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Abstract. This paper discusses a holomorphic nonlinear singular partial differential equation (t∂t )
mu =

F(t, x, {(t∂t )
j ∂α

x u}j+α≤m,j<m) that is of nonlinear totally characteristic type. The Newton Polygon at x = 0

of the equation is defined, and by means of this polygon we define a generalized Poincaré condition (GP) and a
condition (R) that the equation has a regular singularity at x = 0. Under these conditions, (GP) and (R), it is proved
that every formal power series solution is convergent in a neighborhood of the origin.

1. Introduction

We set N = {0, 1, 2, . . .} and N∗ = {1, 2, . . .}. Let m ∈ N∗, and set Im = {(j, α) ∈
N × N ; j + α ≤ m, j < m}. Let (t, x) ∈ Ct × Cx , z = {zj,α}(j,α)∈Im ∈ CN (with
N = #Im = m(m+3)/2), and F(t, x, z) be a function defined in a polydisk Δ centered at the

origin of Ct × Cx × CN
z . In this paper, we consider the nonlinear partial differential equation

(1.1) (t∂t )
mu = F

(
t, x, {(t∂t )

j ∂α
x u}(j,α)∈Im

)

under the following assumptions:

A1) F (t, x, z) is holomorphic in Δ , and
A2) F (0, x, 0) ≡ 0 in Δ0 = Δ ∩ {t = 0, z = 0} .

We set Im(+) = {(j, α) ∈ Im ; α > 0}. Then the situation is divided into the following three
cases:

Case 1: (∂F/∂zj,α)(0, x, 0) ≡ 0 on Δ0 for any (j, α) ∈ Im(+),
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Case 2: (∂F/∂zj,α)(0, 0, 0) �= 0 for some (j, α) ∈ Im(+),
Case 3: the other case.

In Case 1, the equation (1.1) is called a nonlinear Fuchsian type partial differential equa-
tion and it was studied quite well by Baouendi-Goulaouic [1], Gérard-Tahara [6, 7], Madi-
Yoshino [9], Tahara-Yamazawa [15] and Tahara-Yamane [14]. In Case 2, a kind of Goursat
problem appears. Gérard-Tahara [8] discussed a particular class in this case and proved the
existence of holomorphic solutions as well as singular solutions of (1.1).

In Case 3, the equation (1.1) is called a nonlinear totally characteristic type partial dif-
ferential equation. The main theme of this paper is to discuss this case under the following
condition:

A3) (∂F/∂zj,α)(0, x, 0) = O(xα) (as x −→ 0) for any (j, α) ∈ Im(+).

Under A3) and a Poincaré condition, the unique solvability in the space of holomorphic func-
tions was proved by Chen-Tahara [5] and Tahara [13]. Similar equations were studied by
Chen-Luo [2, 3], Chen-Luo-Tahara [4], Miyake-Shirai [10, 11] and Shirai [12].

Let us recall the main result in [5]. By the condition A3), for any (j, α) ∈ Im(+), we
can express (∂F/∂zj,α)(0, x, 0) = xαcj,α(x) for some function cj,α(x) holomorphic in a
neighborhood of x = 0 ∈ C. We set

L(λ, ρ) = λm −
∑

(j,α)∈Im

cj,α(0)λjρ(ρ − 1) · · · (ρ − α + 1) ,

Lm(X) = Xm −
∑

j+α=m,j<m

cj,α(0)Xj .

Denote by λ1, . . . , λm the roots of the equation Lm(X) = 0. Consider the following condi-
tions:

(N)(Non-resonance condition). L(k, l) �= 0 for any (k, l) ∈ N∗ × N.
(P)(Poincaré condition). λi ∈ C \ [0,∞) for i = 1, 2, . . . ,m.

THEOREM 1 (Chen-Tahara [5]). Suppose A1), A2) and A3) hold. If the non-
resonance condition (N) is satisfied, the equation (1.1) has a unique formal solution u(t, x) ∈
C[[t, x]] satisfying u(0, x) ≡ 0. In addition, if the Poincaré condition (P) is satisfied, this
unique formal solution is convergent in a neighborhood of (0, 0) ∈ Ct × Cx .

In this paper, we will define a generalized Poincaré condition (GP) (see Section 2) by
means of the Newton polygon at x = 0 of the equation (1.1), and then we will show the
convergence of the formal solution under (GP) and the condition that (1.1) has a regular
singularity at x = 0.

Throughout this paper, C[[x]] denotes the ring of formal power series in x, and C[[t, x]]
denotes the ring of formal power series in (t, x).



GENERALIZED POINCARÉ CONDITION 865

2. Main Theorem

Suppose the conditions A1), A2), and A3) hold. Let L(λ, ρ) be as in Section 1. Set
cj,α(x) = cj,α(0) + xbj,α(x). Then the equation (1.1) can be rewritten in the form

L(t∂t , x∂x)u =
∑

(j,α)∈Im

xbj,α(x)(t∂t )
j (x∂x)(x∂x − 1) · · · (x∂x − α + 1)u(2.1)

+ a(x)t + R2
(
t, x, {(t∂t )

j ∂α
x u}(j,α)∈Im

)
,

where R2(t, x, z) is a holomorphic function on Δ whose Taylor expansion in (t, z) has the
form

R2(t, x, z) =
∑

i+|ν|≥2

ai.ν(x)
∏

(j,α)∈Im

zj,α
νj,α ,

where ν = {νj,α}(j,α)∈Im ∈ NN and |ν| = ∑
(j,α)∈Im

νj,α .

Set cm,0(x) = −1 and

(2.2) Λ0 = {(m, 0)} ∪ {(j, α) ∈ Im ; cj,α(0) �= 0} .

Let us define the Newton polygon N0 at x = 0 of the equation (2.1). For (a, b) ∈ R2, we

write C(a, b) = {(x, y) ∈ R2 ; x ≤ a, y ≤ b}. The Newton polygon N0 at x = 0 is defined
as the convex hull of the union of the sets C(j, α) ((j, α) ∈ Λ0) in R2, that is,

N0 = the convex hull of
⋃

(j,α)∈Λ0

C(j, α) .

A picture of the Newton polygon N0 is in Figure 1.

DEFINITION 1. We say that equation (2.1) has a regular singularity at x = 0 if the
following condition is satisfied:

(R)(Regularity condition). If cj,α(0) = 0 and cj,α(x) �≡ 0 we have (j, α) ∈ N0.

If otherwise, that is, if (R) is not satisfied then we say that equation (2.1) has an irregular
singularity at x = 0.

