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Deformations of a Holomorphic Map and Its Degeneracy Locus
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(Communicated by K. Shinoda)

Abstract. Let f : X → Y be a surjective holomorphic map of compact complex manifolds and Δ the de-
generacy locus of f . In this paper we shall discuss relationship between infinitesimal deformations of f and the
corresponding infinitesimal displacements of Δ in Y . We shall prove that two kinds of Kodaira-Spencer maps are
compatible under certain assumptions. As an application of our main theorem, deformations of quadric bundles shall
be discussed.

1. Introduction

Let f : X → Y be a surjective holomorphic map between compact complex manifolds
X and Y of dimension n and m respectively (n ≥ m). We define the ramification locus R and
the degeneracy locusΔ of f as follows:

R = { x ∈ X | f is not smooth at x} , Δ = f (R).

In this paper we shall discuss relationship between infinitesimal deformations of f and the
corresponding infinitesimal deformations of Δ.

Let { ft : Xt → Y }t∈M be a deformation family of the map f (see §2 for precise
definition). We denote by Rt and Δt the ramification locus and the degeneracy locus of ft
respectively.

E. Horikawa [6] studied deformations of holomorphic maps. Due to [6] we have the map

τ : To(M) → DX/Y = H1(F : ΘX → f ∗ΘY ) (1)

of Kodaira-Spencer type, where To(M) denotes the tangent space of the base space M at
o ∈ M and F : ΘX → f ∗ΘY is the natural homomorphism induced by f : X → Y (see §2
for precise construction).

On the other hand, K. Kodaira [7] studied displacements of submanifolds of a complex
manifold. Applying arguments of [7] to the family {Δt}t∈M , we have the map

ρ : To(M) → H 0(Δ,NΔ/Y ) , (2)
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which is another type of Kodaira-Spencer map, where NΔ/Y denotes the normal sheaf of Δ
in Y .

Now we ask the following question.

Question. How are the maps τ and ρ related to each other?

In the papers [2], [3], [4] and [5] we discussed this question in case where f : X → Y is
a conic bundle and dimX = 3. In this paper we shall generalize [2, Theorem 2.12] as follows
(see Theorem 1 for precise statement).

(i) Let f : X → Y be a surjective holomorphic map between compact complex
manifolds. We assume that Δ is a smooth submanifold of Y of codimension one.
We furthermore assume that f |R : R → Δ is isomorphic.

(ii) Due to [6], we have the natural homomorphism

P : DX/Y → H 0(X,SX/Y ) , (3)

where SX/Y = Coker(F : ΘX → f ∗ΘY ).
(iii) Let R′ be the scheme-theoretic ramification locus of f and j : R → R′ the natural

inclusion map (cf. Definition 1). Then SX/Y is an OR′ -module (cf. Proposition 1).
The map j induces the map

j∗ : H 0(X,SX/Y ) → H 0(R, j∗SX/Y ) . (4)

(iv) We shall prove that there exists a natural isomorphism

ψ : H 0(R, j∗SX/Y ) → H 0(Δ,NΔ/Y ) (5)

(cf. Proposition 3).
(v) Moreover we shall prove that

ρ = ψ ◦ j∗ ◦ P ◦ τ , (6)

which shows the compatibility of τ and ρ (cf. Theorem 1) .
In §5, §6 and §7 we shall discuss deformations of quadric bundles, especially of conic

bundles, applying Theorem 1 and its corollary (Corollary 1). We shall study local structures
of a quadric bundle in §5. In §6 we shall give a general formula on the direct image sheaf
f∗ΘX/Y for a conic bundle f : X → Y , which is a generalization of [3, Theorem 3.3]
(see Theorem 2 for precise statement). Using these results, we shall finally discuss a kind
of rigidity of a conic bundle; we shall prove that certain conic bundles admit no non-trivial
small deformation families fixing the discriminant loci, which is a generalization of [3, Corol-
lary 3.14] to higher-dimensional cases (see Corollary 4 for precise statement). In §7 we shall
prove a technical lemma (Lemma 12) which is needed to prove Theorem2.
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2. Preliminaries

First we shall briefly recall the deformation theory of holomorphic maps due to
E. Horikawa [6] in order to fix our notation.

Let Y be a compact complex manifold of dimensionm. By a family of holomorphic maps
into Y , we mean a quadruplet (X ,Φ, p,M) of complex manifolds X , M and holomorphic
maps Φ : X → Y ×M , p : X → M with the following properties:

(i) p is smooth and proper.
(ii) q ◦Φ = p, where q : Y ×M → M denotes the second projection.

Putting Xt = p−1(t) and ft = Φ|Xt for t ∈ M , we denote the family (X ,Φ, p,M) by
{ft : Xt → Y }t∈M . Let o ∈ M , X = Xo and f = fo. Then the family {ft : Xt → Y }t∈M is
called a deformation family of f : X → Y .

From now on, dimX shall be supposed to be n unless otherwise mentioned.
Let F : ΘX → f ∗ΘY be the natural homomorphism induced by f . We put ΘX/Y =

Ker(f ), SX/Y = Coker(F ) and DX/Y = H1(F : ΘX → f ∗ΘY ). Then we have an exact
sequence

0 → H 1(X,ΘX/Y ) → DX/Y → H 0(X,SX/Y ) → H 2(X,ΘX/Y ) . (7)

Horikawa showed that the infinitesimal deformations of f are classified by DX/Y . He
also defined a kind of Kodaira-Spencer map τ : To(M) → DX/Y .

Let U = {Ui} be a finite Stein open covering of X. For a sheaf F on X, we denote the
group of the q-cochains and the q-cocycles with coefficients in F by Cq(U,F) andZq(U,F)
respectively. We denote the q-th coboundary map by δ : Cq(U,F) → Cq+1(U,F). Then we
have

DX/Y = { (τ, σ ) ∈ C0(U, f ∗ΘY )× Z1(U,ΘX) | δ(τ ) = F(σ) }
{ (F (g), δ(g)) | g ∈ C0(U,ΘX) } (8)

The map τ is determined as follows. ShrinkingM , if necessary, we assume the following.
(i) M is an open subset of Ck with coordinates t = (t1, . . . , tk) and o = (0, . . . , 0).

(ii) X is covered by a finite number of Stein coordinate open sets {Ui}. Each Ui is
covered by a system of coordinates (zi , t) such that p(zi , t) = t , where (zi, t) =
(z1
i , . . . , z

n
i , t1, . . . , tk).

(iii) Φ(Ui ) ⊂ Vi × M , where Vi is an Stein open subset of Y covered by a system of

coordinateswi = (w1
i , . . . , w

m
i ).

(iv) Φ is given by wli = Φli (zi, t) for l = 1, . . . ,m.

(v) (zi, t) ∈ Ui coincides with (zj , t) ∈ Uj if and only if zli = φlij (z
1
j , . . . , z

n
j , t) for

l = 1, . . . , n.
(vi) wi ∈ Vi coincides with wj ∈ Vj if and only if wli = ψlij (w

1
j , . . . , w

m
j ) for l =

1, . . . ,m.
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Let Ui = Ui ∩ X and U denote the covering {Ui} of X. Let To(M) denote the tangent
space ofM at o ∈ M , that is to say, To(M) is the complex vector space of dimension k whose
elements are tangent vectors ofM at o ∈ M of the following form:

∂

∂t
=

k∑
l=1

cl
∂

∂tl
,

where cl ∈ C for 1 ≤ l ≤ k. For any element ∂/∂t ∈ To(M), we put

τi =
m∑
l=1

∂Φli

∂t

∣∣∣∣∣
t=0

· ∂

∂wli

∈ Γ (Ui, f ∗ΘY ) , (9)

σij =
n∑
l=1

∂φlij

∂t

∣∣∣∣∣
t=0

· ∂

∂zli

∈ Γ (Uij ,ΘX) . (10)

Then τ = {τi} ∈ C0(U, f ∗ΘY ) and σ = {σij } ∈ Z1(U,ΘX) represents an element of
DX/Y , which we define to be τ (∂/∂t). Thus we can define the map

τ : To(M) → DX/Y (11)

Let P : f ∗ΘY → SX/Y be the natural homomorphism. For an element of DX/Y , we

take a representative (τ, σ ) ∈ C0(U, f ∗ΘY )×Z1(U,ΘX) with τ = {τi} and σ = {σij }. Then

the collection {P(τi)} patches together to an element of H 0(X,SX/Y ). In this way, we can
define the map

P : DX/Y → H 0(X,SX/Y ) , (12)

which is nothing but the homomorphism appearing in (7), where we use the same symbol P
as above.

