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Abstract. We show that the minimal number of singular fibers in a genus-2 Lefschetz fibration over a closed
surface of genus h is equal to 5 if h ≥ 3, 5 or 6 if h = 2 and 6 or 7 if h = 1.

1. Introduction

Let N(g, h) denote the minimal number of singular fibers in a relatively minimal genus-g
Lefschetz fibration (with at least one singular fiber) over a closed surface of genus h. Korkmaz
and Ozbagci proved that (1) N(g, h) = 1 iff g ≥ 3 and h ≥ 2, (2) 2 ≤ N(g, 1) for all g ≥ 1,
(3) N(1, h) = 12 for all h ≥ 0 and (4) 5 ≤ N(2, h) ≤ 8 for all h ≥ 0 (see [8]). The proofs of
(1) and (2) depend on a result of [14] which is the erratum to [13]. Moreover, the part (1) was
proved by showing that a Dehn twist about a simple closed curve is written as a product of
two commutator. Cadavid proved that N(g, 0) ≤ 2g + 4 if g is even and N(g, 0) ≤ 2g + 10
if g is odd (see [2]). This result was also discovered independently by Korkmaz (see [7]).

Braungardt and Kotschick proved that 1
5 (8g − 3) ≤ N(g, 0) (see [1]). Korkmaz and Stipsicz

showed that the fifth power of a Dehn twist about a separating curve is written as a product of
6 commutators (see [9]). Consequently, they proved that N(2, h) = 5 for all h ≥ 6.

We show the following results by proving that a product of Dehn twists about 5 separat-
ing curves is written as a product of 3 commutators.

THEOREM 1. For the number N(2, h) the following holds.

(1) N(2, h) = 5 for all h ≥ 3,
(2) N(2, 2) = 5 or 6,
(3) N(2, 1) = 6 or 7.

It is well known that N(2, 0) = 7 or 8. Ozbagci proved that 7 ≤ N(2, 0) (see [11]),

and Matsumoto constructed a genus-2 Lefschetz fibration with 8 singular fibers over S2 (see

[10]). Sato prove that if a genus-2 Lefschetz fibration over S2 has 7 singular fibers, then the
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total space is diffeomorphic to S2 × T 2�3CP2 (see [12]). However, the author does not know

whether S2 × T 2�3CP2 admits a genus-2 Lefschetz fibration over S2 with 7 singular fibers or
not.

2. Preliminaries

Let Σh be a closed, connected, oriented surface of genus h ≥ 0. Let M2 be the mapping
class group of Σ2, i.e., the group of isotopy classes of orientation-preserving diffeomorphisms
of Σ2.

2.1. Lefschetz fibrations and the monodromy representation. We begin by recall-
ing the definition and basic properties of Lefschetz fibrations. More details can be found in
[5].

DEFINITION 2.1. Let X be a closed, connected, oriented smooth four manifold. A
Lefschetz fibration is a map f : X → Σh such that f is injective on the set of critical points
C = {x1, . . . , xn} and about each xi and f (xi) there are complex local coordinate charts
agreeing with the orientations of X and Σh on which f is of the form

f (z1, z2) = z2
1 + z2

2 .

Any fiber containing a critical point is called a singular fiber. Clearly all regular fibers are
closed surfaces and are of the same diffeomorphism type. The genus of f is defined to be the
genus of a regular fiber. We will assume that the generic fiber is connected and our fibration
is relatively minimal, i.e., no fiber contains a (−1) sphere.

Hereafter, we assume that the genus of the fiber is equal to two and do not distinguish a
diffeomorphism and its isotopy class. Moreover, we do not distinguish a curve and its isotopy
class.

Each critical point of a genus-2 Lefschetz fibration corresponds to an embedded circle in
a nearby regular fiber called a vanishing cycle, and the singular fiber is obtained by collapsing
the vanishing cycle to a point. The boundary of a regular neighborhood of a singular fiber is a
surface bundle over the circle. In fact, a singular fiber can be described by the monodromy of
this surface bundle which turns out to be a right-handed Dehn twist along the corresponding
vanishing cycle. Once we fix an identification of Σ2 with the fiber over a base point of
Σh, the topology of the Lefschetz fibration is determined by its monodromy representation
Ψ : π1(Σh − {f (x1), . . . , f (xn)}) → M2.

