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Abstract. About fifty years ago, questions on the existence and non-existence of finite invariant measures
were studied by various authors and from different directions. In this article, we examine these classical results
and prove directly that all the conditions introduced by these authors are equivalent to each other. We begin at the
fundamental level of a recurrent transformation whose properties can be strengthened to obtain the aforementioned
classical results for the existence of a finite invariant measure. We conclude with the introduction of a new property,
Strongly Weakly Wandering (sww) sequences, the existence of which is equivalent to the non-existence of a finite
invariant measure. It is shown that every sww sequence is also an Exhaustive Weakly Wandering (eww) sequence
for ergodic transformations. Although all ergodic transformations with no finite invariant measure are known to have
eww sequences, there are exceedingly few actual examples for which explicit eww sequences can be exhibited. The
significance of sww sequences is that it provides a condition which is easier to verify than the condition for eww
sequences (Proposition 4.5). In a second paper, we will continue these studies and also connect them to some of the
more recent derived conditions for finite invariant measures. The impetus for this work, began with the late Professor
Shizuo Kakutani, with whom the authors worked and had many fruitful discussions on these topics.

1. Introduction

The results in this article reflect in a significant way properties of infinite ergodic transfor-
mations (ergodic measure preserving transformations defined on an infinite measure space).
This is an area where the authors worked extensively with Professor Kakutani in the past, and
we are now preparing a monograph [4] where we present our work in this area.

We consider only transformations T that are 1-1 and onto maps defined on a σ -finite
non-atomic Lebesgue measure space (X,B,m). All the transformations T that we consider
are measurable (A ∈ B if and only if T A ∈ B) and nonsingular (m(A) = 0 if and only if
m(T A) = 0). We say that m is an invariant measure for a transformation T if m(T A) = m(A)

for all A ∈ B. Two measures m and μ are said to be equivalent (denoted, m ∼ μ), when
m(A) = 0 if and only if μ(A) = 0. If an invariant measure μ, equivalent to m, exists for
T , then we say that T preserves the measure μ, or T is a measure preserving transformation.
Throughout this article all the sets we mention are measurable, and often statements are made,
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ignoring sets of m-measure 0. In the sequel we assume that T is a measurable and nonsingular
transformation defined on the finite measure space (X,B,m).

2. Recurrent transformations

DEFINITION 2.1. Let T be a measurable and nonsingular transformation defined on
the measure space (X,B,m).

• T is a recurrent transformation if whenever A is a set of positive measure, then for
a.a. x ∈ A there is an integer n > 0 such that T nx ∈ A.

• Two sets A and B are finitely equivalent, A ≈ B, if for some integer p > 0

A =
p⋃

i=1

Ai(disj) , B =
p⋃

i=1

Bi(disj) ,

and

T ni Ai = Bi for 1 ≤ i ≤ p.

• A is a wandering set for T if m(A) > 0 and T iA ∩ T jA = ∅ for i 	= j , i, j ∈ Z.

Before stating our first theorem about the recurrence of a transformation T , we state
the following lemma about wandering sets for a transformation; we use it in the proof of the
Recurrence Theorem.

LEMMA 2.2 (Wandering Sets). The following two conditions are equivalent for a
transformation T .

(1) T does not admit any wandering sets.
(2) If f (x) is a measurable function, and f (T x) ≤ f (x) a.e. then f (T x) = f (x) a.e.

PROOF.
(1) ⇒ (2): Assume condition (2) is not true. Then there is a measurable function f such that
f (T x) ≤ f (x) a.e. and m{x : f (T x) < f (x)} > 0. It follows that there is a constant c such
that if W = {x : f (T x) ≤ c < f (x)} then m(W) > 0.

For x ∈ W , it follows that f (T nx) ≤ f (T n−1x) ≤ · · · ≤ f (T x) ≤ c.
For x ∈ T −nW , since T nx ∈ W , it follows that c < f (T nx). Thus, T −nW ∩ W = ∅

for all n > 0. Thus, for i > j , we have T iW ∩ T jW = T i(W ∩ T −(i−j)W) = ∅; this is a
contradiction to (1).
(2) ⇒ (1): Assume condition (1) is not true. Let W be a wandering set for T , and let
W∗ = ⋃∞

n=0 T −nW .
Let f (x) = IW∗(x), the characteristic function of the set W∗. Then,

f (T x) = IW∗(T x) = IT −1W∗(x) ≤ f (x), and for x ∈ W , we have 0 = f (T x) < f (x) = 1.
This is a contradiction to (2) and completes the proof of Lemma 2.2. �

The Recurrence Theorem 2.3 shows various conditions that are equivalent for a transfor-
mation T .
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THEOREM 2.3 (Recurrence). Let T be a measurable and nonsingular transformation
on (X,B,m). Then, the following conditions are equivalent:

(1R) If A is a measurable set of positive measure, then for a.a. x ∈ A, there is an integer
n > 0 such that T nx ∈ A (i.e., T is recurrent).

(2R) If A is a measurable set of positive measure, then for a.a. x ∈ A, there are infinitely
many integers n > 0 such that T nx ∈ A.

(3R) If f is measurable and f (x) > 0 a.e., then
∑∞

n=1 f (T nx) = ∞ a.e.
(4R) If A is a measurable set of positive measure, then there is an integer n > 0 such

that m(T nA ∩ A) > 0.
(5R) T does not admit any wandering sets (i.e., T is conservative).
(6R) If A is a measurable set of positive measure and A ≈ B, with A ⊃ B then

m(A − B) = 0 (i.e., T is finitely bounded).

PROOF.
(1R) ⇒ (2R): Repeated applications of condition (1R) implies (2R) .
(2R) ⇒ (3R): Assume condition (3R) is not true. Then there is a function f , with f (x) > 0
and a set A, of positive measure, such that

∑∞
n=1 f (T nx) < ∞ for x ∈ A. For some ε > 0,

by possibly removing a small subset of A, we may assume that m(A) > 0 and f (x) ≥ ε > 0
for x ∈ A.

