The Direct Image Sheaf $f_{*}\left(O_{X}\right)$

Dedicated to Professor Ken-ichi SHINODA

Kentaro MITSUI and Iku NAKAMURA

Kobe University and Hokkaido University
(Communicated by N. Suwa)

Abstract

We prove $f_{*}\left(O_{X}\right)=O_{S}$ for a proper flat surjective morphism $f: X \rightarrow S$ of noetherian schemes under a mild condition.

1. Introduction

Let X and S be noetherian schemes, and O_{X} (resp. O_{S}) the structure sheaf of X (resp. $S)$. Let $f: X \rightarrow S$ be a morphism of schemes. We mean by f a pair $f=(\psi, \theta)$: $\left(X, O_{X}\right) \rightarrow\left(S, O_{S}\right)$ in the sense of [3, I, Def. 2.2.1] where $\psi: X \rightarrow S$ is the map of underlying topological spaces, and $\theta: O_{S} \rightarrow f_{*}\left(O_{X}\right)$ is the homomorphism of structure sheaves. For any morphism $T \rightarrow S$, we denote the fiber product $X \times_{S} T$ by X_{T} and the natural projection of X_{T} to T by f_{T}. Let s be a point of $S, k(s)$ the residue field of s, and $X_{s}=f^{-1}(s):=X \times{ }_{S}$ Spec $k(s)$ the fiber of f over s.

By [3, III_{1}, Th. 3.2.1], $\left(f_{T}\right)_{*}\left(O_{X_{T}}\right)$ is a coherent sheaf on T if f is a proper morphism of schemes.

The main result of this note is the following.
Lemma 1.1. Let $f=(\psi, \theta):\left(X, O_{X}\right) \rightarrow\left(S, O_{S}\right)$ be a proper flat surjective morphism of noetherian schemes such that $H^{0}\left(X_{s}, O_{X_{s}}\right)=k(s)$ for any closed point s of S. Then the natural homomorphism $\theta: O_{S} \rightarrow f_{*}\left(O_{X}\right)$ is an isomorphism. Moreover the isomorphism $\theta: O_{S} \simeq f_{*}\left(O_{X}\right)$ commutes with base change $T \rightarrow S$, that is, for any morphism $t: T \rightarrow S$, we have a commutative diagram of natural isomorphisms

[^0]
where f_{T} is the base change of f by t.
The following is a corollary of [1, Th. 7.3, p. 67] and Lemma 1.1.
COROLLARY 1.2. Let $f: X \rightarrow S$ be a proper flat surjective morphism of noetherian schemes such that $H^{0}\left(X_{S}, O_{X_{s}}\right)=k(s)$ for any closed point s of S. Then the Picard functor for f is representable by an algebraic space $\operatorname{Pic}_{X / S}$ locally of finite presentation.

We remark that $H^{0}\left(Y, O_{Y}\right)=k$ for any proper scheme Y over a field k that is geometrically reduced and geometrically connected over k. Lemma 1.1 is important for applications such as the above corollary. However it seems that there are no adequate literatures for Lemma 1.1, and that this is not well-known even to specialists. Note that Lemma 1.1 does not assume that S is reduced, and that it is proved by using [7, Cor. 2, p. 48] when S is reduced.

2. Faithful flatness

Theorem 2.1 [5, Th. 2, p. 25]. Let A be a ring and M an A-module. Then the following conditions are equivalent:
(1) M is faithfully A-flat;
(2) M is A-flat, and for any A-module $N \neq 0$ we have $N \otimes_{A} M \neq 0$;
(3) M is A-flat, and for any maximal ideal m of A, we have $m M \neq M$.

This theorem does not assume that M is a finite A-module. Thus we can apply it to any local ring $M=B$ over a local ring A.

Corollary 2.2 [5, Corollary, p. 27]. Let A and B be local rings ${ }^{1}$, and $\phi: A \rightarrow B$ a homomorphism of local rings. If B is A-flat via ϕ, then B is faithfully A-flat.

Proof. Let p (resp. q) be the maximal ideal of $A($ resp. $B)$. Since $q \supset \phi(p), B \neq$ $q B \supset \phi(p) B$. Hence by Th. 2.1, B is faithfully A-flat.

