
TSUKUBA J. MATH.
Vol. 35 No. 2 (2011), 169–183

METRIZABILITY OF ORDERED ADDITIVE GROUPS

By

Chuan Liu* and Yoshio Tanaka

Abstract. In terms of General Topology, we consider ordered

additive groups having the order topology, including ordered fields.

Namely, we investigate metrizability of these groups or fields, and

topological properties of ordered fields in terms of Archimedes’

axiom or the axiom of continuity. Also, we give a negative answer to

a question in [9]. Finally, we revise the proof of [2, Theorem 2.6],

and give some related results.

1. Introduction

As is well-known, an ordered field is a field which has a linear (total) order

and the order topology by this order. Ordered fields have played important roles

in the theory of real numbers in terms of Archimedes’ axiom or the axiom of

continuity.

In terms of General Topology, we consider ordered additive groups as a

generalization of ordered fields, and we investigate metrizability of these groups.

Then, we give characterizations for ordered fields to be metrizable, or satisfy the

above axioms. Besides, we give a negative answer to a question in [9]. Finally, we

revise the proof of D. E. Dobbs’ result [2, Theorem 2.6], and simplify the proof

of the result. Also, we give some related results.

Let R; Q; and N be respectively the usual real number field; rational number

field; and the set of natural numbers.

We assume that all (topological) spaces are Hausdor¤. We give main def-

initions used in this paper. Let X be a set which is linearly ordered (or, totally

ordered) by a. For a; b A X with a < b, define the intervals ða; bÞ, ½a; b� in X
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by the same way as in R, and especially ða;yÞ ¼ fx A X : x > ag; ð�y; aÞ ¼
fx A X : x < ag. ðX ;aÞ is a linearly ordered topological space or a LOTS if X has

the subbase fða;yÞ; ð�y; aÞ : a A Xg. Such a topology on X is called the order

topology. It is well-known that every LOTS is hereditarily (collectionwise) normal.

For LOTS, see [3, 5], etc.

Let G (or, ðG;þÞ) be an Abelian group (i.e., commutative group which is

additive). Let us say that G is an ordered additive group (cf. [9]) if G has a linear

order a such that the order is preserving with respect to addition (i.e., for a < b,

aþ x < bþ x), and G has the order topology by the order a (hence ðG;aÞ is a

LOTS). For x A G, define jxj A G by jxj ¼ x if xb 0, and jxj ¼ �x if x < 0. Then,

for x; y A G, jxþ yja jxj þ jyj holds. For a commutative field ðK ;þ;�Þ with a

linear ordera, K is an ordered field if ðK ;þ;aÞ is an ordered additive group, and

the order a is also preserving with respect to multiplication (i.e., for a < b and

0 < x, a� x < b� x). Any ordered field contains no isolated points. Ordered

fields play important roles in the theory of the field R.

Let ðG; �Þ be a group. Then G is a topological group if it is a space, and the

group operation of G is continuous; that is, for the map ða; bÞ ! a � b�1 from the

product space G � G to G is continuous. As is well-known, every topological

group is homogeneous.

2. Results

We investigate metrizability of ordered additive groups and ordered fields.

Also, we consider topological properties of ordered fields in terms of Archimedes’

axiom or the axiom of continuity.

Proposition 2.1. Every ordered additive group ðG;þ;aÞ is a topological

group. When G is an ordered field ðG;þ;�;aÞ, moreover the multiplication map

ða; bÞ 7! a� b and the multiplication inverse map a 7! a�1 ða0 0Þ are continuous.

Proof. This is folkloric or well-known, but let us give a proof. We can

assume G is not discrete. Then for some p A G, p A clðGnfpgÞ. Let D ¼ fjx� pj :
x A Gnfpgg. Let a; b A G. For each e > 0 ðe A GÞ, take d A D with dþ d < e.

Then, for jx� aj; jy� bj < d, jðx� yÞ � ða� bÞj < e. This shows ðG;þ;aÞ is a

topological group. The latter part holds by the e-d method as in R (cf. [2,

Lemma 2.1]). r

Every LOTS topological group is hereditarily paracompact by [6, Theorem 8]

(which is valid with respect to addition). Thus, the following holds.
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Corollary 2.1. Every ordered additive group (in particular, ordered field ) is

homogeneous, and hereditarily paracompact.

A space X is a P-space if all Gd-sets are open in X (equivalently, all Fs-sets

are closed in X ). In terms of Proposition 2.1, the following lemma is shown by a

(folkloric) metrization theorem for LOTS topological groups (see [6, Remark 10]

(which is valid with respect to addition)).