For p ≥ 1 let Ap = {x ∈ A : ∑∞
n=1 f (T nx) ≤ p}. Then, A = ⋃∞

p=1 Ap, and

m(A) > 0 implies that for some p > 0 we have m(Ap) > 0; for x ∈ Ap, f (x) ≥ ε > 0 and∑∞
n=1 f (T nx) ≤ p.

In other words, for x ∈ Ap, the cardinality of {n : T nx ∈ Ap} is not greater than p/ε a
finite number. This contradicts (2R).
(3R) ⇒ (4R): Assume condition (4R) is not true. Then there is a set A, of positive measure,
such that T nA ∩ A = ∅ for all n > 0. We let

f (x) =
{

1 if x ∈ X − ⋃∞
i=0 T iA

1/2n if x ∈ T nA for n > 0

Then, f (x) > 0, and for x ∈ A,

∞∑
n=0

f (T nx) =
∞∑

n=0

1/2n < ∞ .

This is a contradiction to (3R).
(4R) ⇒ (5R): The existence of a wandering set contradicts property (4R).
(5R) ⇒ (6R): Suppose there are sets A,B with A ⊃ B and for some k > 0

A =
k⋃

i=1

Ai(disj), B =
k⋃

i=1

Bi(disj) , and Ai = T ni Bi for 0 ≤ i ≤ k .
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Let I1 = {i : 1 ≤ i ≤ k, ni > 0} and I2 = {i : 1 ≤ i ≤ k, ni < 0}. Define

f (x) =
∑
i∈I1

ni−1∑
j=0

IAi (T
jx) −

∑
i∈I2

−1∑
j=ni

IAi (T
jx) .

Then, since IAi (T
ni x) = IBi (x) for each i, we obtain

f (T x) = f (x) −
∑
i∈I1

(
IAi (x) − IBi (x)

) +
∑
i∈I2

(
IBi (x) − IAi (x)

)

= f (x) − (IA(x) − IB(x)) .

Therefore, f (x) − f (T x) equals the characteristic function IA−B , which is nonnegative a.e.
and equals 1 on A − B. Lemma 2.2 then implies m(A − B) = 0, and this proves (6R).
(6R) ⇒ (1R): Assume condition (1R) is not true. Then there is a set C of positive measure
such that for x ∈ C, we have T nx 	∈ C for any n > 0. Let

A =
∞⋃

n=0

T nC , and B =
∞⋃

n=1

T nC .

Then, A ⊃ B, m(A − B) = m(C) > 0 and T A = B. This contradicts condition (6R) and
completes the proof of the Recurrence Theorem 2.3. �

3. Existence of a finite invariant measure μ ∼ m

Let T be a measurable and nonsingular transformation defined on a finite measure space
(X,B,m). In this section we study necessary and sufficient conditions for the existence of a
finite invariant measure μ ∼ m for T .

Suppose T admits a wandering set W with m(W) > 0. Then for any measure μ, equiv-
alent to m, it is clear that μ(W) > 0 also. If μ is an invariant measure for T then the infinite
number of mutually disjoint images of W under T will have the same positive μ measure. It
follows that the condition: T does not admit wandering sets, namely condition (4R) of Theo-
rem 2.3, is a necessary condition for the existence of a finite invariant measure μ equivalent
to m. In view of the Recurrence Theorem any one of the equivalent conditions (1R)–(6R) of
Theorem 2.3 is also a necessary condition for the existence of an m-equivalent finite invariant
measure μ for T . However, as we shall see later, the converse is not true; in other words,
any one of the conditions of the Recurrence Theorem is not a sufficient condition for the
existence of a finite T -invariant measure μ equivalent to m. To obtain sufficient conditions
for the existence of such a measure μ, the conditions in the Recurrence Theorem need to be
strengthened.

DEFINITION 3.1. Let T be a measurable transformation defined on the finite measure
space (X,B,m). Let us define the following, the first of which we repeat from the previous
section for emphasis.
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• Two sets A and B are finitely equivalent, A ≈ B, if

A =
p⋃

i=1

Ai(disj) , B =
p⋃

i=1

Bi(disj) ,

and for some finite set of integers {ni : 1 ≤ i ≤ p},
T ni Ai = Bi for 1 ≤ i ≤ p.

• Two sets A and B are countably equivalent or simply equivalent, A ∼ B, if

A =
∞⋃
i=1

Ai(disj) , B =
∞⋃
i=1

Bi(disj) ,

and

T ni Ai = Bi for a sequence {ni : i ≥ 1} .

• A set A is strongly recurrent if {n : m(T nA ∩ A) > 0} is relatively dense in Z, or
equivalently: There exists an integer k > 0 such that

max
0≤i≤k

m(T n+iA ∩ A) > 0 , for all n ∈ Z .

• An infinite subset of integers {ni : i ≥ 0} is a weakly wandering (ww) sequence if
there is a set W of positive measure such that

T ni W ∩ T nj W = ∅ for i 	= j ; i, j ≥ 0 .

We call W a weakly wandering set for T .

In the past a number of authors have been interested in finding necessary and sufficient
conditions for the existence of a finite invariant measure μ ∼ m for a given transformation
T . We list below conditions on a transformation T that various authors introduced and proved
them to be necessary and sufficient conditions for the existence of a finite invariant measure
μ ∼ m.
In 1932 E. Hopf [10], introduced the condition:

(H) If m(A) > 0, A ⊃ B and A ∼ B then m(A − B) = 0.
In 1955, Y. Dowker [2] introduced the condition:

(D1) If m(A) > 0 then lim inf
n→∞ m(T nA) > 0.

In 1955, A. Calderón [1] introduced the condition:

(C) If m(A) > 0 then lim infn→∞ 1
n

∑n−1
i=1 m(T iA) > 0.

