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Abstract. We show that the minimal number of singular fibers in a genus-2 Lefschetz fibration over a closed
surface of genus /1 is equalto 5if # > 3,50r6if h =2and 6or 7if h = 1.

1. Introduction

Let N(g, h) denote the minimal number of singular fibers in a relatively minimal genus-g
Lefschetz fibration (with at least one singular fiber) over a closed surface of genus /. Korkmaz
and Ozbagci proved that (1) N(g,h) = 1iff g >3 andh > 2,(2)2 < N(g, 1) forall g > 1,
B)N{,h)=12forallh > 0and (4)5 < N(2,h) < 8 forall h > 0 (see [8]). The proofs of
(1) and (2) depend on a result of [14] which is the erratum to [13]. Moreover, the part (1) was
proved by showing that a Dehn twist about a simple closed curve is written as a product of
two commutator. Cadavid proved that N(g,0) < 2g + 4 if g is even and N(g,0) < 2g + 10
if g is odd (see [2]). This result was also discovered independently by Korkmaz (see [7]).
Braungardt and Kotschick proved that %(8 g—3) < N(g,0) (see [1]). Korkmaz and Stipsicz
showed that the fifth power of a Dehn twist about a separating curve is written as a product of
6 commutators (see [9]). Consequently, they proved that N(2, h) = 5 forall 4 > 6.

We show the following results by proving that a product of Dehn twists about 5 separat-
ing curves is written as a product of 3 commutators.

THEOREM 1. For the number N (2, h) the following holds.

(1) NQ2,h) =5 forallh > 3,
(2) N2,2) =5 orb6,
(3) N2,1)=6o0rT".

It is well known that N(2,0) = 7 or 8. Ozbagci proved that 7 < N(2,0) (see [11]),
and Matsumoto constructed a genus-2 Lefschetz fibration with 8 singular fibers over 2 (see
[10]). Sato prove that if a genus-2 Lefschetz fibration over S? has 7 singular fibers, then the
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total space is diffeomorphic to $2 x T243CP? (see [12]). However, the author does not know

whether $2 x T2#3CP?2 admits a genus-2 Lefschetz fibration over S with 7 singular fibers or
not.

2. Preliminaries

Let X, be a closed, connected, oriented surface of genus 2 > 0. Let M be the mapping
class group of X, i.e., the group of isotopy classes of orientation-preserving diffeomorphisms
of X».

2.1. Lefschetz fibrations and the monodromy representation. We begin by recall-
ing the definition and basic properties of Lefschetz fibrations. More details can be found in

[5].

DEFINITION 2.1. Let X be a closed, connected, oriented smooth four manifold. A
Lefschetz fibration is a map f : X — X}, such that f is injective on the set of critical points
C = {x1,...,x,} and about each x; and f(x;) there are complex local coordinate charts
agreeing with the orientations of X and X on which f is of the form

fzi,22) =2} +23.

Any fiber containing a critical point is called a singular fiber. Clearly all regular fibers are
closed surfaces and are of the same diffeomorphism type. The genus of f is defined to be the
genus of a regular fiber. We will assume that the generic fiber is connected and our fibration
is relatively minimal, i.e., no fiber contains a (—1) sphere.

Hereafter, we assume that the genus of the fiber is equal to two and do not distinguish a
diffeomorphism and its isotopy class. Moreover, we do not distinguish a curve and its isotopy
class.

Each critical point of a genus-2 Lefschetz fibration corresponds to an embedded circle in
a nearby regular fiber called a vanishing cycle, and the singular fiber is obtained by collapsing
the vanishing cycle to a point. The boundary of a regular neighborhood of a singular fiber is a
surface bundle over the circle. In fact, a singular fiber can be described by the monodromy of
this surface bundle which turns out to be a right-handed Dehn twist along the corresponding
vanishing cycle. Once we fix an identification of X, with the fiber over a base point of
X, the topology of the Lefschetz fibration is determined by its monodromy representation
Vo (Zp = {f ), )} &> Mo

The monodromy of a Lefschetz fibration f : X — X} comprises a factorization of
1 € Mjas

h n
= [Tta;. ;1] Tous -
i=1

j=1
where v; are the vanishing cycles of the singular fibers and 1,, is the right handed Dehn twist

about v;. In particular, a product ]_[?:l laj, bj] of h commutators in M3 gives an X>-bundle



MINIMAL NUMBER OF SINGULAR FIBERS 485

over the surface Z‘;} of genus h with one boundary component. The mapping classes a; and
b; specify the monodromy along the obvious free generating system (a1, B1, ..., o, Bp) of

T (Zh.
An expression [/, #,, € M3 provides a genus-2 Lefschetz fibration X — D? over the
disk with fiber X». If ]_[:’: |ty = 1 € M then the fibration closes up to a fibration over

the sphere S2 and the closed-up manifold is uniquely determined by the word [T/_, tw;- By
combining the above two constructions, a word

h n
W = []la;. b;1] ]
j=1 i=1

gives a genus-2 Lefschetz fibration over Xj, — D? and if W = 1 € M, we get a genus-2
Lefschetz fibration X — X.

