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Abstract. Motivated by the famous Mazur-Ulam theorem in this paper we study algebraic properties of isome-
tries between metric groups. We present some general results on so-called d-preserving maps between subsets of
groups and apply them in several directions. We consider d-preserving maps on certain groups of continuous func-
tions defined on compact Hausdorff spaces and describe the structure of isometries between groups of functions
mapping into the circle group T. Finally, we show a generalization of the Mazur-Ulam theorem for commutative
groups and present a metric characterization of normed real-linear spaces among commutative metric groups.

1. Introduction

The study of morphisms of mathematical structures is of basic importance in all parts of
mathematics. As for metric spaces, the natural morphisms are the isometries. In case the met-
ric space under consideration carries an algebraic structure too, it is an interesting problem to
investigate if the isometries somehow reflect also the algebraic character of the space. One of
the most exciting questions relating to that problem is that whether the isometries necessarily
preserve any relevant algebraic operation defined on the underlying space.

The most classical result in this direction is the famous Mazur-Ulam theorem [6] (see
also [12]). It states that every bijective isometry T between normed real-linear spaces is affine
and hence it equals a real-linear transformation (a surjective real-linear isometry) followed by
a translation. The main point of a proof of that beautiful and important result is to show that
the isometry T under consideration preserves the so-called algebraic midpoints (x + y)/2 in
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the sense that

T

(
x + y

2

)
= T x + Ty

2

holds for every pair x, y of points in the domain of T . In fact, using continuity, this easily
implies that T is necessarily affine. There are other well-known results of the same spirit re-
lating to non-linear structures, for example, to some classical groups. Any self-isometry (with
respect to the Euclidean metric) of the circle group T is a rotation or reflection followed by
a rotation. That means that any such isometry is an isometric group isomorphism multiplied
by a fixed element. Similar result holds for the isometries of the integer group Z. Its self-
isometries are all group isomorphisms followed by translations. These facts have motivated
us to study algebraic properties of isometries of general metric groups.

With Mazur-Ulam theorem in mind, when studying isometries on groups, one may take
a chance and consider algebraic midpoints defined in the general setting and examine if the
isometries necessarily preserve them. The most natural definition of algebraic midpoints in
groups seems to be the following. For any two given elements x, y in a groupG, an algebraic

midpoint of the pair x, y is any c ∈ G for which y = cx−1c holds. Clearly, if L is a linear
space, then in its additive structure c = (x + y)/2 is the unique algebraic midpoint of any
pair x, y in L. However, in the case of general groups serious difficulty may emerge due to
the fact that in some cases there are not only one but many algebraic midpoints of a given pair
of elements, while in other cases it might happen that there is no algebraic midpoint at all.
For example, the pair 1,−1 has two algebraic midpoints in the circle group T while it has no
algebraic midpoint in the multiplicative group of nonzero real numbers. We mention without
proof that if the groupG is uniquely 2-divisible (which means that for each b ∈ G there exists

a unique a = b1/2 ∈ G such that b = a2), then the element x#y = y1/2(y−1/2xy−1/2)1/2y1/2

is the unique algebraic midpoint of any pair x, y inG. (For curiosity we recall that for positive

invertible operators A,B on a complex Hilbert space, A1/2(A−1/2BA−1/2)1/2A1/2 is just the
geometric mean of A and B in the sense of Ando.) But there are important groups (for
example, the circle group) which are not uniquely 2-divisible. Therefore, in order to keep the
necessary level of generality we must look for another approach to attack our basic problem.
The solution what we offer in the present paper is the following. Instead of considering the
“operation” sending any pair x, y to the set of all algebraic midpoints of x, y, we consider the

true operation sending any pair x, y to the well-defined element yx−1y. We call this latter
operation inverted Jordan triple product. Recall that the Jordan triple product yxy is a deeply
studied operation in ring theory with extensive applications in other areas of mathematics.

Clearly, the geometric meaning of yx−1y in the additive group of the Euclidean space is
the reflection of x with respect to the center y. As for algebraic properties of isometries
on general groups, instead of examining if they necessarily preserve algebraic midpoints, in
what follows we present results showing that under different conditions surjective isometries
T : G1 → G2 between groups are compatible with the operation of inverted Jordan triple
product (or, in other words, preserve inverted Jordan triple products) in the sense that they
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satisfy

(1.1) T (yx−1y) = T (y)(T (x))−1T (y)

for all (or for some) x, y ∈ G1. This equality clearly captures important information about the
algebraic character of the isometries under consideration. In fact, further inspection of that
equality played essential role in obtaining the complete description of the isometries of the
unitary group on a Hilbert space [5]. Of course, without any conditions on the metric on the
given groups the conclusion (1.1) fails to be true as the following simple example shows. Let
S3 be the symmetric group of permutations of {1, 2, 3} with the discrete metric. Then every
bijection of S3 is a surjective isometry among which one can easily find such a map which
does not satisfy equality (1.1).

The paper is organized as follows. In Section 2 we consider so-called d-preserving maps
that are far reaching generalizations of isometries. Using the idea of the miraculous proof
given by Väisälä [12] for Mazur-Ulam theorem we prove the general result Theorem 2.4
concerning a local property of d-preserving maps of abstract spaces on which all remaining
results rest.

In Section 3 we consider d-preserving maps on groups or subsets of groups which are
closed under the operation of inverted Jordan triple product. We introduce several conditions
under which any d-preserving bijection T necessarily satisfies (1.1) for a given pair x, y of
points in its domain. We present various examples for groups, subsets of groups and elements
for which those conditions are fulfilled.

In Section 4 we first study the question how close bijective transformations on commu-
tative groups satisfying the equation (1.1) for all x, y in their domains are to group isomor-
phisms. Then we consider certain groups of continuous functions defined on compact Haus-
dorff spaces. More exactly, we consider groups of functions mapping either into the group of
non-zero complex numbers or into the circle group T. We give a representation theorem for
the isometries in the latter case and then describe the isometries of the group T

n.
In section 5 we give a generalization of Mazur-Ulam theorem for commutative groups.

We present a result on the extendibility of surjective isometries between additive subgroups
of normed linear spaces to the generated linear spaces and apply the statement to describe the
isometries of the group Z

n. The last result of the section gives a metric characterization of
normed real-linear spaces among commutative metric groups.

2. d-preserving maps on abstract spaces

In this section we present a very general result on the local behaviour of so-called d-
preserving maps. This turns to be our key result on which the other statements we obtain in
various directions all rest.

Again, we recall that in [12] Väisälä gave a surprisingly short proof for Mazur-Ulam
theorem. In order to show that surjective isometries of normed real-linear spaces preserve
algebraic midpoints he used (following former observations by Vogt [11]) transformations
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which are reflections in algebraic midpoints of arbitrary pairs of points in the space. The
proof of the main result Theorem 2.4 of the section is based on a similar idea. However,
in contrast with the approach in [12] focusing on the transformation of algebraic midpoints,

our goal with this result will be to see how the inverted Jordan triple products yx−1y are
transformed.

We begin with some necessary definitions.

DEFINITION 2.1. Let X be a non-empty set and d a real-valued function defined on
X × X. We say that the pair (X, d) satisfies the condition (p) if d(x, y) ≥ 0 holds for every
(x, y) ∈ X ×X.

Obviously, any metric space (X, d) satisfies the condition (p).

DEFINITION 2.2. Suppose that the pairs (X, dX) and (Y, dY ) satisfy the condition (p).
We say that a map f : X → Y is d-preserving if the equality dX(x, y) = dY (f (x), f (y))

holds for every (x, y) ∈ X ×X.

Trivially, if both (X, dX) and (Y, dY ) are metric spaces, then a map T : X → Y as a
transformation between metric spaces is an isometry if and only if T is d-preserving.

The following lemma is a simple generalization of a result of Vogt [11, Theorem 1.2].