As seen in Figure 1, the vertices of N0 are the p points

(m1, n1) = (m, 0) , (m2, n2), · · · , (mp−1,mp−1) , (mp, np) ,

and the boundary of N0 consists of the vertical half-line Γ0, the (p − 1)-segments
Γ1, Γ2, . . . , Γp−1, and the horizontal half-line Γp. Obviously, Γi (0 ≤ i ≤ p) are closed

subsets of R2. We denote the slope of Γi by −si (i = 0, 1, 2, . . . , p). Then we have

s0 = ∞ > s1 > s2 > · · · > sp−1 > sp = 0 .

If p = 1 and the regularity condition (R) is satisfied, we have cj,α(x) ≡ 0 for any
(j, α) ∈ Im with α > 0. This means that the equation is nothing but a nonlinear Fuchsian
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FIGURE 1. Newton polygon N0 at x = 0

type equation and so every formal power series solution is convergent (by Gerard-Tahara [6]).
Thus, from now we may discuss only the case p ≥ 2.

Suppose p ≥ 2. For 1 ≤ i ≤ p − 1 we set

Pi(X) =
∑

(j,α)∈Λ0∩Γi

cj,α(0)Xj−mi+1

= cmi,ni (0)Xmi−mi+1 + · · · + cmi+1,ni+1(0)

and call this Pi(X) the characteristic polynomial on Γi . We denote by λi,q (1 ≤ q ≤ mi −
mi+1) the roots of Pi(X) = 0 which are called the characteristic roots on Γi . In the case
i = p, the characteristic polynomial on Γp is defined by Pp(X) = 1 if mp = 0, and by

Pp(X) =
∑

(j,α)∈Λ0∩Γp

cj,α(0)Xj = cmp,np (0)Xmp + · · · , if mp ≥ 1 .

In the case mp ≥ 1, the roots λp,q (1 ≤ q ≤ mp) of Pp(X) = 0 are called the characteristic
roots on Γp. We define a generalized Poincaré condition as follows:

(GP)(Generalized Poincaré condition)
(i) λi,q ∈ C \ [0,∞) for all 1 ≤ i ≤ p − 1 and 1 ≤ q ≤ mi − mi+1,
(ii) λp,q ∈ C \ N∗ for 1 ≤ q ≤ mp.

Then we have the following result:

THEOREM 2 (Main Theorem). Suppose A1), A2), and A3) hold. If the additional
conditions (R) and (GP) (in the case p ≥ 2) are satisfied, every formal power series solution
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u(t, x) ∈ C[[t, x]] of equation (2.1) satisfying u(0, x) ≡ 0 is convergent in a neighborhood
of (0, 0) ∈ Ct × Cx .

COROLLARY 1. In addition to the assumption in Theorem 2, if the non-resonance con-
dition (N) is satisfied, the equation (2.1) has a unique holomorphic solution u(t, x) in a neigh-
borhood of (0, 0) ∈ Ct × Cx satisfying u(0, x) ≡ 0.

EXAMPLE 1. Let us consider

(t∂t )
4u + (x∂x)

2u = a(x)t + c(x)(t∂t )
2(x∂x)

ku(2.3)

+ R2
(
t, x, {(t∂t )

j ∂α
x u}j+α≤4,j<4

)
, k = 0, 1, 2

where a(x) and c(x) are holomorphic functions in a neighborhood of x = 0, and R2(t, x, z)

is the same as in (2.1). This equation does not satisfy the usual Poincaré condition (P); but we
have the following results (the proof is given in Section 5).

(1) If k = 0 we have p = 2, N0 = {(x, y) ; x ≤ 4, y ≤ 2, x/4 + y/2 ≤ 1}, (R), (GP)
and (N). Hence, equation (2.3) has a unique holomorphic solution u(t, x) in a neighborhood
of (0, 0) ∈ Ct × Cx satisfying u(0, x) = 0.

(2) If k = 1 we have p = 2, N0 = {(x, y) ; x ≤ 4, y ≤ 2, x/4 + y/2 ≤ 1} and (R). In
this case, (GP) is equivalent to the condition c(0) �∈ [2,∞): moreover, if c(0) �∈ [2,∞) holds,
we have (N). Hence, if k = 1 and c(0) �∈ [2,∞), equation (2.3) has a unique holomorphic
solution u(t, x) in a neighborhood of (0, 0) ∈ Ct × Cx satisfying u(0, x) = 0.

(3) If k = 2 and c(0) �= 0 we have p = 2, N0 = {(x, y) ; x ≤ 4, y ≤ 2, x/4+y/4 ≤ 1}
and (R). In this case, (GP) is equivalent to the condition c(0) �∈ [0,∞): moreover, if c(0) �∈
[0,∞) holds, we have (N). Hence, if k = 2 and c(0) �∈ [0,∞), equation (2.3) has a unique
holomorphic solution u(t, x) in a neighborhood of (0, 0) ∈ Ct × Cx satisfying u(0, x) = 0.

(4) If k = 2 and c(0) = 0 (with c(x) �≡ 0) we have p = 2, N0 = {(x, y) ; x ≤ 4, y ≤
2, x/4 + y/2 ≤ 1}, and the equation (2.3) satisfies (GP) and (N), but not (R). In this case,
(2.3) has an irregular singularity at x = 0, and the formal solution is not convergent in general
(see Lemma 10 in Section 6).

The remaining part of this paper is organized as follows. In Section 3, we give an inter-
pretation of the condition (GP), and then in Sections 4 and 5, we give a proof of Theorem 2,
by using the result in Section 3. In the last section, we will discuss the results in Example 1;
in particular, we will show the divergence of the formal solution of (2.3) by means of a very
special example.

3. Interpretation of (GP)

We denote by Γ the boundary of N0, and by V0 the set of the vertices of N0, that is,

Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γp ,

V0 = {(m1, n1), . . . , (mp, np)} .
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Recall that we have set (m1, n1) = (m, 0) and cm,0(x) = −1. Let L(λ, ρ) be as in Section 1,
Λ0 be as in (2.2), and set

LΓ (λ, ρ) = −
∑

(j,α)∈Λ0∩Γ

cj,α(0)λjρα = λm + · · · ,

φ(λ, ρ) =
∑

(j,α)∈V0

λjρα = λm + λm2ρn2 + · · · + λmpρnp .

PROPOSITION 1. The following three conditions (P1), (P2) and (P3) are equivalent.
(P1) The generalized Poincaré condition (GP) is satisfied.
(P2) There are c > 0 and a finite subset S of N∗ × N such that

(3.1)
∣
∣LΓ (k, l)

∣
∣ ≥ cφ(k, l) for any (k, l) ∈ N∗ × N \ S .

