A Note on Traces of Singular Moduli

Ja Kyung KOO and Dong Hwa SHIN*

Korea Advanced Institute of Science and Technology
(Communicated by M. Kurihara)

Abstract

We generalize Osburn's work ([6]) about a congruence for traces defined in terms of Hauptmoduli associated to certain genus zero groups of higher levels.

1. Introduction

Let \mathfrak{H} denote the complex upper half-plane and $\mathfrak{H}^{*}:=\mathfrak{H} \cup \mathbf{Q} \cup\{\infty\}$. For an integer N (≥ 2), let $\Gamma_{0}(N)^{*}$ be the group generated by $\Gamma_{0}(N)$ and all Atkin-Lehner involutions W_{e} for $e \| N$. There are only finitely many N for which the modular curve $\Gamma_{0}(N)^{*} \backslash \mathfrak{H}^{*}$ has genus zero ([5]). In particular, if we let \mathfrak{S} be the set of such N which are prime, then

$$
\mathfrak{S}=\{2,3,5,7,11,13,17,19,23,29,31,41,47,59,71\} .
$$

For each $p \in \mathfrak{S}$, let $j_{p}^{*}(\tau)$ be the corresponding Hauptmodul with a Fourier expansion of the form $q^{-1}+O(q)$ where $q:=e^{2 \pi i \tau}$.

Let $p \in \mathfrak{S}$. For an integer $d(\geq 1)$ such that $-d \equiv \square(\bmod 4 p)$, let \mathcal{Q}_{d} be the set of all positive definite integral binary quadratic forms $Q(x, y)=[a, b, c]=a x^{2}+b x y+c y^{2}$ of discriminant $-d=b^{2}-4 a c$. To each $Q \in \mathcal{Q}_{d}$, we associate the unique root $\alpha_{Q} \in \mathfrak{H}$ of $Q(x, 1)$. Consider the set

$$
\mathcal{Q}_{d, p}:=\left\{[a, b, c] \in \mathcal{Q}_{d}: a \equiv 0 \quad(\bmod p)\right\},
$$

on which $\Gamma_{0}(p)^{*}$ acts. We then define the trace $t^{(p)}(d)$ by

$$
t^{(p)}(d):=\sum_{Q \in \mathcal{Q}_{d, p} / \Gamma_{0}(p)^{*}} \frac{1}{\omega_{Q}} j_{p}^{*}\left(\alpha_{Q}\right) \quad(\in \mathbf{Z}),
$$

where ω_{Q} is the number of stabilizers of Q in the transformation group $\pm \Gamma_{0}(p)^{*} / \pm 1$ ([4]).
Osburn ([6]) showed the following congruence:

[^0]THEOREM 1.1. Let $p \in \mathfrak{S}$. If $d(\geq 1)$ is an integer such that $-d \equiv$ \qquad $(\bmod 4 p)$ and $\ell(\neq p)$ is an odd prime which splits in $\mathbf{Q}(\sqrt{-d})$, then

$$
t^{(p)}\left(\ell^{2} d\right) \equiv 0 \quad(\bmod \ell)
$$

Although this result is true, we think that his proof seems to be unclear. Precisely speaking, let $D(\geq 1)$ be an integer such that $D \equiv \square$$(\bmod 4 p)$. In $\S 3$ we shall define

$$
\begin{aligned}
& A_{\ell}(D, d):=\text { the coefficient of } q^{D} \text { in } f_{d, p}(\tau) \mid T_{1 / 2, p}\left(\ell^{2}\right), \\
& B_{\ell}(D, d):=\text { the coefficient of } q^{d} \text { in } g_{D, p}(\tau) \mid T_{3 / 2, p}\left(\ell^{2}\right)
\end{aligned}
$$

where $f_{d, p}(\tau)$ and $g_{D, p}(\tau)$ are certain half integral weight modular forms, and $T_{1 / 2, p}\left(\ell^{2}\right)$ and $T_{3 / 2, p}\left(\ell^{2}\right)$ are Hecke operators of weight $1 / 2$ and $3 / 2$, respectively. The key step that is not presented in Osburn's work is the fact $A_{\ell}(1, d)=-B_{\ell}(1, d)$ which would be nontrivial at all. In this paper we shall first give a proof of more general statement $A_{\ell}(D, d)=-B_{\ell}(D, d)$ (Proposition 3.1), and then further generalize Theorem 1.1 as follows,

$$
t^{(p)}\left(\ell^{2 n} d\right) \equiv 0 \quad\left(\bmod \ell^{n}\right)
$$

for all $n(\geq 1)$ (Theorem 3.3).

