On Minimal Number of Singular Fibers in a Genus-2 Lefschetz Fibration

Naoyuki MONDEN

Osaka University
(Communicated by Y. Matsumoto)

Abstract

We show that the minimal number of singular fibers in a genus-2 Lefschetz fibration over a closed surface of genus h is equal to 5 if $h \geq 3,5$ or 6 if $h=2$ and 6 or 7 if $h=1$.

1. Introduction

Let $N(g, h)$ denote the minimal number of singular fibers in a relatively minimal genus- g Lefschetz fibration (with at least one singular fiber) over a closed surface of genus h. Korkmaz and Ozbagci proved that (1) $N(g, h)=1$ iff $g \geq 3$ and $h \geq 2$, (2) $2 \leq N(g, 1)$ for all $g \geq 1$, (3) $N(1, h)=12$ for all $h \geq 0$ and (4) $5 \leq N(2, h) \leq 8$ for all $h \geq 0$ (see [8]). The proofs of (1) and (2) depend on a result of [14] which is the erratum to [13]. Moreover, the part (1) was proved by showing that a Dehn twist about a simple closed curve is written as a product of two commutator. Cadavid proved that $N(g, 0) \leq 2 g+4$ if g is even and $N(g, 0) \leq 2 g+10$ if g is odd (see [2]). This result was also discovered independently by Korkmaz (see [7]). Braungardt and Kotschick proved that $\frac{1}{5}(8 g-3) \leq N(g, 0)$ (see [1]). Korkmaz and Stipsicz showed that the fifth power of a Dehn twist about a separating curve is written as a product of 6 commutators (see [9]). Consequently, they proved that $N(2, h)=5$ for all $h \geq 6$.

We show the following results by proving that a product of Dehn twists about 5 separating curves is written as a product of 3 commutators.

THEOREM 1. For the number $N(2, h)$ the following holds.
(1) $N(2, h)=5$ for all $h \geq 3$,
(2) $N(2,2)=5$ or 6 ,
(3) $N(2,1)=6$ or 7 .

It is well known that $N(2,0)=7$ or 8 . Ozbagci proved that $7 \leq N(2,0)$ (see [11]), and Matsumoto constructed a genus-2 Lefschetz fibration with 8 singular fibers over S^{2} (see [10]). Sato prove that if a genus-2 Lefschetz fibration over S^{2} has 7 singular fibers, then the
total space is diffeomorphic to $S^{2} \times T^{2} \sharp 3 \overline{C \mathbf{P}^{2}}$ (see [12]). However, the author does not know whether $S^{2} \times T^{2} \sharp 3 \overline{C \mathbf{P}^{2}}$ admits a genus-2 Lefschetz fibration over S^{2} with 7 singular fibers or not.

2. Preliminaries

Let Σ_{h} be a closed, connected, oriented surface of genus $h \geq 0$. Let \mathcal{M}_{2} be the mapping class group of Σ_{2}, i.e., the group of isotopy classes of orientation-preserving diffeomorphisms of Σ_{2}.
2.1. Lefschetz fibrations and the monodromy representation. We begin by recalling the definition and basic properties of Lefschetz fibrations. More details can be found in [5].

DEFINITION 2.1. Let X be a closed, connected, oriented smooth four manifold. A Lefschetz fibration is a map $f: X \rightarrow \Sigma_{h}$ such that f is injective on the set of critical points $C=\left\{x_{1}, \ldots, x_{n}\right\}$ and about each x_{i} and $f\left(x_{i}\right)$ there are complex local coordinate charts agreeing with the orientations of X and Σ_{h} on which f is of the form

$$
f\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

Any fiber containing a critical point is called a singular fiber. Clearly all regular fibers are closed surfaces and are of the same diffeomorphism type. The genus of f is defined to be the genus of a regular fiber. We will assume that the generic fiber is connected and our fibration is relatively minimal, i.e., no fiber contains a (-1) sphere.

Hereafter, we assume that the genus of the fiber is equal to two and do not distinguish a diffeomorphism and its isotopy class. Moreover, we do not distinguish a curve and its isotopy class.

