# Gauss Sums on the Iwahori-Hecke Algebras of Type $A$ 

Dedicated to Professor Ken-ichi SHINODA

Yasushi GOMI

Sophia University


#### Abstract

In this paper, we determine $\tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right)$, the Gauss sums on the Iwahori-Hecke algebras of type $A$ for irreducible characters $\chi_{q}^{\lambda}$, which are $q$-analogues of those on the symmetric groups. We also explicitly determine the values of the corresponding trace function $\psi_{q}^{(n)}=\sum_{\lambda \vdash n} \tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right) \chi_{q}^{\lambda}$.


## 1. Introduction

Based on the classical Gauss sum

$$
\sum_{x=0}^{p-1} e^{2 x^{2} \pi \sqrt{-1} / p}=\sum_{x=1}^{p-1}\left(\frac{x}{p}\right) e^{2 \pi x \sqrt{-1} / p}
$$

where $p$ is an odd prime and $\left(\frac{x}{p}\right)$ is the Legendre symbol, Gomi, Maeda and Shinoda [3] have defined Gauss sums on arbitrary finite groups as follows. Let $G$ be a finite group, and fix a modular representation $\rho: G \rightarrow \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ over $\mathbb{F}_{q}$, a finite field with $q$ elements. Fix a nontrivial additive character $e: \mathbb{F}_{q} \rightarrow \mathbb{C}$. For a class function $\chi: G \rightarrow \mathbb{C}$, the Gauss sum has been defined by

$$
\tau(\chi)=\sum_{x \in G} \chi(x) e(\operatorname{Tr} \rho(x))
$$

In case $G=\mathbb{F}_{p}^{\times}$, if we take $\rho$ and $e$ naturally and $\chi$ as the Legendre symbol, then $\tau(\chi)$ coincides with the classical Gauss sum. As we mentioned in [3], it is useful to consider $|G|^{-1} \tau(\chi)$ rather than $\tau(\chi)$, so we put $\tilde{\tau}(\chi)=|G|^{-1} \tau(\chi)$ and the Gauss sum for $\chi$ shall mean $\tilde{\tau}(\chi)$ in this paper.

Before [3], there are several previous works for Gauss sums on finite linear algebraic groups with natural representations $\rho: G \hookrightarrow \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. Kondo [7] determined the values of Gauss sums on general linear groups for any irreducible characters. Kim and Lee [6] determined the values for $\mathrm{O}^{+}(2 n, q)$ and for linear characters. In a series of papers after [6],

[^0]they also studied for some other classical groups for linear characters. Saito and Shinoda [ 9,10$]$ studied Gauss sums on finite reductive groups for the Deligne-Lusztig generalized characters and determined the values for $\operatorname{Sp}(4, q)$ and $G_{2}(q)$.

In [3], we started to study Gauss sums on arbitrary finite groups and explicitly determined the values for Weyl groups and for the complex reflection groups $G(m, r, n)$ for any irreducible characters. Based on the results in [3], we expect that there exist the $q$-analogues of the Gauss sums on Weyl groups, which means the Gauss sums on the Iwahori-Hecke algebras.

In this paper, we consider the case of type $A$, that is the case of the symmetric groups, and determine the Gauss sums on the Iwahori-Hecke algebras of type $A$.

This paper is organized as follows. In $\S 2$, we shall briefly review the Gauss sums on the symmetric groups. In $\S 3$, based on the Gauss sums on the symmetric groups, we determine $\tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right)$, the Gauss sums on the Iwahori-Hecke algebras of type $A$. In $\S 4$, we explicitly determine the values $\psi_{q}^{(n)}\left(T_{w}\right)$, where $\psi_{q}^{(n)}$ is the corresponding trace function defined by $\psi_{q}^{(n)}=\sum_{\lambda \vdash n} \tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right) \chi_{q}^{\lambda}$. We will see some relation between the Gauss sums and the Markov traces on the Iwahori-Hecke algebras of type $A$.

## 2. Preliminaries

For a prime $p$, let $\mathbb{F}_{p}$ be a finite field with $p$ elements, and $\rho: \mathcal{S}_{n} \rightarrow \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ be the permutation representation of $\mathcal{S}_{n}$, the symmetric group of degree $n$. Throughout this paper we fix a nontrivial additive character $e: \mathbb{F}_{p} \rightarrow \mathbb{C}$ and a primitive $p$-th root of unity $\zeta=e(1) \in \mathbb{C}$. Using this $e$, we define a class function $\psi^{(n)}$ on $\mathcal{S}_{n}$ as follows:

$$
\psi^{(n)}(\sigma)=e(\operatorname{Tr} \rho(\sigma)) \quad \text { for } \sigma \in \mathcal{S}_{n}
$$

where $\operatorname{Tr}$ denotes the trace of a matrix. We note that

$$
\psi^{(n)}(\sigma)=\zeta^{\mathrm{fix}(\sigma)} \quad \text { for } \sigma \in \mathcal{S}_{n}
$$

where fix $(\sigma)$ is the number of fixed points by $\sigma$. Let $\lambda \vdash n$ be a partition of $n$ and $\chi^{\lambda}$ be the irreducible character of $\mathcal{S}_{n}$ corresponding to $\lambda$. Let

$$
\tilde{\tau}_{n}\left(\chi^{\lambda}\right)=\left\langle\psi^{(n)}, \chi^{\lambda}\right\rangle \quad \text { for } \lambda \vdash n,
$$

where the right hand side of the above is the usual scalar product of $\mathbb{C}$-valued class functions on $\mathcal{S}_{n}$. Then we have

$$
\psi^{(n)}=\sum_{\lambda \vdash n} \tilde{\tau}_{n}\left(\chi^{\lambda}\right) \cdot \chi^{\lambda} .
$$