In 1956, Y. Dowker [3] introduced the condition:

(D2) If m(A) > 0 then lim supn→∞ 1
n

∑n−1
i=1 m(T iA) > 0.

In 1964, A. Hajian and S. Kakutani [5] introduced the condition:
(W) If m(A) > 0 then A is not a weakly wandering set.
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In 1964, A. Hajian [6] introduced the condition:
(S) If m(A) > 0 then A is strongly recurrent.

In 1964, A. Hajian and Y. Ito [7] introduced the condition:
(F) If f (x) > 0 is measurable then

∑∞
i=1 f (T ni x) = ∞ for any sequence {ni}.

In trying to find an invariant measure μ ∼ m, it is useful to study the asymptotic behavior
of the measure of the iterates m(T nA) of a given measurable set A. Actually, the necessary
and sufficient conditions (D1), (C), and (D2) refer to the behavior of the values of {m(T nA)}
or their Cesaro sums. These conditions are closer in nature to an invariant measure that is
being sought. The other conditions (H), (W), (S) and (F), which are the strengthened versions
of the corresponding conditions in the Recurrence Theorem 2.3, are more geometric in nature.
They depend on the class of measures equivalent with m rather than on the measure of the
iterates {T nA}. In the following Theorem we show by direct arguments that all of these
conditions are equivalent. Some of the results and arguments we employ were discussed
and used in [5], [6] and [8]. In what follows, for the sake of completeness, we repeat and
copy some of these arguments in the next result which we call the Finite Invariant Measures
Theorem.

THEOREM 3.2 (Finite Invariant Measures). Let T be a measurable and nonsingular
transformation defined on the finite measure space (X,B,m). Then conditions (D1), (C),
(D2), (H), (W), (S), (F) mentioned above are equivalent to each other. Furthermore, they are
necessary and sufficient conditions for the existence of a finite invariant measure μ ∼ m .

To prepare the way for the proof of this Finite Invariant Measures Theorem, we first
prove several Propositions and make some observations. For a transformation T on the finite
measure space (X,B,m), let us denote by:

σn(A) = 1

n

n−1∑
i=0

m(T iA) and σ(A) = lim sup
n→∞

σn(A) .

It is clear that σ is a non-negative sub-additive set function defined on B and is invariant under
T . The following Proposition exhibits the additive nature of σ on finitely equivalent sets.

PROPOSITION 3.3. Let T be a measurable and nonsingular transformation defined
on the finite measure space (X,B,m). Let A1, A2, . . . , As be a finite collection of mutually
disjoint sets which are finitely equivalent with each other; namely, Ai ≈ Aj , and Ai ∩Aj = ∅
for i 	= j ; i, j = 1, 2, . . . , s. Then,

σ(Ai) = σ(Aj ) for i, j = 1, 2, . . . , s

and

σ

( s⋃
i=1

Ai

)
=

s∑
i=1

σ(Ai) = sσ (A1) .
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PROOF. Suppose E ≈ F , then

E =
s⋃

j=1

Ej(disj) , F =
s⋃

j=1

Fj (disj) and T pj Ej = Fj , for 1 ≤ j ≤ s .

We first observe that for any set C ∈ B, and any integer p ∈ Z, n ≥ 1,

∣∣σn(C) − σn(T
pC)

∣∣ =
∣∣∣∣1

n

n−1∑
j=0

m(T jC) − 1

n

p+n−1∑
j=p

m(T jC)

∣∣∣∣ ≤ 2|p|
n

m(X) .

From the above follows that for any sequence {nk} tending to ∞ as k → ∞,

∣∣σnk (E) − σnk (F )
∣∣ =

∣∣∣∣
s∑

i=1

σnk (Ei) −
s∑

i=1

σnk (Fi)

∣∣∣∣
≤

s∑
i=1

∣∣σnk (Ei) − σnk (T
pi Ei)

∣∣ ≤
s∑

i=1

2
|pi |
nk

m(X) → 0(3.1)

as k → ∞.
Next, let {nk} be a sequence of integers such that

σ(E) = lim
k→∞ σnk (E) ;

then,

σ(E) = lim
k→∞ σnk (E) = lim

k→∞ σnk (F ) ≤ σ(F ) .

By symmetry, we conclude σ(E) = σ(F ) for any two sets E ≈ F .
Therefore σ(Ai) = σ(Aj ) for i, j = 1, 2, . . . , s. We also have from (3.1)

∣∣∣∣
s∑

i=1

σnk (Ai) − sσnk (A1)

∣∣∣∣ ≤
s∑

i=1

∣∣σnk (Ai) − σnk (A1)
∣∣ → 0

as k → ∞.
By a similar argument, we conclude σ (

⋃s
i=1 Ai) = sσ (A1). �

PROPOSITION 3.4. Let T be a nonsingular transformation defined on the finite mea-
sure space (X,B,m). Let A be a set of positive measure such that

(3.2) lim inf
n→∞ m(T nA) = 0 .

Then, for 0 < ε < m(A) there is a set A′ ⊂ A, with m(A′) < ε, so that S = A − A′ is not
strongly recurrent.
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PROOF. Let A and ε > 0 as above, be given. For k ≥ 1, let εk = ε
k2k . For each k ≥ 1

we choose an integer nk > 0 such that m
(
T nk−iA ∩ A

)
< εk for 0 ≤ i ≤ k − 1. This is

possible, since A satisfies (3.2), m(X) < ∞, and T is nonsingular, which implies that each of

the measures m−i (A) = m(T −iA) is absolutely continuous with respect to m. Let us put

A′ =
∞⋃

k=1

k−1⋃
i=0

T nk−iA ∩ A .

Then,

m(A′) ≤
∞∑

k=1

k−1∑
i=0

m(T nk−iA ∩ A) <

∞∑
k=1

kεk = ε .