Next we shall briefly recall infinitesimal displacements of a divisor on a complex mani-
fold.

Let Y be a compact complex manifold of dimension m and {Vi} a Stein open covering
of Y . Assume that each Vi is a sufficiently small open set with a system of coordinates

wi = (w1
i , . . . , w

m
i ). Let Δ be a smooth divisor on Y defined locally by wmi = 0 and I the

defining ideal sheaf of Δ in Y . Then we have Γ (Vi,I) = wmi Γ (Vi,OY ).

Now we define the homomorphism ζi : Γ (Δ ∩ Vi,I/I2) → Γ (Δ ∩ Vi,OΔ) by

ζi(w
m
i mod I2) = 1. Then we have

Γ (Δ ∩ Vi,NΔ/Y ) = Γ (Δ ∩ Vi,OΔ) · ζi . (13)

Let {Δt}t∈M be a family of displacements of Δ = Δo defined by

wmi = εi(w
1
i , . . . , w

m−1
i , t) (14)
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on Vi , where εi(w1
i , . . . , w

m−1
i , 0) = 0. For any element ∂/∂t ∈ To(M), we put

ρi

(
∂

∂t

)
=

(
∂εi

∂t

∣∣∣∣
t=0

mod I
)

· ζi . (15)

Then the collection {ρi(∂/∂t)} patches together to an element ρ(∂/∂t) of H 0(Δ,NΔ/Y ). In
this way we can define a map

ρ : To(M) → H 0(Δ,NΔ/Y ) , (16)

which is the Kodaira-Spencer map with respect to infinitesimal displacements of a smooth
divisor.

3. Basic lemmas and propositions

LetX and Y be compact complex manifolds of dimension n andm respectively (n ≥ m).
Let f : X → Y be a surjective holomorphic map and {ft : Xt → Y }t∈M a deformation family
of f = fo.

We denote byR andΔ the ramification locus and the degeneracy locus of f respectively:

R = { x ∈ X | f is not smooth at x} , Δ = f (R) .

Let us furthermore denote by Ji(zi, t) = Ji(z
1
i , . . . , z

n
i , t1, . . . , tk) the Jacobian matrix

of ft |Ui :

Ji(zi, t) =
(
∂Φli

∂z
q
i

)
1≤l≤m,1≤q≤n

. (17)

We denote by D(i)1 , . . . ,D
(i)
s the minor determinants of Ji(zi, 0) of degree m, where s =(

n
m

) = n!/(m!(n−m)!).
DEFINITION 1. We denote by R′ the complex subspace of X defined locally by the

ideal (D(i)1 , . . . ,D
(i)
s ) on Ui . We call R′ the scheme-theoretic ramification locus of f .

It is easy to see the definition of R′ above does not depend on the choice of local co-
ordinates. Let us note that R′ is not necessarily reduced and that R′

red = R, since R ∩ Ui
is the locus at which the rank of Ji(zi , 0) is less than m. We have the natural inclusion map
j : R → R′. If R′ is reduced itself, then j is an isomorphism.

We also use the following notation. We denote by ι : Δ → Y and h : R′ → X the natural
inclusion maps. We put g = f ◦ h : R′ → Y . Then the map g factors through g ′ : R′ → Δ,
that is to say, g = ι ◦ g ′. We put g ′′ = g ′ ◦ j : R → Δ.

From now on, we assume that the degeneracy locus Δ of f is a smooth submanifold of
Y of codimension one and that g ′′ : R → Δ is isomorphic. Then, after suitable change of
coordinates, we may assume the following:
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(i) Δ ∩ Vi is defined by wmi = 0 on each Vi ;

(ii) R ∩Ui is defined by zmi = zm+1
i = · · · = zni = 0 on each Ui .

We put z′i = (z1
i , . . . , z

m−1
i ), z′′i = (zmi , z

m+1
i , . . . , zni ), w

′
i = (w1

i , . . . , w
m−1
i ) and

Φ ′
i = (Φ1

i , . . . , Φ
m−1
i ). We shall write zi = (z1

i , . . . , z
n
i ) = (z′i , z′′i ), wi = (w1

i , . . . , w
m
i ) =

(w′
i , w

m
i ), Φ

l
i (z

1
i , . . . , z

n
i , t1, . . . , tk) = Φli (z

′
i , z

′′
i , t) (1 ≤ l ≤ m), Φi = (Φ1

i , . . . , Φ
m
i ) =

(Φ ′
i , Φ

m
i ), Ji(zi , t) = Ji(z

′
i , z

′′
i , t), and so on. Since g ′′ is isomorphic, we may furthermore

assume the following:

(iii) Φli (z
′
i , 0, 0) = zli for l = 1, . . . ,m− 1.

Under the assumptions and the notation above, we have the following lemmas.

LEMMA 1. We have
∂Φmi

∂z
q
i

(z′i , 0, 0) = 0 for 1 ≤ q ≤ m− 1.

PROOF. Since f (R) = Δ, we have Φmi (z
′
i , 0, 0) = 0. Then we have

∂Φmi

∂z
q
i

(z′i , 0, 0) = ∂(Φmi (z
′
i , 0, 0))

∂z
q
i

= 0

for 1 ≤ q ≤ m− 1. �

LEMMA 2. We have
∂Φli

∂z
q

i

(z′i , 0, 0) = δlq for 1 ≤ l ≤ m−1 and 1 ≤ q ≤ m−1, where

δlq denotes Kronecker’s symbol.

PROOF. It is straightforward from the assumption (iii) above. �

LEMMA 3. We have
∂Φmi

∂z
q
i

(z′i , 0, 0) = 0 for m ≤ q ≤ n.

PROOF. From Lemma 1 and Lemma 2, we can write Ji(z′i , 0, 0) in the following form:

Ji(z
′
i , 0, 0) =

(
Em−1 ∗
t0 ta

)
,

where Em−1 denotes the unit matrix. Since the rank of Ji(z′i , 0, 0) is less than m, we have

a = 0, that is to say, (∂Φmi /∂z
q

i )(z
′
i , 0, 0) = 0 for m ≤ q ≤ n. �

Now we have the following propositions on SX/Y .

PROPOSITION 1. The sheaf SX/Y is an OR′ -module.

PROOF. Let p be a point of R. We discuss locally around p. Let Ui be a small neigh-
bourhood of p with a system zi of coordinates satisfying the conditions (i) to (iii) above. We

may assume that p is defined by z1
i = · · · = zni = 0.
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Let us put A = OX,p. Then we have A ∼= C{z1
i , . . . , z

n
i }, where C{z1

i , . . . , z
n
i } de-

notes the convergent power series ring. We also have ΘX,p = ⊕n
q=1 A · (∂/∂zqi ) ∼= An

and f ∗ΘY,p = ⊕m
l=1 A · (∂/∂wli) ∼= Am. Via these isomorphisms, the homomorphism

F : ΘX,p → f ∗ΘY,p is determined by multiplying the matrix Ji(z′i , z′′i , 0) ∈ M(m, n;A):

F :
⎛
⎜⎝
ϕ1
...

ϕn

⎞
⎟⎠ �→ Ji(z

′
i , z

′′
i , 0)

⎛
⎜⎝
ϕ1
...