We call $\tilde{\tau}_{n}\left(\chi^{\lambda}\right)$ the Gauss sum on $\mathcal{S}_{n}$ associated with the irreducible character $\chi^{\lambda}$.
Now we review the isomorphism $R \simeq \Lambda$, where $R$ is the algebra of class functions of symmetric groups and $\Lambda$ is the algebra of symmetric functions. For the details, see [8]. We
denote by $R_{n}$ the vector space over $\mathbb{C}$ of class functions of $\mathcal{S}_{n}$. The irreducible characters $\left\{\chi^{\lambda} \mid \lambda \vdash n\right\}$ of $\mathcal{S}_{n}$ form a basis of $R_{n}$. Let $R=\bigoplus_{n \geqslant 0} R_{n}$ with $R_{0}=\left\langle\chi^{(0)}\right\rangle=\mathbb{C}$. Then $R$ has a ring structure, defined as follows:

$$
u \cdot v=\operatorname{ind}_{\mathcal{S}_{m} \times \mathcal{S}_{n}}^{\mathcal{S}_{m+n}}(u \times v) \quad \text { for } u \in R_{m}, v \in R_{n} .
$$

With this multiplication, $R$ is a commutative, associative, graded $\mathbb{C}$-algebra with identity element $\chi^{(0)}=1$. Let $\Lambda^{n}$ be the homogeneous symmetric functions over $\mathbb{C}$ of degree $n$. Then $\Lambda=\bigoplus_{n \geqslant 0} \Lambda^{n}$ naturally has a graded $\mathbb{C}$-algebra structure. For each $n \geq 0$ the $n$th complete symmetric function $h_{n}$ is the sum of all monomials of total degree $n$ with $h_{0}=1$. Then we have

$$
\Lambda=\mathbb{Z}\left[h_{1}, h_{2}, \ldots\right]
$$

and the $h_{n}$ are algebraically independent over $\mathbb{C}$. For each partition $\lambda \vdash n$, we denote by $s_{\lambda}$ the Schur function corresponding to $\lambda$ with $s_{(0)}=1$ for $\lambda=(0) \vdash 0$. Then the $s_{\lambda}(\lambda \vdash n)$ form a basis of $\Lambda^{n}$. We define a linear mapping ch : $R \rightarrow \Lambda$ by $\operatorname{ch}\left(\chi^{\lambda}\right)=s_{\lambda}$ for each partition $\lambda$, which is called the characteristic map. In case $\lambda=(n), \chi^{(n)}$ is the trivial character of $\mathcal{S}_{n}$ and the Schur function $s_{(n)}$ coincides with the $n$th complete function $h_{n}$. The next theorem is a basic fact.

THEOREM 2.1 ([8, I, (7.3)]). The characteristic map ch is an isomorphism from $R$ to $\Lambda$.

We define an endomorphism $\phi: \Lambda \rightarrow \Lambda$ by

$$
\phi\left(h_{n}\right)=\sum_{i=0}^{n} h_{i} .
$$

Let $\lambda$ and $\mu$ be partitions such that the Young diagram of $\lambda$ contains that of $\mu$. If the skew diagram $\lambda / \mu$ contains at most one box in each column, then $\lambda / \mu$ is called a horizontal strip which we abbreviate to h.s.

Lemma 2.2. For each Schur function $s_{\lambda}$, we have

$$
\phi\left(s_{\lambda}\right)=\sum_{\substack{\mu \\ \lambda / \mu \text { is h.s. }}} s_{\mu},
$$

where the summation is over all partitions $\mu$ such that $\lambda / \mu$ is a horizontal strip.
For a proof, see [3, Th. 2.10].
In [3], the values of the Gauss sums on the symmetric groups are determined explicitly.
THEOREM 2.3 ([3]). We define an algebra homomorphism $\Phi: \Lambda \rightarrow \mathbb{C}$ by

$$
\Phi\left(h_{n}\right)=\frac{(\zeta-1)^{n}}{n!} \quad \text { for } n=0,1,2, \ldots
$$

(1) We define a linear mapping $\tilde{\tau}: R=\bigoplus_{n \geqslant 0} R_{n} \rightarrow \mathbb{C}$ by

$$
\tilde{\tau}\left(\sum_{n \geq 0} f_{n}\right)=\sum_{n \geq 0} \tilde{\tau}_{n}\left(f_{n}\right)
$$

Then we have

$$
\begin{equation*}
\tilde{\tau}=\Phi \circ \phi \circ \mathrm{ch} \tag{2.1}
\end{equation*}
$$

which shows that $\tilde{\tau}$ is an algebra homomorphism.
(2) We define a generating function

$$
W(t)=\sum_{n \geq 0} \tilde{\tau}_{n}\left(\chi^{(n)}\right) t^{n}
$$

Then we have

$$
W(t)=\frac{\exp ((\zeta-1) t)}{1-t}=\frac{\exp (\zeta t)}{(1-t) \exp t}
$$

(3) For the trivial character $\chi^{(n)}$ of $\mathcal{S}_{n}$, we have

$$
\tilde{\tau}_{n}\left(\chi^{(n)}\right)=\sum_{k=0}^{n} \frac{(\zeta-1)^{k}}{k!}
$$

(4) For each irreducible character $\chi^{\lambda}$ of $\mathcal{S}_{n}$, we have

$$
\tilde{\tau}_{n}\left(\chi^{\lambda}\right)=\sum_{\substack{\mu \\ \lambda / \mu \text { is h.s. }}} \frac{(\zeta-1)^{|\mu|}}{h(\mu)}
$$

where $h(\mu)=\prod_{x \in \mu} h(x)$ is the product of hook lengths of $\mu$ and the summation is over all partitions $\mu$ such that $\lambda / \mu$ is a horizontal strip.