(P3) There are c > 0 and a finite subset S of N∗ × N such that

(3.2)
∣
∣L(k, l)

∣
∣ ≥ cφ(k, l) for any (k, l) ∈ N∗ × N \ S .

3.1. Some lemmas. Let us present some basic lemmas which are needed in the proof
of Proposition 1.

LEMMA 1. (1) Let s ≥ 0, 0 ≤ j < a and 0 ≤ b ≤ α be such that (α−b)/(a−j) ≤ s.
Then for any ε > 0 and δ > 0 we can find an N ∈ N∗ such that

(3.3) kj lα ≤ εkalb on W1 = {(k, l) ∈ N∗ × N ; k ≥ ls+δ, l ≥ N}.
(2) Let s > 0, 0 ≤ a < j and 0 ≤ α < b be such that (b − α)/(j − a) ≥ s. Then for

any ε > 0 and 0 < δ < s we can find an N ∈ N∗ such that

(3.4) kj lα ≤ εkalb on W2 = {(k, l) ∈ N∗ × N ; k ≤ ls−δ, k ≥ N}.
(3) Let 0 ≤ j < a and 0 ≤ α < b be such that j/a +α/b ≤ 1 − δ for some δ > 0. Then

for any ε > 0 we can find an N ∈ N∗ such that

(3.5) kj lα ≤ ε(ka + lb) on W3 = W3,1 ∪ W3,2

with W3,1 = {(k, l) ∈ N∗ × N ; ka ≥ lb, k ≥ N} and W3,2 = {(k, l) ∈ N∗ × N ; ka ≤ lb, l ≥
N}.

PROOF. Let us show (1). For ε > 0 and δ > 0 we take N ∈ N∗ such that N ≥ 2 and

log N ≥ − log ε

δ(a − j)
.

Then the condition (3.3) is verified in the following way.

Take any (k, l) ∈ W and fix it. Let us show that kj lα ≤ εkalb. By setting
d = log k/ log l, we have k = ld and d ≥ s + δ. Since δ ≤ d − s ≤ d − (α − b)/(a − j), by
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using the definition of N we obtain

− log ε

(a − j)
≤ δ × log N ≤

(
d − α − b

a − j

)
log N ≤

(
d − α − b

a − j

)
log l ,

that is,

− log ε

(a − j)
≤

(
d − α − b

a − j

)
log l

which is equivalent to ljd+α ≤ εlad+b. Since k = ld , it follows that kj lα ≤ εkalb. Thus, the
condition (3.3) is proved.

The proof of (2) is as follows. Take any ε > 0, 0 < δ < s, and δ1 > 0 such that
1/s + δ1 = 1/(s − δ). By interchanging k and l in the proof of (1), we have the result that if
N ∈ N∗ satisfies N ≥ 2 and log N ≥ (− log ε)/(δ1(b − α)) then

kj lα ≤ εkalb on W = {(k, l) ∈ N∗ × N∗ ; l ≥ k1/s+δ1, k ≥ N}.
This proves (3.4) since 1/s + δ1 = 1/(s − δ).

Let us show (3). If (k, l) ∈ W3,1 we have l ≤ ka/b and so

kj lα ≤ kj+α(a/b) = (kj/a+α/b)a = (k1−δ)a ≤ εka

provided that log N ≥ (− log ε)/δa. Similarly, if (k, l) ∈ W3,2 and log N ≥ (− log ε)/δb

then we have kilα ≤ εlb. This proves (3.5). �

The second lemma is as follows. Let a, b ∈ N∗. We denote by Γ 0 the segment in R2

connecting the two points (a, 0) and (0, b), and by −s the slope of the line containing Γ 0.

Then we have s = b/a. Let J = {(j, α) ∈ N2 ; (j, α) ∈ Γ 0}, cj,α ∈ C ((j, α) ∈ J ), and
suppose ca,0 �= 0. We also set

L0(λ, ρ) =
∑

(j,α)∈J

cj,αλjρα = ca,0λ
a + · · · ,

P 0(X) =
∑

(j,α)∈J

cj,αXj = ca,0X
a + · · · .

Since s = b/a, it is easy to see that L0(λ, ρ)/ρb = P 0(λ/ρs). Denote by λ1, . . . , λa the

roots of P 0(X) = 0. Then we have the following:

LEMMA 2. (1) Let 0 < d1 < b/a < d2, and let N ∈ N∗ be sufficiently large such that
ld2 > ld1 holds for any l ≥ N . Set W = {(k, l) ∈ N2 ; ld2 ≥ k ≥ ld1, l ≥ N}. If the estimate

(3.6) |L0(k, l)| ≥ c(ka + lb) on W

holds for some c > 0, we have λq ∈ C \ [0,∞) for q = 1, 2, . . . , a.
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(2) Conversely, if λq ∈ C \ [0,∞) for q = 1, 2, . . . , a, we have the estimate

(3.7) |L0(k, l)| ≥ c(ka + lb) on N∗ × N

for some c > 0.

PROOF. Let us show (1). Suppose the condition (3.6) holds. Then by setting s = b/a

and X = k/ls for (k, l) ∈ W we obtain

(3.8) |P 0(X)| =
∣
∣
∣∣
L0(k, l)

lb

∣
∣
∣∣ ≥ c((k/ls)a + 1) = c(Xa + 1) .

To show (1), it is enough to prove the following:

λq �= 0 for q = 1, 2, . . . , a ;(3.9)

λq �∈ (0,∞) for q = 1, 2, . . . , a .(3.10)

Let us show (3.9). Suppose λq = 0 for some q . Then we have P 0(X) = Xd(X −
λj1) · · · (X − λja−d ) with d ≥ 1 and λj1 �= 0, . . . , λja−d �= 0. Combining this with (3.8) gives

(3.11) Xd ≥ c(Xa + 1)

(X + |λj1 |) · · · (X + |λja−d |)
with X = k/ls ,

for any (k, l) ∈ W . Here for any sufficiently large l (≥ N) we set kl = [ld1] + 1 (where [x]
denotes the integer part of x). Then we have ld1 < [ld1] + 1 = kl ≤ ld1 + 1 < ld2 and so
(kl, l) ∈ W . Moreover, if we set Xl = kl/ ls we have

Xl = kl

ls
≤ ld1 + 1

ls
−→ 0 (as l −→ ∞) .