The monodromy of a Lefschetz fibration f : X → Σh comprises a factorization of
1 ∈ M2 as

1 =
h∏

j=1

[aj , bj ]
n∏

i=1

tvi ,

where vi are the vanishing cycles of the singular fibers and tvi is the right handed Dehn twist

about vi . In particular, a product
∏h

j=1[aj , bj ] of h commutators in M2 gives an Σ2-bundle
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over the surface Σ1
h of genus h with one boundary component. The mapping classes aj and

bj specify the monodromy along the obvious free generating system 〈α1, β1, . . . , αh, βh〉 of

π1(Σ
1
h).

An expression
∏n

i=1 tvi ∈ M2 provides a genus-2 Lefschetz fibration X → D2 over the

disk with fiber Σ2. If
∏n

i=1 tvi = 1 ∈ M2 then the fibration closes up to a fibration over

the sphere S2 and the closed-up manifold is uniquely determined by the word
∏n

i=1 tvi . By
combining the above two constructions, a word

W =
h∏

j=1

[aj , bj ]
n∏

i=1

tvi

gives a genus-2 Lefschetz fibration over Σh − D2 and if W = 1 ∈ M2 we get a genus-2
Lefschetz fibration X → Σh.

PROPOSITION 1 ([8]). For all h ≥ 0, 5 ≤ N(2, h).

PROOF. It is well known that M2/[M2,M2] is generated by the class of a Dehn twist
about a nonseparating curve and is equal to Z10. Since every right handed Dehn twist about a
nontrivial separating curve is the product of 12 right handed Dehn twists about nonseparating
curves, its image under the map M2 → M2/[M2,M2] ∼= Z10 is 2. Hence, if a product of
right handed Dehn twists about n nonseparating and s separating curves is trivial (or equal to
a product of commutators), then

n + 2s ≡ 0 (mod 10) .

Therefore, there are at least 5 singular fibers in a genus-2 Lefschetz fibration over Σh. �

2.2. Relations in the mapping class group. We recall the following basic facts.

LEMMA 1. Let c be a simple closed curve on Σ2, let ρ be a self-diffeomorphism of

Σg . Then ρtcρ
−1 = tρ(c).

LEMMA 2. Let c and d be two simple closed curves on Σ2.
(a) If c is disjoint from d , then tctd = td tc.
(b) If c intersects d in one point transversely, then tctd tc = td tctd .

The proof of the following lemma is based on an idea of Korkmaz [8].

LEMMA 3. Let a, b, c, d denote nonseparating curves on Σ2 such that a is disjoint
from b, and c is disjoint from d . Morever, we assume that a is not isotopic to b, and c is not
isotopic to d . Then tna t−n

b tnc t−n
d (n ∈ Z) is a commutator.

PROOF. Since Σ2 − {a ∪ b} and Σ2 − {d ∪ c} are connected surfaces, there exists an
orientation-preserving diffeomorphism ρ1 of Σ2 such that ρ1(a) = d and ρ1(b) = c. Then

tna t−n
b tnc t−n

d = tna t−n
b tnρ1(b)t

−n
ρ1(a)
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= tna t−n
b ρ1t

n
b t−n

a ρ−1
1

= [tna t−n
b , ρ1] . �

LEMMA 4 ([9]). Let a, b, c, d denote nonseparating curves on Σ2 such that a inter-

sects d transversely at one point and b intersects c transversely at one point. Then tatbt
−1
c t−1

d

is a commutator.

PROOF. Since td (b) and td (c) intersect transversely at one point, by the classification
of surfaces there exists an orientation-preserving diffeomorphism ρ2 of Σ2 such that ρ2(a) =
td (c) and ρ2(d) = td(b). Then

tatbt
−1
c t−1

d = tat
−1
d (td tbt

−1
d )(td t−1

c t−1
d )

= tat
−1
d ttd (b)t

−1
td (c)

= tat
−1
d tρ2(d)t

−1
ρ2(a)

= tat
−1
d ρ2td t−1

a ρ−1
2

= [tat−1
d , ρ2] . �

The following two relations in M2 are also well-known. The first one is the lantern
relation. This relation was discovered by Dehn (see [3]) and was rediscovered by Johnson
(see [6]). Let a1, a2, a3, a5, c and x be simple closed curves on Σ2 in Figure 2. ta1 , ta3 , ta5 , tc

and tx satisfy the lantern relation

t2
a1

t2
a5

= ta3 tctx .

FIGURE 1. The curves a1, a2, a3, a5, c and x

The second relation is the chain relation. ta1 , ta2 , ta3 and ta5 satisfy the chain relation

(ta3 ta2 ta1)
4 = t2

a5
.