2. Preliminaries

Let k and $N(\geq 1)$ be integers. If $f(\tau)$ is a function on \mathfrak{H} and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4 N)$, then we define the slash operator $[\gamma]_{k+1 / 2}$ on $f(\tau)$ by

$$
f(\tau) \mid[\gamma]_{k+1 / 2}:=j(\gamma, \tau)^{-2 k-1} f(\gamma \tau)
$$

where

$$
j(\gamma, \tau):=\left(\frac{c}{d}\right) \varepsilon_{d}^{-1} \sqrt{c \tau+d} \quad \text { with } \varepsilon_{d}:=\left\{\begin{array}{lll}
1 & \text { if } d \equiv 1 & (\bmod 4) \\
i & \text { if } d \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Here, ($\frac{c}{d}$) is the Kronecker symbol and $\sqrt{c \tau+d}$ takes its argument on the interval ($-\pi / 2, \pi / 2$].

We denote by $M_{k+1 / 2}^{+\cdots+}(N)^{!}$the infinite dimensional vector space of weakly holomorphic modular forms of weight $k+1 / 2$ on $\Gamma_{0}(4 N)$ which satisfy the Kohnen plus condition. Namely, the space consists of the functions $f(\tau)$ on \mathfrak{H} such that
(i) $f(\tau)$ is holomorphic on \mathfrak{H} and meromorphic at the cusps,
(ii) $f(\tau)$ is invariant under the action of $[\gamma]_{k+1 / 2}$ for all $\gamma \in \Gamma_{0}(4 N)$,
(iii) $f(\tau)$ has a Fourier expansion of the form

$$
\sum_{(-1)^{k} n \equiv \square(\bmod 4 N)} a(n) q^{n} .
$$

Suppose that ℓ is a prime with $\ell \nmid N$. The action of the Hecke operator $T_{k+1 / 2, N}\left(\ell^{2}\right)$ on a form

$$
f(\tau)=\sum_{(-1)^{k_{n}} \sum_{\square}(\bmod 4 N)} a(n) q^{n} \quad \text { in } \quad M_{k+1 / 2}^{+\cdots+}(N)^{!}
$$

is given by

$$
\begin{align*}
& f(\tau) \mid T_{k+1 / 2, N}\left(\ell^{2}\right):=\ell_{k} \sum_{(-1)^{k} n \equiv \square(\bmod 4 N)} \tag{2.1}\\
& \quad \times\left(a\left(\ell^{2} n\right)+\left(\frac{(-1)^{k} n}{\ell}\right) \ell^{k-1} a(n)+\ell^{2 k-1} a\left(n / \ell^{2}\right)\right) q^{n},
\end{align*}
$$

where

$$
\ell_{k}:= \begin{cases}\ell^{1-2 k} & \text { if } k \leq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Here, $a\left(n / \ell^{2}\right):=0$ if $\ell^{2} \nmid n$. As is well-known, $f(\tau) \mid T_{k+1 / 2, N}\left(\ell^{2}\right)$ belongs to $M_{k+1 / 2}^{+\cdots+}(N)$!.
Proposition 2.1. Let $p \in \mathfrak{S}$.
(i) For every integer $D(\geq 1)$ such that $D \equiv$$(\bmod 4 p)$, there is a unique $g_{D, p}$ in $M_{3 / 2}^{+\cdots+}(p)$! with the Fourier expansion

$$
g_{D, p}(\tau)=q^{-D}+\sum_{d \geq 0,-d \equiv \square(\bmod 4 p)} B(D, d) q^{d} \quad(B(D, d) \in \mathbf{Z})
$$

(ii) For every integer $d(\geq 0)$ such that $-d \equiv \square(\bmod 4 p)$, there is a unique form

$$
f_{d, p}(\tau)=\sum_{D \in \mathbf{Z}} A(D, d) q^{D} \quad(A(D, d) \in \mathbf{Z})
$$

in $M_{1 / 2}^{+\cdots+}(p)^{!}$with a Fourier expansion of the form $q^{-d}+O(q)$. They form a basis of $M_{1 / 2}^{+\cdots+}(p)$!.
(iii) For every integer $d(\geq 0)$ such that $-d \equiv$$(\bmod 4 p)$ and every integer $D(\geq 1)$ such that $D \equiv$$(\bmod 4 p)$, we have

$$
A(D, d)=-B(D, d)
$$

(iv) For every integer $d(\geq 1)$ such that $-d \equiv$$(\bmod 4 p)$, we get

$$
t^{(p)}(d)=-B(1, d)
$$

Proof. See [1, Theorem 5.6], [3, §2.2] and [4, Lemma 3.4 and Corollary 3.5].

3. Generalization of Theorem 1.1

We first prove the following necessary proposition by adopting Zagier's argument ([7, Theorem 5]).