Thus, by substituting X = Xl into (3.11) and letting l −→ ∞ we obtain

0 ≥ c

|λj1 | · · · |λja−d |
,

which is a contradiction. Thus, we have proven (3.9).
Let us show (3.10). Suppose λ1 > 0. By (3.8) we have

(3.12) |X − λ1| ≥ c(Xa + 1)

(X + |λ2|) · · · (X + |λa |) with X = k/ls ,

for any (k, l) ∈ W . We note here that ld1 < λ1l
s < ld2 if l (≥ N) is sufficiently large, and so

we can take kl ∈ N∗ such that ld1 < kl < ld2 and |kl − λ1l
s | ≤ 1. This means that (kl, l) ∈ W

and |kl/ ls − λ1| ≤ 1/ls . Moreover, if we set Xl = kl/ ls we have |Xl − λ1| −→ 0 (as
l −→ ∞). Thus, by substituting X = Xl into (3.12) and letting l −→ ∞ we obtain

0 ≥ c((λ1)
a + 1)

(λ1 + |λ2|) · · · (λ1 + |λa|) ,
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which is a contradiction. Thus, we conclude that λ1 �∈ (0,∞).
By the same argument, we can show also that λq �∈ (0,∞) for q = 2, . . . , a, which is

condition (3.10). This completes the proof of (1).
Next, let us show (2). Suppose that λq ∈ C \ [0,∞) for q = 1, 2, . . . , a. Let l(1,−λq)

be the segment that connects the two points 1 and −λq in the complex plane C. Since −λq �∈
(−∞, 0] is assumed, we have 0 �∈ l(1,−λq). This means that the distance dq from 0 to
l(1,−λq) is positive.

Take any (k, l) ∈ N∗ × N. Then we have

k − λq ls

k + ls
∈ l(1,−λq)

and consequently

|k − λqls | ≥ dq(k + ls ) .

Therefore, we have

(3.13) |k − λ1l
s | · · · |k − λal

s | ≥ (d1 · · · da)(k + ls )a on N∗ × N .

Since s = b/a, we have (k + ls )a ≥ ka + lb and

|k − λ1l
s | · · · |k − λal

s | =
∣
∣
∣
∣
k

ls
− λ1

∣
∣
∣
∣ · · ·

∣
∣
∣
∣
k

ls
− λa

∣
∣
∣
∣ × lb = |P 0(k/ls)| × lb

= |L0(k, l)|
lb

× lb = |L0(k, l)| .
Thus, by (3.13) we arrive at the desired inequality (3.7). �

Let us give a generalization of Lemma 2. Let (a1, b1), (a2, b2) ∈ N×N∗ with a1 > a2 ≥
0 and b2 > b1 ≥ 0. Denote by Γ the segment in R2 connecting the two points (a1, b1) and
(a2, b2), and by −s the slope of the line containing Γ . Then we have s = (b2 −b1)/(a1 −a2).

Set J = {(j, α) ∈ N2 ; (j, α) ∈ Γ }. Let cj,α ∈ C ((j, α) ∈ J ) and suppose ca1,b1 �= 0. We
also set

L(λ, ρ) =
∑

(j,α)∈J

cj,αλjρα = ca1,b1λ
a1ρb1 + · · · ,

P (X) =
∑

(j,α)∈J

cj,αXj−a2 = ca1,b1X
a1−a2 + · · · .

We denote by λ1, . . . , λa1−a2 the roots of P(X) = 0. Then, we have the following:

LEMMA 3. (1) Let N ∈ N∗, 0 < d1 < s < d2, and set W = {(k, l) ∈ N2 ; ld2 ≥ k ≥
ld1, l ≥ N}. If the estimate

(3.14) |L(k, l)| ≥ c(ka1 lb1 + ka2 lb2) on W

holds for some c > 0, we have λq ∈ C \ [0,∞) for q = 1, 2, . . . , a1 − a2.
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(2) Conversely, if λq ∈ C \ [0,∞) for q = 1, 2, . . . , a1 − a2, we have the estimate

(3.15) |L(k, l)| ≥ c(ka1 lb1 + ka2 lb2) on N∗ × N .

PROOF. Set

L0(λ, ρ) =
∑

(j,α)∈J

cj,αλj−a2ρα−b1 = ca1,b1λ
a1−a2 + · · · .

Then, the condition (3.14) is equivalent to

(3.16) |L0(k, l)| ≥ c(ka1−a2 + lb2−b1) on W.

By applying Lemma 2 to (3.16) we obtain the desired result. �

3.2. Proof of Proposition 1. In this section, we give a proof of Proposition 1. In our
Newton polygon N0 at x = 0 we have

Λ0 ∩ Γi = {(mi, ni), . . . , (mi+1, ni+1)} , 1 ≤ i ≤ p − 1,

Λ0 ∩ Γp = {(mp, np), . . .}
and Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γp. Recall also that −si denotes the slope of the line containing Γi .
For 1 ≤ i ≤ p, we let Ni ∈ N∗ and define the sets Ωi as follows:

Ω1 = {(k, l) ∈ N∗ × N ; k ≥ ls2+δ and l ≥ N1} ,

Ωi = {(k, l) ∈ N∗ × N ; lsi+1+δ ≤ k ≤ lsi−1−δ and l ≥ Ni} , 2 ≤ i ≤ p − 1 ,

Ωp = {(k, l) ∈ N∗ × N ; k ≤ lsp−1−δ and k ≥ Np} .

By applying (1) and (2) of Lemma 1 to the above situation we obtain the following:

LEMMA 4. (1) For any ε > 0 and δ > 0 we can find an N1 ∈ N∗ such that for any
(j, α) ∈ Λ0 ∩ (Γ \ Γ1) we have

kj lα ≤ εkm2 ln2 on Ω1 .

(2) Let 2 ≤ i ≤ p − 1. For any ε > 0 and 0 < δ < si−1 we can find an Ni ∈ N∗ such
that for any (j, α) ∈ Λ0 ∩ (Γ \ Γi) we have

kj lα ≤ ε(kmi lni + kmi+1 lni+1) on Ωi .

(3) For any ε > 0 and 0 < δ < sp−1 we can find an Np ∈ N∗ such that for any
(j, α) ∈ Λ0 ∩ (Γ \ Γp) we have

kj lα ≤ εkmp lnp on Ωp .

For 1 ≤ i ≤ p we set

LΓi (λ, ρ) =
∑

(j,α)∈Λ0∩Γi

cj,α(0)λjρα = cmi,ni (0)λmi ρni + · · · .
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Then we have the following consequence on Lemma 4.

LEMMA 5. (1) For any ε > 0 and δ > 0 we can find an N1 ∈ N∗ such that the
following estimates hold on Ω1:

|LΓ (k, l) − LΓ1(k, l)| ≤ εkm2 ln2 ,

|φ(k, l) − km − km2 ln2 | ≤ εkm2 ln2 .