The proof of Theorem 1 rests on the following lemmas.

LEMMA 5. tcttx(c) · · · t
t i−1
x (c)

= t2i
a1

t2i
a5

t−i
a3

t−i
x (i = 1, . . . , 5).

PROOF. Since by the lantern relation we have tctx = t2
a1

t2
a5

t−1
a3

,

tcttx (c) · · · t
t i−1
x (c)

t ix = tc(tx tct
−1
x ) · · · (ti−1

x tct
−i+1
x )tix
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= (tctx)i

= t2i
a1

t2i
a5

t−i
a3

.

Therefore, tcttx (c) · · · t
t i−1
x (c)

= t2i
a1

t2i
a5

t−i
a3

t−i
x . �

LEMMA 6. t4
a1

t4
a3

= t−1
b t−1

b′ [ , ], where b is (ta1 ta3)
3(a2), b′ is (ta1 ta3)

2(a2), and [ , ]
is a commutator.

PROOF. By the chain relation we have

t2
a5

= ta3 ta2 ta1 ta3 ta2 ta1 ta3 ta2 ta1 ta3 ta2 ta1

= ta3 ta2{(ta1 ta3)ta2(ta1 ta3)
−1}{(ta1 ta3)

2ta2(ta1 ta3)
−2}{(ta1 ta3)

3ta2(ta1 ta3)
−3}(ta1 ta3)

3ta1

= ta3 ta2 tta1 ta3 (a2)t(ta1 ta3 )2(a2)
t(ta1 ta3 )3(a2)

(ta1 ta3)
3ta1

= ta3 ta2 tta1 ta3 (a2)tb′ tb(ta1 ta3)
3ta1 .

Since a1, a3 and a5 are disjoint from each other, we have

t2
a5

= ta2 tta1 ta3 (a2)tb′ tb(ta1 ta3)
3ta1 ta3

= ta2 tta1 ta3 (a2)tb′ tbt
4
a1

t4
a3

.

Therefore,

t4
a1

t4
a3

= t−1
b t−1

b′ t−1
ta1 ta3 (a2)

t−1
a2

t2
a5

= t−1
b t−1

b′ (ta5 t
−1
ta1 ta3 (a2)

ta5 t
−1
a2

) .

By lemma 3 we see that ta5 t
−1
ta1 ta3 (a2)

ta5 t
−1
a2

is written as a commutator. This completes the

proof of Lemma 6. �

LEMMA 7. t5
a1

t5
a3

is written as a product of two commutators.

PROOF. From Lemma 6 we have

t5
a1

t5
a3

= ta1 ta3 t
−1
b t−1

b′ [ , ],
where b is (ta1 ta3)

3(a2), b′ is (ta1 ta3)
2(a2), and [ , ] is a commutator. By lemma 4 we see that

ta1 ta3 t
−1
b t−1

b′ is written as a commutator. This completes the proof of Lemma 7. �

3. Proofs

THEOREM 2. tcttx(c)tt2
x (c)tt3

x (c)tt4
x (c) is written as a product of three commutators.
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PROOF. By Lemma 5 we have

tcttx(c)tt2
x (c)tt3

x (c)tt4
x (c) = t10

a1
t10
a5

t−5
a3

t−5
x

= (t5
a1

t5
a5

)(t5
a1

t−5
a3

t5
a5

t−5
x ) .

By Lemma 3 we see that t5
a1

t−5
a3

t5
a5

t−5
x is written as a commutator. Let ρ denote the rotation

by 2π/3 about the axis indicated in Figure 2. Since ρ(a1) = a5 and ρ(a3) = a1, we have

t5
a1

t5
a5

= ρt5
a3

t5
a1

ρ−1

= ρt5
a1

t5
a3

ρ−1.

By Lemma 7 we see that t5
a1

t5
a5

= ρt5
a1

t5
a3

ρ−1 is a product of two commutators. This completes
the proof of Theorem 2. �

FIGURE 2. The rotation by 2π/3

COROLLARY 1. N(2, h) = 5 for h ≥ 3.

PROOF. Theorem 2 gives a genus-2 Lefschetz fibration with 5 singular fibers over Σ3.
By taking fiber sum with the trivial Lefschetz fibration, it is clear to see that for h ≥ 3
N(2, h) = 5. �

THEOREM 3. N(2, 2) = 5 or 6.