## 3. $q$-analogue of $\tilde{\tau}$

In this section, we construct Gauss sums on the Iwahori-Hecke algebras of type $A$. In case of the symmetric groups, first we consider the class function $\psi^{(n)}(\sigma)=\zeta^{\text {fix }(\sigma)}$, then the Gauss sums $\tilde{\tau}_{n}\left(\chi^{\lambda}\right)$ are defined as structure constants of $\psi^{(n)}$, that is,

$$
\psi^{(n)}=\sum_{\lambda \vdash n} \tilde{\tau}_{n}\left(\chi^{\lambda}\right) \chi^{\lambda}
$$

The $\tilde{\tau}_{n}$ induce the algebra homomorphism $\tilde{\tau}: R \rightarrow \mathbb{C}$ which is decomposed to $\tilde{\tau}=\Phi \circ \phi \circ$ ch (see Theorem 2.3(1)). In case of the Iwahori-Hecke algebra of type $A$, first we consider $\Phi_{q}$, the $q$-analogue of $\Phi$, and then we define $\tilde{\tau}_{q}$, the $q$-analogues of $\tilde{\tau}$, by $\tilde{\tau}_{q}=\Phi_{q} \circ \phi \circ \mathrm{ch}$, which
is parallel to the equation (2.1). After that, we define $\psi_{q}^{(n)}$, the $q$-analogue of $\psi^{(n)}$, which is a trace function of the Iwahori-Hecke algebra of type $A_{n-1}$ in the next section.

Let $S=\left\{s_{i}=(i, i+1) \in \mathcal{S}_{n} \mid i=1,2, \ldots n-1\right\}$. Then $\left(\mathcal{S}_{n}, S\right)$ has a structure of a Coxeter system and have a usual length function $l$ with respect to $S$. Let $q$ be a parameter in $\mathbb{C}$ which is not a root of unity. The algebra $\mathcal{H}_{n}$, the Iwahori-Hecke algebra of type $A_{n-1}$ is a $\mathbb{C}$-algebra with basis $\left\{T_{w} \mid w \in \mathcal{S}_{n}\right\}$, and whose multiplication is determined by

$$
T_{s} T_{w}= \begin{cases}T_{s w} & \text { if } l(s w)=l(w)+1 \\ q T_{s w}+(q-1) T_{w} & \text { if } l(s w)=l(w)-1\end{cases}
$$

for all $s \in S, w \in \mathcal{S}_{n}$. Let $R\left(\mathcal{H}_{n}\right)$ be the set of trace functions on $\mathcal{H}_{n}$ and let $R_{q}=\oplus_{n \geq 0} R\left(\mathcal{H}_{n}\right)$ with $R\left(\mathcal{H}_{0}\right)=\left\langle\chi_{q}^{(0)}\right\rangle=\mathbb{C}$. Since the algebra $\mathcal{H}_{n}$ is semisimple, the irreducible characters $\left\{\chi_{q}^{\lambda} \mid \lambda \vdash n\right\}$ form a basis of $R\left(\mathcal{H}_{n}\right)$. It is a basic fact that the algebras $R$ and $R_{q}$ are isomorphic by the correspondence $\chi^{\lambda} \mapsto \chi_{q}^{\lambda}$ for all partitions $\lambda$ (see [2, §9.1]). So we have an isomorphism from $R_{q}$ to $\Lambda$, which we also denote by ch, so that $\operatorname{ch}\left(\chi_{q}^{\lambda}\right)=s_{\lambda}$ for each partition $\lambda$. We define an algebra homomorphism $\Phi_{q}: \Lambda \rightarrow \mathbb{C}$ by

$$
\Phi_{q}\left(h_{n}\right)=\frac{(\zeta-1)(\zeta-q) \cdots\left(\zeta-q^{n-1}\right)}{[n]_{q}!}
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, \quad[n]_{q}!=\prod_{k=1}^{n}[k]_{q} \quad \text { for } n=1,2, \ldots
$$

Lemma 3.1. For each Schur function $s_{\lambda}$, we have

$$
\Phi_{q}\left(s_{\lambda}\right)=\frac{q^{n(\lambda)}}{h[\lambda]_{q}} \prod_{x \in \lambda}\left(\zeta-q^{c(x)}\right)
$$

where the product is over all boxes $x$ in the Young diagram of $\lambda$, and

$$
\begin{aligned}
& h[\lambda]_{q}=\prod_{x \in \lambda}[h(x)]_{q}, \text { the product of } q \text {-hook lengths of } \lambda, \\
& c(x)=j-i, \text { the content of } x=(i, j) \in \lambda, \\
& n(\lambda)=\sum_{i=1}^{r}(i-1) \lambda_{i} \quad \text { for } \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} .
\end{aligned}
$$

The proof is an easy application of [8, I, 3, Ex.3].
Now we define an algebra homomorphism $\tilde{\tau}_{q}: R_{q} \rightarrow \mathbb{C}$ by

$$
\tilde{\tau}_{q}=\Phi_{q} \circ \phi \circ \mathrm{ch},
$$

which is parallel to the equation (2.1). For each irreducible character $\chi_{q}^{\lambda}$ of $\mathcal{H}_{n}$, we call $\tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right)$ a Gauss sum on $\mathcal{H}_{n}$.