The following is due to [3, IV_{2}, Cor. 2.2.8].
Lemma 2.3. Let $f=(\psi, \theta):\left(X, O_{X}\right) \rightarrow\left(S, O_{S}\right)$ be a flat surjective morphism of schemes and $S=\operatorname{Spec} A$. Then $H^{0}(\theta):=H^{0}(S, \theta): A=H^{0}\left(S, O_{S}\right) \rightarrow H^{0}\left(X, O_{X}\right)$ is injective.

[^1]Proof. Let $J=\operatorname{Ker}\left(H^{0}(\theta)\right)$. We shall prove $J=0$ (without assuming that A is noetherian). Let p be any prime ideal of A. Since f is a flat surjective morphism, there exists an open affine subset $U=\operatorname{Spec} B$ of X and a prime ideal q of B such that $p=\theta^{-1}(q)$ by the natural pullback homomorphism $\theta: A \rightarrow B$. Since f is flat, B is A-flat via θ, hence the local ring B_{q} is A_{p}-flat (hence A-flat) via the localization (denoted by θ) of θ.

From the exact sequence $0 \rightarrow J \rightarrow A \rightarrow A / J \rightarrow 0$ we infer an exact sequence by the A-flatness of B_{q} :

$$
0 \rightarrow J \otimes_{A} B_{q} \rightarrow B_{q} \rightarrow(A / J) \otimes_{A} B_{q} \rightarrow 0
$$

Since $(A / J) \otimes_{A} B_{q} \simeq B_{q} / H^{0}(\theta)(J) B_{q} \simeq B_{q}$, we have $\left(J \otimes_{A} A_{p}\right) \otimes_{A_{p}} B_{q}=J \otimes_{A} B_{q}=$ 0 . Since B is A-flat via $H^{0}(\theta), B_{q}$ is faithfully A_{p}-flat by Cor. 2.2. It follows from Th. 2.1 that $J \otimes_{A} A_{p}=0$ for any prime ideal p of A, hence $J=0$ by [6, Th. 4.6, p. 27]. See also [2, Prop. 3.8, p. 40].

3. Proof of Lemma 1.1

To prove Lemma 1.1, we may assume $S=\operatorname{Spec} A$. We apply the argument of Mumford [7, Cor. 3, p. 50] to $f_{*}\left(O_{X}\right)$.

By [7, Theorem, p. 44], there exists a complex

$$
K^{\bullet}=\left(K^{p} ; \partial^{p}: K^{p} \rightarrow K^{p+1}\right)
$$

of finite A-modules $K^{p}(p \in \mathbf{Z})$ such that
(K-i) $K^{p}=0$ except for $0 \leq p \leq g$,
(K-ii) K^{0} is A-flat, K^{p} is A-projective ($1 \leq p \leq g$),
(K -iii) there is an isomorphism of functors

$$
H^{q}\left(X \times_{S} \operatorname{Spec} B, O_{X} \otimes_{A} B\right) \simeq H^{q}\left(K^{\bullet} \otimes_{A} B\right), \quad(q \geq 0)
$$

on the category of A-algebras B.
Let $H^{0}(\theta):=H^{0}(S, \theta): A=H^{0}\left(S, O_{S}\right) \rightarrow H^{0}\left(X, O_{X}\right)$. Since $H^{0}(\theta)$ is injective by Lemma 2.3, we have a sequence of A-modules

$$
\begin{equation*}
A \stackrel{H^{0}(\theta)}{\hookrightarrow} H^{0}\left(X, O_{X}\right) \stackrel{\phi}{\hookrightarrow} K^{0} \xrightarrow{\partial^{0}} K^{1}, \tag{1}
\end{equation*}
$$

where ϕ is the composite of the isomorphism $H^{0}\left(X, O_{X}\right) \simeq \operatorname{ker}\left(\partial^{0}\right)$ and the natural inclusion $\operatorname{ker}\left(\partial^{0}\right) \hookrightarrow K^{0}$. Let $f_{0}:=\phi H^{0}(\theta)\left(1_{A}\right) \in K^{0}$ for the unit 1_{A} of A. By tensoring (1) with B, we obtain a sequence of B-modules

$$
B \xrightarrow{H^{0}(\theta) \otimes_{A} B} H^{0}\left(X, O_{X}\right) \otimes_{A} B \xrightarrow{\phi \otimes_{A} B} K^{0} \otimes_{A} B \xrightarrow{\partial^{0} \otimes_{A} B} K^{1} \otimes_{A} B .
$$

In what follows, we shall prove that, for any A-algebra B, the homomorphism $\phi H^{0}(\theta) \otimes_{A} B$ induces an isomorphism

$$
\begin{equation*}
B \simeq \operatorname{ker}\left(\partial^{0} \otimes_{A} B: K^{0} \otimes_{A} B \rightarrow K^{1} \otimes_{A} B\right) \tag{2}
\end{equation*}
$$

Let s be any closed point of S. By localizing S at s, we may assume that A is a local ring with maximal ideal p (corresponding to s).

