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Introduction

Let $k$ be a field and $A$ be an algebra over $k$ with a unity element
1. We denote by $M(A)$ the category of left A-modules. Let $Y$ be an
A-module and $E=End_{A}(Y)$ . We write $M(E)$ for the category of left
E-modules and $M’(E)$ for the category of right E-modules.

In this paper we introduce and study an idea of distinguishable
modules, which appears quite often in the representation theory of finite
groups, by making use of a contravariant representation functor $\Psi$ of
$M(A)$ into $M(E)$ (see \S 1) and a covariant representation functor $\Phi$ of
$M(A)$ into $M^{\prime}(E)$ (see \S 3).

DEFINITION (see Definition (2.1)). Assume that an A-module $Y$ is
decomposed into a finite number of indecomposable components, say

$Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y_{f}$ ,

and the left A-submodules of soc $Y$ satisfy the D.C.C. Then an inde-
composable component $Y_{\rho}$ , where $1\leqq\rho\leqq r$ , is said to be distinguishable
(by socle) if soc $Y_{\rho}$ is multiplicity free and $Y_{\rho}\cong Y_{\sigma}$ when soc $Y_{\rho}$ and
soc $Y_{\sigma}$ have a same simple submodule up to isomorphism, for any $ 1\leqq\sigma\leqq$

$r$ . When all the indecomposable components $Y_{\rho^{\prime}\iota}$ are distinguishable, we
say that $Y$ has a distinguishable decomposition $Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y_{f}$ .

For example when the submodules of $Y$ satisfy the D.C.C. and
soc $Y$ is multiplicity free, then $Y$ has a distinguishable decomposition
(see [1, Corollary 6.11], [4], [5, Theorem 3.17] and [6, Proposition 2.8 and
Corollary 3.5]).

Our main result is as follows

Theorem (see Theorem (2.7)): Let $E,$ $\Psi$ be as above. Assume that
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$E$ is finite dimensional, then $Y$ is decomposed into a finite number of
indecomposable components $Y_{1},$ $Y_{2},$

$\cdots,$
$Y_{f}$ . Assume further that soc $Y_{1}$ ,

is also finite dimensional and the left A-submodules of soc $Y$ satisfy the
D.C.C. and $k$ is an algebraically closed field. Then

$hd\Psi(Y_{1})\cong\Psi(X)$

for any simple component $X$ of soc $Y_{1}$ if and only if $Y_{1}$ is distinguishable.

In \S 1 we introduce the functor $\Psi$ and show a necessary and suffi-
cient condition that rad $E=\{f\in Elf$(soc $Y)=0\}^{*}$ holds (see Theorem 1.5).
In \S 2 we prove the theorem, then we introduce the other functor $\Phi$ in
\S 3, and show a theorem which is a generalization of [3, Theorem 1] and
an example of distinguishable modules in \S 4.

The functorial. method which appears in this paper has been deve-
loped through the research of the modular representations of finite
Chevalley groups (see [3] and [6]). One can see further applications of
the functor $\Phi$ in [7] and [8].

Finally the author is very grateful to the following Professors,
J. A. Green and his student P. E. C. Stone, P. Landrock, G. $0$ . Michler
and K. Morita for suggestive discussions with them. Among these
professors the author would like to thank P. Landrock especially for
his hospitality during the author’s stay at Aarhus University, where
the essential part of this work was done.

\S 1. Functor $\Psi$ .
Let $k$ be a field and $A$ be an algebra over $k$ with a unity element

1. We denote by $M(A)$ the category of left A-modules. Let $Y$ be an
object in $M(A)$ and we write $E$ for the endomorphism algebra of $Y$, i.e.,

$E=End_{A}(Y)$ ,

then we denote by $M(E)$ the category of left E-modules.
In this section we study the properties of a contravariant represen-

tation functor $\Psi$ of $M(A)$ into $M(E)$ and show a necessary and sufficient
condition that the radical of $E$ equals $\{f\in E|f(socY)=0\}$ assuming the
left E-submodules of $E$ satisfy the D.C.C. (see Theorem 1.5).

Let $M\in M(A)$ and $\Psi(M)=(M, Y)_{A}$ (the space of A-homomorphisms
from $M$ into Y). Then we can make $\Psi(M)$ into a left E-module by the
following operation.

*A formula of this kind had already been studied by [K. Morita, Y. Kawada and
H. Tachikawa, Math. Z., 68 (1957), $217-n6$] in case $Y$ is an iniective module.
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$E\times\Psi(M)\rightarrow\Psi(M)$

$(D$ $(D$

$(\alpha, f)$ $->\alpha\circ f$

Thus we get a contravariant functor $\Psi$ of $M(A)$ into the category of
left E-modules $M(E)$ . Notice when $\theta\in(M, M’)_{A}$ , then

$\Psi(\theta):\Psi(M’)\rightarrow\Psi(M)$

(1) $tD$

$f$ $\mapsto f\circ\theta$

where $M,$ $M’\in M(A)$ .
The following lemma is well-known.