ϕn

⎞
⎟⎠ ,

where ϕ1, . . . , ϕn ∈ A. Let us write Ji(z′i , z′′i , 0) as follows:

Ji(z
′
i , z

′′
i , 0) =

(
J ′ J ′′
tc td

)
,

where J ′ = J ′(z′i , z′′i , 0) ∈ M(m−1,m−1;A), J ′′ ∈ M(m−1, n−m+1;A), c ∈ Am−1 and

d ∈ An−m+1. Since J ′(z′i , 0, 0) = Em−1 by Lemma 2, we have J ′(z′i , z′′i , 0) ∈ GL(m−1, A).
Then Proposition 1 follows from Lemma 4 below. �

LEMMA 4. Let B = (bij ) =
(
B ′ B ′′
tc td

)
∈ M(m, n;A), where B ′ ∈ M(m − 1,m −

1;A), B ′′ ∈ M(m − 1, n − m + 1;A), c ∈ Am−1 and d ∈ An−m+1. Let TB : An → Am

be the map defined by multiplying B. Let D1, . . . ,Ds be the minor determinants of B of
degree m, where s = (

n
m

)
, and I the ideal of A generated by {D1, . . . ,Ds}. Assume that

B ′ ∈ GL(m− 1, A). Then Coker(TB) is an A/I -module.

PROOF. The module Coker(TB) and the ideal I do not vary after replacing B by BP ,

where P ∈ GL(n,A). Taking

(
Em−1 −B ′−1

B ′′
O En−m+1

)
as the matrix P , we may assume that

B ′′ = O . Then the ideal I is generated by {bml |m ≤ l ≤ n}. In fact, non-zero minors of B
are the form ∣∣∣∣B ′ 0

tc bml

∣∣∣∣ = detB ′ · bml

with m ≤ l ≤ n. Note that detB ′ is a unit of A.
Now let ψ = (ψi) be any element of Am. Then, for each l with m ≤ l ≤ n, there exists

an element ϕ ∈ An satisfying Bϕ = bmlψ . In fact, if we put⎛
⎜⎝

η1
...

ηm−1

⎞
⎟⎠ = B ′−1

⎛
⎜⎝

ψ1
...

ψm−1

⎞
⎟⎠
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and

ϕi =

⎧⎪⎨
⎪⎩
bmlηi , if 1 ≤ i ≤ m− 1 ;
ψm − ∑m−1

j=1 bmjηj , if i = l ;
0 , otherwise ,

then ϕ = (ϕi) satisfies Bϕ = bmlψ . Therefore we have bmlψ ∈ Im(TB), whence each
element of I is an annihilator of Coker(TB). Thus Lemma 4 is proved. �

PROPOSITION 2. (1) The sheaf j∗SX/Y is an invertible OR-module.

(2) We have a natural surjective homomorphism P̄ : g ′′∗(ΘY ⊗ OΔ) → j∗SX/Y .
Let p ∈ R. We take suitably as before a small open neighbourhood Ui of p and
coordinates (zi) and (wi) on Ui and f (Ui) respectively. Then, taking a suitable
local generator νi of j∗SX/Y on R ∩ Ui , we have

Γ (R ∩ Ui, j∗SX/Y ) = Γ (R ∩ Ui,OR) · νi
and

P̄ :
m∑
l=1

ϕl
∂

∂wli

�→ ϕmνi ,

where ϕl ∈ Γ (R ∩ Ui,OR), l = 1, . . . ,m.

PROOF. Pulling back the exact sequence ΘX → f ∗ΘY → SX/Y → 0 by h ◦ j and

noting that j∗h∗f ∗ΘY = g ′′∗(ΘY ⊗ OΔ), we have the exact sequence:

j∗h∗ΘX
F̄−→ g ′′∗(ΘY ⊗ OΔ)

P̄−→ j∗SX/Y → 0 . (18)

Let p be a point of R. We furthermore put Ā = OR,p. Then we have j∗h∗ΘX,p =⊕n
q=1 Ā · (∂/∂zqi ) ∼= Ān and g ′′∗(ΘY ⊗ OΔ) = ⊕m

l=1 Ā · (∂/∂wli) ∼= Ām. Via these isomor-

phisms, the homomorphism F̄ above is determined by multiplying the matrix Ji(z′i , 0, 0). By
Lemma 1, Lemma 2 and Lemma 3, we have

Ji(z
′
i , 0, 0) =

(
Em−1 J ′′
t0 t0

)
,

where J ′′ ∈ M(m− 1, n−m+ 1; Ā). Then we have

Im(F̄ ) =
{m−1∑
l=1

ϕl
∂

∂wli

∣∣∣ ϕl ∈ Ā, l = 1, . . . ,m− 1

}

and Coker(F̄ ) ∼= Ā, which implies the assertion (1). Putting νi = P̄ (∂/∂wmi ), we can check
the assertion (2).

Thus Proposition 2 is proved. �
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4. Compatibility of Kodaira-Spencer maps

In this section we shall discuss compatibility of the maps τ and ρ.
First we shall construct a natural isomorphism ψ : g ′′∗ j∗SX/Y → NΔ/Y . In [2] we

proved that there exists such an isomorphism if f : X → Y is a conic bundle with dimX = 3
and Δ is smooth. Here we shall generalize arguments in [2].

Under the same assumptions as before, we shall first construct two homomorphisms
λ : ΘY ⊗ OΔ → g ′′∗ j∗SX/Y and μ : ΘY ⊗ OΔ → NΔ/Y as follows.

Applying g ′′∗ to P̄ : g ′′∗(ΘY ⊗ OΔ) → j∗SX/Y and noting that g ′′ is isomorphic by
assumption, we have the homomorphism

λ : ΘY ⊗ OΔ → g ′′∗ j∗SX/Y . (19)

Let p ∈ R and p′ = f (p) ∈ Δ. Under the same notation as before, we can describe λ locally
around p′ as follows:

λ :
m∑
l=1

ϕl
∂

∂wli

�→ ϕmνi , (20)

where ϕl ∈ Γ (Δ ∩ Vi,OΔ), l = 1, . . . ,m.
On the other hand, we have the standard homomorphismμ : ΘY ⊗OΔ → NΔ/Y , which

we can describe locally around p′ as follows. Since Δ ∩ Vi is defined by wmi = 0, we have
I|Vi = (wmi ), where I denotes the defining ideal of Δ in Y . We define a homomorphism

ζi : Γ (Δ∩Vi,I/I2) → Γ (Δ∩ Vi,OΔ) in the same way as in §2, that is to say, we define ζi
by ζi(wmi mod I2) = 1. Then we have

Γ (Δ ∩ Vi,NΔ/Y ) = Γ (Δ ∩ Vi,OΔ) · ζi (21)

(cf. (13)). The homomorphism μ is described as follows:

μ :
m∑
l=1

ϕl
∂

∂wli

�→ ϕmζi , (22)

where ϕl ∈ Γ (Δ ∩ Vi,OΔ), l = 1, . . . ,m.

PROPOSITION 3. (1) The homomorphisms λ and μ are both surjective.
(2) We have Ker(λ) = Ker(μ).
(3) There exists an isomorphism ψ : g ′′∗ j∗SX/Y → NΔ/Y that satisfies μ = ψ ◦ λ.

Moreover, ψ is locally determined by ψ(νi ) = ζi .

PROOF. Straightforward from the local descriptions of λ and μ. �

The isomorphism ψ above induces the isomorphism

ψ : H 0(R, j∗SX/Y ) → H 0(Δ,NΔ/Y ) , (23)
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where we use the same symbol ψ as above.
Then we have the following theorem.

THEOREM 1. Let f : X → Y be a surjective holomorphic map between compact
complex manifolds. Let R, R′ and Δ denote the ramification locus, the scheme-theoretic
ramification locus and the degeneracy locus of f , respectively. Assume that Δ is a smooth
submanifold of Y of codimension one and that g ′′ = f |R : R → Δ is an isomorphism. Let
{ft : Xt → Y }t∈M be a deformation family of f : X → Y with Xo = X and fo = f . Let
τ : To(M) → DX/Y denote the Kodaira-Spencer map due to E. Horikawa. Let Δt denote

the degeneracy locus of ft and ρ : To(M) → H 0(Δ,NΔ/Y ) the Kodaira-Spencer map of the
family {Δt }t∈M of displacements of Δ. Then we have

ρ = ψ ◦ j∗ ◦ P ◦ τ ,
where ψ is the isomorphism above, j : R → R′ the natural inclusion map, and P : DX/Y →
H 0(X,SX/Y ) the map of (12).