LEMMA 2.3. Let (X, d) be a pair which satisfies the condition (p). Suppose that there
exists a point c ∈ X, a bijective d-preserving map ϕ from X onto itself, and a constantK > 1
such that d(ϕ(x), x) ≥ Kd(x, c) holds for every x ∈ X. If sup{d(x, c) : x ∈ X} < ∞, then
d(f (c), c) = 0 holds for every bijective d-preserving map f from X onto itself.

PROOF. Define

λ = sup{d(f (c), c) : f is a bijective d-preserving map from X onto itself} .
Then 0 ≤ λ < ∞. Pick an arbitrary bijective d-preserving map f from X onto itself. Put

f̃ = f−1 ◦ ϕ ◦ f . Then f̃ is also a bijective d-preserving map. Thus

λ ≥ d(f̃ (c), c) = d(ϕ(f (c)), f (c)) ≥ Kd(f (c), c) .

Since f is arbitrary we have λ ≥ Kλ implying λ = 0 which completes the proof. �

The main result of the section which follows is our key result that will later be applied to
verify algebraic properties of isometries between groups.

THEOREM 2.4. Let (X, dX) and (Y, dY ) be pairs which satisfy the condition (p). Pick
two points a, c ∈ X. Suppose that ϕ : X → X is a d-preserving map such that ϕ(c) = c and
ϕ ◦ ϕ is the identity map on X. Let

L = {x ∈ X : dX(a, x) = dX(ϕ(a), x) = dX(a, c)} .
Suppose that

sup{dX(x, c) : x ∈ L} < ∞
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and that there exists a constant K > 1 such that dX(ϕ(x), x) ≥ Kd(x, c) holds for every
x ∈ L. If T is a bijective d-preserving map from X onto Y , and ψ is a bijective d-preserving
map from Y onto itself such that ψ(T (a)) = T (ϕ(a)) and ψ(T (ϕ(a))) = T (a), then we have

dY (ψ(T (c)), T (c)) = 0 .

Note that sup{dX(x, c) : x ∈ L} < ∞ holds automatically if dX is a metric (just apply
the triangle inequality). We remark that ϕ is modelled after the transformations x 	→ yx−1y.

PROOF. Since ϕ(c) = c and ϕ is d-preserving, dX(a, c) = dX(ϕ(a), c) holds, hence
c ∈ L. Let

LY = {y ∈ Y : dY (T (a), y) = dY (T (ϕ(a)), y) = dX(a, c)} .
We assert that T (L) = LY . Indeed, let x ∈ L. Then dY (T (a), T (x)) = dX(a, x) = dX(a, c)

and dY (T (ϕ(a)), T (x)) = dY (ϕ(a), x) = dX(a, c). This shows that T (L) ⊂ LY . Now,
let y ∈ LY . Since T (X) = Y , there is an x ∈ X with T (x) = y. Then dX(a, x) =
dY (T (a), T (x)) = dX(a, c) and dX(ϕ(a), x) = dY (T (ϕ(a)), T (x)) = dX(a, c). Thus x ∈ L
and we obtain LY ⊂ T (L).

We next show that ϕ(L) = L. Firstly, let x ∈ L. Then dX(ϕ(a), ϕ(x)) = dX(a, x) =
dX(a, c) and dX(a, ϕ(x)) = dX(ϕ(ϕ(a)), ϕ(x)) = dX(ϕ(a), x) = dX(a, c), so that ϕ(x) ∈ L.
This gives us ϕ(L) ⊂ L. Since ϕ ◦ ϕ is the identity map, L ⊂ ϕ(L) also holds.

We assert that ψ(LY ) = LY . To see this, let y ∈ LY . We compute

dY (T (ϕ(a)), ψ(y)) = dY (ψ(T (a)), ψ(y)) = dY (T (a), y) = dX(a, c) ,

dY (T (a), ψ(y)) = dY (ψ(T (ϕ(a))), ψ(y)) = dY (T (ϕ(a)), y) = dX(a, c) .

Thus ψ(y) ∈ LY and we obtain ψ(LY ) ⊂ LY . On the other hand, if y ∈ LY , then there is
y ′ ∈ Y with ψ(y ′) = y since ψ(Y ) = Y . We compute

dY (T (a), y
′) = dY (ψ(T (a)), ψ(y

′)) = dY (T (ϕ(a)), y) = dX(a, c) ,

dY (T (ϕ(a)), y
′) = dY (ψ(T (ϕ(a))), ψ(y

′)) = dY (T (a), y) = dX(a, c) .

Thus y ′ ∈ LY , so y = ψ(y ′) ∈ ψ(LY ) and we obtain LY ⊂ ψ(LY ).
Let T̃ = T −1 ◦ ψ ◦ T . Then T̃ |L : L → L is a bijective d-preserving map from L onto

itself. Since sup{dX(x, c) : x ∈ L} < ∞ and ϕ|L : L → L is a bijective d-preserving map,
applying Lemma 2.3 we deduce

dY (ψ(T (c)), T (c)) = dX(T̃ (c), c) = 0 .

�

3. d-preserving maps on subsets of groups

In this section we consider d-preserving maps between subsets of groups and investi-
gate the question what algebraic properties those transformations necessarily have. We are
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primarily interested in seeing to what extent d-preserving maps respect the group operation.
Obviously, without further conditions we can not expect any useful statement. Therefore, in
what follows we introduce certain conditions under which applying the theorem in the previ-
ous section we obtain some results concerning our general problem.

The reason that below we consider transformations not only on subgroups but on more
general subsets of groups is that we really need that generality among others in an application
for the Thompson isometries of the space of all invertible positive elements in a C∗-algebra
(see [5]). Clearly, the set of all such elements is not a subgroup however it is closed under the
inverted Jordan triple product.

We fix the following: in Definitions 3.1 to 3.4, X denotes a nonempty subset of a group
with the property that

yx−1y ∈ X holds for every pair x, y ∈ X
andX is equipped with a real-valued function d such that the pair (X, d) satisfies the condition
(p).

In what follows we denote the unit element in a group by e.

DEFINITION 3.1. We say that X is 2-divisible (resp. uniquely 2-divisible) if for each
a ∈ X the equation x2 = a has a solution (resp. has a unique solution) x ∈ X. We say that
X is 2-torsion free if the unit element e of the underlying group belongs to X and the equality

x2 = e implies x = e.

Note that X automatically contains the unit element e if it is 2-divisible. Indeed, for any

y in X there is x ∈ X with x2 = y and hence we have e = xy−1x ∈ X.

DEFINITION 3.2 (Condition B(·, ·)). Let a, b ∈ X. We say that (X, d) satisfies the
condition B(a, b) if the following (1) through (3) are fulfilled:

(1) the equality

d(bx−1b, by−1b) = d(x, y)

holds for every pair x, y ∈ X;
(2) sup{d(x, b) : x ∈ La,b} < ∞, where

La,b = {x ∈ X : d(a, x) = d(ba−1b, x) = d(a, b)} ;
(3) there exists a constantK > 1 such that the inequality

d(bx−1b, x) ≥ Kd(x, b)

holds for every x ∈ La,b.
One may say that La,b is the set of “metrical midpoints” of the pair a, ba−1b. Note

that the algebraic midpoint b of the pair a, ba−1b is in La,b by definition. Also observe that
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if d is a metric, then by the triangle inequality we always have sup{d(x, b) : x ∈ La,b} ≤
2d(a, b) < ∞.

DEFINITION 3.3 (Condition C1(·, ·)). Let a, b ∈ X. We say that (X, d) satisfies the
condition C1(a, b) if the following (1) and (2) are fulfilled:

(1) ax−1b, bx−1a ∈ X for every x ∈ X;
(2) the equality

d(ax−1b, ay−1b) = d(x, y)

holds for every pair x, y ∈ X.

We remark that the seemingly unreasonable condition that bx−1a ∈ X holds for every
x ∈ X will be applied in Corollary 3.9 to show the surjectivity of a certain transformation that
we need in the proof.

