componentU, x0 ∈ U . Thus (5.1) follows.

Since−f also satisfies (1.10), (5.1) yields

inf
∆
f (x) = inf

∂ ′∆
f (x) .(5.2)

Finally, (5.1) and (5.2) imply (1.1).

6. Proof of Theorem 1.14. Fix a subdomain∆ of D with ∂ ′′∆ ⊂ Γ . As in the proof
of Theorem 1.9, it suffices to prove (5.1). Suppose that (5.1) is not true; that is, there isx0 ∈ ∆
such that

f (x0) > M0 ≡ sup
∂ ′∆

f (x) .

As above, for someε, f (x0) > ε > M0, we choose a componentU of {x ∈ ∆ ; f (x) > ε}
with a locally rectifiable boundary∂U along whichf (x)− ε = 0.

Fix numbers 0< δ′ < δ′′ < h(x0) and a non-negative Lipschitz functionψ0 : R+ → R.
Defineψ : R+ → R by

ψ(τ) =




1 for δ′′ < τ < ∞ ,

ψ0(τ ) for δ′ ≤ τ ≤ δ′′ ,
0 for 0< τ < δ′ .

Denoteφ = ψp(f − ε) with ψ = ψ(h(x)) for x ∈ U andφ ≡ 0 for x ∈ D \ U . Clearly,
φ ∈ ACLp(D) and suppφ ⊂⊂ D. Applying (1.11) toφ, we have∫
∂ ′U

ψp(f − ε)〈A,n〉|dx| =
∫
U

ψp〈∇f,A〉dx1dx2 + p

∫
U

ψp−1(f − ε)〈∇ψ,A〉dx1dx2 .

Since the contour integral vanishes, we see that∫
U

ψp〈∇f,A〉dx1dx2 = −p
∫
U

ψp−1(f − ε)〈∇ψ,A〉dx1dx2

≤ p

∫
U

ψp−1|f − ε||∇ψ||A|dx1dx2 .
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Using (1.15), we then obtain∫
U

ψpσ1|∇f |pdx1dx2

≤ p

∫
U

ψp−1|f − ε||∇ψ|σ2|∇f |p−1dx1dx2

≤ pM

∫
U

ψp−1σ
(p−1)/p
1

σ
(p−1)/p
1

|∇ψ|σ2|∇f |p−1dx1dx2

≤ pM

( ∫
U

σ
p

2

σ
p−1
1

|∇ψ|pdx1dx2

)1/p( ∫
U

ψpσ1|∇f |pdx1dx2

)(p−1)/p

,

where

M = sup
x∈U

|f (x)− ε| ,
and hence ∫

U

ψpσ1|∇f |pdx1dx2 ≤ ppMp

∫
U

σ
p
2

σ
p−1
1

|∇ψ|pdx1dx2 .(6.1)

Let

U(δ′′) = {x ∈ U ; δ′′ < h(x)}, U(δ′, δ′′) = {x ∈ U ; δ′ < h(x) < δ′′} .
Sinceδ′′ < h(x0) andx0 ∈ U , the setU(δ′′) �= ∅. Noting the specific structure ofψ and
using (6.1), we arrive at the inequality∫

U(δ′′)
σ1|∇f |pdx1dx2 ≤ ppMp

∫
U(δ′,δ′′)

σ
p

2

σ
p−1
1

|∇ψ0|pdx1dx2 .

We have|∇ψ0| = |ψ ′
0||∇h|. By (1.13) together with the well-known co-area formula

[3, Section 3.2], we find that∫
U(δ′,δ′′)

σ
p
2

σ
p−1
1

|∇ψ0|pdx1dx2 =
∫ δ′′

δ′
|ψ ′

0(τ )|pdτ
∫
U∩Eτ

σ
p
2

σ
p−1
1

|∇h|p−1dH1(Eτ ) ,

and then∫
U(δ′,δ′′)

σ
p

2

σ
p−1
1

|∇ψ0|pdx1dx2 ≤ h
p−1
1

∫ δ′′

δ′
|ψ ′

0(τ )|pdτ
∫
U∩Eτ

σ
p

2

σ
p−1
1

dH1(Eτ ) .

