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Isomorphism among Families of Weighted K3 Hypersurfaces
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Abstract. It is known that there are exactly 95 weighted projective spaces having Gorenstein K3 surfaces
as anticanonical divisors, some of which have isometric Picard lattices for generic members. For each set of such
families, an explicit birational correspondence coming from a torus action is constructed in this paper. As a result the
number of ‘essentially different’ families of weighted Gorenstein K3 surfaces is 75.

1. Introduction

There is a famous list of 95 families of weighted K3 hypersurfaces [6][4]. The Picard
lattice of the minimal model of a generic member of each family has been computed by Bel-
castro [2]. Here the Picard lattice of a K3 surface S means the Picard group Pic S together
with the cup product. Some of the lattices are found to be isometric. So one may expect that
the corresponding families of K3 surfaces would coincide, in the sense that the period maps
have the same image. It is impossible to identify the whole complete anticanonical linear sys-
tems, since the dimensions of the systems do not always coincide. Nevertheless, we show that
there exists an identification between subfamilies. In fact, for all such pairs, there exists an
explicit monomial birational map between the weighted projective spaces which induces, on
the families of minimal models, an isomorphim between subfamilies of K3 surfaces. More-
over, the subfamilies are general enough, namely, the generic member of each subfamily has
the same Picard lattice as the original family. We remark that these maps are compatible with
logarithmic moment maps and keep the amoebas of K3 surfaces.

We first explain the idea by a toy model, namely the family of elliptic curves in the

projective plane. Let P1 and P2 be distinct points in P 2, and L be the line through them.

Blow up P1 and P2, blow down the strict transform of L, and we get P 1 × P 1. We write
the transform of P1, P2 and L in P 1 × P 1 as H1,H2 and Q, respectively. A general cubic in

P 2 is mapped to an element of |3H1 + 3H2 − 3Q| in P 1 × P 1, which is not anticanonical.
Take an anticanonical sublinear system L = |3L − P1 − P2|, which is seven-dimensional.

The transform of L in P 1 × P 1 is |2H1 + 2H2 − Q|, which is an anticanonical sublinear
system. The correspondence of Newton polygons is described below, which also involves the
complete anticanonical linear system of the Del Pezzo surface of degree 7.
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FIGURE 1. Correspondence of Newton polygons

2. Setup

Let a := (a0, a1, a2, a3) be a list of positive integers, which are called weights. Let
P (a) be the weighted projective space Proj C[W,X, Y,Z] where degrees of W,X, Y,Z are
a0, a1, a2, a3, respectively. We can assume without a loss of generality that a0 ≤ a1 ≤ a2 ≤
a3 and also that the weights are well-posed, that is, every greatest common divisor of all but
one of the ai’s is one. Let M(a) be the group of exponents of degree-zero rational monomials{

(m0,m1,m2,m3) ∈ Z4

∣∣∣∣∣
3∑

i=0

aimi = 0

}
.

It is easy to see that M := Z3 ∼= M(a). Define a rational tetrahedron

∆(a) := {(m0,m1,m2,m3) ∈ M(a) ⊗ R | mi ≥ −1} .

After the multiplication of the monomial WXYZ, ∆(a) ∩ M(a) generates sections of the
anticanonical bundle of P (a) as a vector space.

In general, given a bounded rational convex polyhedron ∆ in Rn, one has an n-
dimensional projective toric variety P∆ in a standard way. P∆(a) is isomorphic to P (a), and
contains the three-dimensional algebraic torus T := Spec C[M].

A convex subpolyhedron ∆ in ∆(a) determines an anticanonical linear subsystem, which
corresponds to a family of Laurent polynomials in C[M] with degree zero and Newton poly-

tope in ∆. Each polynomial F determines the zero set ZF in T . The zero set ZF in P∆ usually

has singularities. The minimal resolution SF of ZF is a K3 surface if and only if ZF has no
boundary component and the singularities are only rational double points. In that case, for a
generic F we denote the Picard lattice Pic SF by Λ∆. If ∆ = ∆(a), SF is K3 if and only if a

is in the ‘famous 95’ list. In this case we write Λ∆ as Λ(a).
Assume that ∆ is a bounded lattice polyhedron and contains the origin as the only lattice

point in its interior. ∆ is called reflexive if the polar dual of ∆ is also a lattice polyhedron[1].
For 3-dimensional ∆, the reflexivity is equivalent to that P∆ is a Fano 3-fold with only canon-
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ical Gorenstein singularities, and that the minimal model of a general anticanonical member
is a K3 surface.

