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A Note on Traces of Singular Moduli
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Abstract. We generalize Osburn’s work ([6]) about a congruence for traces defined in terms of Hauptmoduli
associated to certain genus zero groups of higher levels.

1. Introduction

Let H denote the complex upper half-plane and H∗ := H ∪ Q ∪ {∞}. For an integer N

(≥ 2), let Γ0(N)∗ be the group generated by Γ0(N) and all Atkin-Lehner involutions We for
e||N . There are only finitely many N for which the modular curve Γ0(N)∗\H∗ has genus zero
([5]). In particular, if we let S be the set of such N which are prime, then

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71} .

For each p ∈ S, let j∗
p(τ ) be the corresponding Hauptmodul with a Fourier expansion of the

form q−1 + O(q) where q := e2πiτ .
Let p ∈ S. For an integer d (≥ 1) such that −d ≡ � (mod 4p), let Qd be the set of

all positive definite integral binary quadratic forms Q(x, y) = [a, b, c] = ax2 + bxy + cy2

of discriminant −d = b2 − 4ac. To each Q ∈ Qd , we associate the unique root αQ ∈ H of
Q(x, 1). Consider the set

Qd,p := {[a, b, c] ∈ Qd : a ≡ 0 (mod p)} ,

on which Γ0(p)∗ acts. We then define the trace t(p)(d) by

t(p)(d) :=
∑

Q∈Qd,p/Γ0(p)∗

1

ωQ

j∗
p(αQ) (∈ Z) ,

where ωQ is the number of stabilizers of Q in the transformation group ±Γ0(p)∗/ ± 1 ([4]).
Osburn ([6]) showed the following congruence:
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THEOREM 1.1. Let p ∈ S. If d (≥ 1) is an integer such that −d ≡ � (mod 4p) and

� ( �= p) is an odd prime which splits in Q(
√−d), then

t(p)(�2d) ≡ 0 (mod �) .

Although this result is true, we think that his proof seems to be unclear. Precisely speak-
ing, let D (≥ 1) be an integer such that D ≡ � (mod 4p). In §3 we shall define

A�(D, d) := the coefficient of qD in fd,p(τ )|T1/2,p(�2) ,

B�(D, d) := the coefficient of qd in gD,p(τ )|T3/2,p(�2) ,

where fd,p(τ ) and gD,p(τ ) are certain half integral weight modular forms, and T1/2,p(�2) and

T3/2,p(�2) are Hecke operators of weight 1/2 and 3/2, respectively. The key step that is not
presented in Osburn’s work is the fact A�(1, d) = −B�(1, d) which would be nontrivial at
all. In this paper we shall first give a proof of more general statement A�(D, d) = −B�(D, d)

(Proposition 3.1), and then further generalize Theorem 1.1 as follows,

t(p)(�2nd) ≡ 0 (mod �n)

for all n (≥ 1) (Theorem 3.3).

2. Preliminaries

Let k and N (≥ 1) be integers. If f (τ) is a function on H and γ =
(

a b

c d

)
∈ Γ0(4N),

then we define the slash operator [γ ]k+1/2 on f (τ) by

f (τ)|[γ ]k+1/2 := j (γ, τ )−2k−1f (γ τ) ,

where

j (γ, τ ) :=
(

c

d

)
ε−1
d

√
cτ + d with εd :=

{
1 if d ≡ 1 (mod 4)

i if d ≡ 3 (mod 4) .

Here, ( c
d
) is the Kronecker symbol and

√
cτ + d takes its argument on the interval

(−π/2, π/2].
We denote by M+···+

k+1/2(N)! the infinite dimensional vector space of weakly holomorphic

modular forms of weight k+1/2 on Γ0(4N) which satisfy the Kohnen plus condition. Namely,
the space consists of the functions f (τ) on H such that

(i) f (τ) is holomorphic on H and meromorphic at the cusps,
(ii) f (τ) is invariant under the action of [γ ]k+1/2 for all γ ∈ Γ0(4N),

(iii) f (τ) has a Fourier expansion of the form
∑

(−1)kn≡� (mod 4N)

a(n)qn .
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Suppose that � is a prime with � � N . The action of the Hecke operator Tk+1/2,N(�2) on
a form

f (τ) =
∑

(−1)kn≡� (mod 4N)

a(n)qn in M+···+
k+1/2(N)!

is given by

f (τ)|Tk+1/2,N(�2) := �k

∑
(−1)kn≡� (mod 4N)

×
(

a(�2n) +
(

(−1)kn

�

)
�k−1a(n) + �2k−1a(n/�2)

)
qn ,

(2.1)

where

�k :=
{

�1−2k if k ≤ 0
1 otherwise.

Here, a(n/�2) := 0 if �2 � n. As is well-known, f (τ)|Tk+1/2,N(�2) belongs to M+···+
k+1/2(N)!.

PROPOSITION 2.1. Let p ∈ S.
(i) For every integer D (≥ 1) such that D ≡ � (mod 4p), there is a unique gD,p in

M+···+
3/2 (p)! with the Fourier expansion

gD,p(τ ) = q−D +
∑

d≥0, −d≡� (mod 4p)

B(D, d)qd (B(D, d) ∈ Z) .

