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Abstract. In this paper we consider surfaces with negative Gaussian curvature parametrized by a generalized
Chebyshev net with constant Chebyshev angle in the Euclidean 3-space. We characterize these surfaces in terms of a
meromorphic function which satisfies a certain differential equation. Moreover, we show that these surfaces have the
geometric property that the asymptotic lines have the same sign of geodesic curvature. As an application we obtain
for each constant Chebyshev angle a four-parameter family of complete surfaces.

1. Introduction

Bianchi in [1], [2] studies a class of surfaces with negative Gaussian curvature obtained
by generalizing Bäcklund transformation for surfaces with constant negative Gaussian curva-
ture. Fujioka in [7], introduces the notion of generalized Chebyshev nets (a natural generaliza-
tion of Chebyshev nets for surfaces with constant negative Gaussian curvature) and shows that
a Bianchi surface with constant Chebyshev angle parametrized by a generalized Chebyshev
net is a piece of a right helicoid; in this case the Chebyshev angle is π/2.

In this work we obtain a characterization of a class of surfaces with a generalized Cheby-
shev net and constant Chebyshev angle different from π/2. The characterization is obtained
by showing that the coefficients of the first and second fundamental form of these surfaces
depend on a meromorphic function which satisfies a differential equation. The characteriza-
tion is based on the results obtained in [3], [4] and [5]. We show that these surfaces have the
geometric property that the asymptotic lines have the same sign of geodesic curvature. As
an application we obtain solutions of this differential equation which allows us to obtain a
four-parameter family of complete surfaces.

2. Preliminaries

In the following we consider only surfaces with negative Gaussian curvature in the Eu-

clidean 3-space R3. Since such a surface has two directions, called the asymptotic directions,
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in which the normal curvature vanishes, we can parametrize the surface locally by asymptotic
line coordinates (x, y):

χ : Ω ⊂ R2 → R3

If the Gaussian curvature is − 1
ρ2 for a positive function ρ on Ω then the fundamental forms

become as follows:

I = A2dx2 + 2AB cos ϕdxdy + B2dy2 , II = 2AB sin ϕ

ρ
dxdy , (1)

where A = |χx |, B = |χy | and ϕ is the angle between the asymptotic lines, called the
Chebyshev angle. Changing the coordinates if necessary, we may assume that 0 < ϕ < π .

For a regular surface χ(x, y) in R3, the Gauss-Codazzi equations are given by

−EK = (Γ 2
12)x − (Γ 2

11)y + Γ 1
12Γ

2
11 − Γ 1

11Γ
2

12 + (Γ 2
12)

2 − Γ 2
11Γ

2
22 (2)

ey − fx = eΓ 1
12 + f (Γ 2

12 − Γ 1
11) − gΓ 2

11 ,

fy − gx = eΓ 1
22 + f (Γ 2

22 − Γ 1
12) − gΓ 2

12 , (3)

where E,F,G, e, f, g are the coefficients of the first and second fundamental form, respec-

tively and Γ i
jk are the Christoffel symbols of the second kind given by

Γ 1
11 = GEx − 2FFx + FEy

2(EG − F 2)
, Γ 2

11 = 2EFx − EEy − FEx

2(EG − F 2)
,

Γ 1
12 = GEy − FGx

2(EG − F 2)
, Γ 2

12 = EGx − FEy

2(EG − F 2)
, (4)

Γ 1
22 = 2GFy − GGx − FGy

2(EG − F 2)
, Γ 2

22 = EGy − 2FFy + FGx

2(EG − F 2)
.

Given a curve C : x = x(s), y = y(s) on a surface χ(x, y) where s is arc length.
Beltrami’s formula for the geodesic curvature at point P of the curve is:

kg =
[
Γ 2

11

(
dx

ds

)3

+ (2Γ 2
12 − Γ 1

11)

(
dx

ds

)2
dy

ds
+ (Γ 2

22 − 2Γ 1
12)

dx

ds

(
dy

ds

)2

−Γ 1
22

(
dy

ds

)3

+ dx

ds

d2y

ds2
− d2x

ds2

dy

ds

] √
EG − F 2 .

(5)

For a surface parametrized by asymptotic lines, if we put a = A
ρ
, b = B

ρ
then the
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Gauss-Codazzi equations (3) have the following form [6]:

ϕxy +
(

ρxb sin ϕ

2aρ

)
x

+
(

ρya sin ϕ

2bρ

)
y

− ab sin ϕ = 0 . (6)

ay + ρy

2ρ
a − ρx

2ρ
b cos ϕ = 0 ,

bx + ρx

2ρ
b − ρy

2ρ
a cos ϕ = 0 . (7)

DEFINITION 1. A parametrization of a surface is called a generalized Chebyshev net
if A = B, i.e a = b.