3. Result

We state the main theorem.

THEOREM 3.1. Let two weights a and b be in the ‘famous 95’ with isometric Picard
lattices. Then there exist subspaces Da (resp. Db) of the anticanonical complete linear system
of P (a) (resp.P (b)), and an isomorphism ϕ : Da → Db with the following properties. (1)

If the minimal model of X ∈ Da is a K3 surface, then the minimal model of ϕ(X) is an
isomorphic K3 surface to X as minimal models, and vice versa. (2) The Picard lattices of the
minimal models of generic members of Da,Db are isometric to Λ(a) � Λ(b).

The theorem follows from the proposition below:

PROPOSITION 3.2. Under the assumption of the theorem, there exists a group iso-
morphism M(a) ∼= M(b), and a common reflexive subpolyhedron ∆ of ∆(a) and ∆(b),
with the following properties. (1) the associated birational maps ϕa : P∆- -→P (a) and
ϕb : P∆- -→P (b) map the general anticanonical members of P∆ to those of P (a) and P (b),
(2) The lattices Λ(a), Λ(b) and Λ∆ are isometric.

TABLE 1. Monomial transformations of the weighted projective spaces

No. Families The vertices of ∆ Picard lattice

13 P (1, 3, 8, 12) ⊃ (24) Z2,W24, W3X7,WX5Y, Y 3, X4Z E6 ⊥ U

72 P (1, 2, 5, 7) ⊃ (15) WZ2,W15,WX7, X5Y, Y 3, X4Z (8)

50 P (1, 4, 10, 15) ⊃ (30) Z2,W30, W2X7, X5Y, Y 3 E7 ⊥ U

82 P (1, 3, 7, 11) ⊃ (22) Z2,W22, WX7, X5Y,WY 3 (9)

9 P (1, 4, 5, 10) ⊃ (20) W20, X5, Z2, Y 2Z,WXY 3,W5Y 3 T2,5,5

71 P (1, 3, 4, 7) ⊃ (15) W15, X5,WZ2, Y 2Z,XY 3,W3Y 3 (10)

14 P (1, 6, 14, 21) ⊃ (42) Z2, Y 3, X7,W42 E8 ⊥ U

28 P (1, 3, 7, 10) ⊃ (21) WZ2, Y 3, X7,W21 (10)

45 P (1, 4, 9, 14) ⊃ (28) Z2,WY 3, X7,W28

51 P (1, 5, 12, 18) ⊃ (36) Z2, Y 3,WX7,W36

38 P (1, 6, 8, 15) ⊃ (30) Z2,W30, X5, XY 3,W6Y 3 E8 ⊥ A1 ⊥ U

77 P (1, 5, 7, 13) ⊃ (26) Z2,W26, WX5, XY 3,W5Y 3 (11)

20 P (1, 6, 8, 9) ⊃ (24) W6Z2,W24, X4, XZ2, Y 3 E8 ⊥ A2 ⊥ U

59 P (1, 5, 7, 8) ⊃ (21) W5Z2,W21,WX4, XZ2, Y 3 (12)

26 P (2, 4, 5, 9) ⊃ (20) WZ2,W10, X5, Y 4 D8 ⊥ D4 ⊥ U

34 P (2, 6, 7, 15) ⊃ (30) Z2,W15, X5,WY 4 (14)

26 P (2, 4, 5, 9) ⊃ (20) WZ2,W5Y 2, Y 4, X5,W8X D8 ⊥ D4 ⊥ U

34 P (2, 6, 7, 15) ⊃ (30) Z2,W8Y 2,WY 4, X5,W12X (14)
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76 P (2, 5, 6, 13) ⊃ (26) Z2,W8X2, X4Y,WY 4,W13