(2) Let 2 ≤ i ≤ p − 1. For any ε > 0 and 0 < δ < si−1 we can find an Ni ∈ N∗ such
that the following estimates hold on Ωi :

|LΓ (k, l) − LΓi (k, l)| ≤ ε(kmi lni + kmi+1 lni+1) ,

|φ(k, l) − kmi lni − kmi+1 lni+1 | ≤ ε(kmi lni + kmi+1 lni+1) .

(3) For any ε > 0 and 0 < δ < si−1 we can find an Np ∈ N∗ such that the following
estimates hold on Ωp:

|LΓ (k, l) − LΓp(k, l)| ≤ εkmp lnp ,

|φ(k, l) − kmp lnp | ≤ εkmp lnp .

Since 0 = sp < sp−1 < · · · < s2 < s1 < s0 = ∞, we can take δ > 0 sufficiently small
so that

(3.17) Ω1 ∪ Ω2 ∪ · · · ∪ Ωp ⊃ {(k, l) ∈ N2 ; k ≥ N and l ≥ N}
for some N ∈ N∗ sufficiently large. By using Lemma 5 and (3.17), let us show the equivalence
of (P1), (P2) and (P3).

PROOF OF “(P1) ⇒ (P2)”. Suppose the condition (P1) holds. Then we can find a
c1 > 0 such that the following conditions are satisfied on N∗ × N:

|LΓi (k, l)| ≥ c1(k
mi lni + kmi+1 lni+1) , 1 ≤ i ≤ p − 1,(3.18)

|LΓp(k, l)| ≥ c1k
mp lnp .(3.19)

Note that (3.18) is a consequence of (2) of Lemma 3, and (3.19) follows from the fact that
(3.19) is equivalent to the condition |Pp(k)| ≥ c1k

mp (for any k ∈ N∗) which is easily verified
by the assumption (ii) of (GP).

We take ε > 0 and δ > 0 sufficiently small. Then by (1) of Lemma 5 and (3.18) with
i = 1 we have

|LΓ (k, l)| ≥ |LΓ1(k, l)| − |LΓ (k, l) − LΓ1(k, l)|
≥ c1(k

m + km2 ln2) − εkm2 ln2 ≥ (c1 − ε)(km + km2 ln2)

≥ (c1 − ε)
(
φ(k, l) − |φ(k, l) − km − km2 ln2)|)

≥ (c1 − ε)
(
φ(k, l) − ε(km + km2 ln2)

)

≥ (c1 − ε)(1 − ε)φ(k, l) on Ω1.



874 HIDETOSHI TAHARA

By the same argument, we see that there is a c2 > 0 such that

|LΓ (k, l)| ≥ c2φ(k, l) on Ωi , 1 ≤ i ≤ p ,

and so by (3.17) there is an N ∈ N such that

|LΓ (k, l)| ≥ c2φ(k, l) on {(k, l) ∈ N∗ × N ; k ≥ N and l ≥ N} .

Thus, to complete the proof of “(P1) ⇒ (P2)”, it is enough to prove the following

assertion: there are c3 > 0 and N0 ∈ N∗ such that

|LΓ (k, l)| ≥ c3φ(k, l) for k ≥ N0 and 0 ≤ l < N ,(3.20)

|LΓ (k, l)| ≥ c3φ(k, l) for 1 ≤ k < N and l ≥ N0 .(3.21)

Let us show this assertion.
We note that if l = 0 we have |LΓ (k, 0)| = km = φ(k, 0). If l (1 ≤ l < N) is fixed,

LΓ (k, l) and φ(k, l) are monic polynomials of degree m with respect to k and so it is clear
that |LΓ (k, l)| ≥ (1/2)φ(k, l) for sufficiently large k. This proves (3.20).

Similarly, if 1 ≤ k < N is fixed,

LΓ (k, l) = Pp(k)lnp + · · · , and

φ(k, l) = kmp lnp + · · ·
are polynomials of degree np with respect to l, in which Pp(k) �= 0 by the assumption (ii)
of (GP). Therefore, if we take c3 > 0 such that |Pp(k)| > c3k

mp for 1 ≤ k < N , we have
|LΓ (k, l)| ≥ c3φ(k, l) for sufficiently large l. This proves (3.21).

Thus, we have proven that (P1) implies (P2) for some c > 0 and a finite subset S of

N∗ × N. For example, in the case N0 ≥ N , we may take S = {(k, l) ∈ N∗ × N ; k ≤
N0 and l ≤ N0}. �

PROOF OF “(P2) ⇒ (P1)”. Suppose that (3.1) holds for some c > 0 and a finite sub-
set S of N∗ × N. Then, by (1) of Lemma 5 we have

|LΓ1(k, l)| ≥ |LΓ (k, l)| − |LΓ (k, l) − LΓ1(k, l)|
≥ cφ(k, l) − εkm2 ln2 ≥ (c − ε)φ(k, l)

≥ (c − ε)
(
km + km2 ln2 − |φ(k, l) − km − km2 ln2)|)

≥ (c − ε)
(
(km + km2 ln2) − ε(km + km2 ln2)

)

= (c − ε)(1 − ε)(km + km2 ln2) on Ω1 \ S .

By the same argument we can see that there is a c1 > 0 satisfying

|LΓi (k, l)| ≥ c1(k
mi lni + kmi+1 lni+1) on Ωi \ S, 1 ≤ i ≤ p − 1 ,(3.22)

|LΓp(k, l)| ≥ c1k
mp lnp on Ωp \ S .(3.23)
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Then, by applying Lemma 3 to (3.22) we obtain the condition λi,q ∈ C \ [0,∞) (1 ≤ q ≤
mi − mi+1) for 1 ≤ i ≤ p − 1. This proves (i) of (GP).

Let us show (ii) of (GP) when mp ≥ 1. In this case, by (3.23) we have |Pp(k)| ≥ c1k
mp

for any k ≥ Np (where Np is an integer satisfying (3) of Lemma 5). This shows that λp,q �∈
{k ∈ N ; k ≥ Np} (1 ≤ q ≤ mp).

For 1 ≤ k < Np, by directly using condition (3.1) we have |LΓ (k, l)|/lnp ≥
cφ(k, l)/ lnp for any sufficiently large l. Therefore, by letting l −→ ∞ we obtain |Pp(k)| ≥
ckmp for 1 ≤ k < Np. This shows λp,q �∈ {k ∈ N ; 1 ≤ k < Np} (1 ≤ q ≤ mp). Thus, we
have proven (ii) of (GP). �

We denote by int (N0) the interior of the set N0. Then, to show the equivalence of (P2)
and (P3) it is sufficient to prove the following lemma.