We have a complex of $k(s)$-vector spaces:

$$
A \otimes_{A} k(s) \xrightarrow{\phi H^{0}(\theta) \otimes_{A} k(s)} K^{0} \otimes_{A} k(s) \xrightarrow{\partial^{0} \otimes_{A} k(s)} K^{1} \otimes_{A} k(s) .
$$

Since $H^{0}\left(X_{s}, O_{X_{s}}\right)$ is, by the assumption, the $k(s)$-vector space consisting of constant functions with values in $k(s)$, we obtain by (K -iii)

$$
\begin{equation*}
0 \neq \operatorname{im}\left(\phi H^{0}(\theta) \otimes_{A} k(s)\right) \subset \operatorname{ker}\left(\partial^{0} \otimes_{A} k(s)\right) \simeq H^{0}\left(X_{s}, O_{X_{s}}\right)=k(s) \tag{3}
\end{equation*}
$$

It follows from (3)

$$
\operatorname{ker}\left(\partial^{0} \otimes_{A} k(s)\right)=\operatorname{im}\left(\phi H^{0}(\theta) \otimes_{A} k(s)\right)=k(s)\left(f_{0} \otimes_{A} 1_{k(s)}\right)
$$

Since $K^{p} \otimes_{A} k(s)$ is a finite-dimensional $k(s)$-vector space, we have a $k(s)$-vector subspace \bar{W}_{2} of $K^{0} \otimes_{A} k(s)$, a $k(s)$-vector subspace \bar{U}_{1} of $K^{1} \otimes_{A} k(s)$ such that

$$
\begin{gather*}
K^{0} \otimes_{A} k(s)=k(s)\left(f_{0} \otimes 1_{k(s)}\right) \oplus \bar{W}_{2}, \tag{4}\\
K^{1} \otimes_{A} k(s) \simeq \bar{U}_{1} \oplus \bar{W}_{2},
\end{gather*}
$$

and there is a commutative diagram of $k(s)$-homomorphisms

Since K^{p} is A-flat or A-projective by (K -ii) and A is a local ring, K^{p} is A-free by [5, (3.G), p. 21]. Then there exist an A-free submodule W_{2} of K^{0}, an A-free submodule U_{1} of K^{1} and a commutative diagram of A-homomorphisms such that

$$
\begin{equation*}
W_{2} \otimes_{A} k(s)=\bar{W}_{2}, \quad U_{1} \otimes_{A} k(s)=\bar{U}_{1}, \tag{6}
\end{equation*}
$$

where $A f_{0} \simeq A$ because $\phi H^{0}(\theta)$ in (1) is injective.
We prove it in what follows. First we choose elements $e_{i}(i \in I)$ of K^{0} such that $e_{i} \otimes 1_{k(s)}$ $(i \in I)$ is a $k(s)$-basis of \bar{W}_{2}. Next let

$$
W_{2}:=\sum_{i \in I} A e_{i}, F:=A f_{0}+W_{2} .
$$

Then F is an A-submodule of K^{0} such that $\left(K^{0} / F\right) \otimes_{A} k(s)=0$. Hence by Nakayama's lemma, we have $K^{0}=F$. Moreover $e_{i}(i \in I)$ and f_{0} is an A-free basis of K^{0}. Indeed, this is shown as follows. $e_{i}(i \in I)$ and f_{0} is a minimal basis of K^{0} in the sense of [6, Th. 2.3, p. 8]. Since K^{0} is A-free, K^{0} has an A-free basis, which is a minimal basis of K^{0} by [6, Th. 2.3 (i)]. Hence $e_{i}(i \in I)$ and f_{0} is an A-free basis by [6, Th. 2.3 (iii)].