Lemma 2.1. Every ordered additive group G is metrizable or a P-space.

Proof. Suppose G is not a P-space. Then there exists a Gd-set A ¼ 7y
n¼1

Un

with Un open such that for some p A A, any neighborhood of p is not contained

in A. Suppose wðp;GÞð¼ minfjBj : B is a local base at pgÞ > o. Since G is a

LOTS, G has a decreasing local base fIa : a < kg at p by open intervals in G.

For each n A N, pick Ian HUn. Since wðp;GÞ > o, there exists b < k which is

larger than any an. Then p A Ib HA. Hence A contains a neighborhood of p, a

contradiction. Hence wðp;GÞ ¼ o. Thus G is first countable by Corollary 2.1.

Then G is metrizable by a classical theorem that every first countable topological

group is metrizable (this is valid with respect to the addition in view of [5, VI.5]).

r

Remark 2.1. It is well-known that every compact, LOTS, topological group

is metrizable. But, as well known, every compact, connected, LOTS need not be

metrizable ([3, 3.12.3(d)]), hence, not be a P-space. We have the same if we

replace ‘‘LOTS’’ by ‘‘topological Abelian group’’. Indeed, let S be the circle in

the plane. Then S is a topological Abelian group. Let G be the product So1 of o1

many copies of S. Then G is a compact, connected, topological Abelian group

with respect to coordinate addition, but G is not metrizable, nor a P-space since

G contains a non-metrizable set fp; qgo1 .

Also, not every ordered field is metrizable by the following: For a completely

regular space X , let CðXÞ be the (partially ordered) ring of all continuous func-

tions from X into R. For a maximal ideal M in CðX Þ, let K ¼ CðXÞ=M be

the residue class ring. Then K is an ordered field (see [4, 5.4(c)]). In view of

Theorems 5.5 and 13.8 in [4], K is (order-preserving) isomorphic (equivalently,

homeomorphic) to R, otherwise K is a P-space (hence not metrizable). Thus, if X

is not pseudo-compact (i.e., CðXÞ contains an unbounded function), there exists a

non-metrizable ordered field K ¼ CðXÞ=M by [4, Theorem 5.8(b)]. (For X ¼ N,

such an ordered field K is directly shown by [9, Example 2]).
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A space X is a k-space if F HX is closed if and only if F VC is closed in

C for every compact subset C of X . Locally compact spaces or first-countable

spaces are k-spaces.

Proposition 2.2. Let G be a non-discrete ordered additive group. Then (a),

(b), and (c) below are equivalent (cf. [9]). When G is an ordered field, (a)@(d) below

are equivalent (cf. [2] for (a) , (c)).

(a) G is metrizable.

(b) G contains an infinite countably compact set (in particular, G is a k-space).

(c) G contains a countable set A having an accumulation point p A G.

(d) G contains a countable set B having no upper (or no lower) bounds.

Proof. (a) ) (b) ) (c) is obvious. For the parenthetic part in (b), since G

is not discrete, G contains some infinite compact subset. For (c) ) (a), the

countable set A� fpg is not closed in G, hence G is not a P-space. Thus, G

is metrizable by Lemma 2.1. When G is an ordered field, for (c) ) (d), the

countable set f1=ja� pj : a A A; a0 pg has no upper bounds. For (d) ) (c), the

countable set f1=b : b A B; b0 0g has an accumulation point 0 A G. r

Proposition 2.3. Let G be an ordered additive group. Then (a)@(e) below are

equivalent. When G is an ordered field, (a)@(f ) below are equivalent (cf. [9] for

(a) , (b) , (f )).

(a) G is separable and metrizable.

(b) G is separable.

(c) G � f0g is Lindelöf.

(d) G is a Lindelöf space with wð0;GÞ ¼ o.

(e) G is a Lindelöf space with wð0;GÞ0o1.

(f ) G is Lindelöf.

Proof. The equivalences among (a)@(d) are shown by means of Lemma 2.1

with Corollary 2.1, because (b), (c), or (d) implies that G is countable discrete, or

not a P-space (for (c), G is a Lindelöf space in which G � f0g is an Fs-set).

(a) ) (e) is obvious. For (e) ) (a), if wð0;GÞ ¼ o, (a) holds, so let wð0;GÞbo2.