PROOF. Let p ∈ R and p′ = f (p) ∈ Δ. We discuss locally around p′. We take open
neighbourhoodsUi and Vi of p and p′, respectively, and coordinates (zi) and (wi) as before.

LetRt be the ramification locus of ft . Suppose that the family {Rt∩Ui}t∈M is determined
by the equations

z
q

i = η
q

i (z
′
i , t) for m ≤ q ≤ n , (24)

where ηqi (z
′
i , 0) = 0. Let us put

η′′
i (z

′
i , t) = (ηmi (z

′
i , t), . . . , η

n
i (z

′
i , t)). (25)

Suppose that the family {Δt ∩ Vi}t∈M is determined by the equation

wmi = εi(w
′
i , t) (26)

with εi(w′
i , 0) = 0.

Since we have ft (Rt ) = Δt , we obtain

Φmi (z
′
i , η

′′
i (z

′
i , t), t) = εi(Φ

′
i (z

′
i , η

′′
i (z

′
i , t), t), t) . (27)

Let ∂/∂t be any element of To(M). Putting t = 0 after applying ∂/∂t to the equality (27)
above, we have

n∑
q=m

∂Φmi

∂z
q

i

(z′i , 0, 0) · ∂η
q
i

∂t
(z′i , 0)+ ∂Φmi

∂t
(z′i , 0, 0)

=
m−1∑
l=1

∂εi

∂wli

(Φ ′
i (z

′
i , 0, 0), 0) · ∂Φ

l
i (z

′
i , η

′′
i (z

′
i , t), t)

∂t

∣∣∣
t=0

+ ∂εi

∂t
(Φ ′

i (z
′
i , 0, 0), 0) .
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By Lemma 3 we have

∂Φmi

∂z
q
i

(z′i , 0, 0) = 0 for m ≤ q ≤ n . (29)

Since εi(w′
i , 0) = 0, we also have

∂εi

∂wli

(Φ ′
i (z

′
i , 0, 0), 0) = 0 for 1 ≤ l ≤ m− 1 , (30)

whence we obtain:

∂Φmi

∂t
(z′i , 0, 0) = ∂εi

∂t
(Φ ′

i (z
′
i , 0, 0), 0) . (31)

On the other hand, ψ ◦ j∗ ◦ P(∂/∂t) and ρ(∂/∂t) are calculated locally as follows. Let
us put

τi =
m∑
l=1

∂Φli

∂t

∣∣∣∣
t=0

· ∂

∂wli

∈ Γ (Ui, f ∗ΘY ) . (32)

Then, by Proposition 2, we have

j∗ ◦ P(τi) = ∂Φmi

∂t
(z′i , 0, 0) · νi , (33)

whence, by Proposition 3, we obtain

ψ ◦ j∗ ◦ P
(
∂

∂t

) ∣∣∣∣
Vi

= ∂Φmi

∂t
(w′

i , 0, 0) · ζi , (34)

while we have

ρ

(
∂

∂t

) ∣∣∣∣
Vi

= ∂εi

∂t
(w′

i , 0) · ζi . (35)

Noting that Φ ′
i (z

′
i , 0, 0) = z′i , we have

ψ ◦ j∗ ◦ P
(
∂

∂t

) ∣∣∣∣
Vi

= ρ

(
∂

∂t

) ∣∣∣∣
Vi

(36)

by (31) above.
Thus Theorem 1 is proved. �

COROLLARY 1. Assume furthermore that R′ is reduced, that is to say, j : R → R′ is
an isomorphism. Then we have an exact sequence

0 → H 1(X,ΘX/Y ) → DX/Y
ψ◦j∗◦P−−−−→ H 0(Δ,NΔ/Y )
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with ρ = ψ ◦ j∗ ◦P ◦ τ . In particular, if furthermore H 1(X,ΘX/Y ) = 0, then there does not
exist non-trivial small deformation of f : X → Y with the same degeneracy locusΔ.

PROOF. Straightforward from the assumption and the exact sequence (7). �

EXAMPLE 1. Let f : X → Y be a double cover branching along a smooth divisor
Δ of Y . Then g ′′ : R → Δ is an isomorphism and R′ is reduced. In fact, choosing local
coordinates (zi) and (wi) around p ∈ R and f (p) ∈ Δ suitably, we may assume that f is

locally defined by (w1
i , . . . , w

m
i ) = (z1

i , . . . , z
m−1
i , (zmi )

2). Then both R and R′ are defined
by the ideal (zmi ) locally around p.

EXAMPLE 2. Let f : X → Y be a quadric bundle (see §5 for the definition). Assume
that dimY = 2 and that f is ordinary, that is to say, every singular fibre has only one singular
point. Then g ′′ : R → Δ is an isomorphism. Moreover, we can prove that R′ is reduced (cf.
Corollary 2 in §5).

EXAMPLE 3. Let dimX = 3 and dimY = 2. If f is locally defined by{
w1
i = z1

i ,

w2
i = (z2

i )
2 − (z3

i )
3 ,

then R′ is locally defined by the ideal (z2
i , (z

3
i )

2), while R is defined by (z2
i , z

3
i ), whence j is

not isomorphic.

5. Local descriptions of quadric bundles

In the rest of this paper, we shall discuss deformations of quadric bundles. In [2], [3], [4]
and [5] we discussed deformations of a conic bundle f : X → Y with dimX = 3. Here we
shall generalize some of the results in [2] and [3] to higher-dimensional cases.

Let us explain more precisely. In §4 we have proved Corollary 1, which claims a kind of
rigidity of a holomorphic map. We recall Corollary 1 here, since it shall play a central role in
our later discussions.

Let f : X → Y be a surjective holomorphic map of compact complex manifolds. We
use the same notation as before. Let Δ, R, R′ denote the degeneracy locus, the ramification
locus and the scheme-theoretic ramification locus respectively. Assume that the following
four conditions (a), (b), (c) and (d) are satisfied:

(a) The degeneracy locusΔ of f is a smooth submanifold of Y of codimension one;
(b) The scheme-theoretic ramification locus R′ of f is reduced and the natural inclu-

sion map j : R → R′ is an isomorphism;
(c) The map g ′′ = f |R : R → Δ is an isomorphism;

(d) The cohomology group H 1(X,ΘX/Y ) vanishes: H 1(X,ΘX/Y ) = 0.
Then Corollary 1 claims that there does not exist non-trivial small deformation of f : X → Y

with the same degeneracy locus Δ.
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From now on, we shall restrict ourselves to discussing deformations of quadric bundles
(see Definition 2 below for precise definition).

In this section we shall discuss local structure of an ordinary quadric bundle (cf. Proposi-
tion 5) and prove that the conditions (a), (b) and (c) above are satisfied for an ordinary quadric
bundle (cf. Corollary 2). (See Definition 3 for the definition of ordinary quadric bundles.)

In §6 and §7 we shall discuss the condition (d) in case where f : X → Y is a conic
bundle, that is to say, in case where f : X → Y is a quadric bundle of relative dimension one.

Let us begin with the definition of a quadric bundle.

DEFINITION 2. A surjective holomorphic map f : X → Y between compact complex
manifolds is called a quadric bundle if every fibre of f is isomorphic to a quadric hypersurface
of constant dimension d . In case where d = 1, f : X → Y is called a conic bundle.

We have the following proposition due to A. Beauville.

PROPOSITION 4 ([1, Proposition 1.2, Lemma 1.5.2]). Assume that dimY = 2.
(1) The map f is flat.
(2) There exist a locally free sheaf E on Y of rank d + 2, an invertible sheaf M on Y

and a section q ∈ H 0(Y, S2(E)⊗ M) such that X is identified with the zero locus
of q in PY (E).