LEMMA 1.1. (i) The sequence

$0\rightarrow\Psi(M^{\prime}’)\rightarrow\Psi(M)\Psi(\theta_{2})\rightarrow\Psi(M^{\prime})\Psi(\theta_{1})$

is exact for any exact sequence

$M^{\prime}\rightarrow^{\theta_{1}}M\rightarrow^{\theta_{2}}M^{\prime}’\rightarrow 0$ in $M(A)$ .
(ii) Assume $M\in M(A)$ be decomposed into a finite number of direct

summands in $M(A)$

$M=M_{1}\oplus M_{2}\oplus\cdots\oplus M_{l}$ ,
then

$V:\Psi(M)\cong\Psi(M_{1})+\cdots+\Psi(M_{l})t1)(D$

$f\mapsto\sum_{i=1}^{l}f|M_{l}$

gives rise to an E-isomorphism.

Now let $\Psi(M, M’)$ be a map from $(M, M^{\prime})_{A}$ to $(\Psi(M^{\prime}), \Psi(M))_{E}$ (the
space of E-homomorphisms from $\Psi(M^{\prime})$ into $\Psi(M))$ which takes $\theta\in(M, M^{\prime})_{A}$

to $\Psi(\theta)\in(\Psi(M^{\prime})),$ $\Psi(M))_{E^{\prime}}$ where $M$ and $M$’ are arbitrary objects in $M(A)$ ,
then $\Psi(M, M’)$ is a well-defined k-linear map.

According to the similar arguments of the corresponding items in
[3] we can prove the following lemma and proposition.

LEMMA 1.2 (see [3, Lemma $(2.1a)]$). If $Z$ is a component of $Y$ as
A-module, then the map

$\Psi(M, Z):(M, Z)_{A}\rightarrow(\Psi(Z), \Psi(M))_{E}$

$tD$ $(D$

$\theta$ $\mapsto$ $\Psi(\theta)$
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is bijective for any $M\in M(A)$ .
PROOF. Assume $\Psi(\theta)(f)=0$ for any $f\in\Psi(Z)$ . Since $Z$ is a component

of $Y,$ $\Psi(\theta)(c)=0$ for the embedding

$c:Z\subset\rightarrow Y$ .
Hence $c\circ\theta=\theta=0$ , and we have proved that $\Psi(M, Z)$ is injective.

Next assume $Z=Y$ . Let $\alpha$ be an arbitrary element of $(\Psi(Y)$ ,
$\Psi(M))_{E}$ . Since $\Psi(Y)=E,$ $\Psi(Y)$ contains a unity element $1_{Y}$ of $E$. Let
$f=\alpha(1_{Y})$ , then

$f\in\Psi(M)=(M, Y)_{A}$ .
Therefore

$\Psi(M, Y)(f)=\Psi(f)=\Psi(\alpha(1_{Y}))\in(\Psi(Y), \Psi(M))_{E}$ .
Since

$\Psi(\alpha(1_{Y}))(1_{Y})=1_{Y}\circ\alpha(1_{Y})=\alpha(1_{Y})$ ,
we have

$\Psi(\alpha(1_{Y}))=\alpha$ .
Thus $\Psi(M, Y)$ is bijective.

Now let $Z$ be a component of $Y$ such that $Y=Z\oplus Z$ ’ for some $ Z’\in$

$M(A)$ . Let $f$ be the embedding $c:Z\subset\rightarrow Y$ and $\pi$ be the projection of $Y$

onto $Z$ . Let $t$ be an element of $(\Psi(Z), \Psi(M))_{E}$ , then $t\circ\Psi(c)e(\Psi(Y)$ ,
$\Psi(M))_{E}$ . Hence there exists $\phi\in(M, Y)_{A}$ such that $\Psi(\phi)=t\circ\Psi(e)$ . Finally
since $\pi\circ\phi\in(M, Z)_{A}$ and $\Psi(\pi\circ\phi)=\Psi(\phi)\circ\Psi(\pi)=t\circ\Psi(c)\circ\Psi(\pi)=t\circ\Psi(\pi\circ c)=t$ , thus
$\Psi(M, Z)$ is surjective. Q.E.D.

