Токуо J. Матн. Vol. 39, No. 3, 2017

The Direct Image Sheaf $f_*(O_X)$

Dedicated to Professor Ken-ichi SHINODA

Kentaro MITSUI and Iku NAKAMURA

Kobe University and Hokkaido University (Communicated by N. Suwa)

Abstract. We prove $f_*(O_X) = O_S$ for a proper flat surjective morphism $f : X \to S$ of noetherian schemes under a mild condition.

1. Introduction

Let X and S be noetherian schemes, and O_X (resp. O_S) the structure sheaf of X (resp. S). Let $f : X \to S$ be a morphism of schemes. We mean by f a pair $f = (\psi, \theta) : (X, O_X) \to (S, O_S)$ in the sense of [3, I, Def. 2.2.1] where $\psi : X \to S$ is the map of underlying topological spaces, and $\theta : O_S \to f_*(O_X)$ is the homomorphism of structure sheaves. For any morphism $T \to S$, we denote the fiber product $X \times_S T$ by X_T and the natural projection of X_T to T by f_T . Let s be a point of S, k(s) the residue field of s, and $X_s = f^{-1}(s) := X \times_S \text{Spec } k(s)$ the fiber of f over s.

By [3, III₁, Th. 3.2.1], $(f_T)_*(O_{X_T})$ is a coherent sheaf on T if f is a proper morphism of schemes.

The main result of this note is the following.

LEMMA 1.1. Let $f = (\psi, \theta) : (X, O_X) \to (S, O_S)$ be a proper flat surjective morphism of noetherian schemes such that $H^0(X_s, O_{X_s}) = k(s)$ for any closed point s of S. Then the natural homomorphism $\theta : O_S \to f_*(O_X)$ is an isomorphism. Moreover the isomorphism $\theta : O_S \simeq f_*(O_X)$ commutes with base change $T \to S$, that is, for any morphism $t : T \to S$, we have a commutative diagram of natural isomorphisms

Received February 17, 2015; revised January 26, 2016

²⁰¹⁰ Mathematics Subject Classification: 14F05 (Primary), 13D02, 13H99 (Secondary)

Key words and phrases: Flatness, Direct image sheaf

The first author is partially supported by the Grant-in-Aid for Young Scientists (B) (No. 25800018) and the Grant-in-Aid for Scientific Research (S) (No. 24224001), JSPS. The second author was partially supported by the Grants-in-aid for Scientific Research (S) (No. 20340001, 24224001), JSPS.

where f_T is the base change of f by t.

The following is a corollary of [1, Th. 7.3, p. 67] and Lemma 1.1.

COROLLARY 1.2. Let $f : X \to S$ be a proper flat surjective morphism of noetherian schemes such that $H^0(X_s, O_{X_s}) = k(s)$ for any closed point s of S. Then the Picard functor for f is representable by an algebraic space $\operatorname{Pic}_{X/S}$ locally of finite presentation.

We remark that $H^0(Y, O_Y) = k$ for any proper scheme *Y* over a field *k* that is geometrically reduced and geometrically connected over *k*. Lemma 1.1 is important for applications such as the above corollary. However it seems that there are no adequate literatures for Lemma 1.1, and that this is not well-known even to specialists. Note that Lemma 1.1 does not assume that *S* is reduced, and that it is proved by using [7, Cor. 2, p. 48] when *S* is reduced.

2. Faithful flatness

THEOREM 2.1 [5, Th. 2, p. 25]. Let A be a ring and M an A-module. Then the following conditions are equivalent:

- (1) *M* is faithfully *A*-flat;
- (2) *M* is A-flat, and for any A-module $N \neq 0$ we have $N \otimes_A M \neq 0$;
- (3) *M* is A-flat, and for any maximal ideal *m* of *A*, we have $mM \neq M$.

This theorem does not assume that M is a finite A-module. Thus we can apply it to any local ring M = B over a local ring A.

COROLLARY 2.2 [5, Corollary, p. 27]. Let A and B be local rings¹, and $\phi : A \to B$ a homomorphism of local rings. If B is A-flat via ϕ , then B is faithfully A-flat.

PROOF. Let p (resp. q) be the maximal ideal of A (resp. B). Since $q \supset \phi(p)$, $B \neq qB \supset \phi(p)B$. Hence by Th. 2.1, B is faithfully A-flat.

The following is due to $[3, IV_2, Cor. 2.2.8]$.

LEMMA 2.3. Let $f = (\psi, \theta) : (X, O_X) \to (S, O_S)$ be a flat surjective morphism of schemes and S = Spec A. Then $H^0(\theta) := H^0(S, \theta) : A = H^0(S, O_S) \to H^0(X, O_X)$ is injective.

778

 $^{^{1}}A$ is not necessarily noetherian in Cor. 2.2.