Since G is not metrizable, G is a P-space by Lemma 2.1. Thus, G has a base

by open-and-closed sets ([4, 4K]). While, G has a decreasing local base at 0 by

open intervals. Thus G has a decreasing local base fBt : t < ag (abo2) at 0 by

open-and-closed sets (or, see [6, Theorem 6]). For each t < a, let Ct ¼ Bt � Btþ1,

here we assume that Ct 0q. Then, G has a disjoint open cover fG � B1gU

172 Chuan Liu and Yoshio Tanaka



fCt : 1a t < o1gU fBo1
g of cardinality o1. Thus G is not Lindelöf, a contra-

diction. For (f ) ) (a) in the latter part, since G is Lindelöf, G has a countable

open cover fð�y; anÞ : n A Ng. Since the set fan : n A Ng has no upper bounds, G

is metrizable by Proposition 2.2. r

Let us show that every Lindelöf, ordered additive group need not be metri-

zable in Proposition 2.3. This gives a negative answer to a question in [9].

Let X ¼
Q

a AA Xa with Xa spaces. For p ¼ ðpaÞ A X , the sðpÞ-product of X is

the set of x ¼ ðxaÞ A X with xa 0 pa for at most a finite number of a. The o-box

topology on X has a base by the sets of the form
Q

a AA Ba such that each Ba is

open in Xa, but Ba 0Xa for at most a countable number of a.

The following is similarly shown as in the proof of [1, Proposition 3].

Lemma 2.2. Let X ¼
Q

a AA Xa have the o-box topology. If
Q

b AB Xb is

Lindelöf for any finite BHA, then each sðpÞ-product of X is Lindelöf.

Example 2.1. A Lindelöf, ordered additive group which is not metrizable.

Proof. Let Z be the usual ordered additive group of integers, and let

X ¼ Zo1 . For 0 ¼ ð0; 0; . . .Þ A X , let G be the sð0Þ-product of X . Then G is an

additive group with respect to coordinatewise addition. Endow X with the o-box

topology, and let G be a subspace of X . Then G is Lindelöf by Lemma 2.2.

But, G is not first countable (hence, not metrizable), because the local base

fVð0; aÞ : a < o1g at 0 does not have any countable subfamily which becomes

a local base at 0, where Vð0; aÞ ¼ fx ¼ ðxaÞ A G : xb ¼ 0 for any b < ag. The

topology on the additive group G is equivalent to the order topology by the

lexicographic order a on G (i.e., for x ¼ ðxaÞ, y ¼ ðyaÞ, x < y if and only if for

some a < o1, xb ¼ yb for any b < a, but xa < ya). For a; b A G, a < b if and only

if 0 < b� a. Thus, ðG;aÞ is a desirable ordered additive group. r

A space X is totally disconnected if any component in X is a singleton. A

space is X is zero-dimensional ([3]) if X has a base by open-and-closed sets

(namely, ind X ¼ 0). Every completely regular P-space is zero-dimensional, and

every zero-dimensional space is totally disconnected. For a LOTS X , X is totally

disconnected; ind X ¼ 0; Ind X ¼ 0; and dim X ¼ 0 are all equivalent by [3,

6.3.2(e), 7.1.10].

Concerning topological embeddings for ordered additive groups, Proposition

2.4 below holds. For the Baire (zero-dimensional) space BðmÞ ¼ Do, D is a
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discrete space of cardinality mb@0, see [3, 4.2.12]. The space BðmÞ is con-

sidered as an ordered additive group (by the lexicographic order on Do). For the

hedgehog JðmÞ of spininess mb@0, see [3, 4.1.5]. The spaces BðmÞ and JðmÞ are

complete metrizable.

Proposition 2.4. For a non-discrete ordered additive group G, the following

hold.

(1) G is not totally disconnected if and only if G is homeomorphic to R�D,

where D is a discrete space of cardinality jG=Hj for some open subgroup H.

(2) For G being totally disconnected, G is not a P-space if and only if it is

topologically embedded in the space BðmÞ, m ¼ wðGÞ (i.e., the weight of G).

(3) G is Čech-complete if and only if it is homeomorphic to a closed subset of

the countable product JðmÞo, m ¼ wðGÞ. When G is totally disconnected, we can

replace ‘‘JðmÞo’’ by ‘‘BðmÞ’’.