PROPOSITION 1.3 (see [3, Corollary $(2.1b)]$). Assume that $Y$ be de-
composed into a direct sum of a finite number of indecomposable com-
ponents $Y_{1},$ $Y_{2},$

$\cdots,$ $Y,$ . then
(i) $\Psi(Y)\cong\Psi(Y_{1})+\cdots+\Psi(Y_{f})$ as left E-modules,
(ii) $Y_{\rho}\cong Y_{\sigma}$ in $M(A)$ if and only if $\Psi(Y_{\rho})\cong\Psi(Y_{\sigma})$ in $M(E)$ , for

all $1\leqq\rho,$ $\sigma\leqq r$ , and
(iii) $\Psi(Y_{\rho})$ is an indecomposable left E-module for all $1\leqq\rho\leqq r$ .
PROOF. (i) is clear from Lemma 1.1.
(ii) Since $\Psi$ is a functor, $Y_{\rho}\cong Y_{\sigma}$ in $M(A)$ implies $\Psi(Y_{\rho})\cong\Psi(Y_{\sigma})$ in

$M(E)$ . Conversely if $\Psi(Y_{\rho})\cong\Psi(Y_{\sigma})$ in $M(E)$ , then from Lemma 1.2 there
exists $fe(Y_{\rho}, Y.)_{A}$ such that
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$\Psi(f):\Psi(Y_{\sigma})\cong\Psi(Y_{\rho})$ .
By the same argument there also exists $g\in(Y_{\sigma}, Y_{\rho})_{A}$ such that $\Psi(g)=$

$\Psi(f)^{-1}$ . Therefore

$\Psi(f)\circ\Psi(g)=\Psi(g\circ f)=1_{Y(Y_{\rho})}=\Psi(1_{Y_{\rho}})$

and
$\Psi(g)\circ\Psi(f)=\Psi(f\circ g)=1_{U(l_{\sigma}^{r})}=\Psi(1_{Y_{\sigma}})$ .

Hence go $f=1_{Y_{\rho}}$ , $fog=1_{Y_{\sigma}}$ and $Y_{\rho}\cong Y_{\sigma}$ in $M(A)$ .
(iii) Since

$\Psi(Y_{\rho}, Y_{\rho}):(Y_{\rho}, Y_{\rho})_{A}\rightarrow(\Psi(Y_{\rho}), \Psi(Y_{\rho}))_{E}$

is an anti k-algebra isomorphism, $(\Psi(Y_{\rho}), \Psi(Y_{\rho}))_{E}$ is indecomposable and
so is $\Psi(Y_{\rho})$ (see, for example [6, Theorem (1.1)]). Q.E.D.

DEFINITION 1.4. Let $M$ be a left A-module. The socle of $M$, soc $M$,
is the sum of all the irreducible submodules of $M$. Further if the left
A-submodules of an algebra $A$ over a field $k$ satisfy the D.C.C., we
call $M/(radA)M$ the head of an A-module $M$ where rad $A$ is the radical
of $A$ . We denote by hdM the head of $M$.

The proof of the following theorem was improved by Professor
K. Morita.

THEOREM 1.5. Assume that the left E-submodules of $E$ satisfy the
D.C.C. Then $Y$ is decomposed into a finite number of indecomposable
components $Y_{1},$ $Y_{2},$

$\cdots,$
$Y_{r}$ ; and we hare

(i) hd $\Psi(Y_{\rho})^{c=}\Psi(socY_{\rho})$ if $\Psi(socY_{\rho})$ is semisimple (i.e., completely
reducible), for any $ 1\leqq\rho\leqq\gamma$ and

(ii) rad $E=\{f\in E|f(socY)=0\}$ if and only if $\Psi(socY_{\rho})$ is semi-
simple for all $ 1\leqq\rho\leqq\gamma$ .

PROOF. It is clear that $E$ is decomposed into a finite number of
indecomposable modules (see [2, Theorem (14.2)]). Let $ EE=E\pi_{1}\oplus E\pi_{2}\oplus\cdots$

$\oplus E\pi_{f}$ be a decomposition of $E$ into non-zero indecomposable submodules
$\{E\pi_{\rho}\}$ where $\{\pi_{\rho}\}$ are orthogonal idempotents in $E$ such that $1=\pi_{1}+\pi_{2}$

$+\cdots+\pi_{r}$ . Then we have $Y=\pi_{1}(Y)\oplus\pi_{2}(Y)\oplus\cdots\oplus\pi_{f}(Y)$ . Notice that
$\pi_{i}|\pi_{t}(Y)=1_{\pi_{t}(Y)}$ and $\pi_{i}|\pi_{j}(Y)=0$ for $j\neq i$ . Since the $E\pi_{\rho^{\prime}\epsilon}$ are indecom-
posable, the $\pi_{\rho}(Y)s$ are also indecomposable from a theorem of Fitting
(see [6, Theorem (1.1))]).