Proposition 3.2. For each $\chi_{q}^{\lambda}$, we have

$$
\tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right)=\sum_{\substack{\mu \\ \lambda / \mu \text { is h.s. }}} \frac{q^{n(\mu)}}{h[\mu]_{q}} \prod_{x \in \mu}\left(\zeta-q^{c(x)}\right)
$$

where the summation is over all partitions $\mu$ such that $\lambda / \mu$ is a horizontal strip.
Proof. Using Lemma 3.1, direct calculation proves the proposition as follows:

$$
\begin{aligned}
\tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right) & =\Phi_{q} \circ \phi\left(s_{\lambda}\right) \\
& =\sum_{\substack{\mu \\
\lambda / \mu \text { is h.s. }}} \Phi_{q}\left(s_{\mu}\right) \\
& =\sum_{\substack{\mu \\
\lambda / \mu \text { is h.s. }}} \frac{q^{n(\mu)}}{h[\mu]_{q}} \prod_{x \in \mu}\left(\zeta-q^{c(x)}\right) .
\end{aligned}
$$

For the index character $\chi_{q}^{(n)}$ of $\mathcal{H}_{n}$ which corresponds to the trivial character $\chi^{(n)}$ of $\mathcal{S}_{n}$, the value $\tilde{\tau}_{q}\left(\chi_{q}^{(n)}\right)$ can be expressed simply. In order to do that, we prepare some notation. For $\sigma \in \mathcal{S}_{n}$, the descent set of $\sigma$ is defined to be

$$
\operatorname{DES}(\sigma)=\{i \in\{1,2, \ldots, n-1\} \mid \sigma(i)>\sigma(i+1)\}
$$

and the major index of $\sigma$ is defined by

$$
\operatorname{maj}(\sigma)=\sum_{i \in \mathrm{DES}} i
$$

We define two generation functions

$$
W_{q}(t)=\sum_{n \geq 0} \tilde{\tau}_{q}\left(\chi_{q}^{(n)}\right) t^{n}=\sum_{n \geq 0} \Phi_{q} \circ \phi\left(h_{n}\right) t^{n},
$$

and

$$
V_{q}(t)=\sum_{n \geq 0} \Phi_{q}\left(h_{n}\right) t^{n}
$$

Lemma 3.3. We have

$$
W_{q}(t)=\frac{\exp _{q}(\zeta t)}{(1-t) \exp _{q}(t)}
$$

where

$$
\exp _{q}(t)=\sum_{n \geq 0} \frac{t^{n}}{[n]_{q}!}
$$

Proof. Since $\phi\left(h_{n}\right)=\sum_{i=0}^{n} h_{i}$, we have

$$
\begin{aligned}
W_{q}(t) & =\sum_{n \geq 0} \sum_{i=0}^{n} \Phi_{q}\left(h_{i}\right) t^{n} \\
& =\sum_{i \geq 0} \sum_{n \geq i} \Phi_{q}\left(h_{i}\right) t^{i} t^{n-i} \\
& =\frac{1}{1-t} V_{q}(t) .
\end{aligned}
$$

Using the formula in [1, Th.2.1], we have

$$
V_{q}(t)=\frac{\exp _{q}(\zeta t)}{\exp _{q}(t)},
$$

and the proof is completed.
THEOREM 3.4. For the index character $\chi_{q}^{(n)}$ of $\mathcal{H}_{n}$, we have

$$
\tilde{\tau}_{q}\left(\chi_{q}^{(n)}\right)=\frac{1}{[n]_{q}!} \sum_{\sigma \in \mathcal{S}_{n}} q^{\operatorname{maj}(\sigma)} \zeta^{\mathrm{fix}(\sigma)}
$$

Proof. We define a generating function

$$
W_{q}^{\prime}(t)=\sum_{n \geq 0} \sum_{\sigma \in \mathcal{S}_{n}} q^{\operatorname{maj}(\sigma)} \zeta^{\mathrm{fix}(\sigma)} \frac{t^{n}}{[n]_{q}!} .
$$

In order to prove the theorem, we shall show $W_{q}^{\prime}(t)=W_{q}(t)$. By [11, Th.1.2] or [4], we have

$$
\begin{equation*}
W_{q}^{\prime}(t)=\frac{(1-q) \exp _{q}(\zeta t)}{\exp _{q}(q t)-q \exp _{q}(t)} \tag{3.1}
\end{equation*}
$$

Since we have

$$
\exp _{q}(t)=\prod_{n \geq 0}\left(1-q^{n}(1-q) t\right)^{-1}
$$

by [1, Cor.2.2], the denominator of the right hand side of the equation (3.1) is

$$
\begin{aligned}
\exp _{q}(q t)-q \exp _{q}(t) & =\prod_{n \geq 0}\left(1-q^{n+1}(1-q) t\right)^{-1}-q \exp _{q}(t) \\
& =(1-(1-q) t) \exp _{q}(t)-q \exp _{q}(t) \\
& =(1-q)(1-t) \exp _{q}(t) .
\end{aligned}
$$

By Lemma 3.3, we obtain the result.