27 P (2, 3, 8, 11) ⊃ (24) WZ2,W12, X8, Y 3 E8 ⊥ D4 ⊥ U

49 P (2, 5, 14, 21) ⊃ (42) Z2,W21, WX8, Y 3 (14)

16 P (3, 6, 7, 8) ⊃ (24) Z3,W3YZ,W6X,X4,WY 3 E8 ⊥ (A2)3 ⊥ U

54 P (3, 5, 6, 7) ⊃ (21) Z3,W3XZ, W7,WY 3, X3Y (16)

43 P (3, 4, 11, 18) ⊃ (36) Z2,W12, X9,WY 3 E8 ⊥ E6 ⊥ U

48 P (3, 5, 16, 24) ⊃ (48) Z2,W16, WX9, Y 3 (16)

43 P (3, 4, 11, 18) ⊃ (36) Z2,W6Z,W8X3, X9,WY 3,W7XY E8 ⊥ E6 ⊥ U

48 P (3, 5, 16, 24) ⊃ (48) Z2,W8Z,W11X3,WX9, Y 3,W9XY (16)

88 P (2, 5, 9, 11) ⊃ (27) XZ2,W8Z,W11X,WX5, Y 3,W9Y

68 P (3, 4, 10, 13) ⊃ (30) XZ2, X5Y,W2X6, Y 3,W10 E8 ⊥ E7 ⊥ U

83 P (4, 5, 18, 27) ⊃ (54) Z2,W9Y,W11X2, Y 3,WX10 (17)

92 P (3, 5, 11, 19) ⊃ (38) Z2,W9Y,W11X, XY 3,WX7

30 P (5, 7, 8, 20) ⊃ (40) Z2,W4Z,WX5,W5XY, Y 5 E8 ⊥ T2,5,5

86 P (4, 5, 7, 9) ⊃ (25) YZ2,W4Z,X5,W5X,WY 3 (18)

46 P (5, 6, 22, 33) ⊃ (66) Z2,W12X, X11, Y 3 E2
8 ⊥ U

65 P (3, 5, 11, 14) ⊃ (33) XZ2,W11,WX6, Y 3 (18)

80 P (4, 5, 13, 22) ⊃ (44) Z2,W11, WX8, XY 3

56 P (5, 6, 8, 11) ⊃ (30) YZ2,W6, X5, XY 3 E2
8 ⊥ A1 ⊥ U

73 P (7, 8, 10, 25) ⊃ (50) Z2,W6X,X5Y, Y 5 (19)

REMARK. We explain the notation of the Table 1. 1) The ‘No.’ follows [6].
2) We list only the families who have isometric Picard lattices in the famous 95. There are
many other families of toric K3 hypersurfaces.
3) In ‘the vertices of ∆’, we state only the vertices of ∆, but not other lattice points in ∆ (e.g.
lattice points on edges and faces). For each set of families in Table 1, monomials in the same
column (punctuated by commas) correspond. For example, the correspondence between No.
16 and No. 54 shown in Table 1 is determined as follows:

No.16 No.54

Z3 ↔ Z3 ,

W 3YZ ↔ W 3XZ ,

W 6X ↔ W 7 ,

X4 ↔ WY 3 ,

WY 3 ↔ X3Y .

4) ‘Picard lattices’ is due to [2] and Picard numbers are in the parenthesis.
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PROOF. For each a, we can choose a polyhedron ∆ as the convex hull of corresponding
points in M(a) designated in the table. Each birational transform of the weighted projective
spaces is given by a correspondence between sets of rational monomials. It is routine to
check that, for weights a and b in each set of rows, the correspondence of rational monomials
gives an isomorphism between M(a) and M(b), and that the polyhedrons are reflexive and
isomorphic as lattice polyhedrons.

P (a), P (b) and P∆ contain T in common. Thus, for a polynomial F whose Newton
polyhedron is in ∆, the same zero locus ZF is contained in those three spaces. The com-
pactifications are naturally birational. We remark that the zero locus of F in the projective
toric varieties may contain some boundary divisors, thus may be different according to the
ambient spaces. This does not happen for Gorenstein K3 hypersurfaces since the boundary
divisors are a finite union of toric orbits, thus a finite sum of rational varieties. Since ∆ is
reflexive, a general anticanonical divisor of P∆ has a K3 surface as its minimal model. Thus
there are isomorphisms among the three families of K3 surfaces which are minimal models
of anticanonical divisors, over an open subspace in a projective space, whose dimension is the
number of the lattice points in ∆ minus one.