(3) The degeneracy locusΔ of f is a normal crossing divisor of Y .
(4) For a smooth point y of Δ, the fibre f−1(y) has exactly one singular point. For a

singular point y of Δ, the singular locus of f−1(y) is isomorphic to P1.
(5) Assume furthermore that f is a conic bundle. Let y ∈ Δ. We take a small open

neighbourhood U of y, local coordinates (u, v) on U , and homogeneous coor-

dinates (X0 : X1 : X2) on the fibre π−1(y) ∼= P2 of PY (E) suitably, where
π : PY (E) → Y denotes the natural projection. If y is a smooth point of Δ,
then XU = f−1(U) is defined by the equation uX2

0 +X2
1 +X2

2 = 0 in π−1(U). If

y is a singular point of Δ, then XU is defined by uX2
0 + vX2

1 + X2
2 = 0.

Although A. Beauville [1] originally proved Proposition 4 in case where Y = P2, we can
apply the same arguments in [1] to the case where dimY = 2. Moreover, the assertions (1)
and (2) of Proposition 4 hold true even if dimY is greater than two, which is also proved by
the same arguments in [1]. However, some of the assertions (3), (4) and (5) do not hold true
if dimY ≥ 3.

EXAMPLE 4. Let Z = P2 × P3 and π : Z → P3 the second projection. Let X be a
subvariety of Z defined by the equation

T0X
2
0 + 2T1X0X1 + T2X

2
1 + T3X

2
2 = 0 ,

where (X0 : X1 : X2) and (T0 : T1 : T2 : T3) denote the homogeneous coordinates on P2

and P3 respectively. Then X is smooth and f = π |X : X → P3 is a conic bundle. Since the

degeneracy locusΔ is determined by T3(T0T2 − T 2
1 ) = 0, it is not a normal crossing divisor.
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The following definition is also due to Beauville [1].

DEFINITION 3 (cf. [1, Definition 1.3]). A quadric bundle f : X → Y is called an
ordinary quadric bundle if every singular fibre of f has only one singular point.

Proposition 4 (5) implies that, if dimY = 2, then local structure of a conic bundle
f : X → Y around a smooth (resp. singular) point y ∈ Y is unique, which does not hold true
in general if dimY ≥ 3. However, the following proposition shows that, as to an ordinary
quadric bundle, local structure around y ∈ Δ is unique.

Let f : X → Y be a quadric bundle. Suppose that dimY = m and dimX = m + d .
Then, by Proposition 4 (2), there exist a locally free sheaf E on Y of rank d + 2, an invertible

sheaf M on Y and a section q ∈ H 0(Y, S2(E) ⊗ M) such that X is identified with the zero
locus q in PY (E).

Now let us put r = d+1 for later use. Then we have dimX = m+r−1 and rk(E) = r+1,
where rk(E) denotes the rank of E .

PROPOSITION 5. Under the assumptions and the notation above, we furthermore as-
sume that f : X → Y is an ordinary quadric bundle. Let y ∈ Δ. Let U be such a small open

neighbourhood of y that we have π−1(U) ∼= Pr × U , where π : PY (E) → Y denotes the
natural projection. Let (w) = (w1, . . . , wm) be local coordinates on U and (X0 : · · · : Xr)
homogeneous coordinates of fibres of π |π−1(U). Then, after shrinking the open set U and

changing coordinates on U , if necessary, we can write the defining equation of X in π−1(U)

as follows:
w1X

2
0 +X2

1 + · · · +X2
r = 0 .

In particular, the degeneracy locusΔ is a smooth divisor.

PROOF. Let us put Xy = f−1(y) and XU = f−1(U). Let us denote by x the vector
t(X0, . . . , Xr). Let A = Γ (U,OU). Then the defining equation of XU is written as follows:

txQ(w)x = 0 , (37)

where Q(w) = (qij (w))0≤i≤r,0≤j≤r ∈ M(r + 1, r + 1, A) with qij (w) = qji(w) ∈ A.

We may assume that Xy is defined by X2
1 + · · · + X2

r = 0. Then we have:

qij (0) =
{

1 if i = j ≥ 1 ,
0 if i = j = 0 or i �= j .

(38)

From now on, we shall shrink U if necessary. First we have the following claim.

CLAIM 1. By replacing Q(w) by tP (w)Q(w)P(w) for some P(w) ∈ GL(r + 1, A),
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we may assume that Q(w) is a diagonal matrix of the following form:⎛
⎜⎜⎜⎝
q00(w)

1
. . .

1

⎞
⎟⎟⎟⎠

with q00(0) = 0.

PROOF OF CLAIM 1. For each i with 1 ≤ i ≤ r , there exists a unit bii(w) of A
that satisfies (bii(w))2 = 1/qii(w) and bii (0) = 1, since qii(0) = 1. Replacing Q(w) by
tP (w)Q(w)P(w) with the diagonal matrix

P(w) =

⎛
⎜⎜⎜⎝

1
b11(w)

. . .

brr(w)

⎞
⎟⎟⎟⎠ ,

we may assume that qii(w) = 1 for 1 ≤ i ≤ r . Moreover, replacing Q(w) by
tP (w)Q(w)P(w) with

P(w) =

⎛
⎜⎜⎜⎜⎜⎝

1
1

. . .

1
−qr0(w) −qr1(w) · · · −qr,r−1(w) 1

⎞
⎟⎟⎟⎟⎟⎠ ,

we can sweep out the last row and column of Q(w), that is to say, we obtain new Q(w) with
qri(w) = qir (w) = 0 for 0 ≤ i ≤ r − 1 and qrr(w) = 1. After sweeping out rows and
columns successively, we finally obtain a diagonal matrix as in Claim 1. Since Q(0) does not
change under these procedure, q00(0) remains zero.

Thus Claim 1 is proved. �

Let us continue the proof of Proposition 5. By the claim above, we may assume that XU
is defined by:

H(X0, . . . , Xr ;w) := q00(w)X
2
0 +X2

1 + · · · + X2
r = 0 .

Let p be the point of X defined by (X0 : · · · : Xr) = (1 : 0 : · · · : 0) and w = 0. Noting that

∂H

∂wi
(1, 0, . . . , 0; 0) = ∂q00

∂wi
(0) for i = 1, . . . ,m

and thatX is smooth at p, we have (∂q00/∂wj )(0) �= 0 for some j with 1 ≤ j ≤ m. Therefore
we can take a new system of coordinates (w′) that satisfies w′

1 = q00(w). ThenXU is defined
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by w′
iX

2
0 +X2

1 +· · ·+X2
r = 0. The degeneracy locusΔ is locally defined byw′

1 = 0, whence
Δ is smooth.

COROLLARY 2. Let f : X → Y be an ordinary quadric bundle. Then the scheme-
theoretic ramification locus R′ of f is reduced and g ′′ = f |R : R → Δ is isomorphic.

PROOF. We can prove it by direct calculation using the local description of f : X → Y

in Proposition 5. We omit details. �

COROLLARY 3. Let f : X → Y be an ordinary quadric bundle with the degener-

acy locus Δ. Assume that H 1(X,ΘX/Y ) = 0. Then there does not exist non-trivial small
deformation of f : X → Y with the same degeneracy locusΔ.

PROOF. Straightforward from Corollary 1, Proposition 5 and Corollary 2. �

6. Rigidity of certain conic bundles

Let us now discuss when H 1(X,ΘX/Y ) vanishes. Let f : X → Y be a holomorphic

map of complex manifolds in general. Suppose that Rif∗ΘX/Y = 0 for i > 0. Then we have

Hj(X,ΘX/Y ) ∼= Hj(Y, f∗ΘX/Y ) for any integer j , whence we can reduce discussions on
cohomology groups of ΘX/Y to those on cohomology groups of f∗ΘX/Y .

From now on, we restrict ourselves to the case where f : X → Y is a conic bundle.
Let f : X → Y be a conic bundle. By applying Proposition 4 (2) for d = 1, we

have a locally free sheaf E on Y of rank 3, an invertible sheaf M on Y and a section q ∈
H 0(Y, S2(E)⊗ M) such that X is identified with the zero locus q in PY (E).

The central result in this section is the following theorem, which shall be proved later.