## 4. $q$-analogue of $\psi^{(n)}$

We define $\psi_{q}^{(n)}$, a trace function of $\mathcal{H}_{n}$ by

$$
\psi_{q}^{(n)}=\sum_{\lambda \vdash n} \tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right) \chi_{q}^{\lambda},
$$

which is a $q$-analogue of $\psi^{(n)}$. In this section, we determine the values $\psi_{q}^{(n)}\left(T_{w}\right)$ for $w \in \mathcal{S}_{n}$. First we briefly review the theory of trace functions on $\mathcal{H}_{n}$ (see [2, §8.2]). Let Cl be the set of conjugacy classes of $\mathcal{S}_{n}$, and let

$$
C_{\min }=\{w \in C \mid w \text { has minimal length in } C\} \quad \text { for } C \in \mathrm{Cl} .
$$

Then we have the following.
THEOREM 4.1 ([2, (8.2.3), (8.2.6)]). Let $\psi: \mathcal{H}_{n} \rightarrow \mathbb{C}$ be a trace function on $\mathcal{H}_{n}$.
(1) $\psi\left(T_{w}\right)=\psi\left(T_{w^{\prime}}\right)$ for $w, w^{\prime} \in C_{\text {min }}$.
(2) For each $w \in \mathcal{S}_{n}$, there exist $f_{w, C} \in \mathbb{C}$ which are uniquely determined by the equations

$$
T_{w} \equiv \sum_{C \in \mathrm{Cl}} f_{w, C} T_{w_{C}} \quad \bmod \left[\mathcal{H}_{n}, \mathcal{H}_{n}\right],
$$

where $\left[\mathcal{H}_{n}, \mathcal{H}_{n}\right] \subset \mathcal{H}_{n}$ is the subspace spanned by all commutators $\left[h, h^{\prime}\right]=h h^{\prime}-h^{\prime} h$ for $h, h^{\prime} \in \mathcal{H}_{n}$.
(3) We choose a representative $w_{C} \in C_{\text {min }}$ for each $C \in \mathrm{Cl}$. Then we have

$$
\psi\left(T_{w}\right)=\sum_{C \in \mathrm{Cl}} f_{w, C} \psi\left(T_{w_{C}}\right)
$$

Since the values of $f_{w, C}$ can be obtained inductively on the length of $w$, in order to give the values $\psi_{q}^{(n)}\left(T_{w}\right)$ for all $w \in \mathcal{S}_{n}$, it is sufficient to give them only for $w=w_{C} \in C_{\text {min }}$ for $C \in \mathrm{Cl}$.

Lemma 4.2. Let $x \in \mathcal{S}_{m}$ and $y \in \mathcal{S}_{n-m}$ and let $\bar{y}$ be the image of $y$ by the injection $\mathcal{S}_{n-m} \hookrightarrow \mathcal{S}_{n}$ with $s_{i} \mapsto s_{i+m}$ for $i=1,2, \ldots, n-m-1$. Then we have

$$
\psi_{q}^{(n)}\left(T_{x} T_{\bar{y}}\right)=\psi_{q}^{(m)}\left(T_{x}\right) \psi_{q}^{(n-m)}\left(T_{y}\right)
$$

Proof. Let $c_{\lambda, \mu}^{\nu}$ be the Littlewood-Richardson coefficients for partitions $v \vdash n, \lambda \vdash m$ and $\mu \vdash n-m$, which give the multiplication rule for Schur functions:

$$
s_{\lambda} s_{\mu}=\sum_{\nu \vdash n} c_{\lambda, \mu}^{\nu} s_{\nu} .
$$

By the isomorphism ch : $R_{q} \rightarrow \Lambda$, we have

$$
\chi_{q}^{\lambda} \cdot \chi_{q}^{\mu}=\operatorname{ind}_{\mathcal{H}_{m} \otimes \mathcal{H}_{n-m}}^{\mathcal{H}_{n}} \chi_{q}^{\lambda} \otimes \chi_{q}^{\mu}=\sum_{\nu \vdash n} c_{\lambda, \mu}^{\nu} \chi_{q}^{v},
$$

and by the Frobenius reciprocity, we have

$$
\left.\chi_{q}^{\nu}\right|_{\mathcal{H}_{m} \otimes \mathcal{H}_{n-m}}=\sum_{\lambda \vdash m, \mu \vdash n-m} c_{\lambda, \mu}^{v} \chi_{q}^{\lambda} \otimes \chi_{q}^{\mu} .
$$

Then we obtain

$$
\begin{aligned}
\psi_{q}^{(n)}\left(T_{x} T_{\bar{y}}\right) & =\sum_{\nu \vdash n} \tilde{\tau}_{q}\left(\chi_{q}^{\nu}\right) \chi_{q}^{\nu}\left(T_{x} T_{\bar{y}}\right) \\
& =\sum_{\nu \vdash n} \tilde{\tau}_{q}\left(\chi_{q}^{v}\right) \sum_{\lambda \vdash m, \mu \vdash n-m} c_{\lambda, \mu}^{\nu} \chi_{q}^{\lambda}\left(T_{x}\right) \chi_{q}^{\mu}\left(T_{y}\right) \\
& =\sum_{\lambda \vdash m, \mu \vdash n-m}\left(\sum_{\nu \vdash n} c_{\lambda, \mu}^{\nu} \tilde{\tau}_{q}\left(\chi_{q}^{\nu}\right)\right) \chi_{q}^{\lambda}\left(T_{x}\right) \chi_{q}^{\mu}\left(T_{y}\right) \\
& =\sum_{\lambda \vdash m} \tilde{\tau}_{q}\left(\chi_{q}^{\lambda}\right) \chi_{q}^{\lambda}\left(T_{x}\right) \sum_{\mu \vdash n-m} \tilde{\tau}_{q}\left(\chi_{q}^{\mu}\right) \chi_{q}^{\mu}\left(T_{y}\right) \\
& =\psi_{q}^{(m)}\left(T_{x}\right) \psi_{q}^{(n-m)}\left(T_{y}\right),
\end{aligned}
$$

which completes the proof.
Corollary 4.3. We have

$$
\psi_{q}^{(n)}(1)=\zeta^{n} \quad \text { for } n=1,2, \ldots
$$

Proof. By Lemma 4.2, we have

$$
\psi^{(n)}(1)=\left(\psi^{(1)}(1)\right)^{n} .
$$

By the definition of $\psi_{q}^{(n)}$, we have

$$
\psi_{q}^{(1)}=\tilde{\tau}_{q}\left(\chi_{q}^{(1)}\right) \chi_{q}^{(1)},
$$

and by the definition of $\tilde{\tau}_{q}$, we have

$$
\tilde{\tau}_{q}\left(\chi_{q}^{(1)}\right)=\Phi_{q}\left(h_{1}\right)+\Phi_{q}\left(h_{0}\right)=\zeta-1+1=\zeta .
$$