DIRECT IMAGE SHEAF

PROOF. Let $J = \text{Ker}(H^0(\theta))$. We shall prove J = 0 (without assuming that A is noetherian). Let p be any prime ideal of A. Since f is a flat surjective morphism, there exists an open affine subset U = Spec B of X and a prime ideal q of B such that $p = \theta^{-1}(q)$ by the natural pullback homomorphism $\theta : A \to B$. Since f is flat, B is A-flat via θ , hence the local ring B_q is A_p -flat (hence A-flat) via the localization (denoted by θ) of θ .

From the exact sequence $0 \rightarrow J \rightarrow A \rightarrow A/J \rightarrow 0$ we infer an exact sequence by the *A*-flatness of B_q :

$$0 \to J \otimes_A B_q \to B_q \to (A/J) \otimes_A B_q \to 0.$$

Since $(A/J) \otimes_A B_q \simeq B_q/H^0(\theta)(J)B_q \simeq B_q$, we have $(J \otimes_A A_p) \otimes_{A_p} B_q = J \otimes_A B_q = 0$. Since *B* is *A*-flat via $H^0(\theta)$, B_q is faithfully A_p -flat by Cor. 2.2. It follows from Th. 2.1 that $J \otimes_A A_p = 0$ for any prime ideal *p* of *A*, hence J = 0 by [6, Th. 4.6, p. 27]. See also [2,

3. Proof of Lemma 1.1

Prop. 3.8, p. 40].

To prove Lemma 1.1, we may assume S = Spec A. We apply the argument of Mumford [7, Cor. 3, p. 50] to $f_*(O_X)$.

By [7, Theorem, p. 44], there exists a complex

$$K^{\bullet} = (K^p; \partial^p : K^p \to K^{p+1})$$

of finite A-modules K^p ($p \in \mathbb{Z}$) such that

- (K-i) $K^p = 0$ except for $0 \le p \le g$,
- (K-ii) K^0 is A-flat, K^p is A-projective $(1 \le p \le g)$,

(K-iii) there is an isomorphism of functors

$$H^q(X \times_S \text{Spec } B, O_X \otimes_A B) \simeq H^q(K^{\bullet} \otimes_A B), \quad (q \ge 0)$$

on the category of A-algebras B.

Let $H^0(\theta) := H^0(S, \theta) : A = H^0(S, O_S) \to H^0(X, O_X)$. Since $H^0(\theta)$ is injective by Lemma 2.3, we have a sequence of A-modules

(1)
$$A \stackrel{H^{0}(\theta)}{\hookrightarrow} H^{0}(X, O_{X}) \stackrel{\phi}{\hookrightarrow} K^{0} \stackrel{\partial^{0}}{\to} K^{1},$$

where ϕ is the composite of the isomorphism $H^0(X, O_X) \simeq \ker(\partial^0)$ and the natural inclusion $\ker(\partial^0) \hookrightarrow K^0$. Let $f_0 := \phi H^0(\theta)(1_A) \in K^0$ for the unit 1_A of A. By tensoring (1) with B, we obtain a sequence of B-modules

$$B \xrightarrow{H^0(\theta) \otimes_A B} H^0(X, O_X) \otimes_A B \xrightarrow{\phi \otimes_A B} K^0 \otimes_A B \xrightarrow{\partial^0 \otimes_A B} K^1 \otimes_A B.$$

In what follows, we shall prove that, for any A-algebra B, the homomorphism $\phi H^0(\theta) \otimes_A B$ induces an isomorphism

(2)
$$B \simeq \ker(\partial^0 \otimes_A B : K^0 \otimes_A B \to K^1 \otimes_A B).$$

Let *s* be any closed point of *S*. By localizing *S* at *s*, we may assume that *A* is a local ring with maximal ideal p (corresponding to *s*).

We have a complex of k(s)-vector spaces:

$$A \otimes_A k(s) \stackrel{\phi H^0(\theta) \otimes_A k(s)}{\longrightarrow} K^0 \otimes_A k(s) \stackrel{\partial^0 \otimes_A k(s)}{\longrightarrow} K^1 \otimes_A k(s) .$$

Since $H^0(X_s, O_{X_s})$ is, by the assumption, the k(s)-vector space consisting of constant functions with values in k(s), we obtain by (K-iii)

(3)
$$0 \neq \operatorname{im}(\phi H^0(\theta) \otimes_A k(s)) \subset \operatorname{ker}(\partial^0 \otimes_A k(s)) \simeq H^0(X_s, O_{X_s}) = k(s).$$

It follows from (3)

$$\ker(\partial^0 \otimes_A k(s)) = \operatorname{im}(\phi H^0(\theta) \otimes_A k(s)) = k(s)(f_0 \otimes_A 1_{k(s)})$$

Since $K^p \otimes_A k(s)$ is a finite-dimensional k(s)-vector space, we have a k(s)-vector subspace \overline{W}_2 of $K^0 \otimes_A k(s)$, a k(s)-vector subspace \overline{U}_1 of $K^1 \otimes_A k(s)$ such that

(4)

$$K^{0} \otimes_{A} k(s) = k(s)(f_{0} \otimes 1_{k(s)}) \oplus \overline{W}_{2},$$

$$K^{1} \otimes_{A} k(s) \simeq \overline{U}_{1} \oplus \overline{W}_{2},$$

and there is a commutative diagram of k(s)-homomorphisms

Since K^p is A-flat or A-projective by (K-ii) and A is a local ring, K^p is A-free by [5, (3.G), p. 21]. Then there exist an A-free submodule W_2 of K^0 , an A-free submodule U_1 of K^1 and a commutative diagram of A-homomorphisms such that

780

where $Af_0 \simeq A$ because $\phi H^0(\theta)$ in (1) is injective.