Let S = A − A′; then, it is easy to see that m(S) ≥ m(A) − ε > 0 and

T nk−iS ∩ S ⊂ T nk−iA ∩ (A − A′) = ∅ for 1 ≤ i ≤ k − 1 , k ≥ 1 .

This says that for each k ≥ 1 there is an integer nk > 0 such that T nkS ∩ (⋃k−1
i=0 T iS

) = ∅.
�

PROPOSITION 3.5. Let T be a measurable and nonsingular transformation defined on
the finite measure space (X,B,m). If A is a compressible set of positive measure (i.e., A ∼ B

for some subset B of A and m(A − B) > 0), then there is a sequence of mutually disjoint sets
{Dn : n ≥ 1} in A, such that Di ≈ Dj for i 	= j ; i, j = 1, 2, . . . , and m(D1) > 0.

PROOF. By assumption, A = B ∪ C (disj.) with m(C) > 0 and A ∼ B. Using the
countable equivalence

A =
∞⋃
i=1

Ai(disj) , B =
∞⋃
i=1

T ni Ai(disj) ,

we obtain a decomposition B = B2 ∪ C2 with B ∼ B2 and C ∼ C2 (and so m(C2) > 0).
To see this, we observe that,

C =
∞⋃
i=1

(Ai ∩ C)(disj) , and also B =
∞⋃
i=1

(Ai ∩ B)(disj) .

Define

C2 =
∞⋃
i=1

T ni (Ai ∩ C) and B2 =
∞⋃
i=1

T ni (Ai ∩ B) .

Clearly C2 and B2 satisfy the desired properties.
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This same argument applies to B = B2 ∪ C2(disj) and we obtain B2 = B3 ∪ C3(disj)

with B2 ∼ B3 and C2 ∼ C3. Continuing by induction (and denoting C1 = C) we obtain
a sequence Ci of countably equivalent sets. In addition, the sets Ci are mutually disjoint
because each Ci+1 ⊂ Bi and Ci ∩ Bi = ∅.

As ∼ is an equivalence relation, it follows that C1 ∼ Cn for all n > 1. By carefully
truncating each of these countable equivalences we can obtain the sets Dn.

To do this, fix ε > 0 be such that m(C1) − ε > 0. For each k ≥ 2, since C1 ∼ Ck , it
follows that

C1 =
∞⋃
i=1

Ei,k(disj) , Ck =
∞⋃
i=1

T ni,k (Ei,k)(disj) .

Since m(X) < ∞, for each k ≥ 2, there is an Nk > 0 such that

m

( ∞⋃
i=Nk

Ei,k

)
<

ε

2k−1
.

We let D1 = C1 − ⋃∞
k=2

⋃∞
i=Nk

Ei,k . Then,

m(D1) ≥ m(C1) −
∞∑

k=2

ε

2k−1
= m(C1) − ε > 0 .

Next, for k ≥ 2 we define

(3.3) Dk =
Nk−1⋃
i=1

T ni,k
(
Ei,k ∩ D1

)
.

Equation (3.3) and the fact that D1 = ⋃Nk−1
i=1

(
Ei,k ∩ D1

)
imply D1 ≈ Dk for k ≥ 2.

Moreover, (3.3) implies Dk ⊂ Ck for k ≥ 2, and therefore, Di ∩ Dj = ∅ for i 	= j ;
i, j = 1, 2, . . . . �

PROPOSITION 3.6. Condition (D1) implies condition (F).

PROOF. Assume that condition (F) is not true. Then there is a measurable function
f > 0, a sequence of integers {ni : i ≥ 0} and a set A with m(A) > 0 such that

(3.4)
∞∑
i=0

f (T ni x) < ∞ for x ∈ A .

Since m(X) < ∞, for each ε > 0 there is a δ > 0 and a set B such that m(B) < ε and
f (x) ≥ δ for x ∈ X − B. Equation (3.4) implies: for x ∈ A, T ni x ∈ X − B for finitely
many i only. In other words, for almost all x ∈ A there is an integer N = N(x) > 0 such that
T ni x ∈ B for i ≥ N .
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For k ≥ 1 let A(k) = {x ∈ A : N(x) ≥ k}. Then, A = ⋃∞
k=1 A(k), and m(A) > 0

implies for any fixed η, 0 < η < m(A), there is k1 > 0 such that m(A − A1) ≤ η/2, where
A1 = A(k1). We see that for x ∈ A1, T ni x ∈ B for all i ≥ k1; therefore, m(T ni A1) ≤ ε

holds for all i ≥ k1.
From the above discussion we conclude: for ε > 0 and η > 0 there is a subset A1 ⊂ A

such that lim sup
i→∞

m(T ni A1) ≤ ε and m(A − A1) ≤ η/2.

Next, we repeat the above argument, and using induction, choose sets A ⊃ A1 ⊃ A2 ⊃
· · · as follows: For p ≥ 1 let εp = ε/p and ηp = η/2p. Assume we have chosen the sets
A ⊃ A1 ⊃ · · · ⊃ Ap for some p ≥ 1 that satisfy

(3.5) lim sup
i→∞

m(T ni Ap) ≤ εp and m(Ap−1 − Ap) ≤ ηp .

We use the same argument as above and obtain a set Ap+1 ⊂ Ap that satisfies (3.5) with p

replaced by p + 1.
Finally, we let A′ = ⋂∞

p=1 Ap. It follows that

lim inf
n→∞ m(T nA′) ≤ lim sup

i→∞
m(T ni A′) ≤ lim sup

i→∞
m(T ni Ap) ≤ εp

for each p. Then we have

lim inf
n→∞ m(T nA′) = 0 ,

while

m(A′) ≥ m

(
A −

∞⋃
p=1

(
Ap − Ap+1

) )
≥ m(A) −

∞∑
p=1

η/2p = m(A) − η > 0 .