Each critical point of a genus-2 Lefschetz fibration corresponds to an embedded circle in a nearby regular fiber called a vanishing cycle, and the singular fiber is obtained by collapsing the vanishing cycle to a point. The boundary of a regular neighborhood of a singular fiber is a surface bundle over the circle. In fact, a singular fiber can be described by the monodromy of this surface bundle which turns out to be a right-handed Dehn twist along the corresponding vanishing cycle. Once we fix an identification of Σ_{2} with the fiber over a base point of Σ_{h}, the topology of the Lefschetz fibration is determined by its monodromy representation $\Psi: \pi_{1}\left(\Sigma_{h}-\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}\right) \rightarrow \mathcal{M}_{2}$.

The monodromy of a Lefschetz fibration $f: X \rightarrow \Sigma_{h}$ comprises a factorization of $1 \in \mathcal{M}_{2}$ as

$$
1=\prod_{j=1}^{h}\left[a_{j}, b_{j}\right] \prod_{i=1}^{n} t_{v_{i}},
$$

where v_{i} are the vanishing cycles of the singular fibers and $t_{v_{i}}$ is the right handed Dehn twist about v_{i}. In particular, a product $\prod_{j=1}^{h}\left[a_{j}, b_{j}\right]$ of h commutators in \mathcal{M}_{2} gives an Σ_{2}-bundle
over the surface Σ_{h}^{1} of genus h with one boundary component. The mapping classes a_{j} and b_{j} specify the monodromy along the obvious free generating system $\left\langle\alpha_{1}, \beta_{1}, \ldots, \alpha_{h}, \beta_{h}\right\rangle$ of $\pi_{1}\left(\Sigma_{h}^{1}\right)$.

An expression $\prod_{i=1}^{n} t_{v_{i}} \in \mathcal{M}_{2}$ provides a genus-2 Lefschetz fibration $X \rightarrow D^{2}$ over the disk with fiber Σ_{2}. If $\prod_{i=1}^{n} t_{v_{i}}=1 \in \mathcal{M}_{2}$ then the fibration closes up to a fibration over the sphere S^{2} and the closed-up manifold is uniquely determined by the word $\prod_{i=1}^{n} t_{v_{i}}$. By combining the above two constructions, a word

$$
W=\prod_{j=1}^{h}\left[a_{j}, b_{j}\right] \prod_{i=1}^{n} t_{v_{i}}
$$

gives a genus-2 Lefschetz fibration over $\Sigma_{h}-D^{2}$ and if $W=1 \in \mathcal{M}_{2}$ we get a genus-2 Lefschetz fibration $X \rightarrow \Sigma_{h}$.

Proposition 1 ([8]). For all $h \geq 0,5 \leq N(2, h)$.
Proof. It is well known that $\mathcal{M}_{2} /\left[\mathcal{M}_{2}, \mathcal{M}_{2}\right]$ is generated by the class of a Dehn twist about a nonseparating curve and is equal to \mathbf{Z}_{10}. Since every right handed Dehn twist about a nontrivial separating curve is the product of 12 right handed Dehn twists about nonseparating curves, its image under the map $\mathcal{M}_{2} \rightarrow \mathcal{M}_{2} /\left[\mathcal{M}_{2}, \mathcal{M}_{2}\right] \cong \mathbf{Z}_{10}$ is 2 . Hence, if a product of right handed Dehn twists about n nonseparating and s separating curves is trivial (or equal to a product of commutators), then

$$
n+2 s \equiv 0 \quad(\bmod 10)
$$

Therefore, there are at least 5 singular fibers in a genus-2 Lefschetz fibration over Σ_{h}.
2.2. Relations in the mapping class group. We recall the following basic facts.

LEMMA 1. Let c be a simple closed curve on Σ_{2}, let ρ be a self-diffeomorphism of Σ_{g}. Then $\rho t_{c} \rho^{-1}=t_{\rho(c)}$.

Lemma 2. Let c and d be two simple closed curves on Σ_{2}.
(a) If c is disjoint from d, then $t_{c} t_{d}=t_{d} t_{c}$.
(b) If c intersects d in one point transversely, then $t_{c} t_{d} t_{c}=t_{d} t_{c} t_{d}$.