(i) Assume $\Psi(socY_{\rho})$ be semisimple, where $1\leqq\rho\leqq r$ .
$Since\Psi(\tau)$

soc $Y_{\rho}\approx^{f}Y_{\rho}\rightarrow Y_{\rho}/socY_{\rho}\rightarrow 0\tau$ is exact in $M(A)$ , the sequence $ 0\rightarrow\Psi(Y_{\rho}/socY_{\rho})\rightarrow$
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$\Psi(\iota)$

$\Psi(Y_{\rho})\rightarrow\Psi(socY_{\rho})$ is also exact in $M(E)$ from Lemma 1.1. Thus we have

$\Psi(Y_{\rho})/{\rm Im}\Psi(\tau)=\Psi(socY_{\rho})$ .
Since $c$ : soc $Y_{\rho}\subset>Y_{\rho}$ is non trivial, $\Psi(c)$ is also a non trivial E-homomor-
phism from Lemma 1.2. Hence $\Psi(Y_{\rho})/{\rm Im}\Psi(\tau)\cong{\rm Im}\Psi(c)$ is a non zero
semisimple E-module. Since $\Psi(Y_{\rho})$ is a principal indecomposable module
of $E$ (see Proposition (1.3)), we have

hd $\Psi(Y_{\rho})=\Psi(Y_{\rho})/{\rm Im}\Psi(\tau)=\Psi(socY_{\rho})$ .
(ii) First assume rad $E=\{f\in E|f(socY)=0\}$ . Then since

(rad $E$ )$\Psi(socY)=0$ , $\Psi(socY_{\rho})$ is semisimple for any $1\leqq\rho\leqq r$ (see [2,
Exercise 25.4]).

Next assume $\Psi(socY_{\rho})$ is semisimple for all $ 1\leqq\rho\leqq\gamma$ . Let $f$ be an
element of $E$ such that $f(socY)=0$ , then $f\Psi(socY_{\rho})=0$ for any $1\leqq\rho\leqq r$ .
Since hd $\Psi(Y_{\rho})\subset\rightarrow\Psi(socY_{\rho})$ from (i), we have $ f\in$ rad $E$ (see [2, Exercise
25.8]). Now let $\alpha\in$ rad $E$. Then since $\Psi(socY_{\rho})$ is semisimple, $\alpha\Psi(socY_{\rho})=$

$0$ . Hence $\alpha(socY_{\rho})=0$ for all $1\leqq\rho\leqq r$ . Q.E.D.

\S 2. A correspondence theorem.

We first introduce an idea of distinguishable modules.

DEFINITION 2.1. Let $A$ be an algebra over a field $k$ with a unity
element 1. Assume that an A-module $Y$ is decomposed into a finite
number of indecomposable components, say $Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y_{f}$ , and
the left A-submodules of soc $Y$ satisfy the D.C.C. Then an indecompo-
sable component $Y_{\rho}$ , where $1\leqq\rho\leqq r$ , is said to be distinguishable (by
socle) if soc $Y_{\rho}$ is multiplicity free (i.e., soc $Y_{\rho}$ is a direct sum of non-
isomorphic simple modules) and $Y_{\rho}\cong Y_{\sigma}$ when soc $Y_{\rho}$ and soc $Y_{\sigma}$ have a
same simple submodule up to isomorphism, for any $1\leqq\sigma\leqq r$ . When all
the indecomposable components $Y_{\rho}’ s$ are distinguishable, we say that
$Y$ has a distinguishable decomposition

$Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y_{f}$ .
Now let $E=End_{A}(Y)$ where $Y$ is a left A-module. Throughout this

section we assume that the left E-submodules of $E$ satisfy the D.C.C.
Then $Y$ is decomposed into a finite number of indecomposable components
$Y_{1},$ $Y_{2},$

$\cdots,$
$Y_{f}$ as a straight consequence of a theorem of Fitting (see

Theorem (1.5)). Thus we have
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$Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y_{r}$

soc $Y=socY_{1}\oplus socY_{2}\oplus\cdots\oplus socY_{r}$

and
$\Psi(Y)\cong\Psi(Y_{1})+\Psi(Y_{2})+\cdots+\Psi(Y_{r})$ .

In this section we study a condition under which $\Psi(X)\cong hd\Psi(Y_{\rho})$ holds
for a given $1\leqq\rho\leqq r$ , where $X$ is a simple component of soc $Y_{\rho}$ .