LEMMA 6. Let (j, α) ∈ Im be such that (j, α) ∈ int (N0). Then for any ε > 0 we can
find a finite subset S of N∗ × N such that

(3.24) kj lα ≤ εφ(k, l) on N∗ × N \ S .

PROOF. Let (j, α) ∈ int (N0). If l = 0 and α = 0, we have kj lα = kj ≤ εkm =
εφ(k, 0) for any k ∈ N∗ satisfying log k ≥ − log ε/(m − j). If l = 0 and α > 0, we have

kj lα = 0 ≤ εkm = εφ(k, 0) for any k ∈ N∗. Therefore, to show (3.24) it is enough to prove
the following: for any ε > 0 we can find a finite subset S of N∗ × N∗ such that

(3.25) kj lα ≤ εφ(k, l) on N∗ × N∗ \ S .

Let us show this assertion. We note that the situation is divided into the following three cases:

Case 1) mi+1 ≤ j < mi , ni ≤ α < ni+1 and α < −si (j − mi) + ni for some
1 ≤ i ≤ p − 1.

Case 2) mi+1 ≤ j < mi , 0 ≤ α < ni for some 1 ≤ i ≤ p − 1.
Case 3) 0 ≤ j < mp and 0 ≤ α < np (if mp ≥ 1).

Take any ε > 0. Let us first consider Case 1). Note that −si is the slope of Γi and
y = −si(x − mi) + ni defines the line containing Γi . Since si = (ni+1 − ni)/(mi − mi+1)

holds, we see that α < −si(j − mi) + ni is equivalent to the condition

(3.26)
j − mi+1

mi − mi+1
+ α − ni

ni+1 − ni

= 1 − δ

for some δ > 0. Thus in this case we have 0 ≤ j −mi+1 < mi −mi+1, 0 ≤ α−ni < ni+1−ni

and (3.26). By (3) of Lemma 1 we can find a finite subset S of N∗×N such that, on N∗×N\S,

kj−mi+1 lα−ni ≤ ε(kmi−mi+1 + lni+1−ni )

which yields

kj lα ≤ ε(kmi lni + kmi+1 lni+1) .
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We then have (3.25) since kmi lni + kmi+1 lni+1 ≤ φ(k, l).
Now, in Case 2), we have kj lα ≤ kj lni and so by applying the result in Case 1) (with α

replaced by ni ) we again obtain (3.25). Finally, in Case 3), we have

kj lα ≤ εkmp lnp if k ≥ (− log ε)/(mp − j) or l ≥ (− log ε)/(np − α)

and this also yields (3.25). �

4. Proof of Theorem 2 under (N)

In this section, we prove Theorem 2 under the additional condition (N). The general case
will be proved in the next section.

Suppose A1), A2) and A3) hold. Let L(λ, ρ) and φ(λ, ρ) be as in Sections 1 and 3,
and suppose the conditions (N), (R), p ≥ 2 and (GP) are satisfied. By Proposition 1 and the
condition (N) we have

(4.1) |L(k, l)| ≥ cφ(k, l) on N∗ × N

for some c > 0. We set J = {(j, α) ∈ Im ; bj,α(x) �≡ 0}. If cj,α(0) �= 0, by the definition of
N0 we have (j, α) ∈ N0. If cj,α(0) = 0 and bj,α(x) �≡ 0, we have cj,α(x) �≡ 0 and so by the
assumption (R) we have (j, α) ∈ N0. Thus, we have J ⊂ N0. We also set

� (x, λ, ρ) = L(λ, ρ) −
∑

(j,α)∈J
xbj,α(x)λjρ(ρ − 1) · · · (ρ − α + 1) .

Then our equation (2.1) can be written in the form

(4.2) � (x, t∂t , x∂x)u = a(x)t + R2
(
t, x, {(t∂t )

j ∂α
x u}(j,α)∈Im

)
.

By the condition (N), as we already know in Theorem 1, the equation (4.2) has a unique
formal power series solution u(t, x) ∈ C[[t, x]] satisfying u(0, x) ≡ 0. Our purpose is to
show the convergence of this formal solution.

4.1. Some lemmas. First, let us present some lemmas which are needed in the proof
of Theorem 2.

LEMMA 7. (1) Let a, b ∈ N∗, 0 ≤ j ≤ a, 0 ≤ α ≤ b, and suppose j/a + α/b ≤ 1.
Then we have

(4.3) kj lα ≤ ka + lb on N∗ × N .

(2) Let (j, α) ∈ Im. If (j, α) ∈ N0 then we have

(4.4) kj lα ≤ φ(k, l) on N∗ × N .

PROOF. Let us show (1). If ka ≥ lb then we have kj lα ≤ kj+α(a/b) = (kj/a+α/b)a ≤
ka ≤ ka + lb. If ka ≤ lb, we also have kj lα ≤ lj (b/a)+α = (lj/a+α/b)b ≤ lb ≤ ka + lb. This
proves (4.3).
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By using the result (1) and by the similar argument as in the proof of Lemma 6, we can
easily verify the result (2). �

For a formal power series f (x) = ∑
l≥0 flx

l ∈ C[[x]] we define a (formal) norm ‖f ‖ρ

of f (x) by

‖f ‖ρ =
∑

l≥0

|fl |ρl .

We have the following Nagumo-type lemma:

LEMMA 8. Let R > 0. If f (x) ∈ C[[x]] satisfies

‖f ‖ρ ≤ C

(R − ρ)a
for any 0 < ρ < R

for some C > 0 and a ≥ 0, we have

∥
∥∂xf

∥
∥

ρ
≤ (a + 1)eC

(R − ρ)a+1
for any 0 < ρ < R.

Since lρl−1 ≤ (ρ + h)l/h holds for any l ≥ 1, ρ > 0 and h > 0, we have ‖∂xf ‖ρ ≤
‖f ‖ρ+h/h. Therefore, by a standard argument we can show this lemma. For details, see the
proof of [Lemma 5 in [13]].

4.2. On the equation� (x, k, x∂x)w = g . Let k ∈ N∗ and consider

(4.5) � (x, k, x∂x)w = g(x) ∈ C[[x]] .

PROPOSITION 2. There are K > 0 and R > 0 which satisfy the following: for any
k ∈ N∗ and g(x) ∈ C[[x]], the equation (4.5) has a unique solution w(x) ∈ C[[x]] that
satisfies

(4.6) ‖w‖ρ ≤ K

km
‖g‖ρ for any 0 < ρ ≤ R

provided that ‖g‖R < ∞. In particular, if g(x) is a holomorphic function in a neighborhood
of {x ∈ C ; |x| ≤ R}, (4.5) has a unique holomorphic solution in a neighborhood of {x ∈
C ; |x| ≤ R}.