Hence we obtain

$$
\psi_{q}^{(n)}(1)=\left(\zeta \chi_{q}^{(1)}(1)\right)^{n}=\zeta^{n} \quad \text { for } n=1,2, \ldots
$$

By Theorem 4.1 and Lemma 4.2, it is sufficient to give the value of $\psi_{q}^{(n)}\left(T_{w}\right)$ only for the Coxeter element $w=s_{1} s_{2} \cdots s_{n-1}$.

Lemma 4.4. We define a trace function $\varphi_{q}^{(n)}$ on $\mathcal{H}_{n}$ by

$$
\varphi_{q}^{(n)}=\sum_{\lambda \vdash n} \Phi_{q}\left(s_{\lambda}\right) \chi_{q}^{\lambda} .
$$

Then we have

$$
\psi_{q}^{(n)}=\sum_{k=0}^{n} \operatorname{ind}_{\mathcal{H}_{k} \otimes \mathcal{H}_{n-k}}^{\mathcal{H}_{n}} \varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)},
$$

where $\chi_{q}^{(n-k)}$ is the index character of $\mathcal{H}_{n-k}$.
Proof. The direct calculation shows that

$$
\begin{aligned}
\psi_{q}^{(n)} & =\sum_{\lambda \vdash n} \Phi_{q} \circ \phi\left(s_{\lambda}\right) \chi_{q}^{\lambda} \\
& =\sum_{\lambda \vdash n} \sum_{\substack{\mu \\
\lambda / \mu \text { is h.s. }}} \Phi_{q}\left(s_{\mu}\right) \chi_{q}^{\lambda} \\
& =\sum_{k=0}^{n} \sum_{\mu \vdash k} \Phi_{q}\left(s_{\mu}\right) \sum_{\substack{\lambda \vdash n \\
\lambda / \text { is h.s. }}} \chi_{q}^{\lambda} \\
& =\sum_{k=0}^{n} \sum_{\mu \vdash k} \Phi_{q}\left(s_{\mu}\right) \operatorname{ind}_{\mathcal{H}_{k} \otimes \mathcal{H}_{n-k}}^{\mathcal{H}_{n}} \chi_{q}^{\mu} \otimes \chi_{q}^{(n-k)} \quad \text { by Pieri's formula [8, I,(5.16)] } \\
& =\sum_{k=0}^{n} \operatorname{ind}_{\mathcal{H}_{k} \otimes \mathcal{H}_{n-k}}^{\mathcal{H}_{n}} \varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)},
\end{aligned}
$$

which completes the proof.
Lemma 4.5. Let $w_{C}=s_{1} s_{2} \cdots s_{n-1}$ be a Coxeter element of $\mathcal{S}_{n}$, then we have

$$
\varphi_{q}^{(n)}\left(T_{w_{C}}\right)=(1-q)^{n-1}(\zeta-1)
$$

Proof. By Lemma 3.1, we have

$$
(\zeta-1)^{-n} \varphi_{q}^{(n)}=\sum_{\lambda \vdash n} \frac{q^{n(\lambda)} \prod_{x \in \lambda}\left(\zeta-q^{c(x)}\right)}{(\zeta-1)^{n} h[\lambda]_{q}} \chi_{q}^{\lambda} .
$$

The argument of $[5, \S 5]$ shows that $(\zeta-1)^{-n} \varphi_{q}^{(n)}$ is the Markov trace on $\mathcal{H}_{n}$ with parameter $z=\frac{1-q}{\zeta-1}$, and we have

$$
\varphi_{q}^{(n)}\left(T_{w_{C}}\right)=(\zeta-1)^{n} z^{n-1}=(1-q)^{n-1}(\zeta-1),
$$

which completes the proof.
Here we review the formula of induced character of Iwahori-Hecke algebra (see [2, §9.1]). Let $(W, S)$ be a Coxeter system and let $\mathcal{H}$ be the corresponding Iwahori-Hecke algebra. For $J \subset S$, let $W_{J} \subset W$ be the corresponding parabolic subgroup and let $\mathcal{H}_{J}=\left\langle T_{w} \mid w \in W_{J}\right\rangle \subset \mathcal{H}$ be the corresponding parabolic subalgebra. Let $W^{J}$ be the
right coset representatives of $W_{J} \backslash W$ such that $x \in W^{J}$ is the unique element of minimal length in $W_{J} x$. We denote by $w_{0}$ (resp. $w_{J}$ ) the longest element of $W$ (resp. $W_{J}$ ), and define $d_{J}=w_{J} w_{0}$. Then $d_{J}$ is the unique element of maximal element in $W^{J}$ and any element $x \in W^{J}$ satisfies $l\left(x^{-1} d_{J}\right)=l\left(d_{J}\right)-l(x)$. For any $\mathcal{H}_{J}$-module $V$, the induced module is defined by

$$
\operatorname{ind}_{J}^{S}(V)=V \otimes_{\mathcal{H}_{J}} \mathcal{H}
$$

and if $\chi$ is the character of $V$, then we denote by $\operatorname{ind}_{J}^{S}(\chi)$ the character of $\operatorname{ind}{ }_{J}^{S}(V)$. The direct sum decomposition $\mathcal{H}=\sum_{x \in W^{J}} \mathcal{H}_{J} T_{x}$ implies that

$$
T_{x} T_{w}=\sum_{y \in W^{J}} h^{w}(x, y) T_{y} \quad \text { with unique } h^{w}(x, y) \in \mathcal{H}_{J}
$$

for any $w \in W$ and $x \in W^{J}$.
Proposition 4.6 ([2, Prop.9.1.3]). For any character $\chi$ of $\mathcal{H}_{J}$ and for any $w \in W$, we have

$$
\operatorname{ind}_{J}^{S}(\chi)\left(T_{w}\right)=\sum_{x \in W^{J}} \chi\left(h^{w}(x, x)\right)
$$