PROPOSITION 1 ([8]). Forallh > 0,5 < N2, h).

PROOF. 1tis well known that M»>/[ M, M>] is generated by the class of a Dehn twist
about a nonseparating curve and is equal to Zjg. Since every right handed Dehn twist about a
nontrivial separating curve is the product of 12 right handed Dehn twists about nonseparating
curves, its image under the map My — My /[My, Ma] = Zjg is 2. Hence, if a product of
right handed Dehn twists about n nonseparating and s separating curves is trivial (or equal to
a product of commutators), then

n+2s=0 (mod 10).

Therefore, there are at least 5 singular fibers in a genus-2 Lefschetz fibration over Xj,. O
2.2. Relations in the mapping class group. We recall the following basic facts.
LEMMA 1. Let ¢ be a simple closed curve on X3, let p be a self-diffeomorphism of

4. Then ptep™' = tp().

LEMMA 2. Letc andd be two simple closed curves on X».
(a) If c is disjoint from d, then t.t; = tyt..
(b) If c intersects d in one point transversely, then t.tgt. = tgt.ty.

The proof of the following lemma is based on an idea of Korkmaz [8].

LEMMA 3. Leta, b, c, d denote nonseparating curves on Xy such that a is disjoint
from b, and c is disjoint from d. Morever, we assume that a is not isotopic to b, and c is not
isotopic to d. Then t}t, "'t ;" (n € Z) is a commutator.

PROOF. Since X» — {a U b} and X» — {d U c} are connected surfaces, there exists an
orientation-preserving diffeomorphism p; of X such that pj(a) = d and p;(b) = c¢. Then

n,—mme,—n __ N, —N.n —n
falp Tela™ =lalp 1o a)lpi(@)
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=" oty "oy
=[, ", p1]. O

LEMMA 4 ([9]). Leta, b, c, d denote nonseparating curves on X, such that a inter-

sects d transversely at one point and b intersects c transversely at one point. Then t,tpt; ltd_l

is a commutator.

PROOF. Since 74(b) and 7;4(c) intersect transversely at one point, by the classification
of surfaces there exists an orientation-preserving diffeomorphism p, of X> such that p2(a) =
ty(c) and po(d) = t4(b). Then

—1,-1 -1 -1 —1.-1
talply 1y =taty (tatpty )(tats 1)

-1 -1

=4l ttd(b)tld(c)

-1 -1

=laly Toy(d)l py (a)
-1 -1 -1

=lql; p2lal, P,
-1

=14 LI p2]- 0

The following two relations in M3 are also well-known. The first one is the lantern
relation. This relation was discovered by Dehn (see [3]) and was rediscovered by Johnson
(see [6]). Let ay, az, a3, as, c and x be simple closed curves on X in Figure 2. #,,, 45, tas, tc
and t, satisfy the lantern relation

2.2
15t = lalely .

FIGURE 1. The curves ay, ap, a3, as, ¢ and x

The second relation is the chain relation. t4,, ta,, t4; and t,4 satisfy the chain relation

4_ 2
(taztayta)” =15, -

The proof of Theorem 1 rests on the following lemmas.

: 2020~ (; _
LEMMA 5. felye) - ti-1 () = gy liglay 10 (G =1,...,5).
PROOF. Since by the lantern relation we have .ty = tgl z35 t;l,

, » i
felty(o) * 1im oy = Le(tatety ) - (0,7 et 7Dty
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= (tctx)l
20,20 i
tataita,
. 420 2i =i =i
Therefore, teti,(c) -+ 1i=1 (o) = layTaglay 1" O

LEMMA 6. e} =110 1 1, where b is (tay14,)* (@2), B is (ta,1ay)*(a2), and [ , ]

ap-as
is a commutator.

PROOF. By the chain relation we have

2
tas = lazlaylay lazlay tay Las tay Ly Tas tas La
_ -1 2 -2 3 -3 3
- ta3 taz{(tal tag)taz (tal tag) }{(tal tag) taz (tal ta3) }{(tal ta3) taz (tal tag) }(talta3) tal
_ 3
= lazlarlta, tay (@2) (14, 143)2(a2) Hta, ay)3 (a2) (taytay)  ta,
3
= ta3 taz tt,,l lay (az)tb/ Iy (tal ta3) tal .
Since a1, az and as are disjoint from each other, we have
12 =tyt ity (taitay) tar
as — lalta tay (@) 't \lar taz) lailas
4 4
= taZ ttal tay (aZ)tb/tbtal ta3 .

Therefore,

4.4 —1—1—1 -1,2

laylay =1y Ty tla11a3 (aylay Tas

T P | —1 -1
=1, 1, (fasf;,,l tas (a5 ay ).