PROOF. We set

w(x) =
∑

l≥0

wlx
l , g(x) =

∑

l≥0

glx
l , bj,α(x) =

∑

h≥0

bj,α,hx
h .

Then, by substituting these series into (4.5) and comparing the coefficients of xl in both sides
we obtain the following recursive formulas:

L(k, 0)w0 = g0
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and for l ≥ 1,

L(k, l)wl = gl +
∑

(j,α)∈J

∑

h+i=l−1

bj,α,hk
j i(i − 1) · · · (i − α + 1)wi .

Therefore, by the condition (N) we see that wl (l = 0, 1, 2, . . .) are uniquely determined,
inductively on l. Moreover, by the condition (4.1) we have the estimates

|w0| ≤ 1

cφ(k, 0)
|g0| = 1

ckm
|g0|

and for l ≥ 1,

|wl| ≤ 1

cφ(k, l)
|gl |

+ 1

c

∑

(j,α)∈J

∑

h+i=l−1

|bj,α,h| × kj i(i − 1) · · · (i − α + 1)

φ(k, l)
|wi |

≤ 1

ckm
|gl| + M

c

∑

(j,α)∈J

∑

h+i=l−1

|bj,α,h||wi |

for some M > 0 which is independent of (j, α), k and l. In the above computations, we used
the condition J ⊂ N0 and (2) of Lemma 7. Hence, for any ρ > 0 we have

‖w‖ρ ≤ 1

ckm
‖g‖ρ + M

c
ρ

∑

(j,α)∈J
‖bj,α‖ρ‖w‖ρ .

Since bj,α(x) ((j, α) ∈ J ) are holomorphic functions in a neighborhood of x = 0, by taking
R > 0 sufficiently small we have

M

c
R

∑

(j,α)∈J
‖bj,α‖R ≤ 1

2

and so

‖w‖ρ ≤ 1

ckm
‖g‖ρ + 1

2
‖w‖ρ for any 0 < ρ ≤ R .

Thus, by setting K = 2/c we arrive at (4.6). �

4.3. Formal solution of (4.2). Note that our equation (4.2) can be written in the form

(4.7) � (x, t∂t , x∂x)u = a(x)t +
∑

i+|ν|≥2

ai,ν(x)ti
∏

(j,α)∈Im

[
(t∂t )

j ∂α
x u

]νj,α ,
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where a(x) and ai,ν(x) (i + |ν| ≥ 2) are all holomorphic functions in a neighborhood of
{x ∈ C ; |x| ≤ R} for some R > 0 and the series

∑

i+|ν|≥2

‖ai,ν‖RtiX|ν|

is convergent in a neighborhood of (t,X) = (0, 0). Take a small R > 0 and fix it. Without
loss of generality we may assume that 0 < R ≤ 1 and that Proposition 2 is valid also for this
R.

Let

(4.8) u(t, x) =
∑

k≥1

uk(x)tk , uk(x) ∈ C[[x]] (k ≥ 1) ,

be the unique formal solution of (4.7). By substituting this into (4.7) and comparing the
coefficients of tk in both sides we obtain the following recursive formulas:

(4.9) � (x, 1, x∂x)u1 = a(x)

and for k ≥ 2,

(4.10) � (x, k, x∂x)uk =
∑

2≤i+|ν|≤k

ai,ν(x)
∑

i+|k(ν)|=k

∏

(j,α)∈Im

νj,α∏

h=1

[
(kj,α(h))j ∂α

x ukj,α(h)

]
,

where

|k(ν)| =
∑

(j,α)∈Im

(kj,α(1) + · · · + kj,α(νj,α)) .

By applying Proposition 2 to (4.9) and (4.10), we can see that uk(x) (k ≥ 1) are uniquely
determined, inductively on k. Moreover, uk(x) (k ≥ 1) are all holomorphic in a neighborhood
of {x ∈ C ; |x| ≤ R}.

4.4. Convergence of the formal solution. Let us show the convergence of the formal
solution (4.8). The argument below is almost the same as in [Chapter 5 of [7]]; but for self-
containedness of the paper, we discuss it again here.

Set Ai,ν = ‖ai,ν‖R (i + |ν| ≥ 2) and take A > 0 such that

(4.11) ‖∂α
x u1‖R ≤ A for any α ≤ m,

and let us consider the following functional equation with respect to (t, Y ):

(4.12) Y = At + K

(R − ρ)m

∑

i+|ν|≥2

Ai,ν

(R − ρ)m(i+|ν|−2)
t i (BY )|ν| ,

where B = (em)m and ρ is a parameter with 0 < ρ < R. Since this is an analytic functional
equation, the implicit function theorem implies that (4.12) has a unique holomorphic solution
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Y = Y (t) in a neighborhood of t = 0 satisfying Y (0) = 0. If we expand this into Taylor
series Y (t) = ∑

k≥1 Ykt
k , it is easy to see that Yk (k ≥ 1) are determined by the following

recursive formulas:

(4.13) Y1 = A

and for k ≥ 2,

(4.14) Yk = K

(R − ρ)m

∑

2≤i+|ν|≤k

Ai,ν

(R − ρ)m(i+|ν|−2)

∑

i+|k(ν)|=k

∏

(j,α)∈Im

νj,α∏

h=1

(BYkj,α (h)) .

Moreover, by induction on k we can see that Yk has the form

Yk = Ck

(R − ρ)m(k−1)
, k ≥ 1 ,

where C1 = A and Ck ≥ 0 (k ≥ 2) are constants which are independent of the parameter ρ.
Let us write Yk = Yk(ρ) to emphasize that Yk depends on ρ. The following lemma guarantees
that Y (t) is a majorant series of the formal solution (4.8).

LEMMA 9. For any k ≥ 1 we have

(4.15) ‖kj ∂α
x uk‖ρ ≤ BYk(ρ) for any 0 < ρ < R and (j, α) ∈ Im .

PROOF. In the case k = 1, (4.15) is clear from (4.11), (4.13) and the fact B > 1. Let
us show (4.15) in the general case by induction on k.