We apply this proposition to the case of $W=\mathcal{S}_{n}$,

$$
S=\left\{s_{i}=(i, i+1) \mid i=1,2, \ldots n-1\right\},
$$

$J=S-\left\{s_{k}\right\}$ and the character $\varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)}$ of the parabolic subalgebra $\mathcal{H}_{J}=\mathcal{H}_{k} \otimes \mathcal{H}_{n-k}$ for $k=1,2, \ldots, n-1$.

Lemma 4.7. Let $w_{C}=s_{1} s_{2} \cdots s_{n-1}$ be a Coxeter element of $\mathcal{S}_{n}$ and $J=S-\left\{s_{k}\right\}$, $w_{k}=s_{1} s_{2} \cdots \hat{s_{k}} \cdots s_{n-1}$ for $k=1,2, \ldots, n-1$. Then we have

$$
h^{w_{C}}(x, x)= \begin{cases}(q-1) T_{w_{k}} & \text { if } x=d_{J}, \\ 0 & \text { if } x \neq d_{J}\end{cases}
$$

for $x \in W^{J}$.
Proof. Let $x \in W^{J}-\left\{d_{J}\right\}$, then there exist some $s_{i} \in S$ such that $l\left(x s_{i}\right)=l(x)+1$ and $x s_{i} \in W^{J}$. If we assume that

$$
\begin{gathered}
x, x s_{1}, x s_{1} s_{2}, \ldots, x s_{1} s_{2} \cdots s_{i-1} \in W_{J} x, \\
l\left(x s_{i}\right)=l(x)+1 \text { and } x s_{i} \in W^{J},
\end{gathered}
$$

for some $i$, then it is easy to see that $x w_{C} \in W_{J} y$ for some $y \in W^{J}$ with $l(y)>l(x)$, which implies that $T_{x} T_{w_{C}} \in \mathcal{H}_{J} y$. Hence we obtain $h^{w_{C}}(x, x)=0$. In case

$$
x, x s_{1}, x s_{1} s_{2}, \ldots, x s_{1} s_{2} \cdots s_{i-1} \in W_{J} x
$$

$$
l\left(x s_{i}\right)=l(x)-1 \text { and } x s_{i} \in W^{J},
$$

for some $i$, the situation is more difficult than the previous case, but if you consider the action of $W$ on $W_{J} \backslash W$ carefully, then it can be shown that $h^{w_{C}}(x, x)=0$. Now we assume that $x=d_{J}$. We note that

$$
d_{J} s_{i}= \begin{cases}s_{i+k} d_{J} & \text { for } i=1,2, \ldots, n-k-1 \\ s_{i+k-n} d_{J} & \text { if } i=n-k+1, n-k+2, \ldots, n-1\end{cases}
$$

and

$$
d_{J} s_{n-k} \cdots s_{n-k+i-1} \in W^{J}
$$

with $l\left(d_{J} s_{n-k} \cdots s_{n-k+i-1}\right)=l\left(d_{J}\right)-i$ for $i=1,2, \ldots, k$. Then the direct calculation shows that

$$
\begin{aligned}
T_{d_{J}} T_{w_{C}}= & T_{s_{k+1}} s_{k+2} \cdots s_{n-1} \\
= & (q-1) T_{d_{J}} T_{s_{n-k} s_{n-k+1} \cdots s_{n-1}} \\
& +q T_{s_{k+1}} s_{k+2} \cdots s_{n-1} \cdots s_{n-1} T_{d_{J} s_{n-k}} T_{s_{J}} T_{s_{n-k+1}} s_{n-k+2} \cdots s_{n-1} \\
= & \cdots \\
= & (q-1) T_{w_{k}} T_{d_{J}} \\
& +\sum_{i=1}^{k-1} q^{i}(q-1) T_{s_{i+1}} s_{i+2} \cdots \hat{s}_{k} \cdots s_{n-1} \\
& T_{d_{J} s_{n-k} \cdots s_{n-k+i-1}} \\
& +q^{n} T_{s_{k+1} s_{k+2} \cdots s_{n-1}} T_{d_{J} s_{n-k} \cdots s_{n-1}} .
\end{aligned}
$$

Hence we obtain that $h^{w_{C}}\left(d_{J}, d_{J}\right)=(q-1) T_{w_{k}}$ as required.
THEOREM 4.8. For the Coxeter element $w_{C}=s_{1} s_{2} \cdots s_{n-1} \in \mathcal{S}_{n}$, we have

$$
\psi_{q}^{(n)}\left(T_{w_{C}}\right)=\frac{q(q-1)\left(q^{n-2}-(1-q)^{n-2}\right)}{q-(1-q)} \zeta+\frac{q\left(q^{n-1}-(1-q)^{n-1}\right)}{q-(1-q)}
$$