Now we consider the Liouville equation in two real variables

∆u = Re−2u , (x, y) ∈ Ω , (8)

where R is a real constant, u is a real C2 function and Ω ⊂ R2 � C is a planar domain, that
is, a connected open subset of the plane.

One hundred and fifty years ago Liouville [8] obtained a local representation formula for
the general solution of

∂2 log λ

∂z∂z̄
± λ

2a2 = 0 (9)

in terms of a holomorphic function. The changes λ = e−2u and ±1/a2 = R �= 0 transform
(8) into (9), which is solved by Liouville’s remarkable formula

u(x, y) = log

(
1 + R|h(z)|2

2|h′(z)|
)

, z = x + iy , (10)

where h is holomorphic with h′(z) �= 0 in a neighborhood of a given point.

PROPOSITION 1. A solution of the equation

∆u = Re−Su , R, S ∈ R (11)

is given by

u(x, y) = log

(
2 + RS|h(z)|2

4|h′(z)|
) 2

S

, z = x + iy ∈ C , (12)

where h is a global meromorphic function such that h′(z) �= 0 at all regular points and it
admits only simple poles.

PROOF. From (11) we obtain ∆Su
2 = RS

2 e−2( Su
2 ). The result follows from (8) and

(10). �
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PROPOSITION 2. A surface with a generalized Chebyshev net and negative Gaussian

curvature K = − 1

e2u
, can be parametrized such that the fundamental forms are given by

I = ev+2u[dx2 + 2 cos ϕdxdy + dy2] , (13)

II = 2ev+u sin ϕdxdy , (14)

where 0 < ϕ < π is the Chebyshev angle, u and v are functions of x and y. The Gauss-
Codazzi equations are given by

2ϕxy + (ux sin ϕ)x + (uy sin ϕ)y = 2ev sin ϕ (15)

vx + ux − uy cos ϕ = 0 ,

vy + uy − ux cos ϕ = 0 . (16)

PROOF. Putting A = B = aρ, v = log(a2) , u = log(ρ) into (1), (6) and (7), the
result follows. �

3. Main results

The following Theorem characterizes the surfaces in R3 with a generalized Chebyshev
net, negative Gaussian curvature and constant Chebyshev angle ϕ �= π/2.

THEOREM 1. Let M ⊂ R3 be a connected orientable Riemann surface and ϕ a

constant different of π/2. There exists an immersion X : M → R3 with a generalized

Chebyshev net, negative Gaussian curvature K = − 1

e2u
and Chebyshev angle ϕ, if and only

if, there exists a global meromorphic function h : M → C such that h′(z) �= 0 at all regular
points and it admits only simple poles, satisfying the following

2ec(1 + ε cos ϕ)〈h, (1 + εi)h′〉〈h′, h′〉
−[1 + ec(1 + ε cos ϕ) | h |2]〈h′, (1 + εi)h

′′ 〉 = 0 . (17)

Moreover, locally the fundamental forms of X are given by

I = e(1−ε cos ϕ)u+c[dx2 + 2 cos ϕdxdy + dy2] , (18)

II = 2e−ε cos ϕu+c sin ϕdxdy , (19)

where

u(x, y) = log

(
1 + ec(1 + ε cos ϕ) | h(z) |2

2 | h′(z) |
) 2

1+ε cos ϕ

, (20)

c ∈ R , z = x + iy ∈ C, ε = ±1 .

PROOF. From (15) the Gauss equation is given by


u = 2ev (21)
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and the Codazzi equations are given by (16).
Differentiating (16), we have

vxy + uxy − uyy cos ϕ = 0 ,

vyx + uyx − uxx cos ϕ = 0 .

From these equations, we obtain

(uxx − uyy) cos ϕ = 0 .

Since ϕ �= π/2, we get

uxx − uyy = 0 . (22)

Similarly, differentiating (16) we have

vxx + uxx − uyx cos ϕ = 0 ,

vyy + uyy − uxy cos ϕ = 0 .

We get from these equations and (22) that

vxx − vyy = 0 . (23)

Substituting (22) into (21), we obtain

uxx = ev .

Differentiating twice with respect to y , we get

uxxyy = ev[(vy)
2 + vyy ] . (24)

In the same way, substituting (22) into (21), we have

uyy = ev .