This is a contradiction to condition (D1). �

For each integer k, denote by ωk(x) the Radon-Nikodym derivative of mk with respect to
m, where mk(A) = m(T kA) for A ∈ B. Since for each k, T k is a nonsingular transformation,
ωk(x) is positive, and since T kT n = T k+n, it follows that

ωk+n(x) = ωk(T
n(x))ωn(x) = ωn(T

k(x))ωk(x)

holds for every pair of integers k and n.

Define a linear operator V on the Hilbert space H = L2(X,B,m) by setting Vf (x) =
f (T x)(ω1(x))

1
2 for every f ∈ H. Then, V is a unitary operator on H, and it is easy to verify

that V kf (x) = f (T k(x))(ωk(x))
1
2 holds for each k.

Let C be the closed convex hull of the set {V k1 : k = 0, 1, 2, . . .} in H, where 1 denotes

the constant function 1. Note that V k1(x) = (ωk(x))
1
2 .

It is clear from the definition that the closed convex set C is mapped into itself by the
unitary operator V . It is well-known and easy to prove that in any Hilbert space a closed
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convex subset contains a unique element having the smallest norm. Hence, there exists a
unique element g0 in the closed convex subset C of H satisfying the property that ‖g0‖ ≤ ‖f ‖
holds for every f ∈ C where ‖ ‖ denotes the L2-norm of the space H.

The element V g0 belongs to the convex set C and since V is unitary, we have ‖V g0‖ =
‖g0‖. From the uniqueness of g0, it then follows that V g0 = g0, i.e., g0 is a fixed point of the
linear operator V .

We use this function g0 in the proof of our next proposition.

PROPOSITION 3.7. Let T be a bi-measurable, nonsingular transformation on
(X,B,m). Then, Dowker’s condition (D1) (and hence any of the equivalent conditions in-
troduced above) is sufficient for the existence of a finite T -invariant measure on (X,B) equiv-
alent to m.

PROOF. Let g0 be the fixed point of V mentioned in the paragraph above, and define a
measure μ on (X,B) by setting

μ(A) =
∫

A

(g0(x))2dm for A ∈ B .

Since the function g0(x) is square integrable, it is clear that μ is a finite measure on (X,B),
absolutely continuous with respect to m. Furthermore, since V g0 = g0, we have for any
A ∈ B,

μ(T A) =
∫

T A

(g0(x))2dm =
∫

A

(g0(T x))2ω1(x)dm

=
∫

A

(V g0(x))2dm =
∫

A

(g0(x))2dm = μ(A) ,

which shows that μ is a T -invariant measure.
To prove the sufficiency of the condition (D1) it remains to show that the condition (D1)

implies that the measure m is absolutely continuous with respect to μ. For this purpose, we
prove the following Lemma:

LEMMA 3.8. For a set A ∈ B, let δ(A) = infn≥0{
∫
A
(ωn(x))

1
2 dm}, and consider the

following condition on the transformation T :
(D1)∗ If m(A) > 0 then δ(A) > 0.

Then, the conditions (D1) and (D1)∗ are mutually equivalent.

PROOF. First note that because T n is nonsingular for each n, we may replace the lim inf
n→∞

in the statement of condition (D1) by infn≥0, whenever convenient.
Using the Cauchy-Schwarz inequality it is easy to see that (D1)∗ implies (D1). Con-

versely, suppose condition (D1) holds but there exists a set A with m(A) > 0 and δ(A) = 0.
Then, we can get an infinite sequence of integers {nk} for which∫

A

∑
k

(ωnk (x))
1
2 dm =

∑
k

∫
A

(ωnk (x))
1
2 dm < ∞ ,
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and therefore,
∑

k(ωnk (x))
1
2 < ∞ a. e. on A. But this in turn implies that

∑
k ωnk (x) < ∞

a.e. on A, from which we conclude that there exists a subset A′ of A with m(A′) > 0 such
that ∑

k

m(T nkA′) =
∫

A′

∑
k

ωnk (x)dm < ∞ .

From this it follows m(T nkA′) → 0 as k → ∞, and therefore, 0 = lim infn→∞ m(T nA′).
This contradicts (D1) since m(A′) > 0. �

To complete the proof of the Proposition, let us suppose that there is a set A ∈ B for
which μ(A) = 0, but m(A) > 0. Then, by (D1)∗, δ(A) > 0. From the definition of the closed
convex set C there exists for any ε, 0 < ε < δ(A), a finite set {αj } of positive numbers such
that

∑
j αj = 1 and a finite set of non-negative integers {kj } for which the inequality below

holds:

‖g0 −
∑
j

αjV
kj 1‖ <

ε

(m(X))
1
2

.

Note that from the Cauchy-Schwarz inequality, follows the fact that

if μ(A) = 0 then
∫

A

g0(x)dm = 0 .

Furthermore, we have∫
A

|g0(x) −
∑
j

αj (ωkj (x))
1
2 |dm ≤ ‖g0 −

∑
j

αjV
kj 1‖(m(X))

1
2 < ε ,

and ∑
j

αj

∫
A

(ωkj (x))
1
2 dm ≤

∫
A

g0(x)dm +
∫

A

|g0(x) −
∑
j

αj (ωkj (x))
1
2 |dm ≤ ε .

Putting all the above together; since
∑

j αj = 1, we obtain

ε ≥
∑
j

αj

∫
A

(ωkj (x))
1
2 dm ≥

∑
j

αj δ(A) = δ(A) > ε ,

a contradiction. This shows that μ(A) = 0 must imply m(A) = 0, and hence m ∼ μ. �

PROOF OF THEOREM 3.2. The implications (D1) ⇒ (C) ⇒ (D2) are obvious.