The proof of the following lemma is based on an idea of Korkmaz [8].
Lemma 3. Let a, b, c, d denote nonseparating curves on Σ_{2} such that a is disjoint from b, and c is disjoint from d. Morever, we assume that a is not isotopic to b, and c is not isotopic to d. Then $t_{a}^{n} t_{b}^{-n} t_{c}^{n} t_{d}^{-n}(n \in \mathbf{Z})$ is a commutator.

Proof. Since $\Sigma_{2}-\{a \cup b\}$ and $\Sigma_{2}-\{d \cup c\}$ are connected surfaces, there exists an orientation-preserving diffeomorphism ρ_{1} of Σ_{2} such that $\rho_{1}(a)=d$ and $\rho_{1}(b)=c$. Then

$$
t_{a}^{n} t_{b}^{-n} t_{c}^{n} t_{d}^{-n}=t_{a}^{n} t_{b}^{-n} t_{\rho_{1}(b)}^{n} t_{\rho_{1}(a)}^{-n}
$$

$$
\begin{aligned}
& =t_{a}^{n} t_{b}^{-n} \rho_{1} t_{b}^{n} t_{a}^{-n} \rho_{1}^{-1} \\
& =\left[t_{a}^{n} t_{b}^{-n}, \rho_{1}\right]
\end{aligned}
$$

Lemma 4 ([9]). Let a, b, c, d denote nonseparating curves on Σ_{2} such that a intersects d transversely at one point and b intersects c transversely at one point. Then $t_{a} t_{b} t_{c}^{-1} t_{d}^{-1}$ is a commutator.

Proof. Since $t_{d}(b)$ and $t_{d}(c)$ intersect transversely at one point, by the classification of surfaces there exists an orientation-preserving diffeomorphism ρ_{2} of Σ_{2} such that $\rho_{2}(a)=$ $t_{d}(c)$ and $\rho_{2}(d)=t_{d}(b)$. Then

$$
\begin{aligned}
t_{a} t_{b} t_{c}^{-1} t_{d}^{-1} & =t_{a} t_{d}^{-1}\left(t_{d} t_{b} t_{d}^{-1}\right)\left(t_{d} t_{c}^{-1} t_{d}^{-1}\right) \\
& =t_{a} t_{d}^{-1} t_{t_{d}(b)} t_{t_{d}(c)}^{-1} \\
& =t_{a} t_{d}^{-1} t_{\rho_{2}(d)} t_{\rho_{2}(a)}^{-1} \\
& =t_{a} t_{d}^{-1} \rho_{2} t_{d} t_{a}^{-1} \rho_{2}^{-1} \\
& =\left[t_{a} t_{d}^{-1}, \rho_{2}\right]
\end{aligned}
$$

The following two relations in \mathcal{M}_{2} are also well-known. The first one is the lantern relation. This relation was discovered by Dehn (see [3]) and was rediscovered by Johnson (see [6]). Let $a_{1}, a_{2}, a_{3}, a_{5}, c$ and x be simple closed curves on Σ_{2} in Figure 2. $t_{a_{1}}, t_{a_{3}}, t_{a_{5}}, t_{c}$ and t_{x} satisfy the lantern relation

$$
t_{a_{1}}^{2} t_{a_{5}}^{2}=t_{a_{3}} t_{c} t_{x}
$$

Figure 1. The curves $a_{1}, a_{2}, a_{3}, a_{5}, c$ and x

The second relation is the chain relation. $t_{a_{1}}, t_{a_{2}}, t_{a_{3}}$ and $t_{a_{5}}$ satisfy the chain relation

$$
\left(t_{a_{3}} t_{a_{2}} t_{a_{1}}\right)^{4}=t_{a_{5}}^{2}
$$

The proof of Theorem 1 rests on the following lemmas.
LEMMA 5. $t_{c} t_{t_{x}(c)} \cdots t_{t_{x}^{i-1}(c)}=t_{a_{1}}^{2 i} t_{a_{5}}^{2 i} t_{a_{3}}^{-i} t_{x}^{-i} \quad(i=1, \ldots, 5)$.
Proof. Since by the lantern relation we have $t_{c} t_{x}=t_{a_{1}}^{2} t_{a_{5}}^{2} t_{a_{3}}^{-1}$,

$$
t_{c} t_{t_{x}(c)} \cdots t_{t_{x}^{i-1}(c)} t_{x}^{i}=t_{c}\left(t_{x} t_{c} t_{x}^{-1}\right) \cdots\left(t_{x}^{i-1} t_{c} t_{x}^{-i+1}\right) t_{x}^{i}
$$

$$
\begin{aligned}
& =\left(t_{c} t_{x}\right)^{i} \\
& =t_{a_{1}}^{2 i} t_{a_{5}}^{2 i} t_{a_{3}}^{-i} .
\end{aligned}
$$