Proof. The ‘‘if ’’ parts of (1), (2), and (3) are obvious. Then, let us show

their ‘‘only if ’’ parts. For (1), in view of [11, Theorem 2.4] the result holds for G

being a LOTS topological group (this is valid with respect to addition). Thus (1)

holds by Proposition 2.1. For (2), G is a totally disconnected LOTS, then

Ind G ¼ 0. While, since G is not a P-space, G is metrizable by Lemma 2.1.

Hence, the ‘‘only if ’’ part holds by [3, Theorem 7.3.15]. For (3), let G be Čech-

complete. Thus, by [3, 3.9.5], G is a k-space. Thus G is metrizable by Proposition

2.2. Then G is completely metrizable. Hence the ‘‘only if ’’ part holds by [3,

4.4.B]. The latter part holds by [3, 7.3.H] since Ind G ¼ 0. r

Theorem 2.1. Let G be an ordered additive group. Then (a), (b), or (c) below

holds. When G is an ordered field, (a), (b)�, or (c) holds.

(a) G is a P-space.

(b) G is homeomorphic to a topological sum of R.

(b)� G is homeomorphic to R.

(c) G is topologically embedded in the space BðmÞ, m ¼ wðGÞ.

Proof. This holds in view of Propositions 2.4. For the latter part, it su‰ces

to show that every ordered field G is connected or totally disconnected. Indeed,

suppose G is not totally disconnected. Then G has a component L at 0, con-

taining a0 0. For any p A G, pa�1L contains 0, and it is connected by the

continuity of the multiplication (in Proposition 2.1). Then p A pa�1L ¼ L, thus

p A L. Hence, G ¼ L is connected. r
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Remark 2.2. Every ordered additive group need not satisfy (a), (b)�, or (c)

in Theorem 2.1. Indeed, let G ¼ Z � R (Z is the ordered additive group of

integers) be the product space, and let a be the lexicographic order on G. Then

ðG;aÞ is an ordered additive group with respect to coordinatewise addition, but

G satisfies none of (a), (b)�, (c).

Now, let ðK ;aÞ be an ordered field. A pair ðAjBÞ of non-empty subsets A

and B in K is a (Dedekind) cut if K ¼ AUB, AVB ¼ q, and for any x A A and

any y A B, x < y. Let us recall the following Archimedes’ axiom, and the axiom of

continuity which is stronger than Archimedes’ axiom.

Archimedes’ axiom: For each a; b A K with 0 < a < b, there exists n A N such

that b < na.

Axiom of continuity: For each cut ðAjBÞ in K , K contains max A or min B.

An ordered field K is Archimedean; Dedekind-complete if K respectively

satisfies Archimedes’ axiom; the axiom of continuity. For SHK, S is Dedekind-

complete if we replace ‘‘K ’’ by ‘‘S’’. Then K is Dedekind-complete if and only if

so is any ½a; b�HK , here we can replace ‘‘any ½a; b�’’ by ‘‘some ½a; b� (or ½0; 1�Þ’’.
We can assume that any ordered field K contains Q as a subfield. The field Q

is Archimedean, but not Dedekind-complete.

Let us recall the following characterizations for an ordered field to be

Archimedean or Dedekind-complete (many of these are well-known); see [7, 8, 9],

for example.

Proposition 2.5. For an ordered field K , (1) and (2) below hold.

(1) The following are equivalent.

(a) K is Archimedean.

(b) The sequence f1=n : n A Ng has a limit point 0 in K.

(c) The set f1=n : n A NgU f0g is compact in K.

(d) Q is a dense subset of K.

(e) Q has an accumulation point in K.

(2) The following are equivalent.

(a) K is Dedekind-complete.

(b) Every lower bounded decreasing sequence (in Q) has a limit point in K.

(c) Every lower bounded subset (of Q) has an infimum in K.

(d) Every bounded infinite subset (of Q) has an accumulation point in K.

(e) Some (or any) interval ½a; b� is compact in K.

(f ) K is connected (we can replace ‘‘K ’’ by ‘‘Some (or any) interval ½a; b�
in K ’’).
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Remark 2.3. (1) Let K be an ordered field. As is well-known, K is

Archimedean if and only if (*) K is order-preserving isomorphic to a subfield F

of R which has the usual order a in R, in particular, K is Dedekind-complete if

and only if F ¼ R. In (*), K is homeomorphic to ðF ;aÞ (indeed, F has the order

topology by a in view of [3, 2.7.5(a)], because the field F contains Q which is

dense in R). If K is Dedekind-complete, then K is homeomorphic to R (the

converse holds in view of (f ) in Proposition 2.5(2)).

