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A GENERALIZATION OF SHELAH’S
OMITTING TYPES THEOREM

By

Kota TAKEUCHI

Abstract. This note gives generalizations of Shelah’s omitting types
theorem and Lopez—Escobar’s Theorem.

1. Introduction

The omitting types theorem states that for a given countable set S of
nonisolated types in 7, there is a model of 7" omitting all the members of S,
where T is a theory of a countable language. If L is uncountable, it is easy to
construct an L-theory, that is, a counter example to the omitting types theorem.
So, we are always interested in a theory with a countable language. There are
many generalizations of the theorem. Among these, Shelah’s omitting types
theorem is of special interest.

THEOREM (Shelah). Let T be a theory of a countable language L. Let R be a
set of nonisolated complete types such that |R| < 2. Then there is a model M = T
omitting all the members of R.

If we assume Martin’s Axiom, we can omit < 2% nonisolated types. Newelski
studied the maximum cardinal x such that we can omit < x nonisolated types. It
is known that there is a model of ZFC+—CH such that k¥ = w; (see [4]). So, we
cannot omit the assumption of the completeness of types in Shelah’s omitting
types theorem.

One of the main theorems in this paper is the following; it simultaneously
generalizes the usual omitting types theorem and Shelah’s omitting types theorem,
and is proved in section 3.
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THEOREM. Let T be a theory formulated in a countable language L and Ly
a sublanguage of L. Let R be a set of nonisolated complete Ly-types such that
|R| <2“. Let S be a countable set of nonisolated L-types. Then there is a model
M = T omitting all the members of RUS.

In section 4, we apply the above theorem to another version of the omitting
types theorem, the Lopes—Escobar theorem [3]. The Lopes—Escobar theorem is as
follows.

THEOREM (Lopez-Escobar). Let T be a theory formulated in a countable
language L having a binary relation <. Let S be a countable set of L-types.
Suppose that for any o < wi, there is a model M, of T omitting S and with the
order type o. Then there is a model N = T omitting S and with the order type Q.

This theorem has already been generalized for uncountably many complete
types by Tsuboi [8]. We generalize the theorem to our situation.

THEOREM. Let T be a theory formulated in a countable language L and Ly a
sublanguage of L, which have a binary relation <. Let R be a set of nonisolated
complete Lo-types such that |R| < 2°. Let S be a countable set of L-types. Suppose
that for any o < wy, there is a model M, of T omitting all the members of RUS
and with the order type a. Then there is a model N = T omitting all the members
of RUS and with the order type Q.

The omitting types theorem is also studied in nonclassical logics, L, o [2],
L(Q) [5], etc. Our generalization of the omitting types theorem implies that
Shelah’s omitting types theorem holds in PCjs-classes. Precise definitions are given
in section 5.

2. Preliminaries and Notations

Throughout, L is a countable language and 7 is a countable first-order
theory formulated in L. (T may be incomplete.) We always work under T.
L-formulas are denoted by ¢,¥,0,y,.... We fix a sublanguage Lo c L.
Ly-formulas are denoted by &,.... We assume that ¢, ..., ¢, ... are satisfiable
unless otherwise noted. Types are (possibly inocomplete) L-types over the empty
set. We say a type p(X) is a complete Ly-type if p consists of only Lj-formulas,
and if for every &(X) e Lo, £ or —¢ is in p.
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ExampLE 1. Let L= {R;(x)|i < w}. Consider an L-theory T, where for
every finite subset F,G < w with FNG = ¢, there is an element x satisfying
Nier Ri(x) A /\je ¢ R;j(x). Then T is complete and not small. Moreover, there
is no isolated complete type. Let R be a set of complete types with |R| < 2¢.
Shelah’s omitting types theorem says that there is a model M = T omitting
all the members of R. Take an infinite—coinfinite subset S < w. Set X(x) =
{Ri(x)|i€ S}. Then

1. ¥ is a nonprincipal type,
2. ¥ has continuum many extensions to nonprincipal complete types.

So, it is not clear that there is a model N | T omitting all the members of
RU{Z}.

3. A Proof of the Theorem

The main idea of the proof is simple; construct continuum many models such
that each type in RU S is omitted by almost models. Then, there must be a model
that omits all the members of RU S because |[RU S| < 2¢. To prove the theorem,
we make the following definitions.

DrrFINITION 2. Let Ly = L and ¢;(X) € L.

1. We say that two L-formulas ¢,(X) and ¢,(X) are Ly-separable in ¥’ = X
if there are Lo-formulas &y(x') and &;(X') such that T | ¢, (%) — & (%)
(k=0,1), and &, and ¢&; are incompatible in 7.