By (4) and (5) we can find elements $u_{j}(j \in J)$ of K^{1} that $u_{j} \otimes 1_{k(s)}(j \in J)$ is a $k(s)$-basis of \bar{U}_{1}. Let

$$
W_{2}^{*}:=\sum_{i \in I} A e_{i}^{*}, \quad G:=W_{2}^{*}+\sum_{j \in J} A u_{j}
$$

where $e_{i}^{*}=\partial^{0} e_{i}$. It is clear that $W_{2} \simeq W_{2}^{*}$ as A-modules. Since G is a finite A-submodule of K^{1} such that $G \otimes_{A} k(s)=K^{1} \otimes_{A} k(s)$, by Nakayama's lemma, we have $G=K^{1}$. Since K^{1} is also A-free, $e_{i}^{*}(i \in I)$ and $u_{j}(j \in J)$ is, by [6, Th. 2.3 (i), (iii)], a minimal basis of K^{1} and hence an A-free basis of K^{1}. This proves (6) and (7).

Now we prove (2). For any A-algebra B, we have a commutative diagram of B homomorphisms for any A-algebra B

we infer the isomorphism (2)

$$
\begin{aligned}
H^{0}\left(X \times_{S} \operatorname{Spec} B, O_{X} \otimes_{A} B\right) & \simeq H^{0}\left(K^{\bullet} \otimes_{A} B\right)=\operatorname{ker}\left(\partial^{0} \otimes_{A} B\right) \\
& =B\left(f_{0} \otimes 1_{B}\right) \simeq B
\end{aligned}
$$

because $A f_{0} \otimes_{A} B \simeq B$ by $A f_{0} \simeq A$. It also follows $H^{0}\left(X, O_{X}\right) \simeq A$.
Now we shall complete the proof of Lemma 1.1. Since $H^{0}\left(X, O_{X}\right) \simeq A$ for $S=$ Spec A, we have $O_{S} \simeq f_{*}\left(O_{X}\right)$. Let $T \rightarrow S$ be any morphism. By (2) and (K-iii), we have a natural isomorphism

$$
\theta_{T}: O_{T} \simeq\left(f_{T}\right)_{*}\left(O_{X_{T}}\right)
$$

It follows that the isomorphism $\theta: O_{S} \simeq f_{*}\left(O_{X}\right)$ commutes with base change. This completes the proof of Lemma 1.1.

References

[1] M. Artin, Algebraization of formal moduli: I; in "Global Analysis, papers in honor of K. Kodaira," D. C. Spencer and S. Iyanaga, eds., University of Tokyo Press and Princeton University Press, 1969, pp. 21-71.
[2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative algebra, Addison-Wesley Series in Mathematics, Westview Press, 1969.
[3] A. GROTHENDIECK, Éléments de géométrie algébrique, I, II, III, IV, Publ. Math. IHES 4 (1960), 8 (1961), $\mathbf{1 1}$ (1961), $\mathbf{1 7}$ (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967).
[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer Verlag, Berlin Heidelberg New York, 1977.
[5] H. Matsumura, Commutative Algebra, W. A. Benjamin Inc., New York, 1970.
[6] H. Matsumura, Commutative ring theory, Cambridge studies in advanced mathematics, 8, Cambridge University Press, 1989.
[7] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Hindustan Book Agency, 2012.

```
Present Addresses:
Kentaro Mitsui
Department of Mathematics, Graduate School of Science,
Kobe University,
HYOGO 657-8501, JAPAN.
e-mail:mitsui@math.kobe-u.ac.jp
IkU NAKAMURA
Department of Mathematics,
HokKaido UNIVERSITY,
SAPPORO 060-0810, JAPAN.
e-mail: nakamura@math.sci.hokudai.ac.jp
```


[^0]: Received February 17, 2015; revised January 26, 2016
 2010 Mathematics Subject Classification: 14F05 (Primary), 13D02, 13H99 (Secondary)
 Key words and phrases: Flatness, Direct image sheaf
 The first author is partially supported by the Grant-in-Aid for Young Scientists (B) (No. 25800018) and the Grant-inAid for Scientific Research (S) (No. 24224001), JSPS. The second author was partially supported by the Grants-in-aid for Scientific Research (S) (No. 20340001, 24224001), JSPS.

[^1]: ${ }^{1} A$ is not necessarily noetherian in Cor. 2.2.