(2) Every Archimedean ordered field K is separable metrizable by (1) (this

is also shown by Proposition 2.2 and 2.5(1)). But, every separable metrizable

ordered field need not be Archimedean ([9]).

Let ðG;aÞ be an ordered additive group. A sequence fan : n A Ng in G is

Cauchy if for each e > 0 (e A G), there exists n0 A N such that jam � anj < e

if m; n > n0. Let C ¼ f½an; bn� : n A Ng be a decreasing sequence of closed

intervals in G. Let us call C shrinking if ðbn � anÞ ! 0. When C has a non-empty

intersection, C is shrinking if and only if C has only one common point.

Proposition 2.6. For an ordered additive group G, the following are equiv-

alent.

(a) (Cauchy’s theorem) Every Cauchy sequence in G has a limit point.

(b) (Principle of successive division) Every shrinking sequence f½an; bn� : n A Ng
in G has a non-empty intersection.

Proof. For (a) ) (b), let L ¼ fa1; b1; a2; b2; . . .g be a sequence of endpoints

of the closed intervals ½an; bn� in (b). Since L is Cauchy, L has a limit point p.

Then p A 7y
n¼1

½an; bn�. For (b) ) (a), let L ¼ fxn : n A Ng be an infinite Cauchy

sequence. For each n A N, let en ¼ jxn � xnþ1j. Since L is Cauchy, we can assume

that en ! 0 with 0 < enþ1 < en. Since any subsequence of L is Cauchy, by in-

duction, we can choose a decreasing sequence C ¼ f½an; bn� : n A Ng such that

ðbn � anÞa en, ½an; bn�VL is a subsequence of L, but for some subsequence

S ¼ fsn : n A Ng of L, each sn is one of the endpoints in ½an; bn�, and the rest of

the endpoints is si or sj G ej for some i < n and ja n. Since C is shrinking, it has

only one common point a A G. Then, the sequence S converges to the point a.

To see L converges to the point a, let e > 0. Since en ! 0, 2eið¼ en þ enÞ ! 0

by Proposition 2.1, so take ei with 2ei < e. Since L is a Cauchy sequence, and S

is a subsequence of L converging to the point a, there exists m A N such that

for nbm, jxn � snj < ei, and jsn � aj < ei. Then jxn � aj < e. Thus L converges to

the point a. r
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In Propositions 2.7 and 2.8 below, the equivalences of (a) and (b) were shown

in [9].

Proposition 2.7. For a non-discrete ordered additive group G, the following

are equivalent.

(a) G is metrizable.

(b) G contains an infinite Cauchy sequence.

(c) G contains a shrinking sequence f½an; bn� : n A Ng.

Proof. (a) ) (b) holds, because every convergent sequence is Cauchy in G.

(b) ) (c) holds, putting an ¼ 0 and bn ¼ en in the proof of Proposition 2.6. For

(c) ) (a), G has the convergent sequence fbn � an : n A Ng. Hence G is metrizable

by Proposition 2.2. r

Proposition 2.8. For an ordered field K , (1) and (2) below hold.

(1) The following are equivalent.

(a) K is Archimedean.

(b) K contains an infinite Cauchy sequence in Q.

(c) K contains a shrinking sequence of closed intervals with endpoints in Q.

(2) The following are equivalent.

(a) K is Dedekind-complete.

(b) K contains an infinite Cauchy sequence in Q, and any of these Cauchy

sequences has a limit point in K.

(c) K contains a shrinking sequence of closed intervals with endpoints in Q,

and any of these shrinking sequences has a non-empty intersection in K.

Proof. For (1), (a) ) (b) is obvious, for K contains a convergent sequence

f1=n : n A Ng by Proposition 2.5(1). For (b) or (c) ) (a), let e > 0. Then there

exist p; q A Q such that 0 < jp� qj < e by (b) or (c). This shows that Q has an

accumulation point 0 in K . Hence, K is Archimedean by Proposition 2.5(1). For

(b) ) (c), it is shown as in the proof of Proposition 2.7 by replacing ‘‘en’’ by

‘‘1=n’’. For (2), (a) ) (b) holds by Cauchy’s theorem in R. (b) ) (c) holds by (1)

and the proof of Proposition 2.6. For (c) ) (a), K is Archimedean by (1), so Q is

dense in K by Proposition 2.5(1). Then K satisfies Principle of successive division.