PROOF. By Proposition 1 it is clear that 5 ≤ N(2, 2). Hence, we show N(2, 2) ≤ 6.
From the proof of Proposition 1 it suffices to show that there exists a product of Dehn twists
about 2 nonseparating and 4 separating curves such that it is written as a product of two
commutators.

By Lemma 5 we have

tcttx(c)tt2
x (c)tt3

x (c) = t8
a1

t8
a5

t−4
a3

t−4
x

= (t4
a1

t4
a5

)(t4
a1

t−4
a3

t4
a5

t−4
x ) .
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By Lemma 3 we see that t4
a1

t−4
a3

t4
a5

t−4
x is written as a commutator. Since t4

a1
t4
a5

= ρt4
a3

t4
a1

ρ−1 =
ρt4

a1
t4
a3

ρ−1, by Lemma 6 we have t4
a1

t4
a5

= t−1
ρ(b)

t−1
ρ(b′)[ , ]ρ , where [ , ]ρ = ρ[ , ]ρ−1. There-

fore, we see that tρ(b′)tρ(b)tcttx (c)tt2
x (c)tt3

x (c) is a product of two commutators. This completes

the proof of theorem 3. �

In order to prove 6 ≤ N(2, 1), we will need the following result.

THEOREM 4 ([4]). If a genus-g ≥ 2 Lefschetz fibration over Σh (h ≥ 1) have s

separating and n nonseparating singular fibers, then

s ≤ 6(3g − 1)(h − 1) + 5n .

THEOREM 5. N(2, 1) = 6 or 7.

PROOF. First, we show 6 ≤ N(2, 1). Suppose that N(2, 1) = 5. Thus, from the proof
of Proposition 1 there exists a genus-2 Lefschetz fibration with 5 separating singular fibers

and no nonseparating singular fibers over T 2. However, this contradicts to Theorem 4.
We show N(2, 1) ≤ 7. From the proof of Proposition 1 it suffices to show that there

exists a product of Dehn twists about 4 nonseparating and 3 separating curves such that it is
written as a commutator. By the chain relation

t2
a5

= ta3 ta2 ta1 ta3 ta2 ta1 ta3 ta2 ta1 ta3 ta2 ta1

= ta3 ta2 ta3 ta1 ta2 ta1 ta3 ta2 ta3 ta1 ta2 ta1

= ta3 ta2 ta3 ta2 ta1 ta2 ta3 ta2 ta3 ta1 ta2 ta1

= ta3 ta3 ta2 ta3 ta1 ta3 ta2 ta3 ta3 ta1 ta2 ta1

= t6
a3

(t−4
a3

ta2 t
4
a3

)(ta1 t
−2
a3

ta2 t
2
a3

t−1
a1

)(t2
a1

ta2 t
−2
a1

)t3
a1

= t6
a3

t
t−4
a3 (a2)

t
ta1 t−2

a3 (a2)
tt2

a1
(a2)

t3
a1

.

Since t
t−4
a3 (a2)

t
ta1 t−2

a3 (a2)
tt2

a1
(a2)

= t−6
a3

t−3
a1

t2
a5

, we have

t
t−4
a3 (a2)

t
ta1 t−2

a3 (a2)
tt2

a1
(a2)

ta5 = t−6
a3

t−3
a1

t3
a5

.

Therefore, by ρ(a1) = a5, ρ(a3) = a1 and ρ(a5) = a3,

t
ρt−4

a3 (a2)
t
ρta1 t−2

a3 (a2)
tρt2

a1
(a2)

tρ(a5) = ρt
t−4
a3 (a2)

t
ta1 t−2

a3 (a2)
tt2

a1
(a2)

ta5ρ
−1

= ρt−6
a3

t−3
a1

t3
a5

ρ−1

= t−6
a1

t−3
a5

t3
a3

.

Since a5 and x are nonseparating curves, there exists φ ∈ M2 such that φ(a5) = x. By
Lemma 5 we have

(t
ρt−4

a3 (a2)
t
ρta1 t−2

a3 (a2)
tρt2

a1
(a2)

tρ(a5))(tcttx (c)tt2
x (c)) = (t−6

a1
t−3
a5

t3
a3

)(t6
a1

t6
a5

t−3
a3

t−3
x )
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= t3
a5

t−3
x

= t3
a5

φt−3
a5

φ−1

= [t3
a5

, φ] .

This completes the proof of Theorem 5 �
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