We prove it in what follows. First we choose elements e_i $(i \in I)$ of K^0 such that $e_i \otimes 1_{k(s)}$ $(i \in I)$ is a k(s)-basis of \overline{W}_2 . Next let

$$W_2 := \sum_{i \in I} Ae_i, \ F := Af_0 + W_2.$$

Then *F* is an *A*-submodule of K^0 such that $(K^0/F) \otimes_A k(s) = 0$. Hence by Nakayama's lemma, we have $K^0 = F$. Moreover e_i $(i \in I)$ and f_0 is an *A*-free basis of K^0 . Indeed, this is shown as follows. e_i $(i \in I)$ and f_0 is a minimal basis of K^0 in the sense of [6, Th. 2.3, p. 8]. Since K^0 is *A*-free, K^0 has an *A*-free basis, which is a minimal basis of K^0 by [6, Th. 2.3 (i)]. Hence e_i $(i \in I)$ and f_0 is an *A*-free basis by [6, Th. 2.3 (iii)].

By (4) and (5) we can find elements u_j $(j \in J)$ of K^1 that $u_j \otimes 1_{k(s)}$ $(j \in J)$ is a k(s)-basis of \overline{U}_1 . Let

$$W_2^* := \sum_{i \in I} Ae_i^*, \quad G := W_2^* + \sum_{j \in J} Au_j$$

where $e_i^* = \partial^0 e_i$. It is clear that $W_2 \simeq W_2^*$ as *A*-modules. Since *G* is a finite *A*-submodule of K^1 such that $G \otimes_A k(s) = K^1 \otimes_A k(s)$, by Nakayama's lemma, we have $G = K^1$. Since K^1 is also *A*-free, e_i^* ($i \in I$) and u_j ($j \in J$) is, by [6, Th. 2.3 (i), (iii)], a minimal basis of K^1 and hence an *A*-free basis of K^1 . This proves (6) and (7).

Now we prove (2). For any A-algebra B, we have a commutative diagram of B-homomorphisms for any A-algebra B

we infer the isomorphism (2)

$$H^0(X \times_S \text{Spec } B, O_X \otimes_A B) \simeq H^0(K^{\bullet} \otimes_A B) = \ker(\partial^0 \otimes_A B)$$

= $B(f_0 \otimes 1_B) \simeq B$,

because $Af_0 \otimes_A B \simeq B$ by $Af_0 \simeq A$. It also follows $H^0(X, O_X) \simeq A$.

Now we shall complete the proof of Lemma 1.1. Since $H^0(X, O_X) \simeq A$ for S = Spec A, we have $O_S \simeq f_*(O_X)$. Let $T \to S$ be any morphism. By (2) and (K-iii), we have a natural isomorphism

$$\theta_T: O_T \simeq (f_T)_*(O_{X_T}).$$

KENTARO MITSUI AND IKU NAKAMURA

It follows that the isomorphism θ : $O_S \simeq f_*(O_X)$ commutes with base change. This completes the proof of Lemma 1.1.

References

- M. ARTIN, Algebraization of formal moduli: I; in "Global Analysis, papers in honor of K. Kodaira," D. C. Spencer and S. Iyanaga, eds., University of Tokyo Press and Princeton University Press, 1969, pp. 21–71.
- [2] M. F. ATIYAH and I. G. MACDONALD, Introduction to Commutative algebra, Addison-Wesley Series in Mathematics, Westview Press, 1969.
- [3] A. GROTHENDIECK, Éléments de géométrie algébrique, I, II, III, IV, Publ. Math. IHES 4 (1960), 8 (1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967).
- [4] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer Verlag, Berlin Heidelberg New York, 1977.
- [5] H. MATSUMURA, Commutative Algebra, W. A. Benjamin Inc., New York, 1970.
- [6] H. MATSUMURA, Commutative ring theory, Cambridge studies in advanced mathematics, 8, Cambridge University Press, 1989.
- [7] D. MUMFORD, Abelian varieties, Tata Institute of Fundamental Research, Hindustan Book Agency, 2012.

Present Addresses: KENTARO MITSUI DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, KOBE UNIVERSITY, HYOGO 657–8501, JAPAN. *e-mail:* mitsui@math.kobe-u.ac.jp

IKU NAKAMURA DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060–0810, JAPAN. *e-mail*: nakamura@math.sci.hokudai.ac.jp