Since K is Archimedean, as is well-known, (a) holds (see [7], etc.). r

Let f : ½a; b� ! K with K an ordered field, and AH ½a; b�. Without loss of

generalities, let us consider ‘‘½0; 1�’’ instead of ‘‘½a; b�’’, and consider ‘‘maxima (or

upper bounds)’’ instead of ‘‘minima (or lower bounds)’’ of f ðAÞ.
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Theorem 2.2. For an ordered field K , the following are equivalent.

(a) K is metrizable.

(b) There exists an infinite (countable closed ) set AH ½0; 1� such that for any

continuous function f : ½0; 1� ! K , f ðAÞ has a maximum.

Proof. For (a) ) (b), 0 A K is not isolated in ½0; 1�, then there exists an

infinite sequence LH ½0; 1� converging to the point 0. Thus for any continuous

function f : ½0; 1� ! K, M ¼ f ðLU f0gÞ has a maximum in K (indeed, for some

p A M, if p > f ð0Þ, then fq A M : q > pg is finite since any subsequence of M

converges to the point f ð0Þ). For (b) ) (a), suppose that K is not metrizable.

Let A be any infinite subset of ½0; 1�, and let D ¼ fdn : n A Ng be an infinite

countable subset of A. Then, by Proposition 2.2, D is closed discrete in ½0; 1�.
Thus, since ½0; 1� is normal, as is well-known, there exists a closed discrete

collection D ¼ f½an; bn� : n A Ng in ½0; 1� with an < dn < bn. Define a function

f : ½0; 1� ! K as follows:

f ðxÞ ¼
ðn=ðdn � anÞÞðx� anÞ if x A ðan; dn� ðn A NÞ
ðn=ðbn � dnÞÞðbn � xÞ if x A ðdn; bnÞ ðn A NÞ
0 if x A ½0; 1� �6y

n¼1
ðan; bnÞ

8><
>:

Then f is continuous, because any f �1ðða; bÞÞ is open in ½0; 1� since the col-

lection D is closed discrete in ½0; 1�. But, f ðAÞ has no maxima since f ðdnÞ ¼ n

ðn A NÞ. This is a contradiction. Hence K is metrizable. r

Corollary 2.2. For an ordered field K , (1), (2), and (3) below hold.

(1) The following are equivalent.

(a) K is metrizable, but not Archimedean.

(b) There exists a continuous function f : ½0; 1� ! K such that f ðS0Þ has

no upper bounds in K , where S0 ¼ f1=n : n A NgU f0gHK.

(2) The following are equivalent.

(a) K is metrizable, but not Dedekind-complete.

(b) There exists a continuous function f : ½0; 1� ! K such that for some

countable (closed ) set L in ½0; 1�, f ðLÞ has no upper bounds in K.

(3) The following are equivalent.

(a) K is metrizable.

(b) Same as (b) in (2), but replace ‘‘½0; 1�’’ by an open interval ‘‘ð0; 1Þ’’ twice.

Proof. For (1), (2) and (3), to see (a) ) (b) holds, assume (a) holds. Since

K is metrizable, K has a countable set fan : n A Ng having no upper bounds by
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Proposition 2.2. While, for (1), the sequence S0 is closed discrete in ½0; 1� by

Proposition 2.5(1). For (2), K has a decreasing sequence L in ½0; 1� having no

limit points, hence L is closed discrete in ½0; 1�. For (3), the same holds in a

normal space ð0; 1Þ. Let us denote these discrete countable sets by fdn : n A Ng.
Then, we obtain a desirable continuous function f in (b) such that f ðdnÞ ¼ an

ðn A NÞ by the same way as in the proof of Theorem 2.2. To see (b) ) (a),

assume (b) holds. Then, K is metrizable by Proposition 2.2, for K contains a

countable set having no upper bounds. While, for (1), f ðS0Þ has no upper bounds

in (b), then it is not compact in K , thus neither is S0. Hence, K is not

Archimedean by Proposition 2.5(1). Similarly, for (2), ½0; 1� is not compact. Thus,

K is not Dedekind-complete by Proposition 2.5(2). Hence (a) holds. r

The following holds in view of the proofs of Theorems 2.2 and Corollary 2.2.

Corollary 2.3. For an ordered field K , (1) and (2) below hold (see [10]).

(1) The following are equivalent.

(a) K is Archimedean.

(b) For any continuous function f : ½0; 1� ! K, f ðS0Þ has a maximum,

where S0 ¼ f1=n : n A NgU f0gHK.

(2) The following are equivalent.

(a) K is Dedekind-complete.