(D2) ⇒ (H): Assume condition (H) is not true.
Then, there are sets A and B such that A ∼ B,B ⊂ A, and m(A − B) > 0. From

Proposition 3.5 it follows that there is a sequence of mutually disjoint sets {Dn : n ≥ 1}
such that m(D1) > 0 and D1 ≈ Dk for k ≥ 2. Then, for any integer s > 0, we have:
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σ(D1 ∪ D2 ∪ · · · ∪ Ds) = sσ (D1). This implies sσ (D1) ≤ m(X). Since this is true for any
integer s > 0 we conclude that σ(D1) = 0. This contradicts condition (D2).

(H) ⇒ (W): Suppose that condition (W) is not true. Then, there is a weakly wandering set
C of positive measure, and a sequence of integers {ni : i ≥ 1} satisfying T ni C ∩ T nj C = ∅
for i 	= j . We let A = ⋃∞

i=1 Ai where Ai = T ni C for i ≥ 1 and B = ⋃∞
i=1 Bi where

Bi = T ni+1C for i ≥ 1. Then, Bi = T ni+1−ni Ai and B ∼ A, B ⊂ A, and m(A − B) =
m(T n1C) > 0; i.e., A is compressible. Thus condition (H) implies condition (W).
(W) ⇒ (S): Suppose condition (S) does not hold. Then, there is a measurable set A of positive
measure so that, for every integer nk there is an integer nk+1 such that

m

(
T nk+1A ∩

nk⋃
i=0

T iA

)
= 0 .

Let N = ⋃∞
k=1

(
T nk+1A ∩ ⋃nk

i=0 T iA
)
. Then m(N) = 0, and the set B = A − N is a weakly

wandering set under the sequence {nk : k ≥ 1}. This proves (W) ⇒ (S).
Proposition 3.4 proves the implication (S) ⇒ (D1), and therefore completes the proof

that conditions (D1), (C), (D2), (W), and (S) are all equivalent to each other.
Proposition 3.6 is the implication (D1) ⇒ (F). It remains to show condition (F) implies

condition (W).
(F) ⇒ (W): Again, proceed by assuming (W) is not satisfied. Then there is a sequence of
integers {ni : i ≥ 0} and a set C of positive measure, such that T ni C ∩ T nj C = ∅ for i 	= j .
We let

f (x) =
{

1 if x ∈ X − ⋃∞
i=0 T ni C

1/2i if x ∈ T ni C for i > 0 .

Then, for the above sequence {ni} and for x ∈ C we have

∞∑
i=0

f (T ni x) =
∞∑
i=0

1/2i < ∞ ,

which is a contradiction to condition (F). This proves that all the conditions mentioned in the
theorem are mutually equivalent.

Finally, we note that if there exists a finite invariant measure μ, μ ∼ m, then condition
(W) is clearly true. This shows that any of the conditions of the theorem is necessary for the
existence of such a measure. We finish the proof by noting that Proposition 3.7 shows that
these conditions are also sufficient for the existence of finite invariant measure equivalent to
m. �

4. Non-existence of a finite invariant measure μ ∼ m

In this section we study properties of transformations T that do not preserve a finite
invariant measure μ equivalent to m.
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DEFINITION 4.1. Let T be a measurable and nonsingular transformation defined on
the finite measure space (X,B,m).

• T is ergodic if whenever T A = A, then either m(A) = 0 or m(X − A) = 0.
• An infinite set of integers {ni : i ≥ 0} is an Exhaustive Weakly Wandering (eww)

sequence for the transformation T with the set A if m(A) > 0, T ni A ∩ T nj A = ∅ for
i, j = 0, 1, 2, . . . ; i > j and X = ⋃∞

i=0 T ni A.
• An infinite set of integers {ni : i ≥ 0} is a Strongly Weakly Wandering (sww) sequence

for the transformation T with the set A if m(A) > 0 and

T ni−nk+kA ∩ T nj −nl+lA = ∅
for i, j, k, l = 0, 1, 2, . . . ; i > j and whenever one of the indices {i, j, k, l} is larger
than all the others, or i = l > max{j, k}.

• For any sequence of integers {ni : i ≥ 1} and any set A ∈ B we consider the following
sequence of sets related to A and the sequence {ni}:
Set n0 = 0 and let A0 = A, A1 = T A − ⋃∞

r=0 T nr
(
T −n0A0

)
,

A2 = T 2A − ⋃∞
r=0 T nr

(
T −n0A0 ∪ T −n1A1

)
. Inductively for p > 2 we set,

(4.1) Ap = T pA −
∞⋃

r=0

T nr
(
T −n0A0 ∪ T −n1A1 ∪ · · · ∪ T −np−1Ap−1

)
.

Let

(4.2) W =
∞⋃

p=0

T −npAp .

We call the set W as constructed above the derived set from the sequence {ni : i ≥ 1}
and the set A ∈ B.

The following simple proposition follows from the definitions.

PROPOSITION 4.2. Let {ni : i ≥ 1} be a Strongly Weakly Wandering sequence for the
transformation T with the set A ∈ B; then, the derived set W from the sequence {ni} and the
set A have the following property:

∞⋃
r=0

T nr W(disj) ⊃
∞⋃

p=1

T pA

PROOF. Set n0 = 0. From equations (4.1) and (4.2) in the definition of the derived set,
it follows that for all p > 0,

∞⋃
r=0

T nr W ⊃ Ap ∪
∞⋃

r=0

T nr
(
T −n0A0 ∪ T −n1A1 ∪ · · · ∪ T −np−1Ap−1

)
⊃ T pA.
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This implies
⋃∞

r=0 T nr W ⊃ ⋃∞
p=1 T pA.

It remains to show that T ni W ∩ T nj W = ∅ for i, j = 0, 1, 2, . . . ; i > j . For this it is
sufficient to show that

(4.3) T ni−nkAk ∩ T nj −nl Al = ∅ for i, j, k, l = 0, 1, 2, . . . ; i > j .

It is clear from (4.1) that

(4.4) Ap ∩ T nr−ns As = ∅ if p > s .

