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The paper with the above title contains the misprints and an omis-
sion. The omisson occurs in Lemma 3.5.

The correction in the statement of Lemma 3.5 is: Page 380 in
Lemma 3.5: $\Phi_{2}$ in the statement and the proof should be understood as
a mapping involving $X_{1}$-variable, i.e., $\Phi_{2}(x;\xi)$ should be replaced by
$\Phi_{2}(x;X_{1}, \xi)$ .

By the above reason, the proof of Proposition 4.1 is not correct,
for $b_{2}(x;\tilde{\xi})$ in (53) contains $X_{1}$-variable. This gap is repaired as follows:

Denote $\phi(x;\xi, X_{1})=\langle\tilde{\xi}|\tilde{S}(x;X_{1},\overline{X}_{0}(x;\xi(x;\xi)))\rangle$ , and set

$\psi(x;\tilde{\xi}, Y, \zeta, X_{1})=\langle\zeta|Y\rangle+\phi(x;\tilde{\xi}+\zeta, X_{1})-\phi(x;\tilde{\xi}, X_{1})$

$=\langle\zeta|Y+\int_{0}^{1}\frac{\partial\phi}{\partial\tilde{\xi}}(x;\tilde{\xi}+t\zeta, X_{1})dt\rangle$ .

Note that if $\varphi=id.$ , then $\phi=\langle\tilde{\xi}|X_{1}\rangle$ , hence $\psi=\langle\zeta|Y+X_{1}\rangle$ . Therefore,

one may assume that $\int_{0}^{1}\partial\phi/\partial\xi(x;\tilde{\xi}+t\zeta, X_{1})dt$ is sufficiently close to $X_{1}$ in

the $C^{2}$-topology.
By Lemma 3.5, the given operator can be written by

(1) $\int\int\emptyset x:\epsilon,x_{1}$
) $z=.Xx1$

wbere $\nu_{1}$ is the cut off function defined in (46). (Cf. (34) $\sim(40)$). Since
the breadth of $\nu_{1}$ is sufficiently small, one may assume $\phi(x;\tilde{\xi}, X_{1})\equiv$

$\langle\tilde{\xi}|X_{1}\rangle$ for $|X_{1}|\rangle\rangle$ $0$ . For amplitude $ a\in\Sigma_{c}^{\rho}\sim$ we consider the following
equation:

(2) $ a(x;\tilde{\xi}, X_{1})=\int\int e^{-i\psi^{(x:\xi Y,\zeta,X_{1})}}b(x;\tilde{\xi}\sim,, Y)dYd\zeta$ ,
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where $(x;\tilde{\xi})$ is understood as a parameter. To do that, we have to fix
a function space $\tilde{S}_{c}^{\beta}$ as the totality of $g(x;\xi, X_{1})eC^{\infty}(T^{*}N\oplus TN)$ such
that $g$ is rapidly decreasing in $X$ and $g$ has the following asymptotic
expansion:

$ g(x;r\hat{\xi}, X)\sim g_{\beta}(x;\xi, X)\mu(r)^{\beta}+g_{\beta-1}(x;\hat{\xi}, X)\mu(r)^{\beta-1}+\cdots$ ,

where $g_{\beta-j}’ s$ are $C^{\infty}$ functions on $S^{*}N\oplus TN$, rapidly decreasing in $X$.
Note that by virture of the cut off function $\nu$ and the asymptotic

expansion (11) (cf. p. 365), one may assume $a(x;\tilde{\xi}, X_{1})$ in (1) is an
element of $\tilde{S}_{c}^{\beta}$ . If (2) can be solved in $\tilde{S}_{c}^{\beta}$ for a given $a\in\tilde{S}_{c}^{\beta}$ , then (1)
can be replaced as follows:

$\int\int ae^{-i\prime}\nu_{1}udzd\tilde{\xi}=\int b’(x;\xi_{1})\nu u(\varphi(x;\xi_{1}))d\xi_{1}+(K\circ u)(x)\sim$ ,

where

(3) $ b^{\prime}(x;\xi_{1})=\int\int b(x;\xi_{1}-\zeta, Y)e^{-i\langle|Y\rangle}dYd\zeta$ .