LEMMA 2.2. Let $E,$ $\Psi$ and $Y_{\rho}$ etc. be as before. Assume that $Y_{1}$ is
distinguishable and soc $Y_{1}$ is of finite dimension. Then for any simple
component $X$ of soc $Y_{1}$

(i) $\Psi(X)=\sum_{Y_{\rho}\cong Y_{q}}\oplus(X, Y_{\rho})_{A}$ (as k-modules) and
(ii) $\dim_{k}\Psi(X)=|\{Y_{\rho}|Y_{\rho}\cong Y_{1}\}|\dim_{k}(X, X)_{A}$ .
PROOF. (i) Since $\Psi(X)=(X, Y)_{A}$ by definition, we have $\Psi(X)=$

$\sum_{\rho=1}^{r}\oplus(X, Y_{\rho})_{A}$ as k-modules. Let $f\in(X, Y_{\rho})_{A}$ , then $f\neq 0$ implies $Y_{1}\cong Y_{\rho}$ .
Therefore $(X, Y_{\rho})_{A}\neq 0$ if and only if $Y_{1}\cong Y_{\rho}$ .

(ii) from (i) we have $\dim_{k}\Psi(X)<\infty$ and

$\Psi(X)=\sum_{Y_{\rho}\cong Y_{1}}\oplus(X$, soc $Y_{\rho})_{A}$

Hence $\dim_{k}\Psi(X)=|\{Y_{\rho}|Y_{\rho}\cong Y_{1}\}|\dim_{k}(X, X)_{A}$ , because soc $Y_{1}$ is multiplicity
free. Q.E.D.

From the Schur’s lemma we can prove the following corollary.

COROLLARY 2.3. Under the same $assumption$ of Lemma 2.2, if $k$

is an algebraically closed field, then

$\dim_{k}\Psi(X)=|\{Y_{\rho}|Y_{\rho}\cong Y_{1}\}|$

where $X$ is a simple component of soc $Y_{1}$ .
PROPOSITION 2.4. Let $E,$ $\Psi$ and $Y_{\rho}$ etc. be as before. Assume that

$Y_{1}$ is distinguishable and soc $Y_{1}$ is of finite dimension. Then there
exists an injective E-homomorphism of hd $\Psi(Y_{1})$ into $\Psi(X)$ . i.e.,

hd $\Psi(Y_{1})=\Psi(X)$ ,

for any simple component $X$ of soc $Y_{1}$ . Hence in this case hd $\Psi(Y_{1})$ is
finite dimensional.

PROOF. Since $\dim_{k}\Psi(X)$ is non-zero and finite, we can choose a
minimal non-zero submodule $X_{0}$ of $\Psi(X)$ . Since $X_{0}\cong hd\Psi(Y_{\rho})$ for some
$ 1\leqq\rho\leqq\gamma$ (see [2, Corollary (54.13)]), $(\Psi(Y_{\rho}), \Psi(X))_{E}\neq 0$ and so $(X, Y_{\rho})_{A}\rightarrow 0$
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for that $\rho$ (see Lemma 1.2). Hence $Y_{1}\cong Y_{\rho}$ from the assumption. Thus

hd $\Psi(Y_{1})\cong hd\Psi(Y_{\rho})\cong X_{0}=\rightarrow\Psi(X)$ . Q.E.D.

COROLLARY 2.5. Let $E,$ $\Psi$ and $Y_{\rho}$ etc. be as before. Assume that
the decomposition $Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y$, is distinguishable and the soc $Y$

is of finite dimension. Then $E$ is also finite dimensional over $k$ .
We can prove the following lemma as an application of the

Wedderburn’s theorem.

LEMMA 2.6. Let $E,$ $\Psi$ and $Y_{\rho}$ etc. be as before. Assume that $E$ is
finite dimensional and $k$ is algebraically closed, then we have

dimk hd $\Psi(Y_{\rho})=|\{Y_{\sigma}|Y_{\sigma}\cong Y_{\rho}\}|$

for any $ 1\leqq\rho\leqq?\cdot$ .
THEOREM 2.7. Let $E,$ $\Psi$ and $Y_{\rho}$ etc. be as before. Assume that $E$

and soc $Y_{1}$ are finite dimensional and the left A-submodules of soc $Y$

satisfy the D.C.C. and $k$ is an algebraically closed field. Then hd $\Psi(Y_{1})\cong$

$\Psi(X)$ for any simple component $X$ of soc $Y_{1}$ if and only if $Y_{1}$ is dis-
tinguishable.