By lemma 3 we see that 1,7, , (ay)as ta_zl is written as a commutator. This completes the
al 613

proof of Lemma 6. O

LEMMA 7. tgl t33 is written as a product of two commutators.

PROOF. From Lemma 6 we have
5.5 _ —1,-1
1o lay =taytasty 1, [ 1,

where b is (14, ta3)3(a2), b is (1, ta3)2(a2), and [, ]is a commutator. By lemma 4 we see that

taytayty ltb_, ! is written as a commutator. This completes the proof of Lemma 7. |

3. Proofs

THEOREM 2. fely (o)l2(6)li3 (o)l () 1S Written as a product of three commutators.
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PrROOF. By Lemma5 we have

10,10,—-5,-5
lely, (C)tt%(c)tt)?(c)tt;‘(c) = tal ta5 tag Iy

5.5v.,5,-5,5,-5
=& L)t Tasty ).

ay-as’\ay-as

By Lemma 3 we see that > 1,21 1>

a1ty Tasty ” 1s written as a commutator. Let p denote the rotation

by 2 /3 about the axis indicated in Figure 2. Since p(a;) = as and p(a3) = aj, we have

5,5 _ 5,5 -1
faytas = Plasla, P
5,5 -1
=ptytyp .
By Lemma 7 we see that tgl ta55 = ptgl t; o~ !is a product of two commutators. This completes
the proof of Theorem 2. O
dDY.

FIGURE 2. The rotation by 2m/3

COROLLARY 1. N@2,h) =5 forh > 3.

PROOF. Theorem 2 gives a genus-2 Lefschetz fibration with 5 singular fibers over X3.
By taking fiber sum with the trivial Lefschetz fibration, it is clear to see that for & > 3
N@2,h) =5. O

THEOREM 3. N(2,2) =5or6.

PROOF. By Proposition 1 it is clear that 5 < N(2,2). Hence, we show N(2,2) < 6.
From the proof of Proposition 1 it suffices to show that there exists a product of Dehn twists
about 2 nonseparating and 4 separating curves such that it is written as a product of two
commutators.

By Lemma 5 we have

_ 8.8 4,4
tctlx(c‘)tt%(c)ttg(c) = z‘alta5 tag Iy

= Y.

ayas ayjrasz "as"x
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l4 _42‘4 l IS written as a commutator. Since l4 l4 l4 -T=

By Lemma 3 we see that 7, 7,." 1.1, arlas = Pla, alp =

4t

Pty la P o~ !, by Lemma 6 we have t* 1+ = Ll [, 17, where[, 1 = p[, 1p~'. There-

ajas pb) p(d)
fore, we see that 1, lo(b)leli, (c)112(c) 113 (¢ 1S @ product of two commutators. This completes

the proof of theorem 3. O

In order to prove 6 < N(2, 1), we will need the following result.
THEOREM 4 ([4]). If a genus-g > 2 Lefschetz fibration over X, (h > 1) have s
separating and n nonseparating singular fibers, then
s <6(Bg—1)(h—1)+5n.
THEOREM 5. N(@2,1)=60r"7.

PROOF. First, we show 6 < N(2, 1). Suppose that N(2, 1) = 5. Thus, from the proof
of Proposition 1 there exists a genus-2 Lefschetz fibration with 5 separating singular fibers
and no nonseparating singular fibers over 72. However, this contradicts to Theorem 4.

We show N(2,1) < 7. From the proof of Proposition 1 it suffices to show that there
exists a product of Dehn twists about 4 nonseparating and 3 separating curves such that it is
written as a commutator. By the chain relation

2 _
tas = taylaylaytaylaylay Laytay Ly Laslay tay
= taylaytaslay taytay Las tay as Ly Pay Lay

=ltazlaytaztarta tasytastay tastay Lay tay

= lazlazlaylaslay taztay las las tal layla

6
= ta"; (t taZ ta";)(tal as z‘a2 a3 al )(tal taZ )tal

=11 4 13
as ta3 (a2) talta3 (a2) cll(a2) a’
Since t,—4, t. 2, .t =1, 6t 3t we have
Ly (a2) "ty 1oy (a2) 13, (a2) as’
_ ,—6,-3.3
l @ty 132 a) 13, (@) las = lag Loy Tas -

Therefore, by p(a1) = as, p(az) = a; and p(as) = a3,

Lot @) ptay 12 @) 013, (@) T0(@s) = Plizt iy 152 a) 112, (anlas P

= ot 617343 1

az -"ap “as

=173

ap "as "as-°

Since as and x are nonseparating curves, there exists ¢ € M> such that ¢(as) = x. By
Lemma 5 we have

— 6 -3 3 —3 —3
(tp[(;:‘(az)tp[al[(;sz(az)tptgl (az)tp(as))(tcttx(c)tt%(c‘)) - ( ap a5 a3)(ta1 as a3 x )



490 NAOYUKI MONDEN
3.3
=11,
=Pl P
=[1.. 4]
This completes the proof of Theorem 5 O
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