Therefore, $t_{c} t_{t_{x}(c)} \cdots t_{t_{x}^{i-1}(c)}=t_{a_{1}}^{2 i} t_{a_{5}}^{2 i} t_{a_{3}}^{-i} t_{x}^{-i}$.
LEMMA 6. $t_{a_{1}}^{4} t_{a_{3}}^{4}=t_{b}^{-1} t_{b^{\prime}}^{-1}[$,$] , where b$ is $\left(t_{a_{1}} t_{a_{3}}\right)^{3}\left(a_{2}\right), b^{\prime}$ is $\left(t_{a_{1}} t_{a_{3}}\right)^{2}\left(a_{2}\right)$, and $[$,] is a commutator.

Proof. By the chain relation we have

$$
\begin{aligned}
t_{a_{5}}^{2} & =t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{1}} \\
& =t_{a_{3}} t_{a_{2}}\left\{\left(t_{a_{1}} t_{a_{3}}\right) t_{a_{2}}\left(t_{a_{1}} t_{a_{3}}\right)^{-1}\right\}\left\{\left(t_{a_{1}} t_{a_{3}}\right)^{2} t_{a_{2}}\left(t_{a_{1}} t_{a_{3}}\right)^{-2}\right\}\left\{\left(t_{a_{1}} t_{a_{3}}\right)^{3} t_{a_{2}}\left(t_{a_{1}} t_{a_{3}}\right)^{-3}\right\}\left(t_{a_{1}} t_{a_{3}}\right)^{3} t_{a_{1}} \\
& =t_{a_{3}} t_{a_{2}} t_{t_{a_{1}}} t_{a_{3}}\left(a_{2}\right) t_{\left(t_{a_{1}} t_{a_{3}}\right)^{2}\left(a_{2}\right)} t_{\left(t_{a_{1}} t_{a_{3}}\right)^{3}\left(a_{2}\right)}\left(t_{a_{1}} t_{a_{3}}\right)^{3} t_{a_{a_{1}}} \\
& =t_{a_{3}} t_{a_{2}} t_{t_{a_{1}} t_{a_{3}}\left(a_{2}\right)} t_{b^{\prime}} t_{b}\left(t_{a_{1}} t_{a_{3}}\right)^{3} t_{a_{1}} .
\end{aligned}
$$

Since a_{1}, a_{3} and a_{5} are disjoint from each other, we have

$$
\begin{aligned}
t_{a_{5}}^{2} & =t_{a_{2}} t_{t_{a_{1}}} t_{a_{3}}\left(a_{2}\right) t_{b^{\prime}} t_{b}\left(t_{a_{1}} t_{a_{3}}\right)^{3} t_{a_{1}} t_{a_{3}} \\
& =t_{a_{2}} t_{t_{a_{1}}} t_{a_{3}}\left(a_{2}\right) t_{b^{\prime}} t_{b} t_{a_{1}}^{4} t_{a_{3}}^{4} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
t_{a_{1}}^{4} t_{a_{3}}^{4} & =t_{b}^{-1} t_{b^{\prime}}^{-1} t_{t_{a_{1}} t_{a_{3}}\left(a_{2}\right)}^{-1} t_{a_{2}}^{-1} t_{a_{5}}^{2} \\
& =t_{b}^{-1} t_{b^{\prime}}^{-1}\left(t_{a_{5}} t_{t_{a_{1}} t_{a_{3}}\left(a_{2}\right)}^{-1} t_{a_{5}} t_{a_{2}}^{-1}\right)
\end{aligned}
$$

By lemma 3 we see that $t_{a_{5}} t_{t_{1} t_{a_{3}}\left(a_{2}\right)}^{-1} t_{a_{5}} t_{a_{2}}^{-1}$ is written as a commutator. This completes the proof of Lemma 6 .