PROOF. First assume hd $\Psi(Y_{1})\cong\Psi(X)$ for any simple component $X$

of soc $Y_{1}$ . If soc $Y_{1}$ is decomposed into a direct sum of simple compo-
nents $\{X_{1}, X_{2}, \cdots, X_{t}\}$ and $X_{1}\cong X_{2}$ , then since

$\Psi(X_{1})=(X_{1}, Y)_{A}=(X_{1},\sum_{\rho=1}^{r}\oplus Y_{\rho})_{A}$

$=\{\sum_{r_{\rho}\cong Y_{1}}\oplus(X_{1}, Y_{\rho})_{A}\}\oplus\{\sum_{Y_{\rho}\not\cong Y_{1}}(X_{1}, Y_{\rho})_{A}\}$
,

and $\dim_{k}(X_{1}, Y_{1})_{A}\geqq 2$ , we have dim $\Psi(X_{1})\geqq\sum_{Y_{\rho}\equiv Y_{1}}$ dim $(X_{1}, Y_{\rho})_{A}>|\{Y_{\rho}|Y_{\rho}\cong$

$Y_{1}\}|=\dim_{k}$ hd $\Psi(Y_{1})$ , a contradiction. Hence soc $Y_{1}$ is multiplicity free.
Let $Y_{\rho}$ be an indecomposable module from $Y_{1},$ $Y_{2},$

$\cdots,$
$Y_{f}$ such that

$($X, soc $Y_{\rho})_{A}\neq 0$ for some simple component $X$ of soc $Y_{1}$ . Then $(X, Y_{\rho})_{A}\neq 0$

and we have $(\Psi(Y_{\rho}), \Psi(X))_{E}\neq 0$ from Lemma 1.2. Since $\Psi(X)$ is simple,
hd $\Psi(Y_{\rho})\cong\Psi(X)\cong hd\Psi(Y_{1})$ . Hence $\Psi(Y_{\rho})\cong\Psi(Y_{1})$ , i.e., $Y_{\rho}\cong Y_{1}$ from Pro-
position 1.3.

Next assume that $Y_{1}$ is distinguishable. Then from Proposition 2.4
we have hd $\Psi(Y_{1})\rightarrow\Psi(X)$ for any simple component $X$ of soc $Y_{1}$ . Since
$\dim_{k}\Psi(X)=|\{Y_{\rho}|Y_{\rho}\cong Y_{1}\}|$ from Corollary 2.3 and $\dim_{k}$ hd $\Psi(Y_{1})=|\{Y_{\rho}|Y_{\rho}\cong$

$Y_{1}\}|$ from Lemma 2.6, we have hd $\Psi(Y_{1})\cong\Psi(X)$ . Q.E.D.
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COROLLARY 2.8. Let $E,$ $\Psi$ and $Y_{\rho}$ etc. be as before. Assume that
the left E-submodules of $E$ satisfy the D.C.C. and $k$ is an algebraically
closed field, and further assume that soc $Y$ is finite dimensional. Then

(i) The following two statements are equivalent.
(a) soc $Y_{\rho}$ is simple for any $1\leqq\rho\leqq r$ , and soc $Y_{\rho}\cong socY_{\sigma}$ if and

only if $Y_{\rho}\cong Y_{\sigma}$ for any $1\leqq\rho,$ $\sigma\leqq r$ .
(b) hd $\Psi(Y_{\rho})\cong\Psi(socY_{\rho})$ for any $1\leqq\rho\leqq r$ .

(ii) Assume that $Y$ has a distinguishable decomposition $Y=Y_{1}\oplus$

$Y_{2}\oplus\cdots\oplus Y_{r}$ , then we have

rad $E=\{f\in E|f(socY)=0\}$ .
PROOF. (i) $(a)\Rightarrow(b)$ : From Corollary 2.5 $E$ is finite dimensional.

Hence hd $\Psi(Y_{\rho})\cong\Psi(socY_{\rho})$ , for any $1\leqq\rho\leqq r$ , straightly from the theorem.
$(b)\Rightarrow(a)$ : Since $\dim_{k}\Psi(socY_{\rho})$ is finite for any $ 1\leqq\rho\leqq\gamma$ $E$ is also

finite dimensional. Since soc $Y_{\rho}$ is simple, for any $1\leqq\rho\leqq r$ , from Lemma
1.1, soc $Y_{\rho}\cong socY_{\sigma}$ if and only if $Y_{\rho}\cong Y_{\sigma}$ for any $1\leqq\rho,$ $\sigma\leqq r$ , from the
theorem.

(ii) From Corollary 2.5 $E$ is finite dimensional. Hence we have
hd $\Psi(Y_{\rho})\cong\Psi(X)$ for any simple component $X$ of soc $Y_{\rho}$ where $1\leqq\rho\leqq r$ .
Thus it is clear from Lemma 1.1 and Theorem 1.5. Q.E.D.

\S 3. Functor $\Phi$ .
Let $k$ be a field and $A$ be an algebra over $k$ with a unity element

1. We denote by $M(A)$ the category of left A-modules. Let $Y$ be an
object in $M(A)$ and $E=End_{A}(Y)$ , then we write $M’(E)$ for the category
of right E-modules. In this section we just introduce a covariant
representation functor $\Phi$ of $M(A)$ into $M’(E)$ with respect to $Y$, and
its properties which are necessary for later discussion.