THEOREM 2. Let f : X → Y be a conic bundle determined by a locally free sheaf E
on Y of rank three, an invertible sheaf M on Y , and an element q ∈ H 0(Y, S2(E) ⊗ M) as
above. Then we have:

(1) Rif∗ΘX/Y = 0 for i > 0;

(2) f∗ΘX/Y ∼= E ⊗ (detE)−1 ⊗ M−1.

Calculating H 1(X,ΘX/Y ) by Theorem 2, we obtain the following corollary.

COROLLARY 4. Let f : X → Y be a conic bundle determined by a locally free sheaf

E on Y of rank three, an invertible sheaf M on Y , and an element q ∈ H 0(Y, S2(E) ⊗ M).
Assume that the following three conditions are satisfied:

(1) Y = Pm (m ≥ 2);
(2) E is a direct sum of invertible sheaves;
(3) f : X → Y is an ordinary conic bundle.
Then there does not exist non-trivial small deformation of f : X → Y with the same

degeneracy locusΔ.
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PROOF OF COROLLARY 4. By the assumption and Theorem 2, we have
H 1(X,ΘX/Y ) = 0. Then Corollary 4 follows immediately from Corollary 3. �

REMARK 1. (1) In the previous paper [3] we proved Theorem 2 and Corollary 4 in
case where dimX = 3 (cf. [3, Lemma 3.1], [3, Theorem 3.3] and [3, Corollary 3.14]). Here
we generalize them to higher-dimensional cases.

(2) The conclusion of Theorem 2 holds true for any conic bundle f : X → Y , even if
it is not ordinary.

(3) On the other hand, we need the assumption that f is ordinary in Corollary 4, since
the assumption that the degeneracy locus Δ is smooth is indispensable in Theo-
rem 1.

(4) If Δ has singularity, there does not exist such an isomorphism ψ as in (23) in
general (cf. [4]).

(5) In the paper [5] we generalize Corollary 4; if Y = P2 and if E is a direct sum
of invertible sheaves, then we have the same conclusion as in Corollary 4 without
assuming that f : X → Y is ordinary. The proof is done by using subtle arguments
on deformations that admit no smoothing of degeneracy loci. In these arguments,
it is essential that Theorem 2 holds true for any conic bundle.

(6) We do not know yet whether the conclusion of Corollary 4 holds true for general
m in case where f : X → Y (= Pm) is not ordinary, since arguments of [5]
essentially need the fact that Δ is normal crossing, which does not hold true if
dimY ≥ 3 (cf. Proposition 4 and Example 4).

PROOF OF THEOREM 2. The rest of this paper is devoted to proving Theorem 2. The
proof is done by almost the same arguments as in [3], except for Lemma 12 below, which
shall be proved later in §7. Although the other arguments are the same as those of [3], we
shall sketch them here for readers’ convenience.

Let f : X → Y be as in Theorem 2. Let us put Z = PY (E). Let π : Z → Y denote the
natural projection. First we have: �

LEMMA 5 ([3, Lemma 3.1]). Rif∗ΘX/Y = 0 for i > 0.

PROOF. We can easily check that Hi(Xy,ΘX/Y ⊗ C(y)) = 0 for i > 0 on each fibre
Xy of f over y ∈ Y . Since f is flat and ΘX/Y is invertible, we are done. �

We have an exact sequence

0 → ΘX/Y → ΘZ/Y ⊗ OX → NX/Z = OX(X) .

Taking the direct images by f , we have an exact sequence

0 → f∗ΘX/Y → f∗(ΘZ/Y ⊗ OX)
G−→ f∗OX(X) .

Denoting the last homomorphism in this sequence by G, we have an isomorphism

f∗ΘX/Y ∼= Ker
(
G : f∗(ΘZ/Y ⊗ OX) → f∗OX(X)

)
.
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LEMMA 6 ([3, Lemma 3.4]). (1) Riπ∗OZ = 0 for i > 0.
(2) Riπ∗(ΘZ/Y (−X)) = 0 for all i.

PROOF. We haveHi(P2,OP2) = 0 for i > 0 andHi(P2,ΘP2(−2)) = 0 for all i, from
which Lemma 6 follows. �

LEMMA 7 ([3, Lemma 3.5]). (1) The natural homomorphism π∗ΘZ/Y →
f∗(ΘZ/Y ⊗ OX) is isomorphic.

(2) The natural homomorphism π∗OZ(X) → f∗OX(X) is surjective and its kernel is
OY .

PROOF. We have the natural exact sequences 0 → ΘZ/Y (−X) → ΘZ/Y → ΘZ/Y ⊗
OX → 0 and 0 → OZ → OZ(X) → OX(X) → 0. We apply Lemma 6 after taking the
direct images by π . �

Via isomorphisms π∗ΘZ/Y ∼= f∗(ΘZ/Y ⊗ OX) and f∗OX(X) ∼= (
π∗OZ(X)

)
/OY , we

have a homomorphism

Ḡ : π∗ΘZ/Y → (
π∗OZ(X)

)
/OY .

Then the sheaf f∗ΘX/Y is isomorphic to Ker(Ḡ).

Now we discuss Ḡ locally on Y . Let y ∈ Y and A = OY,y . Then the ring A is iso-
morphic to the convergent power series ring C{w1, . . . , wm}, where w1, . . . , wm denote local

coordinates around y. We localize f : X → Y over SpecA. Let ZA = P2
A = P2 × SpecA

and XA = X ×Y SpecA. Let (X0 : X1 : X2) be a system of homogeneous coordinates on

P2 and Ui = {Xi �= 0 }. Let us put xi = Xi+1/Xi and yi = Xi+2/Xi (X3 = X0). Let
UA,i = Ui × SpecA. Localizing the homomorphism Ḡ, we discuss

ḠA : H 0(P2
A,ΘP2

A
) → H 0(P2

A,O(XA))/H 0(P2
A,OP2

A
) .

LEMMA 8 ([3, Lemma 3.6]). We have a standard exact sequence

0 → OP2
A

→ OP2
A
(1)⊕3 → ΘP2

A
→ 0 .

The homomorphisms appearing in this sequence are described as follows. We denote the natu-
ral basis of Γ (UA,i,O(1)⊕3) by {pi, qi, ri} and the basis of Γ (UA,i,ΘP2

A
) by {∂/∂xi, ∂/∂yi}

for i = 0, 1, 2.

(1) The homomorphism Γ (UA,i,O) → Γ (UA,i,O(1)⊕3) is given by

1 �→ p0 + x0q0 + y0r0 (i = 0) ,

1 �→ y1p1 + q1 + x1r1 (i = 1) ,

and 1 �→ x2p2 + y2q2 + r2 (i = 2) , respectively.
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(2) The homomorphism Γ (UA,i,O(1)⊕3) → Γ (UA,i,ΘP2
A
) is given by

p0 �→ −x0
∂

∂x0
− y0

∂

∂y0
, q0 �→ ∂

∂x0
, r0 �→ ∂

∂y0
(i = 0) ;

p1 �→ ∂

∂y1
, q1 �→ −x1

∂

∂x1
− y1

∂

∂y1
, r1 �→ ∂

∂x1
(i = 1) ;

p2 �→ ∂

∂x2
, q2 �→ ∂

∂y2
, r2 �→ −x2

∂

∂x2
− y2

∂

∂y2
(i = 2) .

PROOF. We omit it, since it is well-known. �

LEMMA 9 ([3, Lemma 3.7]). We have natural isomorphisms

H 0(P2
A,ΘP2

A
) ∼= H 0(P2

A,O(1))⊕3/H 0(P2
A,O) ∼= M3(A)/〈E〉 ,

where M3(A) denotes the A-module of the 3 × 3 matrices with coefficients in A and 〈E〉 the
A-submodule of M3(A) generated by the unit matrix E.