DEFINITION 3.4 (Condition C2(·, ·)). Let a, b ∈ X. We say that (X, d) satisfies the

condition C2(a, b) if the following is fulfilled: there exists a c ∈ X with ca−1c = b such that

the equality d(cx−1c, cy−1c) = d(x, y) holds for every pair x, y ∈ X.

Concerning the previous condition observe the following. Assume that X is 2-divisible.

Let a, b ∈ X. We assert that there exists c ∈ X such that ca−1c = b. To see this, take d ∈ X
with d2 = a, and f ∈ X with f 2 = db−1d . Setting c = df−1d we have c ∈ X and

ca−1c = df−1da−1df−1d = d(f−1)2d = b .

Those B(·, ·),C1(·, ·),C2(·, ·) are the conditions under which we shall present results
showing that d-preserving maps have a useful algebraic property. Namely, any such trans-
formation T turns to be compatible with the operation of inverted Jordan triple product in

the sense that T (b)(T (a))−1T (b) = T (ba−1b) holds for certain a and b. We remark that
the condition B(·, ·) mainly concerns the domains of the maps under consideration while the
conditions C1(·, ·) and C2(·, ·) mainly concern their ranges.

Before presenting the results we give several examples for sets satisfying the conditions
B(·, ·), C1(·, ·) or C2(·, ·).

First observe the following triviality. IfX is an additive subgroup of a normed space with
norm ‖ · ‖ and d(x, y) = ‖x − y‖ for all x, y ∈ X, then B(·, ·) and C1(·, ·) are satisfied for
every pair of points in X, moreover C2(·, ·) is satisfied too in the case when X is 2-divisible.

This observation can be generalized introducing the following definition.

DEFINITION 3.5. Let G be a group and X a subgroup of G. Suppose that (X, d) is a
pair which satisfies the condition (p). We say that d(·, ·) is inverse and translation invariant if

d(x−1, y−1) = d(ax, ay) = d(x, y)

holds for every triple x, y, a ∈ X.
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Note that if X is a subgroup of a group, then d(·, ·) is inverse and translation invariant if
and only if C1(a, b) holds for every pair a, b ∈ X. If X is a subgroup, 2-divisible, and d(·, ·)
is inverse and translation invariant, then C2(a, b) holds for every pair a, b ∈ X.

In what follows we present some non-trivial examples.

EXAMPLE 3.6. Let G be the group of all invertible elements in a unital C∗-algebra
and X the subset of G which consists of the positive elements in G. Recall that the definition
of the Thompson metric on X is

d(x, y) = log max{inf{t > 0 : x ≤ ty}, inf{t > 0 : y ≤ tx}}
for any x, y ∈ X. It is not difficult to see that we have

d(x, y) = ‖ log x− 1
2 yx− 1

2 ‖
(see, e.g., [8]). The condition B(a, b) holds for every pair a, b ∈ X. Indeed, for any

x, y, b ∈ X the equality d(bx−1b, by−1b) = d(x−1, y−1) = d(x, y) follows directly from
the definition of the Thompson metric and, as we see in the proof of [8, Theorem 1], we also

have d(bx−1b, x) = 2d(x, b). Since d is a metric, we conclude that B(a, b) is satisfied for
every pair a, b ∈ X. Moreover, since X is 2-divisible, we see that the condition C2(a, b) is
also satisfied for every pair a, b ∈ X. It was presented in [5] that the surjective Thompson
isometries globally satisfy the equation (1.1) (see also [8, 9]).

EXAMPLE 3.7. Let X = Tn be the n-dimensional torus with the usual multiplication
and metric defined by d(x, y) = max{|xj − yj | : 1 ≤ j ≤ n} for x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Tn. We assert that for any a, b ∈ Tn with d(a,b) <

√
2 the condition B(a,b)

is satisfied with K = √
2. To see this, pick a,b ∈ X with d(a,b) <

√
2. The equality in

(1) of Definition 3.2 is trivial while (2) also follows immediately as d(·, ·) is a metric. We
show that (3) holds, too. First let a, b ∈ T, the unit circle in the complex plane. Suppose that

|a−b| < √
2. Then |a−ba−1b| ≥ √

2|a−b| holds. Indeed, since
√

2 > |a−b| = |1−a−1b|
we have that Re(a−1b) > 0 where Rez denotes the real part of a given complex number z. It

is easy to see that this implies |1 + a−1b| > √
2. It then follows that

|a − ba−1b| = |1 − (a−1b)2|
= |1 + a−1b||1 − a−1b| ≥ √

2|1 − a−1b| = √
2|a − b| .

Now pick a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Tn and suppose that d(a,b) <
√

2. We

show that d(bx−1b, x) ≥ √
2d(x,b) holds for every x ∈ La,b, where La,b = {x ∈ T

n :
d(a, x) = d(ba−1b, x) = d(a,b)}. The proof goes as follows. Put θ = 2 sin−1 d(a,b)

2 . Since

d(a,b) <
√

2, we have 0 ≤ θ < π/2. For each 1 ≤ j ≤ n we have |aj − bj | ≤ d(a,b), so

for every j there exists θj with −θ ≤ θj ≤ θ such that bj = aje
iθj holds. Since |xj − aj | ≤

d(x, a) = d(a,b) and |xj − bj (aj )
−1bj | ≤ d(x,ba−1b) = d(a,b) both hold, it can be

verified that there exists ηj with −θ + |θj | ≤ ηj ≤ θ − |θj | such that xj = bj e
iηj (recall that
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0 ≤ θ < π
2 ). Since 0 ≤ θ − |θj | ≤ θ < π/2, we have |xj − bj | <

√
2 for every j . Thus, by

the first part of the proof, |xj − bj (xj )
−1bj | ≥ √

2|xj − bj | holds for every 1 ≤ j ≤ n and

hence we have d(bx−1b, x) ≥ √
2d(x,b).

Note that if b = −a, then d(a,b) = 2 and d(ba−1b, a) = 0. This shows that (3) of
Definition 3.2 does not hold in general.

Finally, observe that since Tn is 2-divisible and d(·, ·) is inverse and translation invariant,
C1(a,b) and C2(a,b) are satisfied for every a,b ∈ Tn.

EXAMPLE 3.8. Let X be a compact Hausdorff space and E any real-linear subspace

of the space of all complex-valued continuous functions on X . Define d(f, g) = max{‖fg −
1‖∞, ‖ g

f
− 1‖∞} for f, g ∈ expE, where ‖ · ‖∞ denotes the supremum norm of continuous

functions on X . Then expE is a (multiplicative) group and (expE, d) satisfies the condition
(p) (observe that d is not a metric). Moreover, expE is 2-divisible, and d(·, ·) is inverse and
translation invariant. Therefore, the conditions C1(a, b) and C2(a, b) are satisfied for every
pair a, b ∈ expE.

Let us turn to the results announced after Definition 3.4. We fix the following. In Corol-
laries 3.9, 3.10 and 3.11 we suppose that: Xi is a non-empty subset of a groupGi and (Xi, di)

is a pair which satisfies the condition (p) for i = 1, 2; we have yx−1y ∈ Xi for every pair
x, y ∈ Xi for i = 1, 2; d2(x, y) = 0 holds only if x = y (we do not require this for d1(·, ·));
T : X1 → X2 is a bijective d-preserving map.

COROLLARY 3.9. Let a, b ∈ X1. Suppose that (X1, d1) satisfies B(a, b) and (X2, d2)

satisfies C1(T (a), T (ba
−1b)). Then we have

T (ba−1b) = T (b)(T (a))−1T (b) .