2. We say ¢,(x) and ¢,(X) are essentially Lo-separable in ¥’ < x if there are
L-formulas ¢ (X) (k=0,1) with T | ¢ (X) — ¢, (X) (k=0,1) such that
¢, and ¢| are Ly-separable in X'.

3. Let @ = ¢y(X),...,0,(%) be a sequnece of L-formulas. We say that ® is
maximally Lg-separated if for each i # j and each subsequence X' = X,
whenever ¢;(X) and ¢/(¥) are essentially Lo-separable in %" then they are
Lo-separable in X'.

A maximally Lo-separated sequence @' = ¢((X),...,¢p,(X) will be
called a maximal Lj-separation of @ if T k= ¢/(X) — ¢;(X) (i=0,...,n).

LemMA 3. Let © = ¢y(X),...,0,(X) be L-formulas. Then there are L-formulas
9l(X) (i < n) such that ® = @((X),...,¢,(X) is a maximal Ly-separation of ®.

PrOOF. Let y =X and suppose that ¢,(y) and ¢,(y) are essentially Lo-
separable in j. Choose an L-formula ¢;(X) and an L-formula ¢/(x) witnessing the
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essential Lo-separability. Then we replace ¢;(X) and ¢;(%) by ¢;(X) and ¢;(X),
respectively. We repeat this process (finitely many times) and finally we get a
desired maximal Ly-separation.

DEerFINITION 4. Let y(xy,...,x,) be an L-formula and s(y) an L-type. We
say W(xi,...,x,) totally omits s(y) if whenever M = T and ay,...,a, € M satisfy
Y(X) then no tuple from {aj,...,a,} realizes s(7). Let ¥ be a finite set of
formulas. We simply say that X totally omits s if /X totally omits s.

REMARK 5. -+ Let s(X) be a nonisolated type. Then for every L-formula ¢(X)
there is an L-formula ¢'(x) with T E ¢'(X) — ¢(X) such that ¢’ and s are
inconsistent.

« It is easy to check that for every L-formula ¢(X) and nonisolated type s(j),
there is an L-formula (x) with T =y — ¢ such that y totally omits s.

Next lemma is easy but important for our proof of the theorem.

LemMAa 6. Let ¢y(X) and ¢,(X) be L-formulas such that they are not essen-
tially Lo-separable in X' = X. Then ¢, and ¢, isolate the same complete Ly-type

p(X").

ProoOF. Suppose otherwise. Then it is easy to find an Ly-formula &(*') such
that both ¢y A ¢ and ¢; A—¢ are satisfiable. Two L-formulas gy A ¢ and ¢ A—E
are Ly-separable in X'. Since T | gyAné — ¢, and T | ¢; A& — ¢,, this means
that ¢, and ¢, are essentiall Lo-separable. A contradiction.

THEOREM 7. Let R be a set of nonisolated complete Ly-types such that
|R| <2“. Let S be a countalbe set of nonisolated L-types. Then there is a model
M = T omitting all the members of RUS.

ProoF. Suppose Z = {z;|i < o} is a fixed countable set of new variables.
We denote a sequence z,zi,...,zi—1 by Z;. Enumerate S as S = {s;(X;) : i € w}.
We may assume that for each s,(%,), |X,| <n. Let {0;(z;,z;)} be an enumeration
of the L-formulas having the form 3Ix¢(Z;, x) — ¢(Z;, z;).

By induction, we construct a binary tree {Z,(Zin(y)) |7 € 2} of finite sets of
L-formulas with the following properties: For every ne w and every # € 2”,

1. If m <n then X, = X,
2. {/\2Zs(Zn)}yeon is maximally separated;
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3. X, is consistent;
4. %, contains 0,;
5. Z, totally omits each of s; (i <n).

Let X y = & and suppose X,(Z,) has been defined for every o €2”. Take two
copies of %,(Z,) and set

S0K(5) = 5,5 (k=0,1).

Then, by Lemma 3, there is a set {¥, ;(Zu)},c2n k-0 Which is a maximal
Lo-separation of {/\TX* (Zn)}oean k=01 Set

2,5 (En) = 20K U Y, 1 (En) )

Next, for each o € 2", take an L-formula y, ,(Z,) F >1%(z,) such that Xo.x totally
omits s;(X;) for every i <n. (Such formula exists by Remark 5.) Set

Eg’k(zn) = Zi’k(fn) U {Xa,k(fn)}-

Finally set X, = Z[f’k(fn) U{0,(Zn,z,)}. Tt is easy to check that {2,,(2,,+1)},7€2,,+1
satisfies the required conditions 1-5 (with n replaced by n+1). So we have
succeeded to construct all X,’s. Now, for a path 5 €2, we define X,(Z) by
2, =, cp, Zyn- Recall that 6, has the form 3x¢(z,,x) — ¢(Z4,z4). So, by the
condition 4, every M, realizing %,(Z) is a model of 7. By the condition 5, M,
omits all types in S.