(b) For any continuous function f : ½0; 1� ! K , and for any decreasing

sequence L in ½0; 1�, f ðcl LÞ has a maximum.

(c) K is Archimedean, and same as (b), but f ðLÞ has an upper bound.

(d) K is Archimedean, and for any continuous function f : ½0; 1� ! K ,

f ð½0; 1�Þ has an upper bound.

Remark 2.4. (1) We can not replace ‘‘maximum’’ by ‘‘upper bound’’ in

Theorem 2.2. (Indeed, let K be a non-metrizable ordered field in Remark 2.1.

Then, since K is not metrizable, by Corollary 2.2(2) (or (3)), K satisfies (b) with

the substitution ‘‘upper bound’’ in Theorem 2.2.

(2) In Corollary 2.2, we can not replace ‘‘no upper bounds’’ with ‘‘no

maxima’’. (Indeed, by Theorem 2.2, for a non-metrizable ordered field K , K

satisfies (b) with the substitution ‘‘no maxima’’ in Corollary 2.2).

(3) For continuous functions from ½0; 1�ðHKÞ into R, we can replace

‘‘maximum’’ by ‘‘upper bound’’ in Theorem 2.2 and Corollary 2.3 (hence, we can

omit ‘‘Archimedean’’ in Corollary 2.3(2)) in view of their proofs, using a classical

Tietze’s extension theorem (Tietze-Urysohn theorem).
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3. Revision of Dobbs’ Paper [2]

Dobbs [2, Theorem 2.6] shows that for each uncountable cardinal number @,
there exist ordered fields F1 and F2 of cardinality @, such that F1 is metizable

and F2 is not metrizable. For his (long) proof of this result, let us revise and

simplify the proof. Then, we give some related results.

Theorem 3.1. For each infinite cardinal number @, there exist (non-

Archimedean) ordered fields F1 and F2 of cardinality @ satisfying:

(a) F1 is metrizable; and

(b) F2 is not metrizable, but @ is uncountable.

Proof. Let K be an ordered field. For a set I , let X ¼ fxi : i A Ig be the

set of algebraically independent indeterminates. Let F ¼ KðXÞ be the field of

all rational functions in the variables xi A X with coe‰cients in K . Then jF j ¼
maxfjK j; jI jgb@0. We define a linear ordera on F by the steps (i), (ii), and (iii)

below. (The ordera on F is denoted bya1 in the proof of [2, Theorem 2.6], but

we do not use the order a2 on F defined there).

(i) Let oi ði ¼ 0; 1Þ be the smallest ordinal of cardinality @i. For the index-

set I being infinite countable, define I ¼ ½0;o0Þ (or N) which has the usual order,

so let I be uncountable. We will define a well-ordera� in I to satisfy (*): for each

countable subset C in I , there exists i0 A I such that i <� i0 for all i A C. Indeed,

since I is uncountable, for some A1 H I , we can consider A1 as ½0;o1Þ having

the usual order �1. Let A0 ¼ I � A1, and give a well-order �0 in A0. Define

the lexicographic order a� in I ¼ A0 þ A1 (i.e., for a0; a1 A I , define a0 <� a1 if

ai A Ai; otherwise, if ai A A0 with a0 00 a1, or ai A A1 with a0 01 a1). Then ðI ;a�Þ
is a well-ordered set satisfying (*). (Not every uncountable ordered set satisfy (*)

(by the usual ordered field R, etc.)).

(ii) Any monomial xm1

i1
� � � xmn

in
in F ðmi A ð0;o0Þ) is arranged by in <� in�1

<� � � � <� i2 <� i1. Among the monomials in F , define the lexicographic order

� in terms of I � ð0;o0Þ; that is, for distinct monomials u ¼ xm1

i1
� � � xmn

in
and

v ¼ x
p1
j1
� � � xpk

jk
, define u0 v if one of the following holds: i1 <� j1; i1 ¼ j1,

m1 < p1; i1 ¼ j1, m1 ¼ p1, i2 <� j2; and so on. (By convention, let us consider

1 A K as an (empty) monomial, and let 10 u for any other monomial u). We

note that for monomials u, v with u0 v, and wð� 0Þ, wu0wv.