Let k ≥ 2, and suppose that (4.15) (with k replaced by n) is true for all n < k. Then, by
applying Proposition 2 to (4.10) and by using the induction hypothesis we obtain

(4.16) ‖uk‖ρ ≤ K

km

∑

2≤i+|ν|≤k

Ai,ν

∑

i+|k(ν)|=k

∏

(j,α)∈Im

νj,α∏

h=1

BYkj,α (h)(ρ)

for any 0 < ρ < R. Since 0 < R ≤ 1, by comparing (4.16) with (4.14) we have

‖uk‖ρ ≤ (R − ρ)m

km
Yk = 1

km

Ck

(R − ρ)m(k−2)
for any 0 < ρ < R .

Hence, applying Lemma 8 to this estimate yields

‖kj ∂α
x uk‖ρ ≤ kj

km

(m(k − 2) + 1) · · · (m(k − 2) + α)eαCk

(R − ρ)m(k−2)+α

≤ kj+α

km

(me)αCk

(R − ρ)m(k−2)+m
≤ (me)mCk

(R − ρ)m(k−1)
= BYk(ρ)

for any 0 < ρ < R and (j, α) ∈ Im. This completes the proof of the lemma. �
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COMPLETION OF THE PROOF OF THEOREM 2 UNDER (N). By Lemma 9 we have
∑

k≥1

‖uk‖ρ |t|k ≤ B
∑

k≥1

Yk|t|k = BY(|t|) .

If 0 < ρ < R is fixed, Y (|t|) is convergent in a neighborhood of |t| = 0. This proves the
convergence of our formal solution (4.8). �

5. Proof of Theorem 2 in the general case

In this section, we prove Theorem 2 in the general case without the condition (N). In this
case, we have

(5.1) |L(k, l)| ≥ cφ(k, l) on {(k, l) ∈ N∗ × N ; k ≥ N or l ≥ N}
for some c > 0 and a sufficiently large N ∈ N∗ (by Proposition 1). We set

M = {(k, l) ∈ N∗ × N ; k ≥ N or l ≥ N} .

PROPOSITION 3. Suppose A1), A2), A3), (R), p ≥ 2, (GP), and (5.1) hold. If u(t, x) ∈
C[[t, x]] is a formal solution of (4.2) of the form

(5.2) u(t, x) =
∑

(k,l)∈M
uk,l t

kxl ,

then it is convergent in a neighborhood of (0, 0) ∈ Ct × Cx .

PROOF. Since u(t, x) is a formal solution of (4.2), we have a(x) = O(xN) (as x −→
0) and ai,0(x) = O(xN) (as x −→ 0) for 2 ≤ i < N . Therefore, we can apply the same
argument as in Section 4. �

Generally, if

u(t, x) =
∑

k≥1,l≥0

uk,lt
kxl

is a formal solution of (4.2) and we set

w(t, x) = u(t, x) − ϕ(t, x) with ϕ(t, x) =
∑

1≤k<N,0≤l<N

uk,lt
kxl ,

then w(t, x) is of the form (5.2) and becomes a formal solution of the equation

� (x, t∂t , x∂x)w = a(x)t + R2
(
t, x, {(t∂t )

j ∂α
x (w + ϕ)}(j,α)∈Im

)
(5.3)

−� (x, t∂t , x∂x)ϕ .

Thus, by applying Proposition 3 to (5.3), we have the convergence of w(t, x).
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6. Proof of Example 1

Consider the equation

(t∂t )
4u + (x∂x)

2u = a(x)t + c(x)(t∂t )
2(x∂x)

ku(6.1)

+ R2
(
t, x, {(t∂t )

j ∂α
x u}j+α≤4,j<4

)
, k = 0, 1, 2 .

Let us show the results in Example 1.
The case k = 0 can be easily verified.

In the case k = 1, we have P1(X) = X4 − c(0)X2 + 1. Thus, to show the equivalence
of (GP) and c(0) �∈ [2,∞), it is enough to prove that P1(X) �= 0 on [0,∞) if and only
if c(0) �∈ [2,∞), that is, P1(λ) = 0 for some λ ∈ [0,∞) if and only if c(0) ∈ [2,∞).
This can be verified as follows. If P1(λ) = 0 for some λ ∈ [0,∞), we have λ �= 0 and
c(0) = (λ − 1/λ)2 + 2 ∈ [2,∞). Conversely, if c(0) ∈ [2,∞), we can find a λ ∈ (0,∞)

which satisfies c(0) = (λ − 1/λ)2 + 2 and so P1(λ) = 0. Since L(k, l) = k4 − c(0)k2l + l2,
we have L(k, 0) �= 0 (for k ≥ 1) and L(k, l)/ l2 = (k2/l)2 − c(0)(k2/l) + 1 (for l ≥ 1).
Therefore, we can see the condition (N) under c(0) �∈ [2,∞) in the same way.

In the case k = 2 and c(0) �= 0, we have P1(X) = X2 − c(0) and P2(X) = c(0)X2 − 1.
It is easy to see that P1(X) �= 0 on [0,∞) if and only if c(0) �∈ [0,∞) and that P2(X) �= 0

on N∗ if and only if c(0) �∈ {1, 1/22, 1/32, . . .}. This shows the equivalence of (GP) and

c(0) �∈ [0,∞). Since L(k, l) = k4 − c(0)k2l2 + l2, we have L(k, 0) �= 0 (for k ≥ 1) and
L(k, l)/ l2 = (k2/l)2 − (c(0)l)(k2/l)+ 1 (for l ≥ 1). Therefore, we can see the condition (N)
under c(0) �∈ [0,∞) in the same way.

Finally, let us show that the formal solution of (6.1) is not convergent in general when
k = 2 and c(0) = 0 (with c(x) �≡ 0). Consider the following particular case with a(x) = x,

c(x) = x and R2 = xt2/(1 − t). We have the following result:

LEMMA 10. The equation

(6.2) (t∂t )
4u + (x∂x)

2u = xt/(1 − t) + x(t∂t )
2(x∂x)

2u , u(0, x) = 0

has a unique formal power series solution

u(t, x) =
∑

k≥1,l≥1

k2(l−1)(l − 1)!2
(k4 + 12)(k4 + 22) · · · (k4 + l2)

tkxl

which is divergent.

PROOF. We show that the above formal solution is divergent. Take any 0 < ρ < 1.

Then if l = k2 we have ρk ≥ ρl and so

u(ρ, ρ) ≥
∑

l=k2,k≥1

k2(l−1)(l − 1)!2
(k4 + 12)(k4 + 22) · · · (k4 + l2)

ρkρl
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≥
∑

l=k2,k≥1

k2(l−1)(l − 1)!2
(k4 + l2)l

ρlρl =
∑

l=k2,k≥1

ll−1(l − 1)!2
(2l2)l

(ρ2)l .

We can see by Stirling’s formula that the last series is divergent for any 0 < ρ < 1. �
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