Lemma 7. $t_{a_{1}}^{5} t_{a_{3}}^{5}$ is written as a product of two commutators.
Proof. From Lemma 6 we have

$$
t_{a_{1}}^{5} t_{a_{3}}^{5}=t_{a_{1}} t_{a_{3}} t_{b}^{-1} t_{b^{\prime}}^{-1}[,],
$$

where b is $\left(t_{a_{1}} t_{a_{3}}\right)^{3}\left(a_{2}\right), b^{\prime}$ is $\left(t_{a_{1}} t_{a_{3}}\right)^{2}\left(a_{2}\right)$, and $[$,$] is a commutator. By lemma 4$ we see that $t_{a_{1}} t_{a_{3}} t_{b}^{-1} t_{b^{\prime}}^{-1}$ is written as a commutator. This completes the proof of Lemma 7.

3. Proofs

THEOREM 2. $t_{c} t_{t_{x}(c)} t_{t_{x}^{2}(c)} t_{t_{x}^{3}(c)} t_{t_{x}^{4}(c)}$ is written as a product of three commutators.

Proof. By Lemma 5 we have

$$
\left.\begin{array}{rl}
t_{c} t_{t_{x}(c)} t_{x}^{2}(c) t_{x}^{3}(c) & t_{x}^{4}(c)
\end{array}\right)=t_{a_{1}}^{10} t_{a_{5}}^{10} t_{a_{3}}^{-5} t_{x}^{-5} .
$$

By Lemma 3 we see that $t_{a_{1}}^{5} t_{a_{3}}^{-5} t_{a_{5}}^{5} t_{x}^{-5}$ is written as a commutator. Let ρ denote the rotation by $2 \pi / 3$ about the axis indicated in Figure 2 . Since $\rho\left(a_{1}\right)=a_{5}$ and $\rho\left(a_{3}\right)=a_{1}$, we have

$$
\begin{aligned}
t_{a_{1}}^{5} t_{a_{5}}^{5} & =\rho t_{a_{3}}^{5} t_{a_{1}}^{5} \rho^{-1} \\
& =\rho t_{a_{1}}^{5} t_{a_{3}}^{5} \rho^{-1}
\end{aligned}
$$

By Lemma 7 we see that $t_{a_{1}}^{5} t_{a_{5}}^{5}=\rho t_{a_{1}}^{5} t_{a_{3}}^{5} \rho^{-1}$ is a product of two commutators. This completes the proof of Theorem 2.

Figure 2. The rotation by $2 \pi / 3$

Corollary 1. $\quad N(2, h)=5$ for $h \geq 3$.
Proof. Theorem 2 gives a genus- 2 Lefschetz fibration with 5 singular fibers over Σ_{3}. By taking fiber sum with the trivial Lefschetz fibration, it is clear to see that for $h \geq 3$ $N(2, h)=5$.

THEOREM 3. $N(2,2)=5$ or 6 .
Proof. By Proposition 1 it is clear that $5 \leq N(2,2)$. Hence, we show $N(2,2) \leq 6$. From the proof of Proposition 1 it suffices to show that there exists a product of Dehn twists about 2 nonseparating and 4 separating curves such that it is written as a product of two commutators.

By Lemma 5 we have

$$
\begin{aligned}
t_{c} t_{t_{x}(c)} t_{x}^{2}(c) t_{x}^{3}(c) & =t_{a_{1}}^{8} t_{a_{5}}^{8} t_{a_{3}}^{-4} t_{x}^{-4} \\
& =\left(t_{a_{1}}^{4} t_{a_{5}}^{4}\right)\left(t_{a_{1}}^{4} t_{a_{3}}^{-4} t_{a_{5}}^{4} t_{x}^{-4}\right) .
\end{aligned}
$$