One can compute the Picard lattice Λ∆ of a general K3 surface by using [5], and check
that Λ∆ is isomorphic to both of Λ(a) and Λ(b). For that, it is enough to check that the rank
of Λ∆ coincides with that of Λ(a) and Λ(b), since Λ∆ contains Λ(a) and Λ(b), and Picard
lattices are primitively embedded in the K3 lattice by Hodge theory. �

FIGURE 2. ∆ for Nos. 26 and 34, below: ∆ for Nos. 26, 34 and 76
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For a tetrahedron ∆(a) with a a weight, let N(∆(a)) denote the full Newton polyhedron
of ∆(a).

REMARK. If more than three families have the isometric Picard lattice, some subtleties
occur. For instance, as stated in Table 1, correspondence between No. 26 and No. 34 does
not fully extend to correspondence including No. 76. One should take a smaller subfamily to
establish a correspondence including all three as follows:
The full Newton polyhedrons of Nos. 26 and 34 are isomorphic, so that ∆ for this pair is
to be isomorphic to these polyhedrons, whilst one may have to “remove” vertices of the full
Newton polytopes of Nos. 26, 34 and 76 to obtain ∆ for the set of these three weights.

REMARK. When ∆ is symmetric, clearly other monomial transformations exist; in the
list below, the monomials in bold can be exchanged in a row.

TABLE 2. Subfamily of Nos. 16 and 54

No. Families The vertices of ∆ Picard lattice

16 P (3, 6, 7, 8) ⊃ (24) Z3,W3YZ,W6X,X4,WY 3 E8 ⊥ (A2)3 ⊥ U

54 P (3, 5, 6, 7) ⊃ (21) Z3,W3XZ,W7,WY 3,X3Y (16)

30 P (5, 7, 8, 20) ⊃ (40) Z2,W4Z,WX5,W5XY,Y 5 E8 ⊥ T2,5,5

86 P (4, 5, 7, 9) ⊃ (25) YZ2,W4Z,X5,W5X,WY 3 (18)

46 P (5, 6, 22, 33) ⊃ (66) Z2,W12X,X11, Y 3 E2
8 ⊥ U

65 P (3, 5, 11, 14) ⊃ (33) XZ2, W11,WX6, Y 3 (18)

80 P (4, 5, 13, 22) ⊃ (44) Z2,W11,WX8, XY 3

56 P (5, 6, 8, 11) ⊃ (30) YZ2,W6,X5,XY 3 E2
8 ⊥ A1 ⊥ U

73 P (7, 8, 10, 25) ⊃ (50) Z2,W6X,X5Y ,Y 5 (19)

For example, Nos. 16 and 54 have correspondences as follows:

FIGURE 3. Subfamily of Nos. 16 and 54
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REMARK. The restriction of the Picard group of a resolution of the ambient space P∆

do not always generate Λ∆. We denote by L0 the orthogonal complement of the image of the
restriction in the Picard lattice.

In each set of weights with the isometric Picard lattices, one of the weights has a dual
weight system[3], with one exception, the pair Nos. 16 and 54. There is no reflexive subpoly-
hedron with L0 = 0 for that pair. Although they have a dual weight system, Nos. 26, 34 and
76, and Nos. 27 and 49 never contain a reflexive subpolyhedron with L0 = 0.

REMARK. The real part of logarithmic function gives a homomorphism (C×)n → Rn;
(z1, . . . , zn) �→ (log |z1|, . . . , log |zn|). For a hypersurface Z in (C×)n, the image is called
the amoeba of Z.

Generally, a monic rational monomial birational map of toric varieties is the morphism
which is induced by an isomorphism of the complex tori as complex Lie groups. Therefore,
it gives a linear isomorphism between amoebas of K3 surfaces.
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