PROOF. Let ϕ(x) = bx−1b for every x ∈ X1. Then ϕ : X1 → X1 is well-defined,
ϕ(b) = b and ϕ ◦ ϕ is the identity map on X, and as the condition B(a, b) is satisfied, the

map ϕ satisfies the relating hypotheses in Theorem 2.4. Let ψ(x) = T (a)x−1T (ba−1b) for
x ∈ X2. Then ψ : X2 → X2 is a well-defined bijective d-preserving map since (X2, d2)

satisfies C1(T (a), T (ba
−1b)). By definition, ψ(T (a)) = T (ϕ(a)) and ψ(T (ϕ(a))) = T (a)

hold. Applying Theorem 2.4 we have d2(ψ(T (b)), T (b)) = 0. By the assumptions given

before the corollary this implies that ψ(T (b)) = T (b) which then gives us that T (ba−1b) =
T (b)(T (a))−1T (b). �

As we shall see Corollary 3.9 is well-applicable in relation with isometries on groups.
However, for example, to treat Thompson isometries of the set of all positive invertible ele-
ments of a unital C∗-algebra we need the following result.

COROLLARY 3.10. Let a, b ∈ X1. Suppose that (X1, d1) satisfies B(a, b) and

(X2, d2) satisfies C2(T (a), T (ba
−1b)). If, in addition, X2 is 2-divisible and 2-torsion free,
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then we have

T (ba−1b) = T (b)(T (a))−1T (b) .

PROOF. Let ϕ(x) = bx−1b for every x ∈ X1. Just as in the proof of Corollary 3.9,

ϕ satisfies the relating conditions in Theorem 2.4. Let ψ(x) = cx−1c for x ∈ X2, where
c is an element in X2 such that c(T (a))−1c = T (ba−1b) and d2(cx

−1c, cy−1c) = d2(x, y)

holds for every pair x, y ∈ X2. Then ψ : X2 → X2 is a well-defined bijective d-preserving
map. Simple calculation shows that ψ(T (a)) = T (ϕ(a)) and ψ(T (ϕ(a))) = T (a). Applying

Theorem 2.4 we see that d2(ψ(T (b)), T (b)) = 0 implying c(T (b))−1c = T (b). Since X2 is

2-divisible, there is d ∈ X2 with d2 = c. It follows that d2(T (b))−1d2 = T (b), and hence
d2(T (b))−1d2(T (b))−1 = e. Multiplying the last equality by d−1 from the left and by d from
the right we have

(d(T (b))−1d)2 = d(T (b))−1d2(T (b))−1d = e .

Since X2 is 2-torsion free, we obtain d(T (b))−1d = e. Hence we deduce c = d2 = T (b) and
it follows by the definition of c that

T (ba−1b) = T (b)(T (a))−1T (b)

holds. �

The conditions of 2-divisibility and 2-torsion freeness above can be replaced by a weak
commutativity condition as seen in the next corollary.

COROLLARY 3.11. Let a, b ∈ X1. Suppose that (X1, d1) satisfies B(a, b) and

(X2, d2) satisfies C2(T (a), T (ba
−1b)). If, in addition, X2 also satisfies the condition that

yx−1y = y2x−1 for every pair x, y ∈ X2, then we have

T (ba−1b) = T (b)(T (a))−1T (b) .

PROOF. Following the lines of the proof of Corollary 3.10 one can verify that

f (T (b))−1f = T (b) holds for an c ∈ X2 which satisfies c(T (a))−1c = T (ba−1b) and
d2(cx

−1c, cy−1c) = d2(x, y) for every x, y ∈ X2. Since X2 also satisfies yx−1y = y2x−1

for every pair x, y ∈ X2, it follows that c2 = (T (b))2 and next that (T (b))2(T (a))−1 =
T (ba−1b). Therefore, we have T (ba−1b) = T (b)(T (a))−1T (b). �

4. d-preserving maps on groups of continuous functions

Let C be the set of all complex numbers. In this section we consider d-preserving maps
between groups of complex-valued continuous functions, namely, groups of C \ {0}-valued
functions and groups of T-valued functions. We note that surjective isometries between open
subgroups of the groups of invertible elements in unital semisimple commutative Banach
algebras were characterized in [2, 3].
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First we study bijective transformations T on commutative groups which satisfy the
equality T (yx−1y) = T (y)(T (x))−1T (y) on their domains. In particular, we are interested
in the question when such a map is necessarily a group isomorphism.

LEMMA 4.1. Let G1 and G2 be commutative groups and T : G1 → G2 a bijection
such that

(4.1) T (yx−1y) = T (y)(T (x))−1T (y) ∀x, y ∈ G1

holds. If at least one of G1 and G2 is 2-divisible or 2-torsion free, then for the bijective map

T0(·) = (T (e))−1T (·) we have

T0(xy) = T0(x)T0(y) ∀x, y ∈ G1 ,

that is, T0 is a group isomorphism.

PROOF. Clearly, T0 : G1 → G2 is bijective and satisfies

T0(yx
−1y) = T0(y)(T0(x))

−1T0(y)

for all x, y ∈ G1. Inserting y = e we see that T0(x
−1) = (T0(x))

−1. This implies that
T0(yxy) = T0(y)T0(x)T0(y) and next that T0(x

2) = (T0(x))
2 holds for all x, y ∈ G1.

First we consider the case whenG2 is 2-divisible. Let x, y ∈ G1 be arbitrary. Then there

is B ∈ G2 with B2 = T0(y) and since T0 is surjective there is b ∈ G1 with T0(b) = B. Thus

T0(b
2) = (T0(b))

2 = T0(y) and hence b2 = y for T0 is injective. It follows that

T0(xy) = T0(xb
2)= T0(bxb)

= T0(b)T0(x)T0(b) = T0(x)(T0(b))
2 = T0(x)T0(y)

since G1 andG2 are commutative.
Next we consider the case when G2 is 2-torsion free. Let x, y ∈ G1 be arbitrary. Since

G1 and G2 are commutative we have

(T0(xy))
2 = T0((xy)

2) = T0(yx
2y) = T0(y)T0(x

2)T0(y)

= T0(y)(T0(x))
2T0(y) = (T0(x)T0(y))

2

which gives us that

(T0(xy)(T0(x))
−1(T0(y))

−1)2 = e .

As G2 is 2-torsion free, it follows that

T0(xy)(T0(x))
−1(T0(y))

−1 = e

and hence

T0(xy) = T0(x)T0(y)

holds.
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The result for the case whereG1 is 2-divisible or 2-torsion free follows from the previous
case simply applying the above argument for the inverse of T0. �

The following technical lemma which will be used in the rest of the paper can be found
in [5]. For the sake of completeness we present it also here.

LEMMA 4.2. Let Gi be a group and Xi a non-empty subset of Gi such that yx−1y ∈
Xi for every pair x, y ∈ Xi , for i = 1, 2, and T : X1 → X2 a map. Suppose that n is a

positive integer. For every finite sequence {ak}2n
k=0 with 2n + 1 terms in X1, if

A(n) ak+1a
−1
k ak+1 = ak+2 ,

T (ak+1a
−1
k ak+1)= T (ak+1)(T (ak))

−1T (ak+1) for every 0 ≤ k ≤ 2n − 2

are satisfied, then

C(n) a2n−1a
−1
0 a2n−1 = a2n ,

T (a2n−1a
−1
0 a2n−1)= T (a2n−1)(T (a0))

−1T (a2n−1)

hold.