Proof. By Corollary 4.3, we have $\psi_{q}^{(1)}(1)=\zeta$ as required. Now we assume $n \geq 2$. By Lemma 4.4, we have

$$
\psi_{q}^{(n)}\left(T_{w_{C}}\right)=\varphi_{q}^{(n)}\left(T_{w_{C}}\right)+\chi_{q}^{(n)}\left(T_{w_{C}}\right)+\sum_{k=1}^{n-1} \operatorname{ind}_{\mathcal{H}_{k} \otimes \mathcal{H}_{n-k}}^{\mathcal{H}_{n}} \varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)}\left(T_{w_{C}}\right) .
$$

By Lemma 4.5, we have

$$
\varphi_{q}^{(n)}\left(T_{w_{C}}\right)=(1-q)^{n-1}(\zeta-1)
$$

Since $\chi_{q}^{(n)}$ is the index character of $\mathcal{H}_{n}$, we have

$$
\chi_{q}^{(n)}\left(T_{w_{C}}\right)=q^{l\left(w_{C}\right)}=q^{n-1}
$$

By Proposition 4.6 and Lemma 4.7, we have

$$
\begin{aligned}
\operatorname{ind}_{\mathcal{H}_{k} \otimes \mathcal{H}_{n-k}}^{\mathcal{H}_{n}} \varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)}\left(T_{w_{C}}\right) & =\sum_{x \in W^{J}} \varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)}\left(h^{w_{C}}(x, x)\right) \\
& =\varphi_{q}^{(k)} \otimes \chi_{q}^{(n-k)}\left((q-1) T_{w_{k}}\right) \\
& =(q-1)(1-q)^{k-1}(\zeta-1) q^{n-k-1} \\
& =-q^{n-k-1}(1-q)^{k}(\zeta-1) .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
\psi_{q}^{(n)}\left(T_{w_{C}}\right) & =(1-q)^{n-1}(\zeta-1)+q^{n-1}-\sum_{k=1}^{n-1} q^{n-k-1}(1-q)^{k}(\zeta-1) \\
& =\frac{q(q-1)\left(q^{n-2}-(1-q)^{n-2}\right)}{q-(1-q)} \zeta+\frac{q\left(q^{n-1}-(1-q)^{n-1}\right)}{q-(1-q)}
\end{aligned}
$$

which completes the proof.
Here we list the values $\psi_{q}^{(n)}\left(T_{w}\right)$ for $n=1,2,3,4$. For a partition $\mu$, we abbreviate the element $T_{w_{\mu}}$ to $T_{\mu}$, where $w_{\mu}$ is an element of minimal length in the conjugacy class corresponding to $\mu$.

Case $n=1$ :

$$
\psi_{q}^{(1)}\left(T_{(1)}\right)=\zeta
$$

Case $n=2$ :

$$
\psi_{q}^{(2)}\left(T_{(1,1)}\right)=\zeta^{2}, \quad \psi_{q}^{(2)}\left(T_{(2)}\right)=q
$$

Case $n=3$ :

$$
\psi_{q}^{(3)}\left(T_{(1,1,1)}\right)=\zeta^{3}, \quad \psi_{q}^{(3)}\left(T_{(2,1)}\right)=q \zeta, \quad \psi_{q}^{(3)}\left(T_{(3)}\right)=q(q-1) \zeta+q .
$$

Case $n=4$ :

$$
\begin{gathered}
\psi_{q}^{(4)}\left(T_{(1,1,1,1)}\right)=\zeta^{4}, \quad \psi_{q}^{(4)}\left(T_{(2,1,1)}\right)=q \zeta^{2}, \quad \psi_{q}^{(4)}\left(T_{(2,2)}\right)=q^{2}, \\
\psi_{q}^{(4)}\left(T_{(3,1)}\right)=q(q-1) \zeta^{2}+q \zeta, \quad \psi_{q}^{(4)}\left(T_{(4)}\right)=q(q-1) \zeta+\left(q^{2}-q+1\right) q .
\end{gathered}
$$

Acknowledgment. I wish to express my gratitude to Professor Ken-ichi Shinoda for his continuous help and encouragement since I was an undergraduate student. He suggested the theme of this paper and gave me useful information.

This work was supported by JSPS KAKENHI Grant Number 23540026.

## References

[ 1] G. E. Andrews, The Theory of Partitions, Reprint of the 1976 original, Cambridge Univ. Press, Cambridge, 1998.
[ 2 ] M. GECK and G. PHEIFFER, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, The Clarendon Press, Oxford University Press, New York, 2000.
[ 3 ] Y. Gomi, T. Maeda and K. Shinoda, Gauss sums on finite groups, Tokyo J. Math. 35, no. 1 (2012), 165179.
[4] I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64, no. 2 (1993), 189-215.
[5] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. (2) 126 (1987), 335-388.
[6] D. S. Kim and I. Lee, Gauss sums for $\mathrm{O}^{+}(2 n, q)$, Acta Arith. 78 (1996), 75-89.
[7] T. Kondo, On Gaussian sums attached to the general linear groups over finite fields, J. Math. Soc. Japan 15 (1963), 244-255.
[ 8 ] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Second ed., The Clarendon Press, Oxford University Press, New York, 1995.
[9] N. Saito and K. Shinoda, Character sums attached to finite reductive groups, Tokyo J. Math. 23, no. 2 (2000), 373-385.
[10] N. Saito and K. Shinoda, Some character sums and Gauss sums over $G_{2}(q)$, Tokyo J. Math. 24, no. 1 (2001), 277-289.
[11] J. ShARESHIAN and M. L. WACHS, $q$-Eulerian polynomials: Excedance number and major index, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 33-45.

## Present Address:

Department of Information and Commnunication Sciences, Sophia University, Kioicho, Chiyoda-Ku, Tokyo 102-8554, Japan.
e-mail: y-gomi@sophia.ac.jp


[^0]:    Received March 31, 2015; revised March 11, 2016