CLAaM A. For each pe R, {ne2”|M, | 3Ixp(X)} is countable.

We fix p(X)e R and Z < Z with |X| = |Z|. Suppose X,(Z)U p(Z) is consistent.
Take any »' # 5. If £,(Z)U p(Z) is also consistent, then X,, and X, are not
essentially Lj-separable in z, where n is chosen so that Z < Z,. Hence p must be
isolated by a L-formula, by Lemma 6. But R is a set of nonisolated types, a
contradiction. So, for each pe R and Z < Z, {ne2”|%Z,(Z)U p(z) consistant}
has at most one element. This proves the claim, since there are only countably
many possible choices of Z = Z. (End of Proof of Claim)

Finally, by the claim above and the assumption that |R| < 2%, we can find a
path # €2 such that M, omits R.

COROLLARY 8. Suppose o < 2%. Let Ty be a complete L-theory and p,q; €
S(To) (i <a). If for every i < a there is a model M; such that M; omits q; and M,
realizes p, then there is a model N such that N omits all ¢;’s but N realizes p.
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4. Another Version of Omitting Types Theorem with Uncountably Many
Types

Recall that L is a countable language and L, a sublanguage of L. In this
section we show the following,

THEOREM 9. Let T be a (possibly incomplete) L-theory. Let R be a set of
complete Lo-types with |R| <2® and S a countable set of L-types. Fix an
L-formula x(x,y). Suppose that for any o < w, there is a model M, of T
containing a set A, = M, such that

c Ay =Aaf|i<aj,

* M, x(af,a}) if and only if i < j,
« M, omits all the members of RUS.

Then there is a model N = T with a subset A = N such that

* A ={a|qeQ},
“ N glagap) if and only if g < ',
* N omits all the members of RUS.

In the rest of this section, we denote y(x, y) by x < y. For a tuple 4, the ith
element of & is denoted by (a);, We also denote the fth element a/, ; from a/ in
A, by al +p.

Note that if, with new constants ¢, (¢€Q), TU{c, <cy|9<¢'.q.94' €Q}
isolates no type in RU S then the theorem is clear by theorem 7. But, in general,
TU{c¢y < ¢y}, , may isolate some types. (Notice that T'U{c, < ¢4/}, ,, may not
be complete.) So we need find a theory 7' = T that isolates no type in RUS.
To construct 7', we need some definitions. The following definitions are taken
from the proof of Lopez—Escobar’s theorem in [2].

DermiTioN 10. 1. An m-sequence is a sequence of tuples of length m.
2. We say an ascending tuple b € 4, of length m + 1 is a k-extension (k < m)

of an ascending tuple @€ A4, of length m if (b), = (a),,...,(b), = (@),
Oz = @pyrs -+ D)y = (@),

3. Let T be a subset of w;. We say that the m-sequence {a@’|yeT} is an
unbounded m-sequence if
« I" is unbounded in wy,

» a’ is an ascending tuple of length m of elements of A4,,
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* for any few there is a ye T such that a; < (a’),, (@), + B < (@),
(@), +p<(as,....@a),+p<al.

4. Let I be a subset of w;. Let X = {a” |y e '} be an unbounded m-sequence
and Y ={b’'|yeTl} an unbounded (m+ 1)-sequence. We say Y is a
k-extension of X (0 <k <m) if for all yeT, b’ is a k-extension of a’.

5. We consider the unbounded 0-sequence, the empty sequence. Every un-
bounded 1-sequence is a 0-extension of the unbounded 0-sequence.

LEMMA 11. 1. There is an unbounded 1-sequence.

2. Let X be an unbounded m-sequence and k < m. Then there are an un-
bounded (m + 1)-sequence Y and an unbounded m-sequence X' such that X'
is an unbounded m-sequence, X' = X, and Y is a k-extension of X'. This
condition will be denoted as X < Y.

Proor. We show the second with m =1 and k =0, and the other cases
are similar. Let X ={a’} . be an unbounded I-sequence. Then for any
B+B+pew there is a yel such that az; <a” (Recall ay; is the f-3-th
element of 4,). So we have a 0-extension b’ =ay+1, a’ of a’. Collect such
0-extension 5’ of a’ for every ff € w, then it is a required 2-sequence.