Let $M\in M(A)$ and $\Phi(M)=(Y, M)_{A}$ . Then we can make $\Phi(M)$ into a
right E-module by the following operation.

$\Phi(M)\times E\rightarrow\Phi(M)$

(1) $(D$

$(f, \alpha)$ $-\succ f\circ\alpha$

If $M,$ $M^{\prime}eM(A)$ and $\theta\in(M, M^{\prime})_{A}$ , we define $\Phi(\theta):\Phi(M)\rightarrow\Phi(M’)$ to be
the mapping of $\Phi(M)$ into $\Phi(M^{\prime})$ which takes $f$ to $\theta\circ f$ for all $f\in\Phi(M)$ .
Thus we get a covariant functor $\Phi$ of $M(A)$ into the category of right
E-modules $M’(E)$ .

The following lemma is well-known.
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LEMMA 3.1. $\Phi$ is a covariant, k-linear and left exact functor from
$M(A)$ into $M’(E)$ , i.e.,

(i) $\Phi(id_{H})=id_{\phi(K)}$ for any $M\in M(A)$ , and $\Phi(\theta^{\prime}\circ\theta)=\Phi(\theta^{\prime})\circ\Phi(\theta)$ where
$\theta\in(M, M^{\prime})_{A}$ and $\theta’ e(M’, M^{\prime\prime})_{A}$ ,

(ii) $\Phi(c\theta)=c\Phi(\theta)$ and $\Phi(\theta+\theta^{\prime})=\Phi(\theta)+\Phi(\theta)$ where $\theta,$ $\theta\in(M, M^{\prime})_{A}$ and
$c\in k$ ,

$\Phi(\theta_{1})$ $\Phi(\theta_{2})$

(iii) $0\rightarrow\Phi(M’)\rightarrow\Phi(M)\rightarrow\Phi(M^{\prime}’)$

is exact for any exact sequence

$0\rightarrow M^{\prime}\rightarrow^{\theta_{1}}M\rightarrow^{\theta_{g}}M$ ’ in $M(A)$ .
Now let $\Phi(M, M^{\prime})$ be a map from $(M, M^{\prime})_{A}$ to $(\Phi(M), \Phi(M^{\prime}))_{E}$ which

takes $\theta\in(M, M^{\prime})_{A}$ to $\Phi(\theta)\in(\Phi(M), \Phi(M’))_{E}$ , where $M$ and $M$’ are arbitrary
objects in $M(A)$ , then $\Phi(M, M’)$ is also a well-defined k-linear map.

One can prove the following lemma and proposition by the similar
argument of the corresponding items in section 1.

LEMMA 3.2. If $Z$ is a component of $Y$ as A-module, then the map

$\Phi(Z, M):(Z, M)\rightarrow(\Phi(Z), \Phi(M))_{E}$

(V (1)

$\theta$ $->$ $\Phi(\theta)$

is bijective for any $M\in M(A)$ .

PROPOSITION 3.3. Assume that $Y$ be decomposed into a direct sum
of finite indecomposable components $Y_{1},$ $Y_{2}\cdots Y_{r}$ . Then

(i) $\Phi(Y)=\Phi(Y_{1})\oplus\Phi(Y_{2})\oplus\cdots\oplus\Phi(Y_{f})$ ,
(ii) $Y_{\rho}\cong Y_{\sigma}$ in $M(A)$ if and only if $\Phi(Y_{\rho})\cong\Phi(Y_{\sigma})$ in $M’(E)$ , for

all $1\leqq\rho,$ $\sigma\leqq r$ , and
(iii) $\Phi(Y_{\rho})$ is an indecomposable right E-module for all $1\leqq\rho\leqq r$ .

\S 4. Quasi-Frobenius endomorphism algebras.

Let $E=End_{A}(Y)$ , where $A$ is an algebra over a field $k$ with a unity
element 1 and $Y$ is a left A-module, as usual. Throughout this section
we assume that the left and right E-submodules of $E$ satisfy the D.C.C.
Then $Y$ is decomposed into a finite number of indecomposable components
$Y_{1},$ $Y_{2}\cdots Y_{r}$ . Thus we have