Thus we obtain∫
U(δ′′)

σ1|∇f |pdx1dx2 ≤ ppMph
p−1
1

∫ δ′′

δ′
ξ(τ )|ψ ′

0(τ )|pdτ ,(6.2)

where

ξ(τ ) =
∫
Eτ

σ
p

2

σ
p−1
1

dH1(Eτ ) .
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We choose

ψ0(τ ) =
∫ τ

δ′
ξ1/(1−p)(t)

/∫ δ′′

δ′
ξ1/(1−p)(t)dt for δ′ ≤ τ ≤ δ′′ .

Then ∫ δ′′

δ′
ξ(τ )|ψ ′

0(τ )|pdτ =
( ∫ δ′′

δ′
ξ1/(1−p)(τ )dτ

)1−p
,

and from (6.2) we have∫
U(δ′′)

σ1|∇f |pdx1 dx2 ≤ ppMph
p−1
1

(∫ δ′′

δ′
ξ1/(1−p)(τ )dτ

)1−p
,

which holds for every 0< δ′ < δ′′. Lettingδ′ → 0+ and using (1.16), we obtain∫
U(δ′′)

σ1|∇f |pdx1dx2 = 0

and, in particular,∇f ≡ 0 onU(δ′′). Sinceδ′′ < h(x0) is arbitrary, we see that∇f ≡ 0 on
U , which means thatf ≡ ε onU . This is again a contradiction to the definition ofU and the
rest of the proof proceeds as in the end of the proof of Theorem 1.9.

7. Two examples. LetD ⊂ R2 be a domain with a Jordan boundary∂D. Let Γ ⊂ ∂D

be an open arc. Let f : D̄ → R be a continuous function, monotone in the sense of Lebesgue
inD, such that the restriction f |Γ has no points of strict local extremum1. Then f is monotone
close to Γ .

For the proof let∆ be a subdomain ofD with ∂ ′′∆ ⊂ Γ . The functionf , being monotone
in the sense of Lebesgue, takes its maximum and minimum values in∂∆. Hence there exist
x1, x2 ∈ ∂∆ such that

sup
x∈∆

f (x) = f (x1) , inf
x∈∆f (x) = f (x2) .

If x1 �∈ Γ , then

sup
x∈∆

f (x) = sup
x∈∂ ′∆

f (x) .(7.1)

For x1 ∈ Γ there are two possibilities (a)x1 ∈ Clo(∂ ′∆) and (b)x1 �∈ Clo(∂ ′∆). By conti-
nuity, (7.1) holds in case (a). In case (b), there is an open neighborhoodU of x1 onΓ such
thatU ⊂ ∂ ′′∆. Sincef does not have a strict maximum onΓ , f takes greater values on∂∆
thanf (x1). This is a contradiction. Hence (7.1) always holds. The pointx2 can be handled
similarly. Thus, we obtain

osc(f,∆) = f (x1)− f (x2) = sup
x∈∂ ′∆

f (x)− inf
x∈∂ ′∆

f (x) = osc(f, ∂ ′∆) .

Consequently, the functionf is monotone close toΓ .
There exist non-constant functions, monotone close to boundary, which do not have con-

1A continuous functionu : Γ → R has a strict local minimum (maximum) at a pointa ∈ Γ if there existsε > 0
such thatu(a) < u(x) (u(a) > u(x)) for all x ∈ Γ , 0< |x − a| < ε.
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tinuous extensions to the boundary.
LetD = {(x1, x2) ; x2 > 0} be the upper half-plane. Consider the function

f (x1, x2) = sin
1

x2
.

Clearly,f is monotone close to boundaryΓ = {x = (x1, x2) ; x2 = 0}, but it does not have
a continuous extension toΓ .
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