PROOF. We prove the statement by induction on n. The condition A(1) obviously
implies the condition C(1). Assume now that “if A(n − 1) is satisfied for a finite sequence

with 2n−1 + 1 terms, then C(n − 1) holds for that sequence”. We will show that “if A(n) is
satisfied for a sequence with 2n + 1 terms, then C(n) holds for that sequence”. Suppose A(n)

is satisfied for {ak}2n
k=0. We first show that for every k = 0, . . . , 2n − 4,

(4.2) ak+2a
−1
k ak+2 = ak+4

and

(4.3) T (ak+2a
−1
k ak+2) = T (ak+2)(T (ak))

−1T (ak+2)

hold. Let 0 ≤ k ≤ 2n − 4. Then

ak+4 = ak+3a
−1
k+2ak+3

= (ak+2a
−1
k+1ak+2)a

−1
k+2(ak+2a

−1
k+1ak+2) = ak+2a

−1
k+1ak+2a

−1
k+1ak+2

= ak+2a
−1
k+1(ak+1a

−1
k ak+1)a

−1
k+1ak+2 = ak+2a

−1
k ak+2 ,

so that (4.2) holds. We also see that

T (ak+2a
−1
k ak+2)= T (ak+3a

−1
k+2ak+3)

= T (ak+3)(T (ak+2))
−1T (ak+3)

= T (ak+2a
−1
k+1ak+2)(T (ak+2))

−1T (ak+2a
−1
k+1ak+2)

= T (ak+2)(T (ak+1))
−1T (ak+2)(T (ak+1))

−1T (ak+2)
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= T (ak+2)(T (ak+1))
−1T (ak+1a

−1
k ak+1)(T (ak+1))

−1T (ak+2)

= T (ak+2)(T (ak))
−1T (ak+2) ,

so that (4.3) holds.

Next, letting bk = a2k for 0 ≤ k ≤ 2n−1 the sequence {bk}2n−1

k=0 satisfies A(n− 1) due to

(4.2) and (4.3). By our assumption we infer that C(n− 1) holds for {bk}2n−1

k=0 , i.e.,

T (b2n−2b
−1
0 b2n−2) = T (b2n−2)(T (b0))

−1T (b2n−2).

For b0 = a0 and b2n−2 = a2n−1 , we obtain that C(n) holds for {ak}2n
k=0. �

The next theorem describes the algebraic structure of certain d-preserving maps on mul-
tiplicative groups of complex-valued continuous functions.

THEOREM 4.3. Let Yi be a compact Hausdorff space and C(Yi) the space of all
complex-valued continuous functions on Yi , for i = 1, 2. Suppose Ei is a real-linear sub-
space of C(Yi), for i = 1, 2. Define

di(f, g) = max

{∥∥∥∥fg − 1

∥∥∥∥∞
,

∥∥∥∥ g
f

− 1

∥∥∥∥∞

}
,

for f, g ∈ expEi . If T : expE1 → expE2 is a bijective d-preserving map with respect to d1

and d2, then for the transformation T0(·) = (T (1))−1T (·) we have

T0(f g) = T0(f )T0(g) ∀f, g ∈ expE1 .

PROOF. Let f, g ∈ expE1. Then f = expu and g = exp v for some u, v ∈ E1. For a
sufficiently large integer n we have∣∣∣∣exp

2(u− v)

2n
− 1

∣∣∣∣ ≤ 1

10
,

∣∣∣∣exp
−2(u− v)

2n
− 1

∣∣∣∣ ≤ 1

10
.

Then we obtain ∣∣∣∣exp
2(u− v)

2n
+ 1

∣∣∣∣ ≥ 19

10
,

∣∣∣∣exp
−2(u− v)

2n
+ 1

∣∣∣∣ ≥ 19

10
.

For each 0 ≤ k ≤ 2n, let

fk = exp

(
u− 2k(u− v)

2n

)
.

Then

f0 = f , f2n = gf−1g , g = f2n−1

and

fk+1f
−1
k fk+1 = fk+2
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for every 0 ≤ k ≤ 2n − 2.
Let 0 ≤ k ≤ 2n − 2 be arbitrary and put

Lfk,fk+1 = {h ∈ expE1 : d1(fk, h) = d1(fk+2, h) = d1(fk, fk+1)} ,
where

d1(fk, fk+1) = max

{∥∥∥∥exp
2(u− v)

2n
− 1

∥∥∥∥∞
,

∥∥∥∥exp
−2(u− v)

2n
− 1

∥∥∥∥∞

}
≤ 1

10
.

We show that condition B(fk, fk+1) is satisfied. Let h ∈ Lfk,fk+1 . Then we have

d1(fk+1h
−1fk+1, h) = max

{∥∥∥∥f 2
k+1

h2 − 1

∥∥∥∥
∞
,

∥∥∥∥ h2

f 2
k+1

− 1

∥∥∥∥
∞

}
.

Since fk+1 = fk exp −2(u−v)
2n , we compute∣∣∣∣fk+1

h
+ 1

∣∣∣∣ =
∣∣∣∣fkh + exp

2(u− v)

2n

∣∣∣∣ ∣∣∣∣exp
−2(u− v)

2n

∣∣∣∣
≥

(
−

∣∣∣∣fkh − 1

∣∣∣∣ +
∣∣∣∣exp

2(u− v)

2n
+ 1

∣∣∣∣) ∣∣∣∣exp
−2(u− v)

2n

∣∣∣∣
≥

(
−d1(fk, h)+ 19

10

)
9

10
≥ 81

50
,

which gives us that∣∣∣∣f 2
k+1

h2
− 1

∣∣∣∣ =
∣∣∣∣fk+1

h
− 1

∣∣∣∣ ∣∣∣∣fk+1

h
+ 1

∣∣∣∣ ≥ 81

50

∣∣∣∣fk+1

h
− 1

∣∣∣∣ ,
and hence ∥∥∥∥f 2

k+1

h2 − 1

∥∥∥∥
∞

≥ 81

50

∥∥∥∥fk+1

h
− 1

∥∥∥∥∞
.

In a similar way we obtain that∥∥∥∥ h2

f 2
k+1

− 1

∥∥∥∥
∞

≥ 81

50

∥∥∥∥ h

fk+1
− 1

∥∥∥∥∞

holds. Thus we have

d1(fk+1h
−1fk+1, h) ≥ 81

50
d1(h, fk+1)

for every h ∈ Lfk,fk+1 , that is, (3) of Definition 3.2 holds with K = 81
50 . As d1 is inverse and

translation invariant, (1) of Definition 3.2 also holds. We show that (2) of Definition 3.2 is
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satisfied, too. Indeed, let h ∈ Lfk,fk+1 . Then

∥∥∥∥fk+1

h
− 1

∥∥∥∥ =
∥∥∥∥fk exp

(
−u− v

2n−1

)
h

− 1

∥∥∥∥
≤

∥∥∥∥fkh − 1

∥∥∥∥ ∥∥∥∥exp

(
−u− v

2n−1

)∥∥∥∥ +
∥∥∥∥exp

(
−u− v

2n−1

)
− 1

∥∥∥∥
≤ d1(fk, h)

∥∥∥∥exp

(
−u− v

2n−1

)∥∥∥∥ +
∥∥∥∥exp

(
−u− v

2n−1

)
− 1

∥∥∥∥
= d1(fk, fk+1)

∥∥∥∥exp

(
−u− v

2n−1

)∥∥∥∥ +
∥∥∥∥exp

(
−u− v

2n−1

)
− 1

∥∥∥∥ .
In the same way we have that∥∥∥∥ h

fk+1
− 1

∥∥∥∥ ≤ d1(fk, fk+1)

∥∥∥∥exp

(
u− v

2n−1

)∥∥∥∥ +
∥∥∥∥exp

(
u− v

2n−1

)
− 1

∥∥∥∥ .
Consequently we deduce

sup
{
d1(h, fk+1) : h ∈ Lfk,fk+1

}
< ∞ .

Hence, we have obtained that B(fk, fk+1) is really satisfied for every 0 ≤ k ≤ 2n − 2. As d2

is inverse and translation invariant, we infer that C1(T (fk), T (fk+1f
−1
k fk+1)) is satisfied for

every 0 ≤ k ≤ 2n − 2. Applying Corollary 3.9 we obtain that

T (fk+1f
−1
k fk+1) = T (fk+1)(T (fk))

−1T (fk+1)

holds for every 0 ≤ k ≤ 2n − 2. Lemma 4.2 gives us that

T (f2n−1f
−1
0 f2n−1) = T (f2n−1)(T (f0))

−1T (f2n−1) .