Proposition 3.1. Let $p \in \mathfrak{S}$ and $\ell(\neq p)$ be a prime. For each integer $d(\geq 0)$ such that $-d \equiv$$(\bmod 4 p)$, we define integers $A_{\ell}(D, d)$ and $B_{\ell}(D, d)$ in the following manner:

$$
\begin{aligned}
A_{\ell}(D, d):= & \text { the coefficient of } q^{D} \text { in } f_{d, p}(\tau) \mid T_{1 / 2, p}\left(\ell^{2}\right) \text { for each integer } D, \\
B_{\ell}(D, d):= & \text { the coefficient of } q^{d} \text { in } g_{D, p}(\tau) \mid T_{3 / 2, p}\left(\ell^{2}\right) \text { for each integer } D(\geq 1) \\
& \text { such that } D \equiv \square \quad(\bmod 4 p) .
\end{aligned}
$$

Then we have the relation
$A_{\ell}(D, d)=-B_{\ell}(D, d)$ for every integer $D(\geq 1)$ such that $D \equiv \square$$(\bmod 4 p)$.
Proof. For a pair of rational numbers a and b, let

$$
\delta_{a, b}:= \begin{cases}1 & \text { if } a=b \in \mathbf{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Let $d(\geq 0)$ be a fixed integer such that $-d \equiv$$(\bmod 4 p)$. It follows from the defining property of $f_{d, p}(\tau)$, namely,

$$
A(D, d)=\delta_{D,-d} \quad \text { if } D \leq 0
$$

that if $D \leq 0$, then

$$
\begin{aligned}
A_{\ell}(D, d) & =\ell A\left(\ell^{2} D, d\right)+\left(\frac{D}{\ell}\right) A(D, d)+A\left(D / \ell^{2}, d\right) \text { by the definition (2.1) } \\
& =\ell \delta_{\ell^{2} D,-d}+\left(\frac{D}{\ell}\right) \delta_{D,-d}+\delta_{D / \ell^{2},-d} \\
& =\ell \delta_{D,-d / \ell^{2}}+\left(\frac{D}{\ell}\right) \delta_{D,-d}+\delta_{D,-d \ell^{2}}
\end{aligned}
$$

Hence the principal part of $f_{d, p}(\tau) \mid T_{1 / 2, p}\left(\ell^{2}\right)$ at infinity is

$$
\ell q^{-d / \ell^{2}}+\left(\frac{-d}{\ell}\right) q^{-d}+q^{-d \ell^{2}}
$$

where the first term should be omitted unless $-d / \ell^{2}$ is an integer. Therefore we achieve

$$
\begin{equation*}
f_{d, p}(\tau) \left\lvert\, T_{1 / 2, p}\left(\ell^{2}\right)=\ell f_{d / \ell^{2}, p}(\tau)+\left(\frac{-d}{\ell}\right) f_{d, p}(\tau)+f_{d \ell^{2}, p}(\tau)\right. \text { by Proposition 2.1(ii). } \tag{3.1}
\end{equation*}
$$

And, for every integer $D(\geq 1)$ such that $D \equiv$$(\bmod 4 p)$ we derive that

$$
A_{\ell}(D, d)=\ell A\left(D, d / \ell^{2}\right)+\left(\frac{-d}{\ell}\right) A(D, d)+A\left(D, d \ell^{2}\right) \text { by (3.1) }
$$

$$
\begin{aligned}
& =-\ell B\left(D, d / \ell^{2}\right)-\left(\frac{-d}{\ell}\right) B(D, d)-B\left(D, d \ell^{2}\right) \text { by Proposition 2.1(iii) } \\
& =-B_{\ell}(D, d) \text { by the definition (2.1). }
\end{aligned}
$$

On the other hand, we apply Jenkins' idea ([2]) to develop a formula for the coefficient $B\left(D, \ell^{2 n} d\right)$.

Proposition 3.2. Let $p \in \mathfrak{S}$ and $\ell(\neq p)$ be a prime. If $d(\geq 0)$ and $D(\geq 1)$ are integers such that $-d \equiv$$(\bmod 4 p)$ and $D \equiv \square$$(\bmod 4 p)$, then

$$
\begin{aligned}
B\left(D, \ell^{2 n} d\right)= & \ell^{n} B\left(\ell^{2 n} D, d\right)+\sum_{t=0}^{n-1}\left(\frac{D}{\ell}\right)^{n-t-1}\left(B\left(D / \ell^{2}, \ell^{2 t} d\right)-\ell^{t+1} B\left(\ell^{2 t} D, d / \ell^{2}\right)\right) \\
& +\sum_{t=0}^{n-1}\left(\frac{D}{\ell}\right)^{n-t-1}\left(\left(\frac{D}{\ell}\right)-\left(\frac{-d}{\ell}\right)\right) \ell^{t} B\left(\ell^{2 t} D, d\right)
\end{aligned}
$$

for all $n(\geq 1)$.
Proof. From the definition (2.1), we have

$$
\begin{align*}
& A_{\ell}(D, d)=\ell A\left(\ell^{2} D, d\right)+\left(\frac{D}{\ell}\right) A(D, d)+A\left(D / \ell^{2}, d\right) \tag{3.2}\\
& B_{\ell}(D, d)=\ell B\left(D, d / \ell^{2}\right)+\left(\frac{-d}{\ell}\right) B(D, d)+B\left(D, d \ell^{2}\right) . \tag{3.3}
\end{align*}
$$