Take a set C = {c,|q € Q} of new constant symbols. To prove the theorem,
it is enough to show that there is an L-theory 7’ > TU{c, < ¢y |q < ¢’ and
4,q' € Q} such that all the members of R and S are nonisolated types in 7', by
theorem 7. We fix an enumeration {c;, |n < w} of C. Let ¢, be the sequence
consisting cqy, ¢y, ..., ¢q, , With the order of Q (e.g. if go,q1,¢4> =0.5,—1,0 then
3 is the sequence c_i, ¢, ¢o5). Most ideas of the following definitions are from
[8]. We adapt it to our situation.

DrriNiTION 12, Let X ={a”’|yeT} be an unbounded m-sequence with
I' cw; and ¢(X,¢) an L(¢)-formula.

1. We say X is ¢(X,¢)-uniform if for every Lo-formula &(x) and y,y' €T,
M, = 3%(p(%,a@) AE(%)) if and only if M, k= I%(p(%,a@") A E(X))

2. We say X is essentially ¢(X,¢)-uniform if there is an unbounded subset
I'" =T such that X' is ¢(X,¢)-uniform where X' ={a’e X |yeI'}.

LemmA 13. Let X ={a’|ye '} be an unbounded m-sequence with I' = w
and (X, ¢) an L(¢)-formula. If X is not essentially ¢(X,c)-uniform then there is an
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Lo-formula &(X) such that X,.: and X,,-¢ are unbounded m-sequences where
XH(JZ,&) = {677 ‘ M-/ 'Z 3)_69()_6, ﬁy)}.

Proor. Suppose that X,,.s or X,,-¢ is bounded for every Lo-formula &(X).
Notice that if X,.¢ is bounded then X ,s is countable. So, the union Y of all
bounded X,.:’s is also countable, because L, is countable. Set X' = X\Y.
Then X' is an unbounded m-sequence, and X' is ¢(X, ¢)-uniform by the definition
of X'. This means that X is essentially g-uniform.

LEMMA 14. Let Y and Y' be unbounded m-sequences. Suppose they are not
essentially ¢;(X)-uniform for i < n. Then there is an Lo-formula &;(X), X < Y and
X' < Y' such that X, e, = X, X

_ / !
oAl = X" and X, X' are unbounded m-sequences,
for each i <n.

ProoOF. We show by induction on n. The case n = 0 is trivial. Let n = k + 1.
By induction hypothesis, we have Z < Y and Z' < Y’ such that Z, ., = Z,

Z;-/\ﬁf[ = Z' for each i < k. Let £° be an Ly-formula dividing Z into two un-

countable sets Z, 0, Z,

! .o = Z'. Then, let ! be an Ly-formula dividing Z’ into two uncountable

Prp1 A6 . .
4 .1. Either ZW .1 or Z .1 1s uncountable, we can

z' . .
sets P ne? Top e VNSNS W/c+1ACOAﬂC
I 71
and X *Zwmmc“m'

«0. By shrinking Z’, if necessary, we may assume

take EOAE! or EOAE! as Ckr1- Then put X =Z, e

Let {¢,(X,¢y)|n < w} be an enumeration of all L(C)-formulas. Also enu-
merate S as S = {s,(X,) |n < w}. We can assume that for every tuple (p,s) €
L(C) x S, there is n such that (¢,s) = (@,,s:). So, each member of L(C), S
appears infinitely many times in the enumerations. By induction, we construct a
binary tree {T7(Cien(s)) |0 € 25} of sets of L(C)-formulas and unbounded len(o)-
sequence X7 = {a,|yeT,} with the following properties: For every g,¢’ € 2<%
and n < len(a),

T (Clen(o)) U{cy < cqr|cyycqr € Clen(ey and ¢ < ¢’} is consistent,
ogca' then T < T7,

M,, @, = T°(Clen(s)) for uncountably many y eI,

T7 contains Xy, ;) OF T13XPpy (),

T7 contains IX(@yn(y) (X, Cen(s)) A W(X)) for some Y € Sien(q),
if X7 is essentially ¢,-uniform then it is ¢,-uniform,

Ny s W=

if X7 is not essentially ¢,-uniform then 3%(¢(X) A 9, (X, Gn(s))) € T7° and
3X(E(X) A @, (X, Clon(r))) € T ! for some ¢ € L.
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Let T¢? = &, X<’ the unbounded 0-sequence and suppose 77(¢,) and X are
defined for every o € 2". Suppose ¢, is a k-extension of ¢,. Take an unbounded
(n+1)-sequence Y=, X (Lemma 11). If Y7 ~is uncountable, set

a,0 __ g
Y - Y%H
and
T<770 = Ta U {El)_C(pn+l ()_Cv En+1)}
otherwise
0
YJ - YE‘%’H’