(ii) For every integer d (≥ 0) such that −d ≡ � (mod 4p), there is a unique form

fd,p(τ ) =
∑
D∈Z

A(D, d)qD (A(D, d) ∈ Z)

in M+···+
1/2 (p)! with a Fourier expansion of the form q−d +O(q). They form a basis

of M+···+
1/2 (p)!.

(iii) For every integer d (≥ 0) such that −d ≡ � (mod 4p) and every integer D (≥ 1)
such that D ≡ � (mod 4p), we have

A(D, d) = −B(D, d) .

(iv) For every integer d (≥ 1) such that −d ≡ � (mod 4p), we get

t(p)(d) = −B(1, d) .

PROOF. See [1, Theorem 5.6], [3, §2.2] and [4, Lemma 3.4 and Corollary 3.5]. �
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3. Generalization of Theorem 1.1

We first prove the following necessary proposition by adopting Zagier’s argument ([7,
Theorem 5]).

PROPOSITION 3.1. Let p ∈ S and � ( �= p) be a prime. For each integer d (≥ 0) such
that −d ≡ � (mod 4p), we define integers A�(D, d) and B�(D, d) in the following manner:

A�(D, d) := the coefficient of qD in fd,p(τ )|T1/2,p(�2) for each integer D,

B�(D, d) := the coefficient of qd in gD,p(τ )|T3/2,p(�2) for each integer D (≥ 1)

such that D ≡ � (mod 4p) .

Then we have the relation

A�(D, d) = −B�(D, d) for every integer D (≥ 1) such that D ≡ � (mod 4p) .

PROOF. For a pair of rational numbers a and b, let

δa,b :=
{

1 if a = b ∈ Z
0 otherwise.

Let d (≥ 0) be a fixed integer such that −d ≡ � (mod 4p). It follows from the defining
property of fd,p(τ ), namely,

A(D, d) = δD,−d if D ≤ 0

that if D ≤ 0, then

A�(D, d) = �A(�2D, d) +
(

D

�

)
A(D, d) + A(D/�2, d) by the definition (2.1)

= �δ�2D,−d +
(

D

�

)
δD,−d + δD/�2,−d

= �δD,−d/�2 +
(

D

�

)
δD,−d + δD,−d�2 .

Hence the principal part of fd,p(τ )|T1/2,p(�2) at infinity is

�q−d/�2 +
(−d

�

)
q−d + q−d�2

,

where the first term should be omitted unless −d/�2 is an integer. Therefore we achieve

fd,p(τ )|T1/2,p(�2) = �fd/�2,p(τ )+
(−d

�

)
fd,p(τ )+fd�2,p(τ ) by Proposition 2.1(ii). (3.1)

And, for every integer D (≥ 1) such that D ≡ � (mod 4p) we derive that

A�(D, d) = �A(D, d/�2) +
(−d

�

)
A(D, d) + A(D, d�2) by (3.1)
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= −�B(D, d/�2) −
(−d

�

)
B(D, d) − B(D, d�2) by Proposition 2.1(iii)

= −B�(D, d) by the definition (2.1) .

�

On the other hand, we apply Jenkins’ idea ([2]) to develop a formula for the coefficient
B(D, �2nd).

PROPOSITION 3.2. Let p ∈ S and � ( �= p) be a prime. If d (≥ 0) and D (≥ 1) are
integers such that −d ≡ � (mod 4p) and D ≡ � (mod 4p), then

B(D, �2nd) = �nB(�2nD, d) +
n−1∑
t=0

(
D

�

)n−t−1

(B(D/�2, �2t d) − �t+1B(�2tD, d/�2))

+
n−1∑
t=0

(
D

�

)n−t−1((
D

�

)
−

(−d

�

))
�tB(�2tD, d)

for all n (≥ 1).

PROOF. From the definition (2.1), we have

A�(D, d) = �A(�2D, d) +
(

D

�

)
A(D, d) + A(D/�2, d), (3.2)

B�(D, d) = �B(D, d/�2) +
(−d

�

)
B(D, d) + B(D, d�2) . (3.3)

Combining Proposition 3.1 with (3.2), we get

B�(D, d) = �B(�2D, d) +
(

D

�

)
B(D, d) + B(D/�2, d). (3.4)

We then derive from (3.3) and (3.4) that

B(D, �2d) = �B(�2D, d)

+
(

D

�

)
B(D, d) + B(D/�2, d) − �B(D, d/�2) −

(−d

�

)
B(D, d) .

(3.5)

The remaining part of the proof is exactly the same as that of [2] Theorem 1.1. Indeed, one
can readily prove the proposition by using induction on n and applying only (3.5). �

Now, we are ready to prove our main theorem which would be a generalization of Os-
burn’s result.

THEOREM 3.3. With the same notations as in Theorem 1.1, we have

t(p)(�2nd) ≡ 0 (mod �n)
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for all n (≥ 1).

PROOF. We achieve that

t(p)(�2nd) = −B(1, �2nd) by Proposition 2.1(iv)

= −�nB(�2n, d) −
n−1∑
t=0

(
1

�

)n−t−1

(B(1/�2, �2t d) − �t+1B(�2t , d/�2))

−
n−1∑
t=0

(
1

�

)n−t−1((
1

�

)
−

(−d

�

))
�tB(�2t , d) by Proposition 3.2

= −�nB(�2n, d) by the facts that 1/�2 and d/�2 are not integers, and

(−d

�

)
= 1

≡ 0 (mod �n) ,

as desired. �
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