Since f0 = f and f2n−1 = g , we have

T (gf−1g) = T (g)(T (f ))−1T (g) .

Finally, as f, g ∈ expE1 are arbitrary and expE2 is 2-divisible, by Lemma 4.1 we infer that

T0(f g) = T0(f )T0(g) ∀f, g ∈ expE1 .

This completes the proof. �

We note that for uniform algebras A and B surjective maps T : expA → expB with the

property that
∥∥∥fg − 1

∥∥∥∞ =
∥∥∥ T (f )T (g) − 1

∥∥∥∞ (∀f, g ∈ A) were characterized in [7]. In [4] the

case when Ej is the space of all real-valued continuous functions was considered.
We recall that by a theorem due to Sakai [10] any uniformly continuous group isomor-

phism between the unitary groups of AW∗-factors is implemented by a linear or conjugate
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linear ∗-isomorphism of the factors. In the following example we show that the assertion does
not hold for general C∗-algebras. Let C(Y ) be the commutative C∗-algebra of all complex-
valued continuous functions on a compact Hausdorff space Y . The unitary group UC(Y ) of
C(Y ) consists precisely of the functions in C(Y ) which are of modulus one. In what fol-
lows we present a uniformly continuous group isomorphism between two such unitary groups
which can not be extended to an (algebra) isomorphism between the underlying algebras of
complex-valued continuous functions.

EXAMPLE 4.4. Let Y1 = [0, 1] be the unit closed interval and Y2 = {(x, y) ∈ R2 :
x ∈ [0, 2

3 ], y = 0} ∪ {(x, y) ∈ R2 : x = 1
3 , y ∈ [0, 1

3 ]}. Let T : UC(Y1) → UC(Y2) be
defined as

T (f )(x, y) =

⎧⎪⎨⎪⎩
f (x) , y = 0
f
(

1
3

)
f
(

2
3

)f (
y + 2

3

)
, 0 < y ≤ 1

3

for every f ∈ UC(Y1). By a simple calculation we have ‖T (f ) − T (g)‖ ≤ 3‖f − g‖,
and hence T is a uniformly continuous (group) isomorphism. On the other hand, T can not
be extended to an algebra isomorphism. The reason is that Yi is the maximal ideal space
of C(Yi) for i = 1, 2, and Y1 and Y2 are not homeomorphic to each other. Note that by

the Arens-Royden theorem [1, 7.4. Corollary, p. 91] we have expC(Yi) = C(Yi)
−1 since

the first Čech cohomology group on Yi with integer coefficients vanishes. It follows that
exp iCR(Yi) = UC(Yi) for i = 1, 2.

As an application of Theorem 4.3, in the next corollary we determine the general form of
surjective isometries between groups of continuous functions that map into the unit circle. In
particular, we obtain that if exp iCR(Y1) and exp iCR(Y2) are isometric (group operations need
not be considered), then the corresponding C∗-algebras C(Y1) and C(Y2) are isometrically
isomorphic.

COROLLARY 4.5. Let Yj be a compact Hausdorff space and define

dj (f, g) = ‖f − g‖∞

for f, g ∈ exp iCR(Yj ) where CR(Yj ) denotes the space of all real-valued continuous func-
tions on Yj , for j = 1, 2. Suppose that T : exp iCR(Y1) → exp iCR(Y2) is a surjective
isometry with respect to d1 and d2. Then there exists a homeomorphisms Φ from Y2 onto Y1,
and a decomposition Y2 = Y21 ∪ Y22, where Y21 and Y22 are (possibly empty) clopen subsets
of Y2 with Y21 ∩ Y22 = ∅ such that

T (f )(y) = T (1)(y)×
{
f (Φ(y)) , y ∈ Y21

f (Φ(y)) , y ∈ Y22

for all f ∈ exp iCR(Y1) and y ∈ Y2.
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PROOF. Let f, g ∈ exp iCR(Yj ). Since |f | = |g| = 1 on Yj we see that∥∥∥∥fg − 1

∥∥∥∥∞
= ‖f − g‖∞ =

∥∥∥∥ g
f

− 1

∥∥∥∥∞
,

so

dj (f, g) = max

{∥∥∥∥fg − 1

∥∥∥∥∞
,

∥∥∥∥ g
f

− 1

∥∥∥∥∞

}
for j = 1, 2. Then by Theorem 4.3, for the surjective isometry T0(·) = (T (1))−1T (·) we
have

T0(f g) = T0(f )T0(g)

for every pair f, g ∈ exp iCR(Y1). We will show that

T0(λ)(Y2) ⊂ {λ, λ}
holds for every complex number λ with |λ| = 1. In T0(λ) the symbol λ denotes a constant
function. We hope that it will cause no misunderstanding that λ means sometimes a complex

number and sometimes a constant function. Let λ0 = −1+√
3i

2 . Then

(T0(λ0))
3 = T0(λ

3
0) = T0(1) = 1 ,

from which we deduce

T0(λ0)(Y2) ⊂ {1, λ0, λ0} .
Let u ∈ exp iCR(Y1) with T0(u) = −1. Such a u exists since T0 is surjective. Then we have

T0(u
2) = (T0(u))

2 = 1

implying that u2 = 1 for T0 is injective. It follows that u(Y1) ⊂ {−1, 1}. Hence

2 > ‖u− λ0‖∞ = ‖T0(u)− T0(λ0)‖∞ = ‖ − 1 − T0(λ0)‖∞

which implies that T0(λ0)(Y2) ⊂ {λ0, λ0}. Since (T0(−1))2 = T0(1) = 1, we have
T0(−1)(Y2) ⊂ {−1, 1}. On the other hand,

1 = ‖ − 1 − λ0‖∞ = ‖T0(−1)− T0(λ0)‖∞

and this implies T0(−1) = −1 because T0(λ0)(Y2) ⊂ {λ0, λ0}. Since

‖T0(λ)− 1‖∞ = ‖λ− 1‖∞

and

‖T0(λ)+ 1‖∞ = ‖T0(λ)− T0(−1)‖∞ = ‖λ+ 1‖∞ ,
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we infer that

T0(λ)(Y2) ⊂ {λ, λ}
for any complex number λ with |λ| = 1.

Let

Y21 = {y ∈ Y2 : T0(i)(y) = i} , Y22 = {y ∈ Y2 : T0(i)(y) = −i} .
We have Y2 = Y21 ∪ Y22 for T (i)(Y2) ⊂ {−i, i}. Since T0(i) is continuous on Y2, Y21 and Y22

are clopen subsets of Y2. We will show that

T0(λ) = λ on Y21 , T0(λ) = λ on Y22

holds for every complex number λ with |λ| = 1, λ �= ±1. Suppose that the imaginary part of
λ is greater than 0. Since

‖λ− i‖∞ = ‖T0(λ)− T0(i)‖∞

and T0(λ)(Y2) ⊂ {λ, λ}, we see that T0(λ) = λ on Y21 and T0(λ) = λ on Y22 by the definitions
of Y21 and Y22 respectively. Next suppose that the imaginary part of λ is negative. Since the

imaginary part of λ is positive, T0(λ) = λ on Y21 and T0(λ) = λ on Y22. From T0(λ)T0(λ) =
T0(1) = 1 we infer that T0(λ) = λ on Y21 and T0(λ) = λ on Y22.

Let T̃0 : exp iCR(Y1) → exp iCR(Y2) be defined by

T̃0(exp iu) =
{
T0(exp iu) on Y21 ,

T0(exp iu) on Y22 .