By Lemma 3 we see that $t_{a_{1}}^{4} t_{a_{3}}^{-4} t_{a_{5}}^{4} t_{x}^{-4}$ is written as a commutator. Since $t_{a_{1}}^{4} t_{a_{5}}^{4}=\rho t_{a_{3}}^{4} t_{a_{1}}^{4} \rho^{-1}=$ $\rho t_{a_{1}}^{4} t_{a_{3}}^{4} \rho^{-1}$, by Lemma 6 we have $t_{a_{1}}^{4} t_{a_{5}}^{4}=t_{\rho(b)}^{-1} t_{\rho\left(b^{\prime}\right)}^{-1}[,]^{\rho}$, where $[,]^{\rho}=\rho[,] \rho^{-1}$. Therefore, we see that $t_{\rho\left(b^{\prime}\right)} t_{\rho(b)} t_{c} t_{t_{x}(c)} t_{t_{x}^{2}(c)} t_{t_{x}^{3}(c)}$ is a product of two commutators. This completes the proof of theorem 3.

In order to prove $6 \leq N(2,1)$, we will need the following result.
THEOREM 4 ([4]). If a genus- $g \geq 2$ Lefschetz fibration over $\Sigma_{h}(h \geq 1)$ have s separating and n nonseparating singular fibers, then

$$
s \leq 6(3 g-1)(h-1)+5 n .
$$

Theorem 5. $\quad N(2,1)=6$ or 7 .
Proof. First, we show $6 \leq N(2,1)$. Suppose that $N(2,1)=5$. Thus, from the proof of Proposition 1 there exists a genus-2 Lefschetz fibration with 5 separating singular fibers and no nonseparating singular fibers over T^{2}. However, this contradicts to Theorem 4.

We show $N(2,1) \leq 7$. From the proof of Proposition 1 it suffices to show that there exists a product of Dehn twists about 4 nonseparating and 3 separating curves such that it is written as a commutator. By the chain relation

$$
\begin{aligned}
t_{a_{5}}^{2} & =t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{1}} \\
& =t_{a_{3}} t_{a_{2}} t_{a_{3}} t_{a_{1}} t_{a_{2}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{3}} t_{a_{1}} t_{a_{2}} t_{a_{1}} \\
& =t_{a_{3}} t_{a_{2}} t_{a_{3}} t_{a_{2}} t_{a_{1}} t_{a_{2}} t_{a_{3}} t_{a_{2}} t_{a_{3}} t_{a_{1}} t_{a_{2}} t_{a_{1}} \\
& =t_{a_{3}} t_{a_{3}} t_{a_{2}} t_{a_{3}} t_{a_{1}} t_{a_{3}} t_{a_{2}} t_{a_{3}} t_{a_{3}} t_{a_{1}} t_{a_{2}} t_{a_{1}} \\
& =t_{a_{3}}^{6}\left(t_{a_{3}}^{-4} t_{a_{2}} t_{a_{3}}^{4}\right)\left(t_{a_{1}}-a_{a_{3}}^{-2} t_{a_{2}} t_{a_{3}}^{2} t_{a_{1}}^{-1}\right)\left(t_{a_{1}}^{2} t_{a_{2}} t_{a_{1}}^{2}\right) t_{a_{1}}^{3} \\
& \left.=t_{a_{3}}^{6} t_{t_{a_{3}}^{-4}\left(a_{2}\right)} t_{t_{a_{1}} t_{a_{3}}^{-2}\left(a_{2}\right)} t_{a_{a_{1}}^{2}\left(a_{2}\right)}\right)_{a_{1}} .
\end{aligned}
$$

Since $t_{t_{a_{3}}^{-4}\left(a_{2}\right)} t_{t_{a_{1}}} t_{a_{3}}^{-2}\left(a_{2}\right) t_{a_{a_{1}}}{\left(a_{2}\right)}=t_{a_{3}}^{-6} t_{a_{1}}^{-3} t_{a_{5}}^{2}$, we have

$$
t_{t_{a_{3}}^{-4}\left(a_{2}\right)} t_{t_{a_{1}} t_{a_{3}}\left(a_{2}\right)}^{-2} t_{t_{a_{1}}^{2}\left(a_{2}\right)} t_{a_{5}}=t_{a_{3}}^{-6} t_{a_{1}}^{-3} t_{a_{5}}^{3} .
$$