PROOF. The first isomorphism follows from Lemma 8. Let S1(A) denote theA-module
of the homogeneous polynomials of degree one of X0, X1 and X2 with coefficients in A. We

have natural isomorphisms S1(A) ∼= H 0(P2
A,O(1)) and H 0(P2

A,O(1))⊕3 ∼= S1(A)
⊕3 ∼=

M3(A). We fix the last isomorphism as follows. For (f0, f1, f2) ∈ S1(A)
⊕3 with fj =∑2

i=0 bijXi (bij ∈ A), we attach the matrix B = (bij ) ∈ M3(A). Since the image of 1 ∈
H 0(P2

A,OP2
A
) in S1(A)

⊕3 is (X0,X1,X2) (cf. Lemma 8 (1)), its image in M3(A) is the unit

matrix E. Thus Lemma 9 is proved. �

Suppose that XA is defined in ZA by q ∈ H 0(P2
A,O(2)) and that Q = (qij ) ∈ M3(A)

(qij = qji) is the symmetric matrix corresponding to q . Let x = t(X0,X1,X2). Then we

have q = txQx.
Next we shall discuss H 0(P2

A,O(XA))/H 0(P2
A,O). Let G(A) denote the A-module of

the symmetric matrices in M3(A).

LEMMA 10 ([3, Lemma 3.8]). We have an isomorphism

H 0(P2
A,O(XA))/H 0(P2

A,O) ∼= G(A)/〈Q〉 .

PROOF. The space H 0(P2
A,O(XA)) = H 0(P2

A,O(2)) can be identified with the set of
the homogeneous polynomials of degree two of X0, X1 and X2 with coefficients in A, which

can also be identified with G(A). The image of 1 ∈ H 0(P2
A,O) inH 0(P2

A,O(XA)) is nothing
but q , whose image in G(A) is Q. Thus Lemma 10 is proved. �
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Via isomorphisms in Lemma 9 and Lemma 10, the homomorphism ḠA is equivalent to
the homomorphism

ĜA : M3(A)/〈E〉 → G(A)/〈Q〉 ,
which can be explicitly described as follows.

LEMMA 11 ([3, Lemma 3.9]). For B ∈ M3(A), we have

ĜA
(
B mod 〈E〉) = BQ+Q tB mod 〈Q〉 .

PROOF. The proof is done by pursuing homomorphisms appearing in discussions
above. We refer it to [3, Lemma 3.9], since it still holds true in our case. (Note that the
notation used in [3] is a little bit different.) �

Next we shall discuss Ker(ĜA).
In general, for S ∈ G(A), we define ϕS : M3(A) → G(A) as follows:

ϕS : M3(A) → G(A)

∈ ∈

B �→ BS + S tB

(39)

Note that, if S is the unit matrix E, then Ker(ϕE) is the set of the skew-symmetric matrices in
M3(A) and it is generated by the following three matrices:

H0 =
⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ , H1 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ and H2 =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ . (40)

We have the following key lemma, which is a generalization of [3, Lemma 3.10].

LEMMA 12 ([3, Lemma 3.10]). If Q ∈ G(A) corresponds to the defining equation of
a nonsingular conic bundle XA, we have

Ker(ϕQ) = Q · Ker(ϕE) .

In particular, Ker(ϕQ) is a free A-module generated by {QHi | i = 0, 1, 2 }.
In the proof of [3, Lemma 3.10] we used Proposition 4 (5), which does not hold true in

higher-dimensional cases. So we have to prove Lemma 12 in another way that holds true in
general. The proof of Lemma 12 shall be given later in §7.

Let us continue the proof of Theorem 2. Let {Vi} be a sufficiently fine open covering of

Y . Let {X(i)0 ,X
(i)
1 ,X

(i)
2 } be a local basis of E on Vi . Let us put x(i) = t (X

(i)
0 ,X

(i)
1 ,X

(i)
2 ).

Suppose that the relation

x(i) = Tijx
(j) (41)
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is satisfied on Vij with the transition matrix Tij = (tij ;kl)0≤k≤2,0≤l≤2.
Let μi be a local basis of M on Vi . Suppose that the transition relation

μi = λijμj (42)

is satisfied on Vij . We can take (X(i)0 : X(i)1 : X(i)2 ) as the homogeneous coordinates of the

fibre of Z = PY (E) on Vi . Suppose that the defining element q ∈ H 0(Y, S2(E)⊗M) of X is
written as

q = tx(i)Qix
(i)μi

on Vi with a symmetric matrix Qi = (q
(i)
kl ).

Then we can take a local basis { e(i)0 , e
(i)
1 , e

(i)
2 } of f∗ΘX/Y on Vi as follows. Let Hν be

the skew-symmetric matrix as in (40) and A(i)ν = QiHν (ν = 0, 1, 2). Then {A(i)0 , A
(i)
1 , A

(i)
2 }

is a basis of

Ker
(
M3(Γ (Vi,OY ))/〈E〉 → G(Γ (Vi,OY ))/〈Qi〉

)
,

where M3(Γ (Vi,OY )) and G(Γ (Vi,OY )) denote the set of the 3 × 3 matrices and the sym-

metric 3 × 3 matrices with coefficients in the ring Γ (Vi,OY ), respectively. We choose as e(i)ν
the element of Γ (Vi, π∗ΘZ/Y ) which corresponds to A(i)ν . Then {e(i)0 , e

(i)
1 , e

(i)
2 } is the local

basis of f∗ΘX/Y on Vi .

Let us now put e(i) = t (e
(i)
0 , e

(i)
1 , e

(i)
2 ). Then, after rather complicated calculation, we

have the following transition relation.

LEMMA 13. We have e(i) = λ−1
ij D

−1
ij Tij e

(j), where Tij and λij are as in (41) and

(42), andDij = detTij .

PROOF. We refer the proof to arguments from page 30 to page 33 in [3], which still
hold true in our case, since they are independent of dimY .

Lemma 13 implies that

f∗ΘX/Y ∼= E ⊗ (detE)−1 ⊗ M−1.

Thus Theorem 2 is proved. �

7. Proof of Lemma 12

In this section we shall prove Lemma 12. We use the same notation as before.
Suppose that Q ∈ G(A) corresponds to the defining equation of a nonsingular conic

bundleXA. We shall prove that Ker(ϕQ) = Q ·Ker(ϕE), where ϕS denote the map in (39) for
S ∈ G(A).

For C ∈ Ker(ϕE), we have

ϕQ(QC) = (QC)Q +Q t(QC) = Q(C + tC)Q = O ,
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whence we have Q · Ker(ϕE) ⊂ Ker(ϕQ).
Next we prove that, for any B ∈ Ker(ϕQ), there exists C ∈ Ker(ϕE) that satisfies

B = QC.
If we change the homogeneous coordinates of P2

A by T ∈ GL(3, A), the corresponding

symmetric matrix Q is transformed to Q′ = t TQT . It is easy to see that there is a one-
to-one correspondence between Ker(ϕQ) and Ker(ϕQ′) with B ∈ Ker(ϕQ) corresponding to
t T BtT −1 ∈ Ker(ϕQ′). It is also easy to check that T −1Ker(ϕE) tT −1 = Ker(ϕE). If we have
Ker(ϕQ) = Q · Ker(ϕE) for some Q, then we have

Ker(ϕQ′) = t T Ker(ϕQ)
tT −1 = t TQKer(ϕE)

tT −1 = Q′ Ker(ϕE) .

Therefore we can change coordinates, if necessary, to prove Lemma 12.
Now let Q = Q(w) = (qij (w))0≤i≤2,0≤j≤2 ∈ G(A) be a symmetric matrix correspond-

ing to the defining equation of XA. Let y be the point of Y defined by w = 0. We consider
the following three cases.

CASE 1: Xy is smooth.
In this case, we may assume that Q(w) is the unit matrix, after change of coordinates.

Then the assertion is trivial.
CASE 2: Xy has two irreducible components intersecting at one point.
In this case, we may assume that

Q(w) =
⎛
⎝ w1 0 0

0 1 0
0 0 1

⎞
⎠

by Proposition 5. Then we can check that Ker(ϕQ) = Q · Ker(ϕE) by direct calculation.
CASE 3: Xy is a double line.
In this case we may assume that

Q(0) =
⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ .

Since q22(w) is a unit of A, we can sweep out the last row and column of Q(w) and we may
assume that Q(w) is of the following form:

Q(w) =
⎛
⎝ p(w) r(w) 0
r(w) q(w) 0

0 0 1

⎞
⎠

where p(w), q(w) and r(w) are elements of A satisfying p(0) = q(0) = r(0) = 0.
Let us put

H(X0,X1,X2;w) = txQ(w)x = p(w)X2
0 + q(w)X2

1 + 2r(w)X0X1 + X2
2. (43)
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We now consider the following two cases.
CASE 3 (A): r(w) = 0.
In this case we have the following claim.

CLAIM 2. The elements p(w) and q(w) are coprime to each other.

PROOF. Suppose the contrary. Then there exists an element γ (w) ∈ A satisfying
γ (0) = 0, p(w) = γ (w)p1(w) and q(w) = γ (w)q1(w) for some elements p1(w) and q1(w)

of A which are coprime to each other.

Let a and b be complex numbers satisfying (a, b) �= (0, 0) and p1(0)a2 + q1(0)b2 = 0.

(Note that such numbers exist.) Let P̃1 be the point of X defined by w = 0 and (X0 : X1 :
X2) = (a : b : 0). Then we have (∂H/∂Xi)(a, b, 0; 0) = 0 for 0 ≤ i ≤ 2 and

∂H

∂wi
(a, b, 0; 0) = ∂γ

∂wi
(0) · (p1(0)a

2 + q1(0)b
2) = 0

for 1 ≤ i ≤ m. Therefore P̃1 is a singular point of X, which contradicts the assumption that
X is nonsingular.

Claim 2 is thus proved. �

Now let B = (bij (w))0≤i≤2,0≤j≤2 ∈ Ker(ϕQ). Then we have:

bii(w) = 0 for i = 0, 1, 2 ; (44)

p(w)b10(w)+ q(w)b01(w) = 0 ; (45)

p(w)b20(w)+ b02(w) = 0 ; (46)

q(w)b21(w)+ b12(w) = 0 . (47)

Since p(w) and q(w) are coprime to each other, the equality (45) implies that there exists an
element a(w) ∈ A satisfying b10(w) = q(w)a(w) and b01(w) = −p(w)a(w). Let us put
b(w) = b20(w) and c(w) = b21(w). Then we have

B =
⎛
⎝ 0 −p(w)a(w) −p(w)b(w)
q(w)a(w) 0 −q(w)c(w)
b(w) c(w) 0

⎞
⎠ = QC ,

where C =
⎛
⎝ 0 −a(w) −b(w)
a(w) 0 −c(w)
b(w) c(w) 0

⎞
⎠ ∈ Ker(ϕE), whence we have B ∈ Q · Ker(ϕE).

CASE 3 (B): r(w) �= 0.
If p(w) divides r(w), then we can reduce to Case 3 (a) after sweeping out the first row

and column of Q(w). We can also reduce to Case 3 (a) if q(w) divides r(w). Thus we may
assume that neither p(w) nor q(w) divides r(w).

CLAIM 3. (1) The elements p(w) and r(w) are coprime to each other.
(2) The elements q(w) and r(w) are coprime to each other.
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PROOF. We prove only (1), since (2) can be similarly proved.
Suppose the contrary. Then there exists an element γ (w) ∈ A satisfying γ (0) = 0,

p(w) = γ (w)p1(w) and r(w) = γ (w)r1(w) for some elements p1(w) and r1(w) of A which
are coprime to each other. If p1(0) �= 0, then p1(w) is a unit of A, whence p(w) divides
r(w), which contradicts the assumption. Hence we have p1(0) = 0.

Let P̃2 be the point of X defined by w = 0 and (X0 : X1 : X2) = (1 : 0 : 0). Then we
have (∂H/∂Xi)(1, 0, 0; 0) = 0 for 0 ≤ i ≤ 2 and

∂H

∂wi
(1, 0, 0; 0) = ∂p

∂wi
(0) = γ (0)

∂p1

∂wi
(0)+ ∂γ

∂wi
(0)p1(0) = 0

for 1 ≤ i ≤ m. Therefore P̃2 is a singular point of X, which contradicts the assumption that
X is nonsingular.

Thus Claim 3 is proved. �

Now let B = (bij (w))0≤i≤2,0≤j≤2 ∈ Ker(ϕQ). Then we have:

p(w)b00(w)+ r(w)b01(w) = 0 ; (48)

r(w)b10(w)+ q(w)b11(w) = 0 ; (49)

b22(w) = 0 ; (50)

p(w)b10(w)+ r(w)b11(w)+ r(w)b00(w)+ q(w)b01(w) = 0 ; (51)

p(w)b20(w)+ r(w)b21(w)+ b02(w) = 0 ; (52)

r(w)b20(w)+ q(w)b21(w)+ b12(w) = 0 . (53)

Since p(w) and r(w) are coprime to each other, the equality (48) implies that there exists
an element a(w) ∈ A satisfying b00(w) = r(w)a(w) and b01(w) = −p(w)a(w). Similarly,
the equality (49) implies that there exists an element ã(w) ∈ A satisfying b10(w) = q(w)ã(w)

and b11(w) = −r(w)ã(w). Then the condition (51) implies that(
p(w)q(w)− r(w)2

)
(ã(w)− a(w)) = 0 .

Noting that the degeneracy locus Δ of f is determined by p(w)q(w) − r(w)2 = 0 and

that general fibres of f are smooth, we have p(w)q(w) − r(w)2 ∈ A \ {0}. Thus we have
ã(w) = a(w). Let us put b(w) = b20(w) and c(w) = b21(w). Then we have b02(w) =
−p(w)b(w)− r(w)c(w) and b12(w) = −r(w)b(w)− q(w)c(w) by (52) and (53). Thus we
have

B =
⎛
⎝ r(w)a(w) −p(w)a(w) −p(w)b(w)− r(w)c(w)

q(w)a(w) −r(w)a(w) −r(w)b(w)− q(w)c(w)

b(w) c(w) 0

⎞
⎠ = QC ,

where C =
⎛
⎝ 0 −a(w) −b(w)
a(w) 0 −c(w)
b(w) c(w) 0

⎞
⎠ ∈ Ker(ϕE), whence we have B ∈ Q · Ker(ϕE).
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Thus Lemma 12 is proved. �

References

[ 1 ] A. BEAUVILLE, Variété de Prym ét Jacobiennes intermédiaires, Ann. scient. Éc. Norm. Sup., 4e série. t. 10
(1977), 309–391.

[ 2 ] M. EBIHARA, Some remarks on infinitesimal deformations of a conic bundle I, Saitama Math. J. 18 (2000),
1–21.

[ 3 ] M. EBIHARA, Some remarks on infinitesimal deformations of a conic bundle II, Saitama Math. J. 18 (2000),
23–38.

[ 4 ] M. EBIHARA, Some remarks on infinitesimal deformations of a conic bundle III, Saitama Math. J.
24 (2006 · 2007), 93–104.

[ 5 ] M. EBIHARA, Some remarks on infinitesimal deformations of a conic bundle IV, Saitama Math. J. 28 (2011),
39–54.

[ 6 ] E. HORIKAWA, On deformations of holomorphic maps I, II, III, J. Math. Soc. Japan 25 (1973), 372–396;
26 (1974), 647–667; Math. Ann. 222 (1976), 275–282.

[ 7 ] K. KODAIRA, A theorem of completeness of characteristic systems for analytic families of compact subman-
ifolds of complex manifolds, Ann. of Math. 75 (1962), 146–162.

[ 8 ] M. Miyanishi, Algebraic methods in the theory of algebraic threefolds, Algebraic varieties and analytic vari-
eties, eds. S. Iitaka et al., Advanced Studies in Pure Math. 1, Kinokuniya, North-Holland (1983), 69–99.

Present Address:
DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING,
SAITAMA UNIVERSITY,
SAITAMA-CITY, SAITAMA, 338–8570 JAPAN.
e-mail: mebihara@rimath.saitama-u.ac.jp