(iii) Any polynomial a1w1 þ � � � þ amwm in F is arranged by w1 0w2 0 � � �0
wn, where ai A K � f0g, and wi are monomials in F . (By convention, let 0u ¼ 0

for any monomial u). Let us define a linearly order a in F . For h A F , let
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h ¼Gð f =gÞ, where f ¼ a1u1 þ � � � þ amum and g ¼ b1v1 þ � � � þ bnvn are poly-

nomials with am; bn > 0 in K . Define h > 0 if the sign of the fraction is ‘‘þ’’, and

h < 0 if ‘‘�’’. For h; x A F , define h < x if 0 < x� h. Then ðF ;aÞ is an ordered

field (for example, for h < x, and z > 0, zh < zx), but it is not Archimedean (for

x A X, x > n for all n A NÞ.
Now, first, for (b), let F2 ¼ QðXÞ with jI j ¼ @ ðb@1Þ. Then F2 has cardi-

nality @. To show that F2 is not metrizable, let L ¼ fhn : n A NgHF2 with

hn > 0. Let S ¼ fxi : i A NgHX be all variables appeared in denominators of

hn ðn A NÞ. Since S is countable, there exists xk A X such that xi 0 xk for all

xi A S by (i) and (ii). Let hn ¼ þð fn=gnÞ for each n A N. Then, for any n A N,

1=xk < fn and gn < xk by (iii), thus 0 < 1=x2
k < þð fn=gnÞ ¼ hn. Hence, the se-

quence L does not accumulate to 0. Thus, F2 is not metrizable by Proposition 2.2.

Next, for (a), let K ¼ Q for @ ¼ @0, and let K ¼ F2 for @0@0, for example.

Let X ¼ fxg. Then F1 ¼ KðXÞ has cardinality @. To see F1 is metrizable, let

L ¼ f1=xn : n A Ng. For h ¼ þð f =gÞ > 0, let n ¼ maxfdegð f Þ; degðgÞg. Then 0 <

1=xnþ1 < h. Thus L converges to 0. Hence, F1 is metrizable by Proposition 2.2.

r

Remark 3.1. In [2, Remark 2.7(b)], it is shown that F ¼ Rðxi : i A RÞ is not

metrizable. The coe‰cients-set R is the usual ordered field, but for the index-set

R, we consider it as a well-ordered set satisfying the condition (*) in (i) of the

proof of Theorem 3.1, then F is not metrizable in view of Theorem 3.1. While, if

the index-set R is considered as the usual order set R, then F would be met-

rizable, because the sequence f1=xi : i A Ng converges to 0 in F . Similarly, any

F ¼ Kðfxi : i A IgÞ would be metrizable if we take an order on I defined by

replacing ½0;o1Þ with ½0;o0Þ in (i) of the proof of Theorem 3.1 (assuming I is

not finite), because I has the countable subset ½0;o0Þ which is cofinal in I with

respect to this order.

Let us give a characterization for Kðfxi : i A IgÞ to be metrizable (or sep-

arable metrizable), here we consider the index-set I as in (i) of the proof of

Theorem 3.1.

Theorem 3.2. For F ¼ Kðfxi : i A IgÞ, F is metrizable if and only if the index

set I is countable.

Proof. This holds in view of the proof of Theorem 3.1. Indeed, for the

‘‘only if ’’ part, suppose I is not countable, then F is not metrizable. For the ‘‘if ’’
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part, if the countable set I is infinite, then f1=xi : i A Ig converges to 0. If I is

finite, for m ¼ max I , f1=xn
m : n A Ng also converges to 0. Hence, F is metrizable

by Proposition 2.2. r

Lemma 3.1. For F ¼ KðXÞ, K is a closed discrete subset of F.

Proof. Let x A F � K . Then for each h A F , VðhÞ ¼ ðh� 1=x; hþ 1=xÞ is a

neighborhood at h in F such that jVðhÞVK ja 1. Indeed, suppose that there exist

a; b A VðhÞVK with a0 b. Then 0 < g ¼ ja� bj < 2=x. But, g > 2=x since g A K .

This is a contradiction. Hence, K is a closed discrete subset of F . r

Remark 3.2. Any ordered field has no isolated points by its order topology.

Thus, by Lemma 3.1, for any F ¼ KðXÞ, the ordered field K is not a subspace

in F (namely, the order topology of K is not the relative topology from F ).

Corollary 3.1. For F ¼ KðXÞ, F is separable metrizable if and only if F is

countable.

Proof. The ‘‘if ’’ part holds by a fact that every countable ordered field

is separable metrizable (see [2], etc.). For the ‘‘only if ’’ part, F is Lindelöf, then

K is countable by Lemma 3.1. While, F is metrizable, then X is countable by

Theorem 3.2. Thus, F is countable. r
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