If i = k > max{j, l} then (4.3) follows from (4.4). In all the other cases, we note that
Ak ⊂ T kA for k ≥ 0, and (4.3) follows from the properties defining the sww sequence {ni}.
This completes the proof. �

In the next proposition we show some useful properties of an ergodic transformation T .

PROPOSITION 4.3. Let T be an ergodic nonsingular transformation of (X,B,m).
Then, T satisfies the following properties:

(1E) If T iA∩T jA = ∅ for all i 	= j then m(A) = 0 (i.e., T does not accept wandering
sets).

(2E) If T A ⊂ A then m(A − T A) = 0.
(3E) If A is any set of positive measure, then for any integer k ≥ 0 we have⋃∞

n=k T nA = X.
(4E) If f is measurable and T -invariant (i.e. f (T x) = f (x) a.e.) then f (x) ≡ c a.e.

for some constant c.
(5E) If m and μ are equivalent T -invariant measures then m = cμ for some non-zero

constant c.

PROOF. Suppose (1E) is not true, and that A is a wandering set of positive measure:
i.e., T iA ∩ T jA = ∅ for i 	= j . Let B ⊂ A such that 0 < m(B) < m(A). Then

B∗ =
∞⋃

n=−∞
T nB

is a T -invariant set of positive measure with m(A − B∗) > 0, contradicting that T is ergodic.
If (2E) is not true, then there exists a set A with T A ⊂ A and m(A − T A) > 0. But,

then the set B = A − T A would be a wandering set contradicting property (1E).
For any k ≥ 0 and any set A of positive measure, let A∗ = ⋃∞

n=k T nA. Then property
(2E) implies that T A∗ = A∗. The ergodicity of T implies that A∗ = X. This shows (3E).

Assume (4E) is not true and that f is a T -invariant function (i.e., f (T x) = f (x) a.e.),
and c is a constant so that the sets A = {x : f (x) > c} and B = {x : f (x) < c} both have
positive measure. It follows that T A = A, and T B = B, and A ∩ B = ∅, again contradicting
the ergodicity of T .
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Suppose m ∼ μ, and both m and μ are T -invariant. Let f (x) be the Radon-Nikodym
derivative of m with respect to μ. Then, for every A ∈ B,∫

A

f (T x)dμ(x) =
∫

A

f (T x)dμ(T x) =
∫

T A

f (x)dμ(x)

= m(T A) = m(A) =
∫

A

f (x)dμ(x)

which implies that f (T x) = f (x). (4E) says f (x) ≡ c for some constant c proving (5E). �

Ergodic transformations are the basic building blocks for nonsingular transformations,
and in the literature there are many examples of ergodic transformations: some preserving a
finite measure equivalent to m, others preserving a σ -finite infinite measure equivalent to m,
and some preserving no σ -finite measure equivalent to m. From Proposition 4.3 property (1E)
it follows that ergodic transformations are recurrent. Property (4E) implies that for an ergodic
transformation that preserves an infinite measure m there does not exist a finite invariant mea-
sure μ, μ ∼ m; in particular, none of the conditions (1R)–(6R) of the Recurrence Theorem
2.3 is sufficient for the existence of a finite invariant measure μ equivalent to m. The Finite
Invariant Measures Theorem 3.2 then implies that if an ergodic transformation T preserves an
infinite measure then it necessarily accepts (ww) sequences. This is in sharp contrast to the
misconception that an ergodic transformation in general has some sort of mixing character.
It turns out that ergodic transformations that do not preserve a finite measure μ equivalent to
m admit even more interesting sequences than the weakly wandering sequences, as we ex-
hibit below. We note for a given transformation T , it is easier to verify the “disjointness”
condition in the definition of (sww) sequences than to verify the “exhaustive” condition of
(eww) sequences for T . The next result shows that for an ergodic transformation T , all (sww)
sequences are (eww).

PROPOSITION 4.4. Let T be an ergodic transformation. Then every Strongly Weakly
Wandering sequence for T is an Exhaustive Weakly Wandering sequence for T .

PROOF. The proof follows directly from Proposition 4.2 and property (3E) of Proposi-
tion 4.3. �

In the next two propositions we show the existence of (sww) sequences for any transfor-
mation that does not preserve a finite invariant measure μ equivalent to m.

PROPOSITION 4.5. For any measurable set A of positive measure,
let Ap = ⋃p

s=−p T sA for p ≥ 1. Suppose that for some sequence of integers {ci : i ≥ 1}
(4.5) lim inf

i→∞
[
m(T ciAp) + m(T 2ciAp)

] = 0 for all p ≥ 1 .

Then there is a subsequence {ni} of {ci} with the property that every infinite subset of the
sequence {ni : i ≥ 1} is a Strongly Weakly Wandering sequence for the transformation T .
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PROOF. Let ε > 0 be such that 0 < ε < m(A). We let c0 = 0, p1 = 1, Ap1 =⋃p1
s=−p1

T sA, and for i ≥ 1 we let εi = ε/2i . We use (4.5) and choose n1 = ci1 so that

m (T n1Ap1) + m
(
T 2n1Ap1

)
< ε1.

Next, we let p2 = 2|n1| + p1 + 2, and Ap2 = ⋃p2
s=−p2

T sA. We use (4.5) and choose

n2 = ci2 such that m (T n2Ap2) + m
(
T 2n2Ap2

)
< ε2.

We continue by induction. Assume that the integers n1, n2, . . . , nk−1 and
p1, p2, . . . , pk−1, have been chosen. We set pk = 2|nk−1| + pk−1 + k, and

Apk =
pk⋃

s=−pk

T sA .

We use (4.5) and choose nk = cik so that

m
(
T nkApk

) + m
(
T 2nkApk

)
< εk .

Finally, we let

A0 = A −
∞⋃

s=1

(
T ns Aps ∪ T 2ns Aps

)
.

We note that

(4.6) T ns Aps ∩ A0 = ∅ and T 2ns Aps ∩ A0 = ∅ for all s ≥ 1 .