If $be\tilde{S}_{c}^{\beta}$, then we obtain $b’ e\Sigma_{c}^{\beta}$ . Thus, we have only to solve (2).
Now, remark that (2) is a Fourier-integral operator of order $0$ on

$R^{n}$ for each fixed $(x;\tilde{\xi})$ . Apply the adjoint operator to both sides of (2).
The left hand side is

(4) $b^{\prime}(x;\tilde{\xi}, Z)=\int\int e^{\psi(x:\epsilon z_{\eta},x_{1})}a(x;\tilde{\xi}, X_{1})dX_{1}d\eta\sim,,$ .

Since $X_{2}=\int_{0}^{1}(\partial\phi/\partial\tilde{\xi})(x;\tilde{\xi}+t\eta, X_{1})dt$ is sufficiently close to $X_{1},$ $b$“ can be
written as

(5) $ b^{\prime}(x;\tilde{\xi}, Z)=\int\int e^{2\langle\eta|Z+X_{2}\rangle}a(x;\tilde{\xi}, X_{1}(x;\tilde{\xi}, \eta, X_{2}))\frac{dX_{1}}{dX_{2}}(x;\tilde{\xi}, \eta, X_{2})dX_{2}d\eta$ ,

and belongs to $\tilde{S}_{c}^{\beta}$ . Thus, we have only to solve

(6) $ b^{\prime}(x;\tilde{\xi}, Z_{1})=\int\int\int\int e^{i\psi x:\text{\’{e}},z_{\eta}.x_{1})-i\psi^{(x:\xi Y.\zeta.X_{1})}}t^{\sim\sim},b(x;\tilde{\xi}, Y)dYd\zeta dX_{1}d\eta$ . $.,\backslash \wedge$

Note that (6) is a pseudo-differential equation.
For each fixed $(x;\tilde{\xi}, Z, \eta, Y)$ , compute out the critical point and

value of the above phase function. Then, using that $\int_{0}^{1}(\partial\phi/\partial\tilde{\xi})(x;\tilde{\xi}+\zeta+$

$t(\eta-\zeta),$ $X_{1}$)$dt$ is sufficiently close to $X_{1}$ , one can obtain that
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(7) $ b’(x;\tilde{\xi}, Z)=\int\int[\int|\frac{d(\zeta,X_{1})}{d(\zeta,X’)}e^{-i\langle\zeta^{\prime}|X^{\prime}\rangle}dX^{\prime}d\zeta’]e^{-i\langle\eta|Y-2\rangle}b(x;\xi, Y)dYd\eta$ .

Note that

$c(x;\tilde{\xi}, Z, \eta, Y)=\int\int\frac{d(\zeta,X_{1})}{d(\zeta’,X’)}e^{-t\langle\zeta^{\prime}|X^{\prime}\rangle}dX’ d\zeta’$ ,

is sufficiently close to 1. Thus, we see that (7) is an invertible pseudo-
differential operator. Therefore, $b(x;\tilde{\xi}, Y)$ is obtained in the following
form

(8) $ b(x;\tilde{\xi}, Y)=\int\int f(x;\tilde{\xi}, Z, \eta, Y)e^{-i\langle\eta|Z-Y\rangle}b^{\prime}’(x;\tilde{\xi}, Z)dZd\eta$ .

Hence by (5), we obtain $b\in\tilde{S}_{c}^{\beta}$ and $b^{\prime}\in\Sigma_{c}^{\beta}$ . This computation is not
so easy one, but the tiresome computation using (4)$-(8)$ and (3) leads
us directly to the conclusion.

Other miscellaneous errata are as follows:
p. 353 $l\uparrow 3$ : $h(s, t)\equiv 1$ should be read $h(O, t)\equiv 1$ .
p. 358 $l\downarrow 9$ : $b(x,\hat{\xi})$ should be read $b(x;r\hat{\xi})$ .
p. 385 in Proposition 5.3: The domain of integrations should be $\tau_{x}*$ .
p. 387 $l\downarrow 9$ : The second line in the computation of $I_{\lambda}$ should be
read

$=\lim_{\epsilon\rightarrow\infty}\int_{0}^{1}\int_{S_{x}^{*}N}(i\xi)^{\beta}(1-\kappa)(\frac{1}{i}\frac{d}{dt})^{\lambda}(t^{|\beta|+n-1}b(x;t\hat{\xi}))e^{-it\epsilon\langle\epsilon^{\wedge}|z-(1/\epsilon)X_{0}(x:\epsilon)\rangle}d\hat{\xi}dt\wedge$ .
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