790 = T7U {=3%9,, (%, 1)}

Recall that s,,1(X,.1) is countable and M, omits s,.;(¥%,:+1) for every a. Hence,

we can find Y(X,41) € $ps1 such that ¥°

o Ay 18 uncountable. Set

o1 _ a,0
Y - ¢n<1Ajl//’

T = T%0U{3x(p, 1 (%, Eut) A Y (R))

Then, if Y%! is essentially ¢, +1-uniform, by shrinking it, we may assume Yol is
¢,.+1-uniform.

Finally, we consider the g;-uniformity of Y ol (j<N+1). If Yol is ;-
uniform for every j <n+1thenset X°°= X! =yoland T°° =771 =T
Otherwise, assume Y %! is not essentially @;-uniform for some j. Then, take an
unbounded (1 + 1)-sequence X' < Y! (i =0,1) such that for all j <n, if Y!
is not essentially ¢-uniform, then X(/jj;%j =X7° and X!, =X7" for some
&i(X) € Ly (See lemma 14). We set

T7° = T7'U{3x(9,(%, &) A &(X)},

T =T U {3x(g;(%, ) A (X))
It is easy to check that they satisfy the required conditions. At the end of this
inductive construction, we have 2% complete L(C)-theories 77 (n € 2). By con-

dition 5. and the way of enumerations of L(C) and S, every member of S is not
isolated in 7.

CLaM A.  The set {n €2 | p is isolated in T"} is countable for every p € R.

Suppose p(%) is isolated by an L(C)-formula ¢,(X,é,) in T7 and T7'. If
X = {a,|yeTl,u} is ¢,-uniform then M, (yeI,,) realizes p(X). So, X s
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not essentially ¢,-uniform. We can assume that #|n # 5’|n, because, by condition
7., if yln = y’|n, ¢, cannot isolates same complete Lo-type in 77, T"". Therefore,
{ne2?|p is isolated in 7"} is countable. (End of proof of claim)

Hence, there is an # € 2% such that every member of R is nonisolated in 7.
By theorem 7, we have a required model. (End of proof of theorem 9)

5. Omitting Types Theorem with Nonelementary Classes

In this section, we look at the definitions of some nonelementary classes.
Then we have Shelah’s omitting types theorem for such classes.

DerFINITION 15. Let #° be a class of L-structures. We say # is an
EC(RNg, Ng)-class if

+ L is countable,
+ there is a countable set S of types and an L-theory T such that M € 7" if
and only if M =T, and M omits all the members of S.

A" is denoted by EC(T,S).

More general definitions and properties of EC(x, ) can be found in [1]. It
is well known that every EC(Ry, Rp)-class can be translated to a class defined by
an L, -sentence, and vice versa (see [7], for example). Next, we introduce a
PCjs-class. This is defined by Keisler in [2] with L, . The following definition of
a PCj-class is given without L, .. Note that Shelah and Baldwin use other
notations, e.g., PC(Ro,Ng), PCT(Rp,Ng) (see [1]).

DEerFINITION 16. Let 2 be a class of L-structures. We say that " is a
PCj-class if there is a countable language L’ > L and a class of L’-structures 4"/
such that

« K" is an EC(Rg,Ng)-class, and
« M'|Lex if and only if M' e ¢ for every L’-structure M'.

To generalize the omitting types theorem for a PCs-class, we need definitions
of types and isolated types.

DeriNITION 17. Let  be a class of L-structures. A type X(X) in ¢ is a set
of L-formulas with free variables X such that there is a structure M € 4" having
a realization of X(X).
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DeriniTION 18, Let 4 be either EC(T,S) or the PCs-class obtained from
EC(T,S) by restricting the language. An isolated type in ¢ is a type in " which
is isolated in T in the usual sense.

The above definitions and theorem 7 immediately give Shelah’s omitting
types theorem for PCj-classes.

THEOREM 19. Let A be a PCs-class. Let R be a set of nonisolated complete
types in A such that |R| < 2. Then there is a model M =T omitting all the
members of R.

We also have Lopez-Escobar’s theorem (with uncountably many types) for
PCs-classes.

THEOREM 20. Let A be a PCs-class with a countable language L having a
binary relation <. Let R be a set of complete L-types such that |R| < 2. Suppose
that for any o < wq, there is a model M, € A omitting R and with the order type
o Then there is a model N € A" omitting R and with the order type Q.
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