Since

‖T̃0(exp iu)− T̃0(exp iv)‖∞ = ‖T0(exp iu)− T0(exp iv)‖∞ ,

it follows that T̃0 is an isometrical group isomorphism from (exp iCR(Y1), d1) onto
(exp iCR(Y2), d2) and T̃0(λ) = λ for every complex number λ with |λ| = 1. In addi-
tion, T̃0(exp iu)(Y2) ⊂ (exp iu)(Y1) for every u ∈ CR(Y1). Indeed, suppose that λ ∈
T̃0(exp iu)(Y2) \ (exp iu)(Y1). Then, using T̃0(−λ) = −λ, we have

2 > ‖ exp iu− (−λ)‖∞ = ‖T̃0(exp iu)− (−λ)‖∞ = 2

which is a contradiction.
Let x ∈ Y1 and define

A =
{
u ∈ CR(Y1) : u(x) = 0, 0 ≤ u ≤ π

2
on Y1

}
.

We assert that ⋂
u∈A

(
T̃0(exp iu)

)−1
(1) �= ∅ .



INVERTED JORDAN TRIPLE PRODUCTS ON GROUPS 403

To see this, suppose on the contrary that
⋂
u∈A

(
T̃0(exp iu)

)−1
(1) = ∅. By the finite intersec-

tion property there exists a finite number of functions u1, . . . , un ∈ A such that

n⋂
k=1

(
T̃0(exp iuk)

)−1
(1) = ∅.

Let

f =
n∏
k=1

exp i
uk

N

for a positive integer N > n. Then we have

f (Y1) ⊂
{
z ∈ C : |z| = 1, 0 ≤ arg z ≤ π

2

}
,

and f (x) = 1. Thus

2 = ‖f − (−1)‖∞ = ‖T̃0(f )− T̃0(−1)‖∞ = ‖T̃0(f )− (−1)‖∞ ,

so there exists y ∈ Y2 with T̃0(f )(y) = 1. Since T̃0 is multiplicative we have

T̃0(f ) =
n∏
k=1

T̃0

(
exp i

uk

N

)
.

Clearly, (
exp i

uk

N

)
(Y1) ⊂

{
z ∈ C : |z| = 1, 0 ≤ arg z ≤ π

2N

}
implying (

T̃0

(
exp i

uk

N

))
(Y2) ⊂

{
z ∈ C : |z| = 1, 0 ≤ arg z ≤ π

2N

}
.

Hence we necessarily have(
T̃0

(
exp i

uk

N

))
(y) = 1 1 ≤ ∀k ≤ n ,

so that (
T̃0(exp iuk)

)
(y) = 1 1 ≤ ∀k ≤ n

which contradicts to

n⋂
k=1

(
T̃0(exp iuk)

)−1
(1) = ∅ .
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Consequently, we have proved that⋂
u∈A

(
T̃0(exp iu)

)−1
(1) �= ∅ .

Let

y0 ∈
⋂
u∈A

(
T̃0(exp iu)

)−1
(1)

be arbitrary. Suppose v ∈ CR(Y1) with v(x) = 0, and |v| ≤ π
2 on Y1. Let v = v+ − v−,

where

v+(t) = max{v(t), 0} , v−(t) = max{−v(t), 0} .
Then v+, v− ∈ A, so(

T̃0(exp iv)
)
(y0) = (

T̃0(exp iv+)
)
(y0)

(
T̃0(exp(−iv−))

)
(y0) = 1 .

Suppose w ∈ CR(Y1) with w(x) = 0. Then for sufficiently large integer N with
∣∣w
N

∣∣ ≤ π
2 on

Y1 we have (
T̃0

(
exp i

w

N

))
(y0) = 1

and this implies that

(
T̃0(exp iw)

)
(y0) =

((
T̃0(exp i

w

N
)

)
(y0)

)N
= 1

since T̃0 is multiplicative. Therefore, we obtain that

y0 ∈
⋂

w∈CR(Y1),w(x)=0

(
T̃0(exp iw)

)−1
(1) .

We next show that in fact we have

{y0} =
⋂

w∈CR(Y1),w(x)=0

(
T̃0(exp iw)

)−1
(1) .

Suppose that at least two points y1 and y2 are in the set on the right hand side. Then g(y1) �=
g(y2) for some g ∈ exp iCR(Y2) and by the surjectivity of T̃0 there is w ∈ CR(Y1) with
g = T̃0(exp iw). Since

g(yj ) exp(−iw(x))= T̃0(exp iw)(yj )T̃0(exp(−iw(x)))(yj )
= (
T̃0(exp i(w − w(x)))

)
(yj ) = 1
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holds for j = 1, 2, it follows that g(y1) = g(y2) which is a contradiction. This proves that

{y0} =
⋂

w∈CR(Y1),w(x)=0

(
T̃0(exp iw)

)−1
(1) .

We define a map Ψ : Y1 → Y2 by Ψ (x) = y0 for arbitrary x ∈ Y1. For any x ∈ Y1 and
u ∈ CR(Y1) we have(

T̃0(exp iu)
)
(Ψ (x)) exp(−iu(x)) = T̃0(exp i(u− u(x)))(Ψ (x)) = 1

which implies that (
T̃0(exp iu)

)
(Ψ (x)) = (exp iu)(x) .

By a routine argument we see that Ψ is a continuous map from Y1 into Y2.

Applying a similar argument for T̃0
−1

instead of T̃0 we can prove that there exists a
continuous map Φ from Y2 into Y1 such that(

T̃0
−1
(exp iv)

)
(Φ(y)) = (exp iv)(y)

holds for every y ∈ Y2 and v ∈ CR(Y2). Thus for every u ∈ CR(Y1) we have that

(exp iu)(Φ(Ψ (x)))= T̃0
−1 (

T̃0(exp iu)
)
(Φ(Ψ (x)))

= (
T̃0(exp iu)

)
(Ψ (x)) = (exp iu)(x)

holds for every x ∈ Y1. Since exp iCR(Y1) separates the points of Y1 we see that

(Φ ◦ Ψ )(x) = x

for every x ∈ Y1. In a similar way we see that (Ψ ◦ Φ)(y) = y holds for every y ∈ Y2. It
follows that Φ is a homeomorphism from Y2 onto Y1. Considering the definitions of T̃0 and
T0 we conclude that

(T (exp iu)) (y) = T (1)(y)×
{
(exp iu)(Φ(y)) , y ∈ Y21,

(exp iu)(Φ(y)) , y ∈ Y22

holds for every u ∈ CR(Y1) and y ∈ Y2 completing the proof. �

The following corollary describing the isometries of the n-dimensional torus is an im-
mediate consequence of the previous result.

COROLLARY 4.6. Let T : Tn → Tn be a surjective isometry with respect to the metric
d on Tn defined by

d((x1, . . . , xn), (y1, . . . , yn)) = max{|xj − yj | : 1 ≤ j ≤ n} .
Then there exists a bijection ε : {1, . . . , n} → {1, . . . , n} such that

T (x1, . . . , xn) = T (1, . . . , 1)(δ1(xε(1)), . . . , δn(xε(n)))
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for every (x1, . . . , xn) ∈ T
n, where δj is either the identity or the conjugation on T (j =

1, . . . , n).

PROOF. Let X = {1, . . . , n} be with the discrete topology. Then T
n is identified by

exp iCR(X) and the map T transforms to a surjective isometry of exp iCR(X) onto itself.
Applying Corollary 4.5 we obtain the conclusion. �

5. Generalization of the Mazur-Ulam theorem and applications

In this section we study a generalization of the Mazur-Ulam theorem for certain met-
ric groups. As is described in the introduction the main point of a proof of the classical
Mazur-Ulam theorem is to show that the isometry under consideration preserves the algebraic
midpoint (x + y)/2 for a given pair of points x and y in the underlying normed space. It
can happen that there are several algebraic midpoints of a given pair of points while in other
cases there might be no algebraic midpoint at all in the case of general groups. Therefore,
we need an alternative approach to prove a generalization of the Mazur-Ulam theorem for
isometries between groups. In this section applying results on the preservation of inverted
Jordan triple products for isometries between groups obtained in the earlier sections we prove
a generalization of the Mazur-Ulam theorem for certain commutative metric groups. Along
with the several applications of the result we show in Corollary 5.4 a metric characterization
of normed real-linear spaces among commutative metric groups with inverse and translation
invariant metrics.