We have

m(A0) ≥ m(A) − m

[ ∞⋃
s=1

(
T ns Aps ∪ T 2nsAps

) ]

≥ m(A) −
∞∑

s=1

[
m

(
T ns Aps

) + m
(
T 2nsAps

)]
> m(A) − ε > 0 .

Next, we show that any infinite subset of the sequence {ni : i ≥ 1} is an (sww) sequence for
the transformation T with the same set A0. We examine when the following is true:

T ni−nk+k′
A0 ∩ T nj −nl+l′A0 = ∅(4.7)

for i, j, k, l ≥ 0 , 0 ≤ k′ ≤ k , 0 ≤ l′ ≤ l , i > j .

If one of the indices, say k, is larger than all the others, then

T nk−k′−ni+nj −nl+l′A0 ⊂ T nkApk

and (4.6) implies (4.7).

If i = l > max{j, k}, then T 2ni−nk+k′−nj −l′A0 ⊂ T 2ni Api and again (4.6) implies (4.7).
Let us now consider any infinite subsequence of the sequence {ni : i ≥ 1} by eliminating

members from {n1, n2, n3, . . .}. Let n0 = 0, and after re-indexing the new sequence in the
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order obtained, let us denote it by the same symbols {ni : i ≥ 0}. From (4.7) it follows that
for this sequence {ni} the following holds:

T ni−nk+kA0 ∩ T nj −nl+lA0 = ∅ for i, j, k, l = 0, 1, 2, . . . ; i > j

whenever one of the indices {i, j, k, l} is larger than all the others, or i = k > max{j, l}.
This completes the proof of the Proposition. �

PROPOSITION 4.6. Suppose for a measurable set A of positive measure

lim
n→∞

1

n

n−1∑
i=0

m(T iA) = 0 .

Let Ap = ⋃p
j=−p T jA for p ≥ 0. It follows that

lim inf
n→∞

[
m(T nAp) + m(T 2nAp)

] = 0 for all p ≥ 1 .

PROOF. The set function

σ(B) = lim sup
n→∞

1

n

n−1∑
i=0

m(T iB)

is sub-additive and σ(T kB) = σ(B) for k ∈ Z. Let Ap = ⋃p
j=−p T jA for p ≥ 0. Then,

σ(Ap) = σ

( p⋃
j=−p

T jA

)
≤

p∑
j=−p

σ(T jA) = (2p + 1)σ (A) .

Therefore,

lim
n→∞

1

n

n−1∑
i=0

m(T iA) = 0 for A ∈ B

implies

(4.8) lim
n→∞

1

n

n−1∑
i=0

m(T iAp) = 0 for any p ≥ 0.

The inequality

1

n

n−1∑
i=0

[
m(T iAp) + m(T 2iAp)

] ≤ 1

2n

2n−1∑
i=0

4m(T iAp)

together with (4.8) imply

lim
n→∞

1

n

n−1∑
i=0

[
m(T iAp) + m(T 2iAp)

] = 0
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and this implies

lim inf
n→∞

[
m(T nAp) + m(T 2nAp)

] = 0 .

This completes the proof. �

The next theorem which generalizes a result of Krengel-Jones [11], follows from the two
previous propositions.

THEOREM 4.7. Let T be an ergodic transformation defined on the finite measure
space (X,B,m). Suppose there is no finite invariant measure μ equivalent to m. Then T

possesses Exhaustive Weakly Wandering sequences {ni} with the property that every subse-
quence {n′

i} of the sequence {ni} is again an Exhaustive Weakly Wandering sequence for the
transformation T .

PROOF. Since T does not preserve a finite invariant measure μ equivalent to m, Theo-
rem 3.2 implies that there is a set A, of positive measure and

lim
n→∞

1

n

n−1∑
i=0

m(T iA) = 0 .

The two previous Propositions (4.5 and 4.6) show that there is an (sww) sequence {ni} for the
transformation T with the property that every subsequence {n′

i} of the sequence {ni} is again
an (sww) sequence. Proposition 4.4 then concludes the proof of the Theorem. �

We conclude with an interesting observation that says when a (ww) sequence contains
an (eww) sequence.

PROPOSITION 4.8. Let the sequence {ni} be a Weakly Wandering sequence for the
ergodic transformation T . If {2ni} is also a Weakly Wandering sequence for T then {ni}
contains an Exhaustive Weakly Wandering subsequence {n′

i} with the property that every sub-

sequence of the sequence {n′
i} is again an Exhaustive Weakly Wandering sequence for the

transformation T .

PROOF. Let C be a (ww) set under a (ww) sequence {ni} for T , and let Cp =⋃p
s=−p T sC for p ≥ 0. Since for any integer s ∈ Z, the sets T ni (T sC) are mutually disjoint

for i ≥ 0, and m(X) < ∞, we have lim
i→∞ m

[
T ni

(
T sC

)] = 0 for any s ∈ Z. Then,

lim
i→∞ m

(
T ni Cp

) = lim
i→∞ m

(
T ni

p⋃
s=−p

T sC

)

≤
p∑

s=−p

lim
i→∞ m

(
T ni

(
T sC

)) = 0 .
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Similarly, since {2ni} is a (ww) sequence for T , then there is a set D, m(D) > 0, such that if
Dp = ⋃p

s=−p T sD for p ≥ 0, then limi→∞ m
(
T 2niDp

) = 0.

T ergodic implies: for some positive integer k, A = T kC ∩ D has positive measure and
that both sequences {ni} and {2ni} are (ww) sequences for the transformation T with the same
(ww) set A. From the above discussion we conclude that for the sets Ap = ⋃p

s=−p T sA for
p ≥ 0,

lim
i→∞[m(T ni Ap) + m(T 2ni Ap)] = lim

i→∞ m(T ni Ap) + lim
i→∞ m(T 2ni Ap) = 0 .

Proposition 4.5 then completes the proof. �
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