$Y=Y_{1}\oplus Y_{2}\oplus\cdots\oplus Y_{f}$
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(4.1) $\Phi(Y)=\Phi(Y_{1})\oplus\Phi(Y_{2})\oplus\cdots\oplus\Phi(Y_{f})$ ,

where $\Phi$ is the functor $\Phi$ defined in section 3 with respect to Y.
(4.2) Now assume $E_{E}$ be an injective right E-module (i.e., $E$ is a

quasi-Frobenius algebra), then each indecompopable component $\Phi(Y_{\rho})$ in
(4.1), $1\leqq\rho\leqq r$ , (see Proposition 3.3) has a simple socle (see [2, Theorem
(58.12)]) and $\Phi(Y_{\rho})\cong\Phi(Y_{\sigma})$ if and only if soc $\Phi(Y_{\rho})\cong soc\Phi(Y.)$ where $ 1\leqq\rho$ ,
$\sigma\leqq r$ . Hence every simple module in $M’(E)$ is isomorphic to soc $\Phi(Y_{\rho})$

for some $\rho$ .
Next we show a theorem, which is a generalization of [3, Theorem

1] and also an example of $Y$ which has a distinguishable decomposition.

THEOREM 4.3 (see [3, Theorem 1]). Let $E$, $Y_{\rho}$ and $\Phi$ etc. be as
before. Assume that the left and right E-submodules of $E$ satisfy the
D.C.C. Suppose $E_{E}$ is an injective right E-module, and assume further
for each simple A-module $M\in M(A)$ if $M$ is a component of soc $Y$, then
$\Phi(M)\neq 0$ .

Then we have soc $Y_{\rho}$ is simple and $\Phi(socY_{\rho})=soc\Phi(Y_{\rho})$ for all
$ 1\leqq\rho\leqq\gamma$ .

PROOF. Assume soc $Y_{\rho}$ not be simple, then there exist simple sub-
modules $M,$ $M^{\prime}$ of $Y_{\rho}$ such that $M\cap M’=\{0\}$ . Since $M,$ $M$ ’ are compo-
nents of soc $Y_{\rho}$ , we have $\Phi(M)\neq 0$ and $\Phi(M’)\neq 0$ from the assumption.
Thus $\Phi(Y_{\rho})$ contains a submodule $\Phi(M)\oplus\Phi(M’)$ with non-zero right
E-modules $\Phi(M)$ and $\Phi(M’)$ . Hence soc $\Phi(Y_{\rho})$ is not simple against (4.2).
Thus soc $Y_{\rho}$ is simple for all $\rho\in\{1,2, \cdots r\}$ .

Write $M=socY_{\rho}$ . From the above discussion $M$ is simple and $X=$
$\Phi(M)\neq 0$ . Since $X\subseteqq\Phi(Y_{\rho})$ and soc $\Phi(Y_{\rho})$ is simple from (4.2), if $X$ is
simple, $X=soc\Phi(Y_{\rho})=\Phi(socY_{\rho})$ and the proof is complete.

So we assume that $X$ is not simple. Let $X/K$ be a simple factor
module of $X$. Remark that $O\subsetneqq K\subsetneqq X$. By (4.2) $X/K$ is isomorphic to
some submodule of $\Phi(Y)$ , hence there exists an E-homomorphism $\beta:X\rightarrow$

$\Phi(Y)$ with ker $\beta=K$. Since $\Phi(Y)$ is injective from the assumption, $\beta$

can be extended to an E-homomorphism $\beta_{1}:\Phi(Y_{\rho})\rightarrow\Phi(Y)$ . But Lemma
3.2 shows that $\beta_{1}=\Phi(\beta_{2})$ for some A-homomorphism $\beta_{2}:Y_{\rho}\rightarrow Y$. Since
$\beta_{1}(f)=\beta_{2^{\circ}}f$ for all $f\in\Phi(Y_{\rho})$ by definition, $\beta_{2^{\circ}}f=0$ for any $f$ in $K$. Let
$f_{0}$ be a non-zero element in $K$. Since $M$ is simple, $Af_{0}(Y)=M$ and
$\beta_{2}(M)=A\beta_{2}(f_{0}(Y))=0$ . Hence ker $\beta_{2}\supseteqq M$. Now we have $\beta(X)=\beta_{1}(X)=$

$\Phi(\beta_{2})(X)$ , and for all $f\in X(\Phi(\beta_{2})(f))(Y)=(\beta_{2^{\circ}}f)(Y)\subseteqq\beta_{2}(M)=0$ . Hence
$\beta(X)=0$ and ker $\beta\supseteqq X$, which contradicts to our assumption $O\subsetneqq K\subsetneqq X$.
Therefore $X$ is simple. Q.E.D.
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COROLLARY 4.4. Under the same assumption of Theorem 4.3, $we$

have soc $Y_{\rho}$ is simple for any $1\leqq\rho\leqq r$ , and soc $Y_{\rho}\cong socY_{\sigma}$ if and only
if $Y_{\rho}\cong Y_{\sigma}$ , for any $1\leqq\rho,$ $\sigma\leqq r$ .
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