Therefore, by $\rho\left(a_{1}\right)=a_{5}, \rho\left(a_{3}\right)=a_{1}$ and $\rho\left(a_{5}\right)=a_{3}$,

$$
\begin{aligned}
& t_{\rho t_{a_{3}}^{-4}\left(a_{2}\right)} t_{\rho t_{a_{1}}} t_{a_{3}}^{-2}\left(a_{2}\right) \\
& t_{\rho t_{a_{1}}\left(a_{2}\right)} t_{\rho\left(a_{5}\right)}=\rho t_{t_{a_{3}}^{-4}\left(a_{2}\right)} t_{a_{a_{1}}} t_{a_{3}}^{-2}\left(a_{2}\right) \\
&=\rho t_{a_{a_{1}}\left(a_{2}\right)}^{-6} t_{a_{1}}^{-3} t_{a_{5}}^{3} \rho^{-1} \\
&=t_{a_{1}}^{-6} t_{a_{5}}^{-3} t_{a_{3}}^{3} .
\end{aligned}
$$

Since a_{5} and x are nonseparating curves, there exists $\phi \in \mathcal{M}_{2}$ such that $\phi\left(a_{5}\right)=x$. By Lemma 5 we have

$$
\left(t_{\rho t_{a_{3}}^{-4}\left(a_{2}\right)} t_{\rho t_{a_{1}}} t_{a_{3}\left(a_{2}\right)}^{-2} t_{\rho t_{a_{1}}^{2}\left(a_{2}\right)} t_{\rho\left(a_{5}\right)}\right)\left(t_{c} t_{t_{x}(c)} t_{t_{x}^{2}(c)}\right)=\left(t_{a_{1}}^{-6} t_{a_{5}}^{-3} t_{a_{3}}^{3}\right)\left(t_{a_{1}}^{6} t_{a_{5}}^{6} t_{a_{3}}^{-3} t_{x}^{-3}\right)
$$

$$
\begin{aligned}
& =t_{a_{5}}^{3} t_{x}^{-3} \\
& =t_{a_{5}}^{3} \phi t_{a_{5}}^{-3} \phi^{-1} \\
& =\left[t_{a_{5}}^{3}, \phi\right]
\end{aligned}
$$

This completes the proof of Theorem 5

AcKnowledgment. The author would like to thank Hisaaki Endo for his encouragement and helpful suggestions. He also would like to thank Kenta Hayano, Susumu Hirose, Masatoshi Sato and Yoshihisa Sato for comments on this paper.

References

[1] V. Braungardt and D. Kotschick, Clustering of critical points in Lefschet fibrations and the symplectic Szpiro inequality, Trans. Amer. Math. Soc. 355 (8) (2003), 3217-3226.
[2] C. Cadavid, Ph. D. Dissertation, UT Austin, 1998.
[3] M. Dehn, Papers on group theory and topology, Springer-Verlag, New York, 1987 (Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206).
[4] H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (1) (2001), 169-175.
[5] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Amer. Math. Soc., Providence, RI 1999.
[6] D. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1) (1979), 119-125.
[7] M. Korkmaz, Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices (2001), 115-128.
[8] M. Korkmaz and B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc. 129 (5) (2001), 1545-1549.
[9] M. Korkmaz and A. Stipsicz, Lefschetz fibrations on 4-manifolds, Handbook of Teichmüller theory. Vol. II, 271-296, IRMA. Lect. Math. Theor. Phys., 13, Eur. Math. Soc., Zurich, 2009.
[10] Y. Matsumoto, Lefschetz fibrations of genus two - a topological approach, Proceedings of the 37th Taniguchi Symposium on Topology and Teichmüller Spaces, ed. Sadayoshi Kojima et al., World Scientific (1996), 123-148. CMP 99:06.
[11] B. OzbaGCI, Ph.D. Dissertation, UC Irvine (1999).
[12] Y. Sato, The necessary condition on the fiber-sum decomposability of genus-2 Lefschetz fibrations, Osaka Journal of Mathematics. 47 (4) (2010), 949-963.
[13] A. Stipsicz, Chern numbers of certain Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 6, 18451851.
[14] A. Stipsicz, Erratum to: Chern numbers of certain Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (9) (2000), 2833-2834.

Present Address: Department of Mathematics, Graduate School of Science, Osaka University, TOYONAKA, OSAKA, 560-0043 JAPAN.
e-mail: n-monden@cr.math.sci.osaka-u.ac.jp