Differentiating twice with respect to x, we have

uyyxx = ev[(vx)
2 + vxx] . (25)

It follows from (23), (24) and (25) that

(vx)2 − (vy)2 = 0 , (26)

hence,

vx + εvy = 0, ε = ±1 . (27)

Using (16), we get

(ux + εuy)(1 − ε cos ϕ) = 0 ,

Since (1 − ε cos ϕ) �= 0, we obtain

ux + εuy = 0 , (28)
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Substituting (28) into (16) we have

vx = −(1 + ε cos ϕ)ux and vy = −(1 + ε cos ϕ)uy ,

and thus

v = −(1 + ε cos ϕ)u + c, c ∈ R . (29)

By (21) and (29), we obtain


u = 2e−(1+ε cos ϕ)u+c .

By Proposition 1, we get (20). From (20) and (28), we obtain (17). Finally, substituting (29)
into (13) and (14) we obtain (18) and (19).

The converse follows from the fundamental theorem of surfaces in R3. �

COROLLARY 1. In a surface with a generalized Chebyshev net of negative Gaussian

curvature K = − 1

e2u
and constant Chebyshev angle ϕ �= π/2, the asymptotic lines has the

same geodesic curvature at least of sign.

PROOF. Let X(x, y) a parametrization of the surface. From Theorem 1, the coefficients
of the first fundamental E,F and G is given by

E = G = e(1−ε cos ϕ)u+c , F = cos ϕe(1−ε cos ϕ)u+c . (30)

From Beltrami’s formula (5), we get that the geodesic curvature of the asymptotic lines is
given by

(kg)x=constant = −Γ 1
22

√
EG − F 2

G
√

G
(31)

(kg)y=constant = Γ 2
11

√
EG − F 2

E
√

E
(32)

From (4), (28) and (30) we get Γ 2
11 = −uy

2
and Γ 1

22 = ε
uy

2
.

The substitution of this expressions into (31) and (32) gives the result. �

COROLLARY 2. There exists a four-parameter family of surfaces with a generalized
Chebyshev net and constant Chebyshev angle ϕ �= π/2 whose first and second fundamental
forms are given by

I = ec

(
1 + ec(1 + ε cos ϕ)e2k(εx−y)+2a

2
√

2|k|ek(εx−y)+a

) 2(1−ε cos ϕ)
1+ε cos ϕ [dx2 + 2 cos ϕdxdy + dy2] , (33)

II = 2ec

(
1 + ec(1 + ε cos ϕ)e2k(εx−y)+2a

2
√

2|k|ek(εx−y)+a

)−2ε cos ϕ
1+ε cos ϕ

sin ϕdxdy . (34)
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Moreover, if c ≥ − log(1+ε cos ϕ) then the surfaces defined by (33) and (34) are complete.

PROOF. It is easy to verify that the function h : C → C defined by h =
e(ε+i)kz+z1, z1 = a + bi, a, b, k ∈ R, k �= 0, is a solution to the equation (17). In fact

(1+εi)h′ = i2kh and (1+εi)h′′ = i2kh′ hence 〈h, (1+εi)h′〉 = 0 and 〈h′, (1+εi)h
′′ 〉 = 0 .

Substituting the function h into (20), we obtain

u(x, y) = log

(
1 + ec(1 + ε cos ϕ)e2k(εx−y)+2a

2
√

2|k|ek(εx−y)+a

) 2
1+ε cos ϕ

,

hence, substituting u(x, y) above in (18) and (19) we get the expressions (33) and (34).
Therefore, from Theorem 1, there exists a four-parameter family X : C → R3 of sur-
faces with a generalized Chebyshev net and constant Chebyshev angle. On the other hand, if
c ≥ − log(1 + ε cos ϕ), we can show that

(
1 + ec(1 + ε cos ϕ)e2k(εx−y)+2a

2
√

2|k|ek(εx−y)+a

) 2(1−ε cos ϕ)
1+ε cos ϕ

>

(
1√
2|k|

) 2(1−ε cos ϕ)
1+ε cos ϕ

(35)

As a consequence of (35) we get that the metric ds2 of X given by

ds2 = ec

(
1 + ec(1 + ε cos ϕ)e2k(εx−y)+2a

2
√

2|k|ek(εx−y)+a

) 2(1−ε cos ϕ)
1+ε cos ϕ [dx2 + 2 cos ϕdxdy + dy2] ,

satisfies

ds2 > Cds̄2 , (36)

where

C = ec

(
1√
2|k|

) 2(1−ε cos ϕ)
1+ε cos ϕ

,

ds̄2 = dx2 + 2 cos ϕdxdy + dy2 .

Since, the metric Cds̄2 is complete, it follow that the metric ds2 also is complete. This
concludes the proof of Corollary 2. �
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