Combining Proposition 3.1 with (3.2), we get

$$
\begin{equation*}
B_{\ell}(D, d)=\ell B\left(\ell^{2} D, d\right)+\left(\frac{D}{\ell}\right) B(D, d)+B\left(D / \ell^{2}, d\right) \tag{3.4}
\end{equation*}
$$

We then derive from (3.3) and (3.4) that

$$
\begin{align*}
B\left(D, \ell^{2} d\right)= & \ell B\left(\ell^{2} D, d\right) \\
& +\left(\frac{D}{\ell}\right) B(D, d)+B\left(D / \ell^{2}, d\right)-\ell B\left(D, d / \ell^{2}\right)-\left(\frac{-d}{\ell}\right) B(D, d) \tag{3.5}
\end{align*}
$$

The remaining part of the proof is exactly the same as that of [2] Theorem 1.1. Indeed, one can readily prove the proposition by using induction on n and applying only (3.5).

Now, we are ready to prove our main theorem which would be a generalization of Osburn's result.

THEOREM 3.3. With the same notations as in Theorem 1.1, we have

$$
t^{(p)}\left(\ell^{2 n} d\right) \equiv 0 \quad\left(\bmod \ell^{n}\right)
$$

for all $n(\geq 1)$.
Proof. We achieve that

$$
\begin{aligned}
t^{(p)}\left(\ell^{2 n} d\right)= & -B\left(1, \ell^{2 n} d\right) \text { by Proposition 2.1(iv) } \\
= & -\ell^{n} B\left(\ell^{2 n}, d\right)-\sum_{t=0}^{n-1}\left(\frac{1}{\ell}\right)^{n-t-1}\left(B\left(1 / \ell^{2}, \ell^{2 t} d\right)-\ell^{t+1} B\left(\ell^{2 t}, d / \ell^{2}\right)\right) \\
& -\sum_{t=0}^{n-1}\left(\frac{1}{\ell}\right)^{n-t-1}\left(\left(\frac{1}{\ell}\right)-\left(\frac{-d}{\ell}\right)\right) \ell^{t} B\left(\ell^{2 t}, d\right) \text { by Proposition } 3.2 \\
= & -\ell^{n} B\left(\ell^{2 n}, d\right) \text { by the facts that } 1 / \ell^{2} \text { and } d / \ell^{2} \text { are not integers, and }\left(\frac{-d}{\ell}\right)=1 \\
& \equiv 0 \quad\left(\bmod \ell^{n}\right)
\end{aligned}
$$

as desired.

References

[1] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math., vol. 55 (1985), Birkhäuser, Basel.
[2] P. JenKins, p-adic properties for traces of singular moduli, Int. J. Number Theory 1 (2005), no. 1, 103-107.
[3] C. H. Kim, Borcherds products associated with certain Thompson series, Compos. Math. 140 (2004), no. 3, 541-551.
[4] C. H. Kim, Traces of singular values and Borcherds products, Bull. London Math. Soc. 38 (2006), no. 5, 730-740.
[5] A. P. OgG, Automorphismes de courbes modulaires, Seminaire Delange-PisotPoitou (16e annee: 1974/75), Theorie des nombres, Fasc. 1, Exp. no. 7, 8 pp. Secretariat Mathematique, Paris, 1975.
[6] R. Osburn, Congruences for traces of singular moduli, Ramanujan J. 14 (2007), no. 3, 411-419.
[7] D. ZAGIER, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 211-244, Int. Press Lect. Ser., no. 3, I, Int. Press, Somerville, MA, 2002.

[^1]
[^0]: Received November 29, 2010; revised February 22, 2011
 2010 Mathematics Subject Classification: 11F30, 11F33, 11F37
 Key words and phrases: Singular moduli, modular forms, congruences
 The first named author was partially supported by the NRF of Korea grant funded by MEST (2010-0000798). *The corresponding author was supported by Hankuk University of Foreign Studies Research Fund of 2012.

[^1]: Present Addresses:
 Ja Kyung Koo
 Department of Mathematical Sciences,
 Korea Advanced Institute of Science and Technology,
 Daejeon 373-1, Korea.
 e-mail: jkkoo@math.kaist.ac.kr
 Dong Hwa Shin
 Department of Mathematics,
 Hankuk University of Foreign Studies,
 Yongin-si, Gyeongi-do 449-791, Korea.
 e-mail: dhshin@hufs.ac.kr