We begin with the following result concerning the algebraic character of isometries be-
tween commutative groups.

COROLLARY 5.1. LetG1 andG2 be commutative groups. Suppose that dj is a metric
on Gj which is inverse and translation invariant. Assume that there exists a constant K > 1
such that

(5.1) d1(y
2, x2) ≥ Kd1(y, x)

holds for all x, y ∈ G1. Suppose that T : G1 → G2 is a surjective isometry. If at least one of
G1 and G2 is 2-divisible or 2-torsion free, then for the transformation T0(·) = (T (e))−1T (·)
we have

T0(xy) = T0(x)T0(y) ∀x, y ∈ G1 .

In particular, if the isometry T sends the unit to the unit, then it is a group isomorphism.

PROOF. We show that B(a, b) is satisfied for G1 and C1(T (a), T (ba
−1b)) is satisfied

forG2 for every pair a, b ∈ G1. Indeed, as d1(·, ·) is a metric which is inverse and translation
invariant, we have (1) of Definition 3.2. The condition (2) of the same definition holds since
d1(·, ·) is a metric. Finally, the inequality (5.1) guarantees that (3) of Definition 3.2 also holds
and hence we have that B(a, b) is satisfied for every pair a, b ∈ G1.
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As for the group G2, having a look at Definition 3.3, it is apparent that
C1(T (a), T (ba

−1b)) is satisfied for G2 simply because d2(·, ·) is inverse and translation in-
variant. By Corollary 3.9 we deduce that

T (ba−1b) = T (b)(T (a))−1T (b)

holds for every pair a, b ∈ G1. Applying Lemma 4.1 the conclusion follows. �

Observe that Corollary 5.1 generalizes the famous Mazur-Ulam theorem. Indeed, if
G1,G2 are normed real-linear spaces and we consider their additive structures with the met-
rics induced by the norms, then the above corollary trivially applies and shows that for any
surjective isometry T : G1 → G2, the map T0(·) = T (·) − T (0) is additive and hence, by
continuity, real-linear. Let us point out that the conditions in Corollary 5.1 are fulfilled by a
really large class of commutative groups, so the result is a considerable generalization of the
Mazur-Ulam theorem.

We also note that Corollary 5.1 removes the hypothesis of uniqueness of 2-divisibility of
the groups in Corollary 1 in [13].

In the next corollary we present a result on the extendibility of surjective isometries
between additive subgroups of normed linear spaces.

COROLLARY 5.2. Let Ei be a normed real-linear space and Xi a subgroup of Ei (as
an additive group) with the metric di induced by the norm for i = 1, 2. Suppose that T :
X1 → X2 is a surjective isometry. Then T (·) − T (0) is uniquely extendible to a real-linear
isometry from the subspace X̃1 of E1 generated by X1 onto the subspace X̃2 of E2 generated
by X2.

PROOF. Applying Corollary 5.1 in the 2-torsion free case, we see that the bijective
transformation T0(·) = T (·)− T (0) from X1 onto X2 is additive.

We first extend T0 to a map T̃0 from the linear space over the rational number field
generated by X1 onto the linear space over the rational number field generated by X2 as
follows. Suppose that x̃ = ∑n

k=1 rkxk, where rk’s are rational numbers and x1, . . . , xn ∈ X1.
Set

T̃0(x̃) =
n∑
k=1

rkT0(xk) .

This transformation is well-defined. Indeed, suppose that x̃ also equals
∑m
j=1 sj yj for some

rational numbers s1, . . . , sm and y1, . . . , ym ∈ X1. Let N be a positive integer such that all
Nr1, . . . , Nrn and Ns1, . . . , Nsm are all integers. Then

T0

( n∑
k=1

Nrkxk

)
=

n∑
k=1

NrkT0(xk) = N

n∑
k=1

rkT0(xk)
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and

T0

( m∑
j=1

Nsj yj

)
=

m∑
j=1

Nsj T0(yj ) = N

m∑
j=1

sj T0(yj )

hold since T0 is additive and

Nx̃ =
n∑
k=1

Nrkxk =
m∑
j=1

Nsj yj ∈ X1 .

This implies
∑n
k=1 rkT0(xk) = ∑m

j=1 sj T0(yj ). By definition T̃0 is linear (with respect to

the rational number field) and surjective. We also see that T̃0 is an isometry with respect to
the original norms of E1 and E2. To show this, suppose that x̃ = ∑n

k=1 rkxk, where rk’s are
rational numbers and x1, . . . , xn ∈ X1. LetN be a positive integer such thatNr1, . . . , Nrn are
all integers. Then NT̃0(x̃) = T0(

∑n
k=1Nrkxk) and ‖T0(

∑n
k=1Nrkxk)‖2 = ‖∑n

k=1Nrkxk‖1

implies ‖T̃0(x̃)‖2 = ‖∑n
k=1 rkxk‖1 = ‖x̃‖1. Since T̃0 is linear, we see that it is an isometry.

Now it is a routine argument to extend T̃0 further to a surjective isometry from X̃1 onto
X̃2. The uniqueness of the extension of T0 is obvious. �

As an application of the previous corollary, in the next example we describe the surjective
isometries of the discrete group Z

n.

EXAMPLE 5.3. Let T : Z
n → Z

n be a surjective isometry with respect to the metric
d(·, ·) defined by

d((x1, . . . , xn), (y1, . . . , yn)) = max{|xj − yj | : 1 ≤ j ≤ n}
for (x1, . . . , xn), (y1, . . . , yn) ∈ Zn. Then there are a bijection

ε : {1, . . . , n} → {1, . . . , n}
and a map

η : {1, . . . , n} → {−1, 1}
such that

T (x1, . . . , xn) = (η(1)xε(1), . . . , η(n)xε(n))+ T (0, . . . , 0)

for every (x1, . . . , xn) ∈ Zn.
To see this, first observe that by Corollary 5.2 the transformation T0(·) = T (·) −

T (0, . . . , 0) can be uniquely extended to a linear isometry of R
n onto itself. Here R

n is
equipped with the norm ‖(x1, . . . , xn)‖ = max{|xj | : 1 ≤ j ≤ n}. The surjective linear
isometries of that space are well-known. In fact, as this space can also be viewed as the space
of all real-valued continuous functions on the set {1, . . . , n} with the supremum norm, we
can apply Banach-Stone theorem to see that every surjective linear isometry is a composition
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operator induced by some permutation of {1, . . . , n} followed by multiplication by a fixed
function on {1, . . . , n} with values in {−1, 1}. The conclusion of the statement follows.

We conclude the paper with a result that gives a metric characterization of normed real-
linear spaces among commutative metric groups with inverse and translation invariant metrics.

COROLLARY 5.4. Let E be a normed real-linear space and G a commutative metric
group with metric d which is inverse and translation invariant. Suppose that T : E → G is
a surjective isometry. Then G can be made to a normed real-linear space in a natural way,
keeping the original operation of G as addition and the metric induced by the norm. In that
setting T is a surjective linear isometry followed by a translation.

PROOF. Hopefully it causes no confusion if we denote the operation on G by +, the
same symbol as the one for the addition on E . Applying Corollary 5.1 we obtain that T0(·) =
T (·)− T (0) is a bijective additive map.

We next show that G can be made to a real-linear space in a natural way, keeping the
original operation defined on G as the addition for a linear space. Let us define the scalar

multiplication for t ∈ R and g ∈ G by tg = T0(t (T0)
−1(g)). It is easy to check that in that

way G becomes a real-linear space. Moreover, define ‖g‖G = ‖(T0)
−1(g)‖E for g ∈ G. One

can readily verify that this gives us a norm on G which induces the original metric on G.
Therefore, T0 is a surjective and additive isometry from the normed real-linear space E onto
the normed real-linear space G and hence T0 is necessarily real-linear. This completes the
proof. �
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